KONGU ENGINEERING COLLEGE

(Autonomous Institution Affiliated to Anna University, Chennai)

PERUNDURAI ERODE – 638 060

TAMILNADU INDIA

REGULATIONS, CURRICULUM & SYLLABI - 2020

(CHOICE BASED CREDIT SYSTEM AND **OUTCOME BASED EDUCATION)**

(For the students admitted during 2020 - 2021 and onwards)

BACHELOR OF TECHNOLOGY DEGREE IN INFORMATION TECHNOLOGY

DEPARTMENT OF INFORMATION TECHNOLOGY

INDEX

SI.No.	CONTENTS	Page No.
1	VISION AND MISSION OF THE INSTITUTE	3
2	QUALITY POLICY	3
3	VISION AND MISSION OF THE DEPARTMENT	3
4	PROGRAM EDUCATIONAL OBJECTIVES (PEOs)	3
5	PROGRAM OUTCOMES (POs)	4
6	PROGRAM SPECIFIC OUTCOMES (PSOs)	5
7	REGULATIONS 2018	6
8	CURRICULUM BREAKDOWN STRUCTURE	23
9	CATEGORISATION OF COURSES	23
10	SCHEDULING OF COURSES	31
11	MAPPING OF COURSES WITH PROGRAM OUTCOMES	32
12	CURRICULUM OF BTECH – INFORMATION TECHNOLOGY	39
13	DETAILED SYLLABUS	46

KONGU ENGINEERING COLLEGE, PERUNDURAI, ERODE – 638060

(Autonomous)

REGULATIONS 2020

CHOICE BASED CREDIT SYSTEM AND OUTCOME BASED EDUCATION

BACHELOR OF ENGINEERING (BE) / BACHELOR OF TECHNOLOGY (BTech) DEGREE PROGRAMMES

These regulations are applicable to all candidates admitted into BE/BTech Degree programmes from the academic year 2020 – 2021 onwards.

1. DEFINITIONS AND NOMENCLATU RE

In these Regulations, unless otherwise specified:

- i. "University" means ANNA UNIVERSITY, Chennai.
- ii. "College" means KONGU ENGINEERING COLLEGE.
- iii. "Programme" means Bachelor of Engineering (BE) / Bachelor of Technology (BTech) Degree programme
- iv. "Branch" means specialization or discipline of BE/BTech Degree programme, like Civil Engineering, Information Technology, etc.
- v. "Course" means a Theory / Theory cum Practical / Practical course that is normally studied in a semester like Mathematics, Physics etc.
- vi. "Credit" means a numerical value allocated to each course to describe the candidate's workload required per week.
- vii. "Grade" means the letter grade assigned to each course based on the marks range specified.
- viii. "Grade point" means a numerical value (0 to 10) allocated based on the grade assigned to each course.
- ix. "Principal" means Chairman, Academic Council of the College.
- x. "Controller of Examinations" means authorized person who is responsible for all examination related activities of the College.
- xi. "Head of the Department" means Head of the Department concerned of the College.

2. PROGRAMMES AND BRANCHES OF STUDY

The following programmes and branches of study approved by Anna University, Chennai and All India Council for Technical Education, New Delhi are offered by the College.

Programme	Branch					
	Civil Engineering					
	Mechanical Engineering					
	Electronics and Communication Engineering					
	Computer Science and Engineering					
BE	Electrical and Electronics Engineering					
	Electronics and Instrumentation Engineering					
	Mechatronics Engineering					
	Automobile Engineering					
	Computer Science and Design					
	Chemical Engineering					
	Information Technology					
BTech	Food Technology					
	Artificial Intelligence and Data Science					
	Artificial Intelligence and Machine Learning					

3. ADMISSION REQUIREMENTS

3.1 First Semester Admission

The candidates seeking admission to the first semester of the eight semester BE / BTech Degree Programme:

Should have passed the Higher Secondary Examination (10 + 2) in the academic stream with Mathematics, Physics and Chemistry as three of the four subjects of study under Part-III subjects of the study conducted by the Government of Tamil Nadu or any examination of any other University or authority accepted by the Anna University, Chennai as equivalent thereto.

(OR)

Should have passed the Higher Secondary Examination of Vocational stream (Vocational groups in Engineering / Technology) as prescribed by the Government of Tamil Nadu.

They should also satisfy other eligibility conditions as prescribed by the Anna University, Chennai and Directorate of Technical Education, Chennai from time to time.

3.2 Lateral Entry Admission

The candidates who hold a Diploma in Engineering / Technology awarded by the State Board of Technical Education, Tamilnadu or its equivalent are eligible to apply for Lateral entry admission to the third semester of BE / BTech in relevant branches of study.

(OR)

The candidates who hold a BSc degree (10+2+3 stream) with mathematics as one of the subjects at the BSc level from a recognised University are eligible to apply for Lateral entry admission to the third semester of BE / BTech. Such candidates shall undergo two additional Engineering course(s) in the third and fourth semesters as prescribed by the College.

They should satisfy other eligibility conditions prescribed by the Anna University, Chennai and Directorate of Technical Education, Chennai from time to time.

4. STRUCTURE OF PROGRAMMES

4.1 Categorisation of Courses

The BE / BTech programme shall have a curriculum with syllabi comprising of theory, theory cum practical, practical courses in each semester, professional skills training, project work, internship, etc. that have been approved by the respective Board of Studies and Academic Council of the College. All the programmes have well defined Programme Outcomes (PO), Programme Specific Outcomes (PSO) and Programme Educational Objectives (PEOs) as per Outcome Based Education (OBE). The content of each course is designed based on the Course Outcomes (CO). The courses shall be categorized as follows:

- i. Humanities and Social Sciences (HS) including Management Courses
- ii. Basic Science (BS) Courses
- iii. Engineering Science (ES) Courses
- iv. Professional Core (PC) Courses
- v. Professional Elective (PE) Courses
- vi. Open Elective (OE) Courses
- vii. Employability Enhancement Courses (EC) like Project work, Professional Skills, Comprehensive Test & Viva, Entrepreneurships/Start ups and Internship in Industry or elsewhere
- viii. Audit Courses (AC)
- ix. Mandatory Courses (MC) like Student Induction Program and Environmental Science.
- x. Honours Degree Courses (HC)

4.2 Credit Assignment and Honours Degree

4.2.1. Credit Assignment

Each course is assigned certain number of credits as follows:

Contact period per week	Credits
1 Lecture / Tutorial Period	1
2 Practical Periods	1

2 Project Work Periods	1
40 Training / Internship Periods	1

The minimum number of credits to complete the BE/BTech programme is 169.

4.2.2. Honours Degree

If a candidate earns 18 to 20 additional credits in an emerging area, then he/she can be awarded with Honours degree mentioning that emerging area as his/her specialization. The respective board of studies shall recommend the specializations for honours degree and appropriate additional courses to be studied by the candidate which shall get approval from Academic Council of the institution. A candidate shall have not less than 8.0 CGPA and no history of arrears during the entire programme to opt for the honours degree.

Various specializations for various branches recommended by the respective boards of studies are given below:

S. No.	Specializations for Honours degree in emerging areas	To be offered as Honours, Only for the following branches mentioned against the specialization
1.	Construction Technology	Civil Engineering
2.	Robotics	Mechanical Engineering
3.	Electric Vehicles	Mechanical Engineering
4.	Artificial Intelligence and Machine Learning	Mechatronics Engineering
5.	Electric Vehicles	Automobile Engineering
6.	Artificial Intelligence and Machine Learning	Electronics and Communication Engineering
7.	Electric Vehicles	Electrical and Electronics Engineering
8.	Control Systems and Sensors Technology	Electronics and Instrumentation Engineering
9.	Cyber Security	Computer Science and Engineering
10.	Data Science	Computer Science and Engineering
11.	Cyber Security	Information Technology
12.	Data Science	Information Technology
13.	Waste Technology	Chemical Engineering
14.	Food Processing and Management	Food Technology

The courses specified under Honours degree in the emerging area may include theory, theory cum practical, project work, etc. under the particular specialization. A candidate can choose and study these specified courses from fourth semester onwards and he/she shall successfully complete the courses within the stipulated time vide clause 5. Total number of credits earned in each semester may vary from candidate to candidate based on the courses chosen. The registration, assessment & evaluation pattern

and classification of grades of these courses shall be the same as that of the courses in the regular curriculum of the programme of the candidate vide clause 6, clause 7 and clause 15 respectively. A candidate can earn Honours degree in only one specialization during the entire duration of the programme.

4.3 Employability Enhancement Courses

A candidate shall be offered with the employability enhancement courses like project work, internship, professional skills training, comprehensive test & viva, internship and entrepreneurships/start ups during the programme to gain/exhibit the knowledge/skills.

4.3.1 Professional Skills Training/ Entrepreneurships/Start Ups

A candidate may be offered with appropriate training courses imparting programming skills, communication skills, problem solving skills, aptitude skills etc. It is offered in two phases as phase I in fifth semester and phase II in sixth semester including vacation periods and each phase can carry two credits.

(or)

A candidate may be allowed to go for training at research organizations or industries for a required number of hours in sixth semester vacation period. Such candidate can earn two credits for this training course in place of Professional Skills Training course II in sixth semester. He/She shall attend Professional Skills Training Phase I in fifth semester and can earn two credits.

(or)

A candidate may be allowed to set up a start up and working part-time for the start ups by applying his/her innovations and can become a student entrepreneur during BE/BTech programme. Candidates can set up their start up from fifth semester onwards either inside or outside of the college. Such student entrepreneurs may earn a maximum of 2 credits per semester for two semesters each in place of either Professional Skills Training I or Professional Skills Training II. The area in which the candidate wants to initiate a start up may be interdisciplinary or multidisciplinary. The progress of the startup shall be evaluated by a panel of members constituted by the Principal through periodic reviews.

4.3.2 Comprehensive Test & Viva

The overall knowledge of the candidate in various courses he/she studied shall be evaluated by (i) conducting comprehensive tests with multiple choice questions generally with pattern similar to GATE and/or (ii) viva-voce examination conducted by a panel of experts assigned by the Head of the department. The members can examine the knowledge of the candidate by asking questions from various domains and the marks will be assigned based on their answers. This course shall carry two credits.

4.3.3 Internships

The curriculum enables a candidate to go for full time projects through internship during a part of seventh semester and/or entire final semester and can earn credits vide clause 7.6 and clause 7.11.

A candidate is permitted to go for full time projects through internship in seventh semester with the following condition: The candidate shall complete a part of the seventh semester courses with a total credit of about 50% of the total credits of seventh semester including Project Work I Phase II in the first two months from the commencement of the seventh semester under fast track mode. The balance credits required to complete the seventh semester shall be earned by the candidate through either approved Value Added Courses /Online courses / Self Study Courses or Add/Drop courses as per clause 4.4 and clause 4.5 respectively.

A candidate is permitted to go for full time projects through internship during eighth semester. Such candidate shall earn the minimum number of credits required to complete eighth semester other than project through either approved Value Added Courses /Online courses / Self Study Courses or Add/Drop courses as per clause 4.4 and clause 4.5 respectively.

Assessment procedure is to be followed as specified in the guidelines approved by the Academic Council.

4.4 Value Added Courses / Online Courses / Self Study Courses

The candidates may optionally undergo Value Added Courses / Online Courses / Self Study Courses as elective courses.

- **4.4.1 Value Added Courses:** Value Added courses each with One / Two credits shall be offered by the college with the prior approval from respective Board of Studies. A candidate can earn a maximum of six credits through value added courses during the entire duration of the programme.
- **4.4.2 Online Courses:** Candidates may be permitted to earn credits for online courses, offered by NPTEL / SWAYAM / a University / Other Agencies, approved by respective Board of Studies.
- **4.4.3** Self Study Courses: The Department may offer an elective course as a self study course. The syllabus of the course shall be approved by the respective Board of Studies. However, mode of assessment for a self study course will be the same as that used for other courses. The candidates shall study such courses on their own under the guidance of member of the faculty following due approval procedure. Self study course is limited to one per semester.
- **4.4.4** The elective courses in the final year may be exempted if a candidate earns the required credits vide clause 4.4.1, 4.4.2 and 4.4.3 by registering the required number of courses in advance.
- **4.4.5** A candidate can earn a maximum of 30 credits through all value added courses, online courses and self study courses.

4.5 Flexibility to Add or Drop Courses

- **4.5.1** A candidate has to earn the total number of credits specified in the curriculum of the respective programme of study in order to be eligible to obtain the degree. However, if the candidate wishes, then the candidate is permitted to earn more than the total number of credits prescribed in the curriculum of the candidate's programme.
- **4.5.2** From the first to eighth semesters the candidates have the option of registering for additional elective/Honours courses or dropping of already registered additional elective/Honours courses within two weeks from the start of the semester. Add / Drop is only an option given to the candidates. Total number of credits of such courses during the entire programme of study cannot exceed eight.
- **4.6** Maximum number of credits the candidate can enroll in a particular semester cannot exceed 30 credits.

- **4.7** The blend of different courses shall be so designed that the candidate at the end of the programme would have been trained not only in his / her relevant professional field but also would have developed to become a socially conscious human being.
- **4.8** The medium of instruction, examinations and project report shall be English.

5. DURATION OF THE PROGRAMME

- **5.1** A candidate is normally expected to complete the BE / BTech Degree programme in 8 consecutive semesters/4 Years (6 semesters/3 Years for lateral entry candidate), but in any case not more than 14 semesters/7 Years (12 semesters/6 Years for lateral entry candidate).
- **5.2** Each semester shall consist of a minimum of 90 working days including continuous assessment test period. The Head of the Department shall ensure that every teacher imparts instruction as per the number of periods specified in the syllabus for the course being taught.
- **5.3** The total duration for completion of the programme reckoned from the commencement of the first semester to which the candidate was admitted shall not exceed the maximum duration specified in clause 5.1 irrespective of the period of break of study (vide clause 11) or prevention (vide clause 9) in order that the candidate may be eligible for the award of the degree (vide clause 16). Extension beyond the prescribed period shall not be permitted.

6. COURSE REGISTRATION FOR THE EXAMINATION

- 6.1 Registration for the end semester examination is mandatory for courses in the current semester as well as for the arrear courses failing which the candidate will not be permitted to move on to the higher semester. This will not be applicable for the courses which do not have an end semester examination.
- **6.2** The candidates who need to reappear for the courses which have only continuous assessment shall enroll for the same in the subsequent semester, when offered next, and repeat the course. In this case, the candidate shall attend the classes, satisfy the attendance requirements (vide clause 8), earn continuous assessment marks. This will be considered as an attempt for the purpose of classification.
- **6.3** If a candidate is prevented from writing end semester examination of a course due to lack of attendance, the candidate has to attend the classes, when offered next, and fulfill the attendance requirements as per clause 8 and earn continuous assessment marks. If the course, in which the candidate has a lack of attendance, is an elective, the candidate may register for the same or any other elective course in the subsequent semesters and that will be considered as an attempt for the purpose of classification.
- **6.4** A candidate shall register for the chosen courses as well as arrear courses (if any vide clause 6.2 and 6.3) from the list of courses specified under Honours degree.

7. ASSESSMENT AND EXAMINATION PROCEDURE FOR AWARDING MARKS

7.1 The BE/BTech programmes consist of Theory Courses, Theory cum Practical courses, Practical courses, Project Work, Professional Skills Training / Industrial Training, Internship and Entrepreneurships/ Start ups. Performance in each course of study shall be evaluated based on (i) Continuous Assessments (CA) throughout the semester and (ii) End Semester Examination (ESE) at the end of the semester except for the courses which are evaluated based on continuous assessment only. Each course shall be evaluated for a maximum of 100 marks as shown below:

Sl. No.	Category of Course	Continuous Assessment Marks	End Semester Examination Marks			
1.	Theory / Practical	50	50			
2.	Theory cum Practical	The distribution of marks shall decided based on the cre weightage assigned to theory a practical components.				
3.	Professional Skills Training / / Comprehensive Test & Viva / Entrepreneurships / Start ups / Project Work 1 / Industrial Training / Mandatory Course	100				
4.	Project Work 2 Phase I / Project Work 2 Phase II / Internships	50	50			
5.	Value Added Course	The distribution of marks shall be				
6.	All other Courses	decided based on the credit weightage				

7.2 Examiners for setting end semester examination question papers for theory courses, theory cum practical courses and practical courses and evaluating end semester examination answer scripts, project works, internships and entrepreneurships/start ups shall be appointed by the Controller of Examinations after obtaining approval from the Principal.

7.3 Theory Courses

For all theory courses out of 100 marks, the continuous assessment shall be 50 marks and the end semester examination shall be for 50 marks. However, the end semester examinations shall be conducted for 100 marks and the marks obtained shall be reduced to 50. The continuous assessment tests shall be conducted as per the schedule laid down in the academic schedule. Three tests shall be conducted for 50 marks each and reduced to 30 marks each. The total of the continuous assessment marks and the end semester examination marks shall be rounded off to the nearest integer.

Sl. No.	Туре	Max. Marks	Remarks
	Test - I	30	
1.	Test - II	30	Average of best two
	Test - III	30	
2.	Tutorial	15	Should be of Open Book/Objective Type. Average of best 4 (or more, depending on the nature of the course, as may be approved by Principal)
3.	Assignment / Paper Presentation in Conference / Seminar / Comprehension / Activity based learning / Class notes	05	To be assessed by the Course Teacher based on any one type.
	Total	50	Rounded off to the one decimal place

7.3.1 The assessment pattern for awarding continuous assessment marks shall be as follows:

However, the assessment pattern for awarding the continuous assessment marks may be changed based on the nature of the course and is to be approved by the Principal.

- **7.3.2** A reassessment test or tutorial covering the respective test or tutorial portions may be conducted for those candidates who were absent with valid reasons (Sports or any other reason approved by the Principal).
- **7.3.3** The end semester examination for theory courses shall be for a duration of three hours and shall be conducted between November and January during odd semesters and between April and June during even semesters every year.

7.4 Theory cum Practical Courses

For courses involving theory and practical components, the evaluation pattern as per the clause 7.1 shall be followed. Depending on the nature of the course, the end semester examination shall be conducted for theory and the practical components. The apportionment of continuous assessment and end semester examination marks shall be decided based on the credit weightage assigned to theory and practical components approved by Principal.

7.5 Practical Courses

For all practical courses out of 100 marks, the continuous assessment shall be for 50 marks and the end semester examination shall be for 50 marks. Every exercise / experiment shall be evaluated based on the candidate's performance during the practical class and the candidate's records shall be maintained.

7.5.1 The assessment pattern for awarding continuous assessment marks for each course shall be decided by the course coordinator based on rubrics of that particular course, and shall be based on rubrics for each experiment.

7.6 Project Work II Phase I / Project Work II Phase II

- **7.6.1** Project work shall be assigned to a single candidate or to a group of candidates not exceeding 4 candidates in a group. The project work is mandatory for all the candidates.
- **7.6.2** The Head of the Department shall constitute review committee for project work. There shall be two assessments by the review committee during the semester. The candidate shall make presentation on the progress made by him/her before the committee.
- **7.6.3** The continuous assessment and end semester examination marks for Project Work II (both Phase I and Phase II) and the Viva-Voce Examination shall be distributed as below:

		Continuous (Max. 5	End Semester Examination (Max. 50 Marks)						
Zeroth Review I (Max 20 Marks)			Review II (Max. 30 Marks)		Report Evaluation (Max. 20 Marks)	Viva - Voce (Max. 30 Marks)			
Rv. Com	Guide	Review Committee (excluding guide) Guide		Review Committee (excluding guide)	Guide	Ext. Exr.	Guide	Exr.1	Exr.2
0	0	10	10	15	15	20	10	10	10

- **7.6.4** The Project Report prepared according to approved guidelines and duly signed by the Supervisor shall be submitted to Head of the Department. The candidate(s) must submit the project report within the specified date as per the academic schedule of the semester. If the project report is not submitted within the specified date then the candidate is deemed to have failed in the Project Work and redo it in the subsequent semester.
- **7.6.5** If a candidate fails to secure 50% of the continuous assessment marks in the project work, he / she shall not be permitted to submit the report for that particular semester and shall have to redo it in the subsequent semester and satisfy attendance requirements.
- **7.6.6** The project work shall be evaluated based on the project report submitted by the candidate in the respective semester and viva-voce examination by a committee consisting of two examiners and guide of the project work.
- **7.6.7** If a candidate fails to secure 50 % of the end semester examination marks in the project work, he / she shall be required to resubmit the project report within 30 days from the date of declaration of the results and a fresh viva-voce examination shall be conducted as per clause 7.6.6.
- **7.6.8** A copy of the approved project report after the successful completion of viva-voce examination shall be kept in the department library.

7.7 Project Work I Phase I / Industrial Training

The evaluation method shall be same as that of the Project Work II as per clause 7.6 excluding 7.6.3, 7.6.5, 7.6.6 and 7.6.7. The marks distribution is given below:

Continuous Assessment (Max. 100 Marks)										
						Review III (Max. 50 Marks)				
Zeroth Review		Review I (Max 20 Marks)		Review II (Max 30 Marks)		Report Evaluation Viva - Voce (Max. 20 (Max. 30 Marks) Marks) (Max. 30 Marks)				
Review Commi ttee	Guide	Review Guide Committee (excluding guide)		Review Committee (excluding guide)	Guide	Review Committee	Guide Review Committee			
0	0	10	10	15	15	20	10	20		

If a candidate fails to secure 50 % of the continuous assessment marks in this course, he / she shall be required to resubmit the project report within 30 days from the date of declaration of the results and a fresh viva-voce examination shall be conducted.

7.8 Professional Skills Training

Phase I training shall be conducted for minimum of 80 hours in 4th semester vacation and during 5th semester. Phase II training shall be conducted for minimum of 80 hours in 5th semester vacation and during 6th semester. The evaluation procedure shall be approved by the Principal.

7.9 Comprehensive Test/Viva

A candidate can earn 2 credits by successfully completing this course. The evaluation procedures shall be approved by the Principal.

7.10 Entrepreneurships/ Start ups

A start up/business model may be started by a candidate individually or by a group of maximum of three candidates during the programme vide clause 4.3.1. The head of the department concerned shall assign a faculty member as a mentor for each start up.

A review committee shall be formed by the Principal for reviewing the progress of the Start ups / Business models, innovativeness, etc. The review committee can recommend the appropriate grades for academic performance for the candidate(s) involved in the start ups. This course shall carry a maximum of two credits in fifth semester and two credits in sixth semester respectively and shall be evaluated through continuous assessments for a maximum of 100 marks vide clause 7.1. A report about the start ups is to be submitted to the review committee for evaluation for each start up and the marks will be given to Controller of Examinations after getting approval from Principal.

7.11 **Projects through Internships**

Each candidate shall submit a brief report about the internship undergone and a certificate issued from the organization concerned at the time of Viva-voce examination to the review committee. The evaluation method shall be same as that of the Project Work II as per clause 7.6.

7.12 Value Added Course

Minimum of two assessments shall be conducted during the value added course duration by the offering department concerned.

7.13 Online Course

The Board of Studies will provide methodology for the evaluation of the online courses. The Board can decide whether to evaluate the online courses through continuous assessment and end semester examination or through end semester examination only. In case of credits earned through online mode from NPTEL / SWAYAM / a University / Other Agencies approved by Chairman, Academic Council, the credits may be transferred and grades shall be assigned accordingly.

7.14 Self Study Course

The member of faculty approved by the Head of the Department shall be responsible for periodic monitoring and evaluation of the course. The course shall be evaluated through continuous assessment and end semester examination. The evaluation methodology shall be the same as that of a theory course.

7.15 Audit Course

A candidate may be permitted to register for specific course not listed in his/her programme curriculum and without undergoing the rigors of getting a 'good' grade, as an Audit course, subject to the following conditions.

The candidate can register only one Audit course in a semester starting from second semester subject to a maximum of two courses during the entire programme of study. Such courses shall be indicated as 'Audit' during the time of registration itself. Only courses currently offered for credit to the candidates of other branches can be audited.

A course appearing in the curriculum of a candidate cannot be considered as an audit course. However, if a candidate has already met the Professional Elective and Open Elective credit requirements as stipulated in the curriculum, then, a Professional Elective or an Open Elective course listed in the curriculum and not taken by the candidate for credit can be considered as an audit course.

Candidates registering for an audit course shall meet all the assessment and examination requirements (vide clause 7.3) applicable for a credit candidate of that course. Only if the candidate obtains a performance grade, the course will be listed in the semester Grade Sheet and in the Consolidated Grade Sheet along with the grade SF (Satisfactory). Performance grade will not be shown for the audit course.

Since an audit course has no grade points assigned, it will not be counted for the purpose of GPA and CGPA calculations.

7.16 Mandatory Course

A candidate shall attend and complete the induction training program of duration three weeks at the beginning of the first semester. It is mandatory for all candidates who have joined in various branches of all BE/BTech programmes. The induction training program includes the courses recommended by AICTE. Apart from this induction program, a candidate shall undergo the courses listed by AICTE as mandatory courses during their programme. No credits shall be given for such courses and shall be evaluated through continuous assessment tests only vide clause 7.1 for a maximum of 100 marks each. Since these courses have no grade points assigned, these courses will not be counted for the purpose of GPA and CGPA calculations.

7.17 Yoga and Values for Holistic Development (YVHD) and Universal Human Values (UHV)

Courses such as YVHD and UHV shall be offered to all candidates of all BE/BTech programmes. These courses shall carry a maximum of 100 marks each and shall be evaluated through continuous assessment tests only vide clause 7.1. The candidate(s) can earn 2 credits for UHV and 1 credit for YVHD by successfully completing these courses. Two continuous assessment tests will be conducted and the average marks will be taken for the calculation of grades.

8. REQUIREMENTS FOR COMPLETION OF A SEMESTER

- **8.1** A candidate who has fulfilled the following conditions shall be deemed to have satisfied the requirements for completion of a semester and permitted to appear for the examinations of that semester.
 - **8.1.1** Ideally, every candidate is expected to attend all classes and secure 100 % attendance. However, a candidate shall secure not less than 80 % (after rounding off to the nearest integer) of the overall attendance taking into account the total number of working days in a semester.
 - **8.1.2** A candidate who could not satisfy the attendance requirements as per clause 8.1.1 due to medical reasons (hospitalization / accident / specific illness) but has secured not less than 70 % in the current semester may be permitted to appear for the current semester examinations with the approval of the Principal on payment of a condonation fee as may be fixed by the authorities from time to time. The medical certificate needs to be submitted along with the leave application. A candidate can avail this provision only twice during the entire duration of the degree programme.

A candidate who could not satisfy the attendance requirements as per clause 8.1.1 due to his/her entrepreneurships/ start ups activities, but has secured not less than 60 % in the current semester can be permitted to appear for the current semester examinations with the recommendation of review committee and approval from the Principal.

- **8.1.3** In addition to clause 8.1.1 or 8.1.2, a candidate shall secure not less than 60 % attendance in each course.
- **8.1.4** A candidate shall be deemed to have completed the requirements of study of any semester only if he/she has satisfied the attendance requirements (vide clause 8.1.1 to 8.1.3) and has registered for examination by paying the prescribed fee.

- **8.1.5** Candidate's progress is satisfactory.
- **8.1.6** Candidate's conduct is satisfactory and he/she was not involved in any indisciplined activities in the current semester.
- **8.2.** The candidates who do not complete the semester as per clauses from 8.1.1 to 8.1.6 except 8.1.3 shall not be permitted to appear for the examinations at the end of the semester and not be permitted to go to the next semester. They have to repeat the incomplete semester in next academic year.
- **8.3** The candidates who satisfy the clause 8.1.1 or 8.1.2 but do not complete the course as per clause 8.1.3 shall not be permitted to appear for the end semester examination of that course alone. They have to repeat the incomplete course in the subsequent semester when it is offered next.

9. **REQUIREMENTS FOR APPEARING FOR END SEMESTER EXAMINATION**

- **9.1** A candidate shall normally be permitted to appear for end semester examination of the current semester if he/she has satisfied the semester completion requirements as per clause 8, and has registered for examination in all courses of that semester. Registration is mandatory for current semester examinations as well as for arrear examinations failing which the candidate shall not be permitted to move on to the higher semester.
- **9.2** When a candidate is deputed for a National / International Sports event during End Semester examination period, supplementary examination shall be conducted for such a candidate on return after participating in the event within a reasonable period of time. Such appearance shall be considered as first appearance.
- **9.3** A candidate who has already appeared for a course in a semester and passed the examination is not entitled to reappear in the same course for improvement of letter grades / marks.

10. PROVISION FOR WITHDRAWAL FROM EXAMINATIONS

- **10.1** A candidate may, for valid reasons, be granted permission to withdraw from appearing for the examination in any regular course or all regular courses registered in a particular semester. Application for withdrawal is permitted only once during the entire duration of the degree programme.
- **10.2** The withdrawal application shall be valid only if the candidate is otherwise eligible to write the examination (vide clause 9) and has applied to the Principal for permission prior to the last examination of that semester after duly recommended by the Head of the Department.
- **10.3** The withdrawal shall not be considered as an appearance for deciding the eligibility of a candidate for First Class with Distinction/First Class.

- **10.4** If a candidate withdraws a course or courses from writing end semester examinations, he/she shall register the same in the subsequent semester and write the end semester examinations. A final semester candidate who has withdrawn shall be permitted to appear for supplementary examination to be conducted within reasonable time as per clause 14.
- **10.5** The final semester candidate who has withdrawn from appearing for project viva-voce for genuine reasons shall be permitted to appear for supplementary viva-voce examination within reasonable time with proper application to Controller of Examinations and on payment of prescribed fee.

11. PROVISION FOR BREAK OF STUDY

- **11.1** A candidate is normally permitted to avail the authorised break of study under valid reasons (such as accident or hospitalization due to prolonged ill health or any other valid reasons) and to rejoin the programme in a later semester. He/She shall apply in advance to the Principal, through the Head of the Department, stating the reasons therefore, in any case, not later than the last date for registering for that semester examination. A candidate is permitted to avail the authorised break of study only once during the entire period of study for a maximum period of one year. However, in extraordinary situation the candidate may apply for additional break of study not exceeding another one year by paying prescribed fee for the break of study.
- **11.2** The candidates permitted to rejoin the programme after break of study / prevention due to lack of attendance shall be governed by the rules and regulations in force at the time of rejoining.
- **11.3** The candidates rejoining in new Regulations shall apply to the Principal in the prescribed format through Head of the Department at the beginning of the readmitted semester itself for prescribing additional/equivalent courses, if any, from any semester of the regulations in-force, so as to bridge the curriculum in-force and the old curriculum.
- **11.4** The total period of completion of the programme reckoned from the commencement of the semester to which the candidate was admitted shall not exceed the maximum period specified in clause 5 irrespective of the period of break of study in order to qualify for the award of the degree.
- **11.5** If any candidate is prevented for want of required attendance, the period of prevention shall not be considered as authorized break of study.
- **11.6** If a candidate has not reported to the college for a period of two consecutive semesters without any intimation, the name of the candidate shall be deleted permanently from the college enrollment. Such candidates are not entitled to seek readmission under any circumstances.

12. PASSING REQUIREMENTS

- **12.1** A candidate who secures not less than 50 % of total marks (continuous assessment and end semester examination put together) prescribed for the course with a minimum of 45 % of the marks prescribed for the end semester examination in all category of courses vide clause 7.1 except for the courses which are evaluated based on continuous assessment only shall be declared to have successfully passed the course in the examination.
- **12.2** A candidate who secures not less than 50 % in continuous assessment marks prescribed for the courses which are evaluated based on continuous assessment only shall be declared to have successfully passed the course. If a candidate secures less than 50% in the continuous assessment marks, he / she shall have to re-enroll for the same in the subsequent semester and satisfy the attendance requirements.
- **12.3** For a candidate who does not satisfy the clause 12.1, the continuous assessment marks secured by the candidate in the first attempt shall be retained and considered valid for subsequent attempts. However, from the fourth attempt onwards the marks scored in the end semester examinations alone shall be considered, in which case the candidate shall secure minimum 50 % marks in the end semester examinations to satisfy the passing requirements, but the grade awarded shall be only the lowest passing grade irrespective of the marks secured.

13. REVALUATION OF ANSWER SCRIPTS

A candidate shall apply for a photocopy of his / her semester examination answer script within a reasonable time from the declaration of results, on payment of a prescribed fee by submitting the proper application to the Controller of Examinations. The answer script shall be pursued and justified jointly by a faculty member who has handled the course and the course coordinator and recommended for revaluation. Based on the recommendation, the candidate can register for revaluation through proper application to the Controller of Examinations. The Controller of Examinations will arrange for revaluation and the results will be intimated to the candidate concerned. Revaluation is permitted only for Theory courses and Theory cum Practical courses where end semester examination is involved.

14. SUPPLEMENTARY EXAMINATION

If a candidate fails to clear all courses in the final semester after the announcement of final end semester examination results, he/she shall be allowed to take up supplementary examinations to be conducted within a reasonable time for the courses of final semester alone, so that he/she gets a chance to complete the programme.

The candidates who have failed in the courses Professional Skill Training I/II and Comprehensive Test/Viva shall be permitted to take up supplementary examinations.

15. AWARD OF LETTER GRADES

Range of % of Total Marks	Letter Grade	Grade Point
91 to 100	O (Outstanding)	10
81 to 90	A+ (Excellent)	9
71 to 80	A (Very Good)	8
61 to 70	B+ (Good)	7
50 to 60	B (Average)	6
Less than 50	RA (Reappear)	0
Satisfactory	SF	0
Withdrawal	W	-
Absent	AB	-
Shortage of Attendance in a course	SA	-

The Grade Point Average (GPA) is calculated using the formula:

 $GPA = \frac{\sum [(course credits) \times (grade points)] \text{ for all courses in the specific semester}}{\sum \sum [(course credits) \times (grade points)] \text{ for all courses in the specific semester}}$

 Σ (course credits) for all courses in the specific semester

The Cumulative Grade Point Average (CGPA) is calculated from first semester (third semester for lateral entry candidates) to final semester using the formula

CGPA= $\frac{\sum [(\text{course credits}) \times (\text{grade points})] \text{ for all courses in all the semesters so far}}{\sum ((\text{course credits}) \times (\text{grade points}))]}$

 \sum (course credits) for all courses in all the semesters so far

The GPA and CGPA are computed only for the candidates with a pass in all the courses.

The GPA and CGPA indicate the academic performance of a candidate at the end of a semester and at the end of successive semesters respectively.

A grade sheet for each semester shall be issued containing Grade obtained in each course, GPA and CGPA.

A duplicate copy, if required can be obtained on payment of a prescribed fee and satisfying other procedure requirements.

Withholding of Grades: The grades of a candidate may be withheld if he/she has not cleared his/her dues or if there is a disciplinary case pending against him/her or for any other reason.

16. ELIGIBILITY FOR THE AWARD OF DEGREE

A candidate shall be declared to be eligible for the award of the BE / BTech Degree provided the candidate has

- i. Successfully completed all the courses under the different categories, as specified in the regulations.
- ii. Successfully gained the required number of total credits as specified in the curriculum corresponding to the candidate's programme within the stipulated time (vide clause 5).
- iii. Successfully passed any additional courses prescribed by the respective Board of Studies whenever readmitted under regulations other than R-2020 (vide clause 11.3)
- iv. No disciplinary action pending against him / her.

17. CLASSIFICATION OF THE DEGREE AWARDED

17.1 First Class with Distinction:

- **17.1.1** A candidate who qualifies for the award of the degree (vide clause 16) and who satisfies the following conditions shall be declared to have passed the examination in First class with Distinction:
 - Should have passed the examination in all the courses of all the eight semesters (six semesters for lateral entry candidates) in the **First Appearance** within eight consecutive semesters (six consecutive semesters for lateral entry candidates) excluding the authorized break of study (vide clause 11) after the commencement of his / her study.
 - Withdrawal from examination (vide clause 10) shall not be considered as an appearance.
 - Should have secured a CGPA of not less than 8.50

(OR)

- **17.1.2** A candidate who joins from other institutions on transfer and who gets readmitted and has to move from one regulations to another regulations and who qualifies for the award of the degree (vide clause 16) and satisfies the following conditions shall be declared to have passed the examination in First class with Distinction:
 - Should have passed the examination in all the courses of all the eight semesters (six semesters for lateral entry candidates) in the **First Appearance** within eight consecutive semesters (six consecutive semesters for lateral entry candidates) excluding the authorized break of study (vide clause 11) after the commencement of his / her study.
 - Submission of equivalent course list approved by the respective Board of studies.
 - Withdrawal from examination (vide clause 10) shall not be considered as an appearance.
 - Should have secured a CGPA of not less than 9.00

17.2 First Class:

A candidate who qualifies for the award of the degree (vide clause 16) and who satisfies the following conditions shall be declared to have passed the examination in First class:

- Should have passed the examination in all the courses of all eight semesters (six semesters for lateral entry candidates) within ten consecutive semesters (eight consecutive semesters for lateral entry candidates) excluding authorized break of study (vide clause 11) after the commencement of his / her study.
- Withdrawal from the examination (vide clause 10) shall not be considered as an appearance.
- Should have secured a CGPA of not less than 7.00

17.3 Second Class:

All other candidates (not covered in clauses 17.1 and 17.2) who qualify for the award of the degree (vide clause 16) shall be declared to have passed the examination in Second Class.

17.4 A candidate who is absent for end semester examination in a course / project work after having registered for the same shall be considered to have appeared for that examination for the purpose of classification.

17.5 Honours Degree:

A candidate who qualifies for the award of the degree (vide clause 16) and who satisfies the following conditions shall be declared to have earned the BE/BTech degree with Honours (vide clause 16 and clause 4.2.2):

- Should have passed the examination in all the courses of all the eight semesters (six semesters for lateral entry candidates) in the **First Appearance** within eight consecutive semesters (six consecutive semesters for lateral entry candidates) excluding the authorized break of study (vide clause 11) after the commencement of his / her study.
- Withdrawal from examination (vide clause 10) shall not be considered as an appearance.
- Should have secured a CGPA of not less than 8.00

18. MALPRACTICES IN TESTS AND EXAMINATIONS

If a candidate indulges in malpractice in any of the tests or end semester examinations, he/she shall be liable for punitive action as per the examination rules prescribed by the college from time to time.

19. AMENDMENTS

Notwithstanding anything contained in this manual, the Kongu Engineering College through the Academic council of the Kongu Engineering College, reserves the right to modify/amend without notice, the Regulations, Curricula, Syllabi, Scheme of Examinations, procedures, requirements, and rules pertaining to its BE / BTech programme.

CURRICULUM BREAKDOWN STRUCTURE

Category				ŝ	Total number of credits	Curriculum Conten (% of total number of credits of the program)				
HS	3	4	3				3		13	7.69
BS	11	11	4	4					30	17.75
ES	4	4	4	4		4			20	11.83
PC	4	4	12	12	13	8	3		56	33.14
PE					3		12	3	18	10.65
OE				4	4	3		3	14	8.28
EC					2	6	3	7	18	10.65
Semesterwise Total	22	23	23	24	21*/22#	23*/21#	21	12*/13#	169	100.00
					Categor	у				Abbreviation
Lecture hours per week								L		
Tutorial hours per week									т	
Practical, Project work, Internship, Professional Skill Training, Industrial Training hours per week										C P
Credits									С	

*2020-21 #2021-22

	CATEGORISATION OF COURSES										
HU	HUMANITIES AND SOCIAL SCIENCE INCLUDING MANAGEMENT (HS)										
S. No.	Course Code	L	т	Ρ	С	Sem					
1.	20EGT11	English Language Skills	3	0	0	3	I				
2.	20EGT21	Advanced Communication Skills	3	0	0	3	П				
3.	20VEC11	Yoga Values for Holistic Development	1	0	1	1	П				
4.	20EGL31	English for Workplace Communication Laboratory	0	0	2	1	111				
5.	20GET31	Universal Human Values	2	0	0	2	ш				
6.	20GET71	3	0	0	3	VII					
	Total Credits to be earned Image: Control of the co										

		BASIC SCIENCES (BS)									
S. No.	Course Code	Course Name	L	Т	Ρ	С	Sem				
1.	20MAC11	Matrices and Differential Equations	3	1*	2*	4	Ι				
2.	20PHT11	Applied Physics	3	0	0	3	I				
3.	20CYT11	Applied Chemistry	3	0	0	3	I				
4.	20PHL11	Physical Sciences Laboratory I	0	0	2	1	Ι				
5.	20MAC21	Multivariable Calculus and Complex Analysis	3	1	2*	4	П				
6.	20PHT23	Physics for Communication and Computer Science Engineering	3	0	0	3	П				
7.	20PHL28	Physical Sciences Laboratory II	0	0	2	1	II				
8.	20CYT23	Chemistry of Electronic Materials	3	0	0	3	II				
9.	20MAT34	Discrete Mathematical Structures	3	1	0	4	Ш				
10.	20MAT42	Probability and Statistics	3	1	0	4	IV				
	Total Credits to be earned 30										

		ENGINEERING SCIENCES (E	ES)				
S. No.	Course Code	Course Name	L	Т	Ρ	С	Sem
1.	20ITT11	Foundations of IT	3	0	0	3	I
2.	20ITL11	IT Essentials Laboratory	0	0	2	1	I
3.	20MEC11	Engineering Graphics	2	0	2	3	II
4.	20MEL11	Engineering Practices Laboratory	0	0	2	1	П
5.	20ITC31	Digital Logic and Microprocessors	3	0	2	4	III
6.	20ITT41	Principles of Communication	3	1	0	4	IV
7.	20ITT61	Internet of Things and its Applications	3	0	0	3	VI
8.	20ITL61	Internet of Things Laboratory	0	0	2	1	VI
	Т	otal Credits to be earned				20	

		PROFESSIONAL CORE	(PC))				
S. No.	Course Code	Course Name	L	т	Ρ	С	Sem	Domain/ Stream
1.	20ITC11	Problem Solving and Programming	3	0	2	4	I	SD
2.	20ITT21	Programming and Linear Data Structures	3	0	2	4	Ш	SD
3.	20ITT31	Data Structures	3	0	0	3	Ш	SD
4.	20ITT32	Object Oriented Programming	3	0	0	3	Ш	SD
5.	20ITT33	Computer Organization	3	1	0	4	Ш	AP
6.	20ITL31	Data Structures Laboratory	0	0	2	1	Ш	SD
7.	20ITL32	Object Oriented Programming Laboratory	0	0	2	1	Ш	SD
8.	20ITT42	Database Management Systems	3	0	0	3	IV	AP
9.	20ITT43	Design and Analysis of Algorithms	3	1	0	4	IV	SD
10.	20ITT44	Web Technology	3	0	0	3	IV	SD
11.	20ITL41	Database Management Systems Laboratory	0	0	2	1	IV	SD
12.	20ITL42	Web Technology Laboratory	0	0	2	1	IV	SD
13.	20ITT51	Computer Networks	3	1	0	4	V	NW
14.	20ITT52	Operating Systems	3	0	0	3	V	AP
15.	20ITT53	Software Engineering	3	0	0	3	V	SD
16.	20ITL51	CASE Tools Laboratory	0	0	2	1	V	SD
17.	20ITL52	Network Laboratory	0	0	2	1	V	NW
18.	20ITL53	Operating Systems Laboratory	0	0	2	1	V	AP
19.	20ITT62	Machine Learning	3	0	0	3	VI	CI
20.	20ITT63	Cloud Computing	3	0	0	3	VI	NW
21.	21. 20ITL62 Machine Learning Laboratory		0	0	2	1	VI	CI
22.	22. 20ITL63 Cloud Computing Laboratory		0	0	2	1	VI	NW
23.	20ITT71	Block Chain Technology	3	0	0	3	VII	NW
	Т	otal Credits to be earned				56		

		PROFESSIONAL ELEC	стіл	E (P	E)			
S. No.	Course Code	Course Name	L	Т	Р	С	Sem	Domain/ Stream
		Elective – I						
1.	20ITE01	Computer Graphics	3	0	0	3	V	AP
2.	20ITE02	Advanced Java Programming	3	0	0	3	V	AP
3.	20ITE03	User Interface Design	3	0	0	3	V	SD
4.	20ITE04	Search Methods for Problem Solving	3	0	0	3	V	SD
5.	20ITE05	Information Theory and Coding	3	0	0	3	V	NW
6.	20ITE06	Fundamentals of Research	3	0	0	3	V	GE
		Elective – II						
7.	20ITE07	Native Application Development using Android	3	0	0	3	VI	AP
8.	20ITE08	3D Modelling and Mixed Reality Applications	3	0	0	3	VI	SD
9.	20ITE09	Network Communication Protocols and Standards	3	0	0	3	VI	NW
10.	20ITE10	Big Data Analytics	3	0	0	3	VI	CI
11.	20ITE11	ITE11 Cryptography and Network Security		0	0	3	VI	NW
		Elective – III						
12.	20ITE12	Digital Image Processing	3	0	0	3	VII	AP
13.	20ITE13	Software Testing	3	0	0	3	VII	SD
14.	20ITE14	Mobile Communication	3	0	0	3	VII	NW
15.	20ITE15	Embedded Linux Basics	3	0	0	3	VII	AP
16.	20ITE16	Deep Learning	3	0	0	3	VII	CI
		Elective – IV						
17.	20ITE17	Ethical Hacking	3	0	0	3	VII	NW
18.	20ITE18	Information Retrieval	3	0	0	3	VII	CI
19.	20ITE19	Software Defined Networks	3	0	0	3	VII	NW
20.	20ITE20	Game Theory and its Applications	3	0	0	3	VII	CI
21.	20ITE21	Software Quality Assurance		0	0	3	VII	SD
		Elective – V						
22.	20ITE22	Cyber Forensics	3	0	0	3	VII	NW
23.	20ITE23	Multicore Architecture	3	0	0	3	VII	AP
24.	20ITE24	Business Intelligence and its Applications	3	0	0	3	VII	CI

25.	20ITE25	Pattern Recognition	3	0	0	3	VII	CI
26.	20ITE26	Software Project Management	3	0	0	3	VII	SD
		Elective – VI						
27.	20ITE27	Building Enterprise Applications	3	0	0	3	VIII	SD
28.	20ITE28	Web Application Security	3	0	0	3	VIII	NW
29.	20ITE29	Wireless Sensor Networks	3	0	0	3	VIII	NW
30.	20ITE30	Realtime Programming for Embedded Systems	3	0	0	3	VIII	AP
31.	20ITE31	Information Storage and Management	3	0	0	3	VIII	AP
32.	32. 20ITE32 Total Quality Management			0	0	3	VIII	GE
		Total Credits to be earned	18					

		EMPLOYABILITY ENHANCEMENT COURSE	S (E	C)					
S. No.	Course Code	Course Name	L	Т	Р	С	Sem		
1.	20GEL51/ 20GEL151	Professional Skills Training I / Industrial Training I	0	0	0	2	V		
2.	20GEL61/ 20GEL161	Professional Skills Training II / Industrial Training	ofessional Skills Training II / Industrial Training 0 0 0						
3.	20ITP61	Project Work 1	0	0	4	2	VI		
4.	20GEP61	Comprehensive Test / Viva	0	0	0	2	VI		
5.	20ITP71	Project Work 2 Phase 1	0	0	6	3	VII		
6.	6. 20ITP81 Project Work 2 Phase 2 0 0 14								
		Total Credits to be earned				18			

	OPEN ELEC	TIVE COURSES OFFERED TO OTHER DEPARTMENTS	S (OE	i)			
S. No.	Course Code	Course Name	L	т	Ρ	С	Sem
1.	20ITO01	Artificial Intelligence	3	1	0	4	IV
2.	20ITO02	Web Technologies	3	1	0	4	IV
3.	20ITO03	Introduction to Operating Systems	3	1	0	4	IV
4.	20ITO04	Programming in Python	3	1	0	4	IV
5.	20ITO05	Computer Vision	3	1	0	4	V
6.	20ITO06	Data Science	3	1	0	4	V
7.	20ITO07	Advanced Java Programming	3	1	0	4	V
8.	20ITO08	NCC Studies (Air Wing) - I	3	0	2	4	V/VI
9.	20ITO09	Bio Natural Language Processing	3	0	0	3	VI
10.	20ITO10	Disaster Management for InformationTechnology	3	0	0	3	VI
11.	20ITO11	Modern Application Development	3	0	0	3	VIII
12.	20ITO12	Object Oriented System Developmentusing UML	3	0	0	3	VIII
13.	20ITO13	Reinforcement Learning	3	0	0	3	VIII
		Total Credits to be earned				14	

		OPEN ELECTIVE COURSES OFFERED TO OTHER DEPAR	TME	NTS	(OE)				
S. No.Course CodeCourse NameLTPC1.20CEO01Remote Sensing and its Applications30242.20MEO01Renewable Energy Sources30243.20MTO01Designof MechatronicsSystems31044.20AUO01Automotive Engineering3024					Sem				
1.	20CEO01	Remote Sensing and its Applications	3	0	2	4	IV		
2.	20MEO01	Renewable Energy Sources	3	0	2	4	IV		
3.	20MTO01	Designof MechatronicsSystems	3	1	0	4	IV		
4.	20AUO01	Automotive Engineering	3	0	2	4	IV		
5.	20ECO01	Wearable Technology	3	1	0	4	IV		
6.	20ECO02	Basics of Electronics in Automation Appliances	3	1	0	4	IV		
7.	20ECO03	Principles of Quantum Computing	3	0	2	4	IV		
8.	20EEO01	Solar and Wind Energy Systems	3	1	0	4	IV		
9.	20EEO02	Electrical Wiring and Lighting	3	1	0	4	IV		
10.	20EEO03	Electrical Safety	3	1	0	4	IV		
11.	20CSO01	Fundamentals of Databases	3	0	2	4	IV		
12.	20CSO02	Python Programming and Frameworks	Programming and Frameworks 3 0						

13.	20CHO01	Drugs and Pharmaceuticals Technology	3	1	0	4	IV
14.	20CHO02	Process Automation	3	1	0	4	IV
15.	20FTO01	Baking Technology	3	0	2	4	IV
16.	20FTO02	Food Processing Technology	3	1	0	4	IV
17.	20CEO02	Disaster Management	3	1	0	4	V
18.	20MEO02	Design of Experiments	3	0	2	4	V
19.	20MTO02	FactoryAutomation	3	0	2	4	V
20.	20MTO03	DataAcquisitionand VirtualInstrumentation	3	0	2	4	V
21.	20GEO04	InnovationandBusiness ModelDevelopment	3	1	0	4	V
22.	20AUO02	Automotive Electronics	3	0	2	4	V
23.	20ECO04	PCB Design and Fabrication	3	0	2	4	V
24.	20ECO05	Neural Networks and Fuzzy Logic for Engineering Applications	3	0	2	4	V
25.	20EEO04	Energy Conservation and Management	3	1	0	4	V
26.	20EEO04	AI with MATLAB	3	1	0	4	V
27.	20EIO01	Neural Networks and Deep Learning	3	1	0	4	V
28.	20CSO03	Computational science for Engineers	3	1	0	4	V
29.	20CSO04	Formal languages and automata	3	1	0	4	V
30.	20CSO05	Design thinking for engineers	3	1	0	4	V
31.	20CHO03	Fundamentals of Nanoscience and Nanotechnology	3	0	0	3	V
32.	20CHO04	Principles of bioprocessing	3	0	0	3	V
33.	20FTO03	Processing of milk and milk products	3	0	2	4	V
34.	20FTO04	Processing of Fruits and Vegetables	3	0	2	4	V
35.		Fundamentals of User Interactive Design	3	0	0	3	V
36.	20GEO01	German LanguageLevel 1	3	1	0	4	V/VI/VII/VII
37.	20GEO02	Japanese LanguageLevel 1	3	1	0	4	V/VI/VII/VII
38.	20GEO05	German Language Level 2	3	1	0	4	V/VI/VII/VII
39.	20GEO06	German Language Level 3	3	0	0	3	V/VI/VII/VII
40.	20GEO07	German Language Level 4	3	0	0	3	V/VI/VII/VII
41.	20GEO08	Japanese Language Level 2	3	1	0	4	V/VI/VII/VII
42.	20GEO09	Japanese Language Level 3	3	0	0	3	V/VI/VII/VII
43.	20GEO10	Japanese Language Level 4	3	0	0	3	V/VI/VII/VII

44.	20CEO03	Introduction to Smart Cities	3	0	0	3	VI
45.	20CEO04	Environmental Health and Safety	3	0	0	3	VI
46.	20MEO03	Fundamentals of Ergonomics	3	0	0	3	VI
47.	20MEO04	Principles of Management and Industrial Psychology	3	0	0	3	VI
48.	20MTO04	3DPrinting andDesign	3	0	0	3	VI
49.	20MTO05	Drone System Technology	3	0	0	3	VI
50.	20GEO11	EntrepreneurshipDevelopment	3	0	0	3	VI
51.	20AUO03	Vehicle Maintenance	3	0	0	3	VI
52.	20ECO06	Electronic Hardware and Troubleshooting	2	0	2	3	VI
53.	20ECO07	Bioinspired Computing Technologies	2	0	2	3	VI
54.	20EEO06	Micro Grid and Smart Grid	3	0	0	3	VI
55.	20EEO07	E-Waste Management	3	0	0	3	VI
56.	20EIO02	Digital Image Processing and Its Applications	3	1	0	4	VI
57.	20EIO03	Industrial Automation	3	1	0	4	VI
58.	20CSO06	Java Programming	2	0	2	3	VI
59.	20CSO07	Web Engineering	2	0	2	3	VI
60.	20CSO08	Foundations of Data Analytics	2	0	2	3	VI
61.	20CSO09	Nature inspired optimization techniques	3	0	0	3	VI
62.	20ITO09	Disaster Management for Information Technology	3	0	0	3	VI
63.	20CHO05	Bio Energy	3	0	0	3	VI
64.	20CHO06	Rubber Technology	3	0	0	3	VI
65.	20FTO05	Principles of Food safety	3	0	0	3	VI
66.	20FTO06	Fundamentals of Food Packaging and Storage	3	0	0	3	VI
67.		Fundamentals of User Experience Design	3	0	0	3	VI
68.	20EIO04	Biomedical Instrumentation and Applications	3	0	0	3	VII
69.	20EIO05	PLC Programming and Its Applications	3	0	0	3	VII
70.	20EIO06	Instrumentation for Industry 4.0	3	0	0	3	VII
71.		Introduction to Mobile Game Design	3	0	0	3	VII
72.	20CEO05	Infrastructure Planning and Management	3	0	0	3	VIII
73.	20CEO06	Environmental Laws and Policy	3	0	0	3	VIII
74.	20MEO05	Safety Measures for Engineers	3	0	0	3	VIII

For the							
75.	20MEO06	Energy Conservation in Thermal Equipments	3	0	0	3	VIII
76.	20MTO06	Robotics	3	0	0	3	VIII
77.	20MTO07	Virtual and Augment Reality in Industry4.0	3	0	0	3	VIII
78.	20AUO04	Public Transport Management	3	0	0	3	VIII
79.	20AUO05	Autonomous Vehicles	3	0	0	3	VIII
80.	20ECO08	Optical Engineering	3	0	0	3	VIII
81.	20ECO09	Neural Networks and Deep Learning with Python	2	0	2	3	VIII
82.	20EEO08	Electric Vehicle	3	0	0	3	VIII
83.	20EIO07	Measurements and Instrumentation	3	0	0	3	VIII
84.	20EIO08	Graphical Programming using Virtual Instrumentation	3	0	0	3	VIII
85.	20EIO09	Testing of Materials	3	0	0	3	VIII
86.	20CSO10	Fundamentals of IoT	3	0	0	3	VIII
87.	20CSO11	Machine Translation	3	0	0	3	VIII
88.	20CSO12	Applied Machine Learning	3	0	0	3	VIII
89.	20CSO13	Fundamentals of Blockchain	3	0	0	3	VIII
90.	20CHO07	Nuclear Engineering	3	0	0	3	VIII
91.	20CHO08	Membrane Technology	3	0	0	3	VIII
92.	20FTO07	Food Ingredients	3	0	0	3	VIII
93.	20FTO08	Food and Nutrition	3	0	0	3	VIII
94.		Introduction to Graphics Design	3	0	0	3	VIII

Kongu Engineering College, Perundurai, Erode – 638060, KEC R2020, SCHEDULING OF COURSES – B Tech Information Technology

		: SCHEDU				Information	n Technolo	gy	Total	Credits :	169
Sem.	Course1	Course2	Course3	Course4	Course5	Course6	Course7	Course8	Course9	Course10	Credits
I	20EGT11 English Language Skills (3-0-0-3)	20MAC11 Matrices and Differential Equations (3-1-2-4)	20PHT11 Applied Physics (3-0-0-3)	20CYT11 Applied Chemistry (3-0-0-3)	20ITC11 Problem Solving and Programming (3-0-2-4)	20ITT01 Foundations of IT (3-0-0-3)	20PHL11 Physical Sciences Laboratory I (0-0-2-1)	20ITL11 IT Essentials Laboratory (0-0-2-1)	20MNT11 Induction Training Program (0-0-0-0)		22
П	20EGT21 Advanced Communication Skills (3-0-0-3)	20MAC21 Multivariable Calculus and Complex Analysis (3-1-2-4)	20PHT23 Physics for Communicatio n and Computer Science Engineering (3-0-0-3)	20CYT23 Chemistry of Electronic Materials (3-0-0-3)	20MEC11 Engineering Graphics (2-0-2-3)	20ITT21 Programming and Linear Data Structures (3-0-2-4)	20PHL28 Physical Sciences Laboratory II (0-0-2-1)	20MEL11 Engineering Practices Laboratory (0-0-2-1)	20VEC11 Yoga Values for Holistic Development (1-0-1-1)		23
ш	20MAT34 Discrete Mathematical Structures (3-1-2-4)	20ITC31 Digital Logic and Microprocessors (3-0-2-4)	20ITT31 Data Structures (3-0-0-3)	20ITT32 Object Oriented Programming (3-0-0-3)	20ITT33 Computer Organization (3-1-0-4)	20ITL31 Data Structures Laboratory (0-0-2-1)	20ITL32 Object Oriented Programming Laboratory (0-0-2-1)	20EGL31 English for Workplace Communication Laboratory (0-0-2-1)	20GET31 Universal Human Values (2-0-0-2)		23
IV	20MAT42 Probability and Statistics (3-1-0-4)	20ITT41 Principles of Communication (3-1-0-4)	20ITT42 Database Management Systems (3-0-0-3)	20ITT43 Design and Analysis of Algorithms (3-1-0-4)	20ITT44 Web Technology (3-0-0-3)	Open Elective 1 (3-1/0-0/2-4)	20ITL41 Database Management Systems Laboratory (0-0-2-1)	20ITL42 Web Technology Laboratory (0-0-2-1)	20MNT31 Environmental Science (2-0-0-0)		24
v	20ITT51 Computer Networks (3-1-0-4)	20ITT52 Operating Systems (3-0-0-3)	20ITT53 Software Engineering (3-0-0-3)	Professional Elective 1 (3-0-0-3)	Open Elective II (3-1/0-0/2-4)	20ITL51 Network Laboratory (0-0-2-1)	20ITL52 Operating Systems Laboratory (0-0-2-1)	20ITL53 Case Tools Laboratory (0-0-2-1)	20GEL51/20GEI51 Professional Skills Training I / Industrial Training I (0-0-2)		21*/22#
VI	20ITT61 Internet of Things and its Applications (3-0-0-3)	20ITT62 Machine Learning (3-0-0-3)	20ITT63 Cloud Computing (3-00-3)	Open Elective III (3-0-0-3)	20ITL61 Internet of Things Laboratory (0-0-2-1)	20ITL62 Machine Learning Laboratory (0-0-2-1)	20ITL63 Cloud Computing Laboratory (0-0-2-1)	20GEL61/20GE1 61 Professional Skills Training II / Industrial Training II (0-0-0-2)	20GEP61 Comprehensive Test / Viva (0-0-0-2)	20ITP61 Project Work 1 (0-0-4-2)	23*/21#
VII	20GET71 Engineering Economics and Management (3-0-0-3)	20ITT71 Block Chain Technology	Professional Elective II (3-0-0-3)	Professional Elective III (3-0-0-3)	Professional Elective IV (3-0-0-3)	Professional Elective V (3-0-0-3)	20ITP71 Project Work 2 Phase I (0-0-6-3)				21
VIII	Professional Elective VI (3-0-0-3)	Open Elective IV (3-0-0-3)	20ITP81 Project Work 2 Phase II (0-0-14-7)								12*/13#

Kongu Engineering College, Perundurai, Erode – 638060, MAPPING OF COURSES WITH PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

Sem	Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
1	20EGT11	English Language Skills						\checkmark			~	~	~	~		
1	20MAC11	Matrices and Differential Equations	~	~	~	~	~									
1	20PHT11	Applied Physics	\checkmark	\checkmark	~											
1	20CYT11	Applied Chemistry	✓	~	~	\checkmark										
1	20ITC11	Problem Solving and Programming	~	~	~	~									~	~
1	20ITT11	Foundations of IT	~	\checkmark	~										\checkmark	✓
1	20PHL11	Physical Sciences Laboratory I				~										
1	20ITL11	IT Essentials Laboratory	~	~	~	\checkmark									~	\checkmark
1	20MNT11	Induction Training Program #														
2	20EGT21	Advanced Communication Skills					\checkmark				✓	✓	✓	✓		
2	20MAC21	Multivariable Calculus and Complex Analysis	~	~	~		~									
2	20PHT23	Physics for Communication and Computer Science Engineering	~	~	~											
2	20CYT23	Chemistry of Electronic Materials	~	~	~	\checkmark										
2	20MEC11	Engineering Graphics	~	~	~	\checkmark						~	~	~	\checkmark	\checkmark
2	20ITT21	Programming and Linear Data Structures	~	~	~	~									~	~
2	20PHL28	Physical Sciences Laboratory II			~											
2	20MEL11	Engineering Practices Laboratory	~		~	\checkmark	~	~			~	~		~		

Kongu Engineering College, Perundurai, Erode – 638060,

2	20VEC11	Yoga Values for Holistic Development						~		~	~		~		
3	20MAT34	Discrete Mathematical Structures	\checkmark	~	~									~	
3	20ITC31	Digital Logic and Microprocessors	\checkmark	~	~	~								~	~
3	20ITT31	Data Structures	\checkmark	✓	\checkmark	\checkmark								✓	\checkmark
3	20ITT32	Object Oriented Programming	\checkmark	~	✓	~								~	✓
3	20ITT33	Computer Organization	\checkmark	~	~	✓								✓	✓
3	20ITL31	Data Structures Laboratory	\checkmark	~	✓	✓								✓	✓
3	20ITL32	Object Oriented Programming Laboratory	✓	~	~	~								~	~
3	20EGL31	English for Workplace Communication Laboratory									~	~	~	~	~
3	20GET31	Universal Human Values						~	✓	✓	✓	✓			
4	20MAT42	Probability and Statistics	\checkmark	✓	✓	✓								✓	
4	20ITT41	Principles of Communication	\checkmark	~	✓	✓								✓	✓
4	20ITT42	Database Management Systems	\checkmark	~	~	~								✓	✓
4	20ITT43	Design and Analysis of Algorithms	✓	~	~	~	~							~	~
4	20ITT44	Web Technology	✓	✓	✓	✓								✓	✓
4	20ITL41	Database Management Systems Laboratory	\checkmark	~	~	~								~	~
4	20ITL42	Web Technology Laboratory	\checkmark	✓	~	~								~	~
4	20MNT31	Environmental Science	\checkmark	~	✓				~						
5	20ITT51	Computer Networks	\checkmark	✓	✓	~								✓	✓

Kongu Engineering College, Perundurai, Erode – 638060,

	Fast Set	Congu Engineering College, Perun	uurai, L	iouc (120000	,										<u> </u>
5	20ITT52	Operating Systems	~	~	~	~									~	\checkmark
5	20ITT53	Software Engineering	✓	~	~	✓									~	✓
5	20ITL51	Network Laboratory	✓	~	~	✓									~	✓
5	20ITL52	Operating Systems Laboratory	~	~	~	\checkmark									~	~
5	20ITL53	CASE Tools Laboratory	~	~	~	\checkmark									~	~
5	20GEL51/ 20GEI51	Professional Skills Training I / Industrial Training I \$	~	~	~	~									~	~
6	20ITT61	Internet of Things and its Applications	~	~	~	~									~	~
6	20ITT62	Machine Learning	~	~	~	\checkmark									✓	✓
6	20ITT63	Cloud Computing	~	~	~	✓									~	✓
6	20ITL61	Internet of Things Laboratory	~	~	~	\checkmark									✓	~
6	20ITL62	Machine Learning Laboratory	~	~	✓	~									✓	✓
6	20ITL63	Cloud Computing Laboratory	✓	✓	~	✓									~	✓
6	20GEL61/ 20GEI61	Professional Skills Training II / Industrial Training II	~	~	~	~									~	~
6	20GEP61	Comprehensive Test / Viva	✓	~	~	~	✓	~	~	\checkmark	✓	\checkmark	~	✓	✓	✓
6	20ITP61	Project Work 1	~	~	✓	\checkmark	✓	~	~	\checkmark	~	\checkmark	✓	✓	✓	✓
7	20GET71	Engineering Economics and Management	~	~	✓			~	✓	\checkmark	✓	~	~	~	~	~
7	20ITE11	Block Chain Technology	~	~	~	~									~	✓
7	20ITP71	Project Work 2 Phase 1\$	✓	~	✓	✓	✓	✓	✓	\checkmark	✓	\checkmark	✓	✓	✓	✓
8	20ITP81	Project Work 2 Phase 2	~	~	✓	✓	~	✓	~	\checkmark	✓	\checkmark	✓	✓	✓	~
5	20ITE01	Computer Graphics	~	~	✓	\checkmark									✓	✓

Kongu Engineering College, Perundurai, Erode – 638060,

	For the	Congu Engineering Conege, Perun	uurai, L	Toue -	038000	<u>,</u>						
5	20ITE02	Advanced Java Programming	~	~	~	~					\checkmark	~
5	20ITE03	User Interface Design	~	✓	✓	✓					✓	✓
5	20ITO02	Search Methods for Problem Solving	~	~	~	~						
5	20ITE05	Information Theory and Coding	✓	✓	✓	✓					\checkmark	✓
5	20ITE06	Fundamentals of Research	~	✓	✓	✓					~	✓
7	20ITE07	Native Application Development using Android	~	~	~	~					~	~
7	20ITE08	3D Modelling and Mixed Reality Applications	~	~	~	~					~	~
7	20ITE09	Network Communication Protocols and Standards	~	~	~	~					\checkmark	~
7	20ITE10	Big Data Analytics	~	✓	~	✓					~	✓
7	20ITE04	Cryptography and Network Security	~	~	~	~					~	~
7	20ITE12	Digital Image Processing	~	✓	✓	✓					\checkmark	✓
7	20ITE13	Software Testing	~	✓	✓	✓					✓	✓
7	20ITE14	Mobile Communication	~	~	~	✓					~	~
7	20ITE15	Embedded Linux Basics	~	✓	✓	✓					~	✓
7	20ITE16	Deep Learning	~	✓	✓	✓					~	✓
7	20ITE17	Ethical Hacking	~	✓	✓	✓					~	✓
7	20ITE18	Information Retrieval	~	✓	✓	✓					~	✓
7	20ITE19	Software Defined Networks	~	✓	✓	✓					~	✓
7	20ITE20	Game Theory and its Applications	~	~	~	~					\checkmark	~

Kongu Engineering College, Perundurai, Erode – 638060,

7	20ITE21	Software Quality Assurance	✓ <i>✓</i>	✓	✓	, 				✓	\checkmark
7	20ITE22	Cyber Forensics	✓	✓	✓	✓				✓	✓
7	20ITE23	Multicore Architecture	✓	~	 ✓ 					✓	✓
7	20ITE24	Business Intelligence and its Applications	~	~	~	~				~	~
7	20ITE25	Pattern Recognition	~	~	~	~				~	\checkmark
7	20ITE26	Software Project Management	\checkmark	~	~	\checkmark				\checkmark	\checkmark
8	20ITE27	Building Enterprise Applications	\checkmark	~	✓	~				✓	✓
8	20ITE28	Web Application Security	\checkmark	✓	~	~				\checkmark	\checkmark
8	20ITE29	Wireless Sensor Networks	✓	~	✓	✓				✓	✓
8	20ITE30	Real time Programming for Embedded Systems	\checkmark	✓	✓	✓				~	\checkmark
8	20ITE31	Information Storage and Management	~	~	~	~				~	~
8	20ITE32	Total Quality Management	~	~	✓	✓				~	~

Kongu Engineering College, Perundurai, Erode – 638060,

Sem	Course Code	Course Title	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		Open Elective Courses														
4	20ITO01	Artificial Intelligence	\checkmark	✓	✓	✓										
4	20ITO02	Web Technologies	\checkmark	✓	✓	✓										
4	20ITO03	Introduction to Operating Systems	~	~	~	~										
4	20ITO04	Programming in Python	✓	✓	✓	✓										
5	20ITO05	Computer Vision	✓	\checkmark	\checkmark	\checkmark										
5	20ITO06	Data Science	\checkmark	\checkmark	\checkmark	✓										
5	20ITO07	Advanced Java Programming	✓	✓	✓	✓										
5/6	20ITO08	NCC Studies (Air Wing) - I	\checkmark	✓	✓	✓	\checkmark	\checkmark	✓	\checkmark	✓	\checkmark				
6	20ITO09	Bio Natural Language Processing	✓	✓	✓	✓										
6	20ITO10	Disaster Management for InformationTechnology	~	~	~	~										
8	20ITO11	Modern Application Development	✓	\checkmark	✓	\checkmark										
8	20ITO12	Object Oriented System Developmentusing UML	✓	✓	✓	✓										
8	20ITO13	Reinforcement Learning	\checkmark	\checkmark	✓	\checkmark										

B.TECH. DEGREE IN INFORMATION TECHNOLOGY CURRICULUM UNDER REGULATIONS 2020 (For the candidates admitted from academic year 2020-21 onwards)

Course	Course		Hours Week		Credit	Max	kimum Ma	arks	Cate
Code	Title	L	т	Ρ		CA	ESE	Total	gory
	Theory/Theory with Practical								
20EGT11	English Language Skills	3	0	0	3	50	50	100	HS
20MAC11	Matrices and Differential Equations	3	1*	2*	4	50	50	100	BS
20PHT11	Applied Physics	3	0	0	3	50	50	100	BS
20CYT11	Applied Chemistry	3	0	0	3	50	50	100	BS
20ITC11	Problem Solving and Programming	3	0	2	4	50	50	100	PC
20ITT11	Foundations of IT	3	0	0	3	50	50	100	ES
	Practical								
20PHL11	Physical Sciences Laboratory I	0	0	2	1	50	50	100	BS
20ITL11	IT Essentials Laboratory	0	0	2	1	50	50	100	ES
20MNT11	Student Induction Program #	-	-	-	0	100	0	100	МС
	I				1	Total	22		

SEMESTER -	- 11								
Course	Course Title		Hours Week		Credit	Max	arks	Cate	
Code		L	Т	Р		CA	ESE	Total	gory
	Theory/Theory with Practical								
20EGT21	Advanced Communication Skills	3	0	0	3	50	50	100	HS
20MAC21	Multivariable Calculus and Complex Analysis	3	1*	2*	4	50	50	100	BS
20PHT23	Physics for Communication and Computer Science Engineering	3	0	0	3	50	50	100	BS
20CYT23	Chemistry of Electronic Materials	3	0	0	3	50	50	100	BS
20MEC11	Engineering Graphics	2	0	2	3	50	50	100	ES
20ITT21	Programming and Linear Data Structures	3	0	2	4	50	50	100	PC
	Practical								
20PHL28	Physical Sciences Laboratory II	0	0	2	1	50	50	100	BS
20MEL11	Engineering Practices Laboratory	0	0	2	1	50	50	100	ES
20VEC11	Yoga Values for Holistic Development	1	0	1	1	100	0	100	HS
	•		Т	otal	23		•		

SEMESTER	- III B.TECH. INFORMATION TECHN	IOLOGY	CUR	RICU	LUM – F	R2020			
Course Code	Course Title	Hou	ırs / W	eek	Credit	Maximum Marks			Cate gory
oouc		L	Т	Ρ		CA	ESE	Total	gory
Theory/The	ory with Practical								
20MAT34	Discrete Mathematical Structures	3	1	0	4	50	50	100	BS
20ITC31	Digital Logic and Microprocessors	3	0	2	4	50	50	100	ES
20ITT31	Data Structures	3	0	0	3	50	50	100	PC
20ITT32	Object Oriented Programming	3	0	0	3	50	50	100	PC
20ITT33	Computer Organization	3	1	0	4	50	50	100	PC
Practical / E	mployability Enhancement								
20ITL31	Data Structures Laboratory	0	0	2	1	50	50	100	PC
20ITL32	Object Oriented Programming Laboratory	0	0	2	1	50	50	100	PC
20EGL31	English for Workplace Communication Laboratory	0	0	2	1	50	50	100	HS
20GET31	Universal Human Values	2	0	0	2	100	0	100	HS
	Total Credits to be earned				23				

SEMESTER	– IV								
Course Code	Course Title	Ηοι	ırs / W	eek	Credit	Maxi	Cate		
Code		L	Т	Р		CA	ESE	Total	gory
Theory/The	bry with Practical								
20MAT42	Probability and Statistics	3	1	0	4	50	50	100	BS
20ITT41	Principles of Communication	3	1	0	4	50	50	100	ES
20ITT42	Database Management Systems	3	0	0	3	50	50	100	PC
20ITT43	Design and Analysis of Algorithms	3	1	0	4	50	50	100	PC
20ITT44	Web Technology	3	0	0	3	50	50	100	PC
	Open Elective I	3	1/0	0/2	4	50	50	100	OE
Practical / E	mployability Enhancement								
20ITL41	Database Management Systems Laboratory	0	0	2	1	50	50	100	PC
20ITL42	Web Technology Laboratory	0	0	2	1	50	50	100	PC
20MNT31	Environmental Science	2	0	0	0	100	0	100	MC
	Total Credits to be earned				24				

Course	Course Title	Но	urs/V	Veek	Credit	Max	imum	Marks	Cate
Code	Course Title	L	т	Р	Credit	CA	ESE	Total	gory
Theory/Th	neory with Practical								
20ITT51	Computer Networks	3	0/1	0	3*/4#	50	50	100	PC
20ITT52	Operating Systems	3	0	0	3	50	50	100	PC
20ITT53	Software Engineering	3	0	0	3	50	50	100	PC
	Professional Elective I	3	0	0	3	50	50	100	PE
	Open Elective II	3	1/0	0/2	4	50	50	100	OE
Practical /	Employability Enhancement								
20ITL51	Network Laboratory	0	0	2	1	100	0	100	PC
20ITL52	Operating Systems Laboratory	0	0	2	1	100	0	100	PC
20ITL53	CASE Tools Laboratory	0	0	2	1	100	0	100	PC
20GEL51/ 20GEI51	Professional Skills Training I / Industrial Training I \$				2	100	0	100	EC
	Total Credits to be earned				21*/22#				

*2020-21 #2021-22

SEMESTE			Ho	urs / V	Veek		Max	Marks	Cate	
Course Code	Course Title			лз/ т	P	Credit	CA	ESE	Total	Cate gory
			L	-	Р		CA	ESE	Total	
Theory/Th	eory with Practical									
20ITT61	Internet of Things and its Applications		3	0	0	3	50	50	100	ES
20ITT62	Machine Learning		3	0	0	3	50	50	100	PC
20ITT63	Cloud Computing		3	0	0	3	50	50	100	PC
	Open Elective III		3	0	0	3	50	50	100	OE
Practical /	Employability Enhancement									
20ITL61	Internet of Things Laboratory		0	0	2	1	100	0	100	ES
20ITL62	Machine Learning Laboratory		0	0	2	1	100	0	100	PC
20ITL63	Cloud Computing Laboratory		0	0	2	1	100	0	100	PC
20GEL61/ 20GEI61	Professional Skills Training II / Industrial Training II	@				2	100	0	100	EC
20GEP61	Comprehensive Test / Viva					2	100	0	100	EC
20ITP61	Project Work 1	#	0	0	4	2	100	0	100	EC
	Total Credits to be earned				•	23*/21#		•		

*2020-21 #2021-22

Course Code	Course Title	Но	urs/V	Veek	Credit	Maxi	Cate gory		
		L	т	Р		CA	ESE	Total	
Theory/The	eory with Practical								
20GET71	Engineering Economics and Management	3	0	0	3	50	50	100	HS
20ITT71	Blockchain Technology	3	0	0	3	50	50	100	PC
	Professional Elective II	3	0	0	3	50	50	100	PE
	Professional Elective III	3	0	0	3	50	50	100	PE
	Professional Elective IV	3	0	0	3	50	50	100	PE
	Professional Elective V	3	0	0	3	50	50	100	PE
Practical /	Employability Enhancement								
20ITP71	Project Work 2 Phase 1 \$	0	0	8*/6#	4*/3#	100	0	100	EC
	Total Credits to be earned	ed	•	•	21				

*2020-21 #2021-22

Course Code	Course Tit	le	Ηοι	urs/V	Veek	Credit	Maxi	imum N	larks	Cate gory
oodo			L	Т	Р		CA	ESE	Total	gory
Theory/Th	eory with Practical									
	Open Elective IV		3	0	0	3	50	50	100	OE
	Professional Elective VI		3	0	0	3	50	50	100	PE
Practical /	Employability Enhancement									
20ITP81	Project Work 2 Phase 2	#			12*/14#	6*/7#	50	50	100	EC
	Total Credits	o be earned		1	I	12*/13#		II	I	

*2020-21 #2021-22

	LIST OF PROFESSIONAL ELECTI	VE C	OUR	SES	(PE)		
Course Code	Course Name	L	Т	Ρ	С	Sem	Domain/ Stream
	Elective 1						
20ITE01	Computer Graphics	3	0	0	3	V	
20ITE02	Advanced Java Programming	3	0	0	3	V	
20ITE03	User Interface Design	3	0	0	3	V	
20ITE04	Search Methods for Problem Solving	3	0	0	3	V	
20ITE05	Information Theory and Coding	3	0	0	3	V	
	Elective 2						
20GEE01	Fundamentals of Research	3	0	0	3	V	
20ITE06	Native Application Development using Android	3	0	0	3	VII	
20ITE07	3D Modelling and Mixed Reality Applications	3	0	0	3	VII	
20ITE08	Network Communication Protocols and Standards	3	0	0	3	VII	
20ITE09	Big Data Analytics	3	0	0	3	VII	
20ITE10	Cryptography and Network Security	3	0	0	3	VII	
	Elective 3						
20ITE11	Digital Image Processing	3	0	0	3	VII	
20ITE12	Software Testing	3	0	0	3	VII	
20ITE13	Mobile Communication	3	0	0	3	VII	
20ITE14	Embedded Linux Basics	3	0	0	3	VII	
20ITE15	Deep Learning	3	0	0	3	VII	
	Elective 4						
20ITE16	Ethical Hacking	3	0	0	3	VII	
20ITE17	Information Retrieval	3	0	0	3	VII	
20ITE18	Software Defined Networks	3	0	0	3	VII	
20ITE19	Game Theory and its Applications	3	0	0	3	VII	
20ITE20	Software Quality Assurance	3	0	0	3	VII	
	Elective 5						
20ITE21	Cyber Forensics	3	0	0	3	VII	
20ITE22	Multicore Architecture	3	0	0	3	VII	
20ITE23	Business Intelligence and its Applications	3	0	0	3	VII	
20ITE24	Pattern Recognition	3	0	0	3	VII	
20ITE25	Software Project Management	3	0	0	3	VII	

	Elective 6						
20ITE26	Building Enterprise Applications	3	0	0	3	VIII	
20ITE27	Web Application Security	3	0	0	3	VIII	
20ITE28	Wireless Sensor Networks	3	0	0	3	VIII	
20ITE29	Realtime Programming for Embedded Systems	3	0	0	3	VIII	
20ITE30	Information Storage and Management	3	0	0	3	VIII	
20ITE31	Total Quality Management	3	0	0	3	VIII	
	Total credits to be earned				18		

	OPE	N ELECTIVE COURSES OFFERED TO OTH	ER DEF	PART	MEN	ITS (O	E)
S. No.	Course Code	Course Name	L	т	Р	С	Sem
1.	20ITO01	Artificial Intelligence	3	1	0	4	IV
2.	20ITO02	Web Technologies	3	1	0	4	IV
3.	20ITO03	Introduction to Operating Systems	3	1	0	4	IV
4.	20ITO04	Programming in Python	3	1	0	4	IV
5.	20ITO05	Computer Vision	3	1	0	4	V
6.	20ITO06	Data Science	3	1	0	4	V
7.	20ITO07	Advanced Java Programming	3	1	0	4	V
8.	20ITO08	NCC Studies (Air Wing) - I	3	0	2	4	V/VI
9.	20ITO09	Bio Natural Language Processing	3	0	0	3	VI
10.	20ITO10	Disaster Management for Information Technology	3	0	0	3	VI
11.	20ITO11	Modern Application Development	3	0	0	3	VIII
12.	20ITO12	Object Oriented System Development using UML	3	0	0	3	VIII
13.	20ITO13	Reinforcement Learning	3	0	0	3	VIII
		Total Credits to be earned				14	

20EGT11 ENGLISH LANGUAGE SKILLS

(Common to all Engineering and Technology Branches)

Programme & Branch	All BE/BTech branches	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	1	HS	3	0	0	3

Preamble	This course is designed to impart required levels of fluency in using the English Language at A2/B1 Level i Common European Framework (CEFR).	n the
Unit - I	Listening, Speaking, Reading, Writing and Grammar & Vocabulary. Activity Based Learning – Phase – I	9
about cities	Talking about past experiences - listening to descriptions - Speaking - Exchanging personal information - Ta and transportation - Reading - Life and achievements of a famous personality - Global transport systems - Wri experiences - Process Description – Grammar & Vocabulary – Past tense – Expressions of quantity – In-	iting -
Unit - II	Listening, Speaking, Reading, Writing and Grammar & Vocabulary. Activity Based Learning – Phase – II	9
comparison email - ema	Information about hotels and accommodation - Recipes and food items - Speaking - Life style changes and m s - Talking about food - Reading - Habit formation and changing habits - International cuisine - Writing - Per alls about food and recipes – Grammar & Vocabulary – Evaluations and Comparisons with adjectives – Simple perfect tenses.	sonal
Unit - III	Listening, Speaking, Reading, Writing and Grammar & Vocabulary. Activity Based Learning – Phase – III	9
Requests, o politeness -	Information about travel - descriptions / conversations about family life - Speaking - Vacations and Holid complaints and offering explanations - Reading - Tourist places and travel experiences - Group behaviour Writing - Personal letter about travelling - Writing guidelines and checklists – Grammar & Vocabulary – Future Two-part verbs.	r and
Unit - IV	Listening, Speaking, Reading, Writing and Grammar & Vocabulary. Activity Based Learning – Phase – IV	9
and tradition	Descriptions about festivals - Presentations on technology - Speaking - About technology - festivals, special e ns - Reading - Sports, hobbies and past time - About different cultures - Writing - Product Description - Writing rammar & Vocabulary – Infinitives and Gerunds for uses and purposes – Imperatives for giving suggestions – Re me.	y web
Unit - V	Listening, Speaking, Reading, Writing and Grammar & Vocabulary. Activity Based Learning – Phase –	9

Unit - V V

Listening - Talking about changes - Job preferences - Speaking - Comparing different periods or phases in life - Changes that happen - Skills and abilities, Personality Development - Employability Skills - Reading - Reading about life experiences Emotions and feelings – Job preferences – Jobs and Personality – Writing - Writing about one's past, present and future – Researching job options - Choosing the right job - Grammar & Vocabulary - Time contrasts - Conditional sentences with "if clauses" – Gerunds – short responses.

Total: 45

TEXT BOOK:

1. Jack C. Richards, Jonathan Hull, and Susan Proctor, "Interchange - Student's Book 2", 4th Edition, Cambridge University Press, New York, 2017.

REFERENCES:

- 1. Sanjay Kumar and Pushp Lata, "Communication Skills", 2nd Edition, Oxford University Press, New Delhi, 2015.
- Pamela Hartmann and Brenda Wegmann, "New Interactions English Language Learning and Assessment Platform (Level 2. Intro - Level IV)", McGraw Hill India, 2020.

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	use language effectively and accurately acquiring vocabulary from real-life context	Applying (K3)
CO2	listen/view and comprehend different spoken discourses / excerpts in different accents	Applying (K3)
CO3	read different genres of texts adopting various reading strategies	Analyzing (K4)
CO4	write cohesively, coherently and flawlessly avoiding grammatical errors, using a wide range of vocabulary, organizing their ideas logically on a topic	Creating (K6)
CO5	speak clearly, confidently, comprehensibly and communicate with others using appropriate communicative strategies	Creating (K6)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						2			2	3	2	2		
CO2									2	3		1		
CO3						1				3	1	1		
CO4										3		1		
CO5									2	3		2		
1 – Slight 2 –	Modera	to 3	Substan	tial BT.	Bloom	'e Tavo	omv							

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

	ASSESSMENT PATTERN - THEORY											
Test / Bloom's Category*	Remembering (K1) %											
CAT1		16	30	37		17	100					
CAT2		17	30	37		16	100					
CAT3		13	33	37		17	100					
ESE		7	21	37		35	100					

20MAC11 MATRICES AND DIFFERENTIAL EQUATIONS

(Common to All Engineering and Technology Branches)

Programme & Branch	All BE/BTech branches	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	1	BS	3	1*	2 *	4

Preamble To provide the skills to the students for solving different real time problems by applying matrices and differential equations.

Unit - I	Matrices:		9
Introduction	- Characteristic equation - Figen values and Figen vectors of a real matrix - Properties of Figen values and	Fige	n

Introduction – Characteristic equation – Eigen values and Eigen vectors of a real matrix – Properties of Eigen values and Eigen vectors (without proof) – Cayley - Hamilton theorem (Statement and applications only) – Orthogonal matrices – Orthogonal transformation of a symmetric matrix to diagonal form – Quadratic form – Nature of Quadratic forms - Reduction of quadratic form to canonical form by orthogonal transformation.

Unit - II Ordinary Differential Equations:

Introduction – Solutions of First order differential equations: Exact differential equations – Leibnitz's Linear Equation – Bernoulli's equation – Clairaut's equation.

Unit - III Ordinary Differential Equations of Higher Order:

Linear differential equations of second and higher order with constant coefficients - Particular Integrals for the types: $e^{ax} - cosax / sinax - x^n - e^{ax}x^n$, $e^{ax}sinbx$ and $e^{ax}cosbx - x^nsinax$ and $x^ncosax - Differential Equations with variable coefficients: Euler-Cauchy's equation - Legendre's equation.$

Unit - IV Applications of Ordinary Differential Equations:

Method of variation of parameters – Simultaneous first order linear equations with constant coefficients – Applications of differential equations: Simple harmonic motion – Electric circuits (Differential equations and associated conditions need to be given).

Unit - V Laplace Transform & Inverse Laplace Transform:

Laplace Transform: Conditions for existence – Transform of elementary functions – Basic properties – Derivatives and integrals of transforms – Transforms of derivatives and integrals – Transform of unit step function – Transform of periodic functions. Inverse Laplace transform: Inverse Laplace transform of elementary functions – Partial fraction method – Convolution theorem (Statement only) – Solution of linear ODE of second order with constant coefficients.

List of Exercises / Experiments:

1.	Introduction to MATLAB
2.	Computation of eigen values and eigen vectors
3.	Plotting and visualizing single variable functions
4.	Solving first and second order ordinary differential equations
5.	Solution of Simultaneous first order ODEs
6.	Solving second order ODE by variation of parameters
7.	Determining Laplace and inverse Laplace transform of basic functions
8.	Solution of Second order ODE by employing Laplace transforms

*Alternate week

TEXT BOOK:

Lecture: 45, Tutorial and Practical:15, Total:60

1. Ravish R. Singh, Mukul Bhatt "Engineering Mathematics", 1st Edition, McGraw Hill Education, New Delhi, 2016.

REFERENCES:

- 1. Kreyszig E., "Advanced Engineering Mathematics", 10th Edition, John Wiley Sons, 2011.
- 2. Kandasamy P., Thilagavathy K. and Gunavathy K., "Engineering Mathematics For First Year B.E/B.Tech", Reprint Edition 2014, S.Chand and Co., New Delhi.

 Duraisamy C., Vengataasalam S., Arun Prakash K. and Suresh M., "Engineering Mathematics – I", 2nd Edition, Pearson India Education, New Delhi, 2018.

4. MATLAB Manual.

9

9

9

9

	RSE OUTCOMES: Impletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	solve engineering problems which needs matrix computations.	Applying (K3)
CO2	identify the appropriate method for solving first order ordinary differential equations.	Applying (K3)
CO3	solve higher order linear differential equations with constant and variable coefficients.	Applying (K3)
CO4	apply the concept of ordinary differential equations for modeling and finding solutions to engineering problems.	Applying (K3)
CO5	apply Laplace Transform to find solutions of Linear Ordinary Differential Equations	Applying (K3)
CO6	know the basics of MATLAB and computing eigen values and eigen vectors of real matrix by MATLAB.	Understanding (K2), Manipulation (S2)
C07	solve ordinary differential equations with constant and variable coefficients and simultaneous first order ordinary differential equations using MATLAB.	Applying (K3), Manipulation (S2)
CO8	compute Laplace and inverse Laplace Transform of basic functions and solve Second Order ODE by using Laplace Transform with MATLAB.	Applying (K3), Manipulation (S2)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	3	2	1										
CO2	3	3	2	1										
CO3	3	3	2	1										
CO4	3	3	2											
CO5	3	3	2	1										
CO6					3									
CO7					3									
CO8					3									
1 – Slight, 2 –	Modera	ate, 3 – 3	Substar	tial, BT	- Bloom	's Taxo	nomy							

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	10	20	70				100						
CAT2	10	20	70				100						
CAT3	10	20	70				100						
ESE	10	20	70				100						

20PHT11 APPLIED PHYSICS

(Common to All Engineering and Technology Branches)

Programme & Branch	All BE/BTech Branches	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	1	BS	3	0	0	3

the aforementioned concepts and their applications in engineering and provides motivation towards innovations
ber optics, quantum physics, crystal structure and crystal defects. It also describes the physical phenomena related the aforementioned concepts and their applications in engineering and provides motivation towards innovations

Unit - I Propagation of Elastic Waves:

Oscillatory Motion: Introduction to simple harmonic motion - Damping velocity - Damping coefficient - Differential equation of simple harmonic motion - Velocity and acceleration - Restoring force - Vibration of a spring and mass system - Frequency response - Phase response - Resonance - Wave motion: Definition of a plane progressive wave - Attenuation of waves -Differential equation of a plane progressive wave - Phase velocity - Phase and phase difference - Solution of the differential equation of a plane progressive wave.

Unit - II Acoustics and Ultrasonics:

Acoustics: Introduction - Reverberation and reverberation time - Growth and decay of sound - Sabine's formula for reverberation time - Determination of sound absorption coefficient - Design of an auditorium: Factors affecting acoustics of buildings and the remedies. Ultrasonics: Introduction - Properties of ultrasonic waves - Generation of ultrasonic waves: Magnetostrictive generator and Piezoelectric generator - Determination of velocity of ultrasonics in a liquid: Acoustic grating – Industrial application: Nondestructive testing - Other applications of ultrasonic waves (qualitative).

Unit - III Laser and Fiber Optics:

Laser and Applications: Introduction – Interaction of light with matter - Three quantum process: Stimulated absorption, spontaneous emission and stimulated emission - Population inversion - Einstein's coefficients and their relations - Pumping methods - Nd:YAG laser - CO2 laser - Holography. Fiber Optics and Applications: Introduction - Numerical aperture and acceptance angle - Classification of optical fibers based on refractive index, modes and materials - Fiber optics communication system (qualitative) - Fiber optic sensors: Temperature and displacement sensors.

Unit - IV **Quantum Physics:**

Introduction - Blackbody radiation - Planck's quantum hypothesis - Compton scattering (qualitative) - de Broglie's hypothesis -Properties of matter waves - Application of Heisenberg uncertainty principle - Schrodinger's time independent and time dependent wave equations - Physical significance of wave function - The free particle - Potential energy step - Infinite potential well (one - dimensional).

Unit - V Crystal Physics:

Introduction - Classification of solids - Space lattice - Crystal structure - Unit cell - Bravais lattice - Single and polycrystalline materials - Lattice planes - Miller indices - Indices of crystal direction - Interplanar spacing in cubic system - Hexagonal close packed crystal structure and c/a ratio - Symmetry -Symmetry elements in cubic crystal - Crystal imperfections: line, surface and volume imperfections - Features of crystal imperfections (qualitative).

TEXT BOOK:

Total: 45

9

9

9

9

1. Avadhanulu M.N., Kshirsagar P.G. and Arun Murthy T.V.S., "A Textbook of Engineering Physics", 11th Edition, S. Chand & Company Pvt. Ltd., New Delhi, 2019.

REFERENCES:

1 Purnima Khare and Swarup A.,"Engineering Physics: Fundamentals and Modern Applications", 1st Edition, Jones and Bartlett Publishers, Sudbury, Massachusetts, 2009. 2. Gaur R.K. and Gupta S.L., "Engineering Physics", 8th Edition, Dhanpat Rai and Sons, New Delhi, 2009. Tamilarasan K. and Prabu K., "Engineering Physics – I", 3rd Edition, McGraw Hill Education Pvt. Ltd., New Delhi, 2014. 3.

COUF On co	BT Mapped (Highest Level)	
CO1	make use of the concepts of oscillatory and wave motion to comprehend the phenomena related to the propagation of elastic waves.	Applying (K3)
CO2	apply the concepts of growth and decay of sound energy in a hall to compute Sabine's formula to recognize the requirements of acoustically good buildings, and to describe the production of ultrasonic wave, working of acoustic grating & non-destructive testing using ultrasonic waves.	Applying (K3)
CO3	apply the concepts of stimulated emission to explain the working and the applications of laser in engineering and technology, and to apply the principle of propagation of light through optical fiber to compute acceptance angle and numerical aperture to comprehend the loss in optical fiber, fiber optic communication system and working of fiber optic sensors.	Applying (K3)
CO4	use the concepts of quantum mechanics to describe the behavior of electrons in a metal by solving Schrodinger's wave equation for particle motion in infinite potential well.	Applying (K3)
CO5	utilize the concepts of the seven crystal systems to obtain interplanar spacing in cubic lattice and c/a ratio of HCP crystal structure, and to comprehend symmetry elements, reciprocal lattice and the types of crystal imperfections and their impacts.	Applying (K3)

Mapping of COs with POs and PSOs														
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1											
CO2	3	2	1											
CO3	3	2	1											
CO4	3	2	1											
CO5	3	2	1											

ASSESSMENT PATTERN - THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	20	40	40				100	
CAT2	20	35	45				100	
CAT3	25	35	40				100	
ESE	20	40	40				100	

20CYT11 APPLIED CHEMISTRY

(Common to All Engineering and Technology Branches)

Programme & Branch	All BE/BTech Branches	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	1	BS	3	0	0	3

	Applied Chemistry course explores the basic principles and advancements of chemistry in the field of engineering and technology. It aims to impart the fundamentals of chemistry towards innovations in science and technology and also for societal applications.
Unit - I	Water Technology: 9

Unit - I Water Technology:

Introduction - sources of water - impurities in water - types of water - hardness of water- expression of hardness (simple problems) - units of hardness –estimation of hardness of water by EDTA method – determination of alkalinity - disadvantages of using hard water in Industries - boiler troubles - scale and sludge, boiler corrosion, caustic embrittlement, priming and foaming softening of water: i) Internal treatment process - carbonate and calgon conditioning ii) External treatment method demineralization process iii) Treatment of water for municipal water supply (Removal of suspended particles and disinfection methods, Break-point of chlorination).

Unit - II Electrochemistry:

Introduction - electrochemical cells - applications of electrochemical series - reference electrode - standard calomel electrode ion selective electrode - glass electrode - concentration cells - electrode and electrolyte concentration cells (simple problems) applications- potentiometric titrations - acid-base, redox, precipitation titrations - advantages- conductometric titrations - strong acid vs strong base, weak acid vs strong base, mixture of weak and strong acid vs strong base- advantages of conductometric titrations.

Unit - III **Corrosion and its Control:**

Introduction - causes and effects of corrosion - types of corrosion - chemical corrosion - Pilling Bed-worth rule - electrochemical corrosion -types - galvanic corrosion, concentration cell corrosion - other types of corrosion -stress, intergranular and microbiological corrosion- galvanic series - factors influencing rate of corrosion - corrosion control methods - design and material selection, anodic protection, corrosion inhibitors, protective coatings - i) metallic coatings : hot dipping (tinning and galvanizing) ii) non-metallic coating : anodizing iii) organic coating : paints - constituents and their functions.

Unit - IV Fuels and Combustion:

Introduction - classification of fuels - characteristics of a good fuel - combustion - calorific values - gross and net calorific values - Dulong's formula (simple problems) - Flue gas analysis by Orsat's method - ignition temperature - spontaneous ignition temperature - explosive range - solid fuels - coal and its varieties - proximate and ultimate analysis - significance - metallurgical coke - Otto-Hoffman byproduct method - liquid fuel - refining of petroleum - manufacture of synthetic petrol - hydrogenation of coal - Bergius process - knocking - octane number – cetane number - gaseous fuel - water gas.

Unit - V Polymers:

Introduction - terminology - classification - polymerization - types of polymerization (definition only)- polymerisation techniquesbulk, solution, suspension and emulsion polymerisation - plastics- difference between thermoplastics and thermosetting plastics compounding of plastics- plastic moulding methods - compression, injection, extrusion and blow moulding methods - industrial polymers: preparation, properties and applications of PVC, PAN, polyurethane, polyesters -biodegradable polymersclassification and applications.

TEXT BOOK:

Total: 45

9

9

9

9

1. Wiley Editorial Board, "Wiley Engineering Chemistry", 2nd Edition, Wiley India Pvt. Ltd, New Delhi, Reprint 2019. **REFERENCES:**

- 1. Palanisamy P.N., Manikandan P., Geetha A.& Manjula Rani K., "Applied Chemistry", 6th Edition, Tata McGraw Hill Education Private Limited, New Delhi, 2019.
- 2. Payal B. Joshi, Shashank Deep, "Engineering Chemistry", Oxford University Press, New Delhi, 2019.
- 3. Palanna O., "Engineering Chemistry", McGraw Hill Education, New Delhi, 2017.

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	apply the suitable water softening methods to avoid boiler troubles.	Applying (K3)
CO2	apply the principle of electrochemistry for various applications.	Applying (K3)
CO3	make use of corrosion control methods to solve corrosion related problems.	Applying (K3)
CO4	illustrate the quality of fuels from its characteristics.	Understanding (K2)
CO5	explain the types of polymers, plastics and fabrication methods.	Understanding (K2)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1										
CO2	3	2	1	1										
CO3	3	2	1	1										
CO4	3	1												
CO5	3	1												
1 – Slight, 2 –	Modera	ate, 3 –	Substar	tial, BT	- Bloom	's Taxoi	nomy							

		ASSESSMENT	PATTERN - T	HEORY		
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %
CAT1	25	35	40			
CAT2	25	35	40			
CAT3	25	35	40			
ESE	25	35	40			

20ITC11 PROBLEM SOLVING AND PROGRAMMING

Programm Branch	ne &	BTech – Information Technology	Sem.	Category	L	т	Р	Credit
Prerequis	ites	Nil	1	PC	3	0	2	4
Preamble	on lear for use practice	n solving skill is the most important skill to be possessed ning a programming language rather than on inculcating by freshmen students taking their first course in prog computational thinking, the art of using computers to so solve problems. This course also focuses on developing	the pro- ramming plve pro-	blem solving s g. It deals wit blems and the	kills. Th h the t ways	his cou techniq the cor	rse is d lues ne nputers	lesigned eded to
Unit - I	Introdu	action to Computer and Problem Solving:						9
Structured	programi	ters : Types, Generations, Characteristics, Basic compu ming Problem solving techniques: Algorithms – Flow and repetitive structure.						
Unit - II	Introdu	uction to C and Control Statements:						9
Classificati	on : intege	C program – features of C – Data – Variables – De er, float and character types – constants – operators and nts – Input and output functions.						
Unit - III	Arrays	and Functions:						9
of a function		nd initializing 1D array – Two dimensional arrays – Multidir s of functions based on arguments and return types – Pas						
Calling fun		another function – recursive functions –Variable scope ar				jument	.5 10 101	
Calling fun Unit - IV	ction from					gument	.5 10 101	9
Unit - IV Pointers : mechanisn	ction from Pointe Memory a ns , operation	another function - recursive functions -Variable scope ar	nd lifetim g and d ng string	ereferencing a gs – pointers fo	lasses a pointe or string	er, para g manip	ameter	9 passing
Unit - IV Pointers : mechanisn	ction from Pointer Memory ans , operations : s	another function – recursive functions –Variable scope ar rs and Strings: access and pointers, pointer basics, declaring, initializing tions on pointers. Strings : Basics, declaring and initializing	nd lifetim g and d ng string	ereferencing a gs – pointers fo	lasses a pointe or string	er, para g manip	ameter	9 passing
Unit - IV Pointers : mechanism handling fu Unit - V Structure b	Ction from Pointer Memory a nos , opera inctions : s User-d pasics –de	another function – recursive functions –Variable scope ar rs and Strings: access and pointers, pointer basics, declaring, initializing tions on pointers. Strings : Basics, declaring and initializing standard and user defined functions – character oriented functions	nd lifetim g and d ng string unctions	ereferencing a gs – pointers fo , Two dimensi structures – a	a pointe or string onal ar rrays as	er, para g manip ray of s	ameter oulation strings	9 passing – string 9
Unit - IV Pointers : mechanism handling fu Unit - V Structure b arrays of s	Ction from Pointer Memory ans , operations ; s Inctions ; s User-d basics –de tructure –	another function – recursive functions –Variable scope ar rs and Strings: access and pointers, pointer basics, declaring, initializing tions on pointers. Strings : Basics, declaring and initializing standard and user defined functions – character oriented for efined Data Types: eclaring and defining a structure – attributes of structures –	nd lifetim g and d ng string unctions	ereferencing a gs – pointers fo , Two dimensi structures – a	a pointe or string onal ar rrays as	er, para g manip ray of s	ameter oulation strings	9 passing – string 9
Unit - IV Pointers : mechanisn handling fu Unit - V Structure b arrays of s List of Exe	ction from Pointer Memory a ns , opera inctions : s User-d pasics –de tructure – ercises / E	another function – recursive functions –Variable scope ar rs and Strings: access and pointers, pointer basics, declaring, initializing tions on pointers. Strings : Basics, declaring and initializing standard and user defined functions – character oriented for efined Data Types: rclaring and defining a structure – attributes of structures – Passing structures as arguments to functions – Unions – I	nd lifetim g and d ng string unctions nested Bit Field	ne – Storage c ereferencing a gs – pointers fo s, Two dimensi structures – a s –Enumerate	a pointe or string onal ar rrays as d type	er, para g manig ray of s s struct	ameter oulation strings	9 passing – string 9
Unit - IV Pointers : mechanism handling fu Unit - V Structure b arrays of s List of Exe 1. Writing	ction from Pointer Memory a ns , opera inctions : s User-d asics –de tructure – ercises / E g algorithm	another function – recursive functions –Variable scope ar rs and Strings: access and pointers, pointer basics, declaring, initializing tions on pointers. Strings : Basics, declaring and initializing standard and user defined functions – character oriented for efined Data Types: claring and defining a structure – attributes of structures – Passing structures as arguments to functions – Unions – I Experiments :	nd lifetin g and d ng string unctions nested Bit Field involvin	ne – Storage c ereferencing a gs – pointers fo s, Two dimensi structures – a s –Enumerate g sequential st	a pointe or string onal ar rrays as d type	er, para g manip ray of s s struct s	ameter oulation strings	9 passing – string 9
Unit - IV Pointers : mechanism handling fu Unit - V Structure b arrays of s List of Exe 1. Writing 2. Writing	ction from Pointer Memory a ns , opera inctions : s User-d pasics –de tructure – ercises / E g algorithm g algorithm	another function – recursive functions –Variable scope ar rs and Strings: access and pointers, pointer basics, declaring, initializing tions on pointers. Strings : Basics, declaring and initializing standard and user defined functions – character oriented for efined Data Types: claring and defining a structure – attributes of structures – Passing structures as arguments to functions – Unions – I Experiments : ns and drawing flowcharts using Raptor Tool for problems	nd lifetim g and d ng string unctions nested Bit Field involvin	ne – Storage c ereferencing a gs – pointers fo s, Two dimensi structures – a s –Enumerate g sequential st g selective str	a pointe or string onal ar rrays as d type tructure	er, para g manig ray of s s struct s	ameter oulation strings	9 passing – string 9
Unit - IV Pointers : mechanism handling fu Unit - V Structure b arrays of s List of Exe 1. Writing 2. Writing 3. Writing 4. Progra	ction from Pointer Memory a ns , opera inctions : s User-d vasics –de tructure – ercises / E g algorithm g algorithm	another function – recursive functions –Variable scope ar rs and Strings: access and pointers, pointer basics, declaring, initializing tions on pointers. Strings : Basics, declaring and initializing standard and user defined functions – character oriented for efined Data Types: claring and defining a structure – attributes of structures – Passing structures as arguments to functions – Unions – I Experiments : Ins and drawing flowcharts using Raptor Tool for problems ins and Drawing flowcharts using Raptor Tool for problems ms and Drawing flowcharts using Raptor Tool for problems monstrating the use of different types of operators like arit	nd lifetin g and d ng string unctions nested Bit Field involvin involvin involvir	ne – Storage c ereferencing a gs – pointers fo s, Two dimensi structures – a s –Enumerate g sequential st g selective str ng repetitive str	a pointe or string onal ar rrays as d type tructure uctures	er, para g manig ray of s s struct	ameter bulation strings ture me	9 passing - string 9 mbers -
Unit - IV Pointers : mechanism handling fu Unit - V Structure b arrays of s List of Exe 1. Writing 2. Writing 3. Writing 4. Progra	ction from Pointer Memory a ns , opera inctions : s User-d asics –de tructure – palgorithm g algorithm g algorithm g algorithm ins for de ential structure	another function – recursive functions –Variable scope ar rs and Strings: access and pointers, pointer basics, declaring, initializing tions on pointers. Strings : Basics, declaring and initializing standard and user defined functions – character oriented for efined Data Types: claring and defining a structure – attributes of structures – Passing structures as arguments to functions – Unions – I Experiments : Ins and drawing flowcharts using Raptor Tool for problems ins and Drawing flowcharts using Raptor Tool for problems ms and Drawing flowcharts using Raptor Tool for problems monstrating the use of different types of operators like arit	nd lifetin g and d ng string unctions nested Bit Field involvin involvin involvir	ne – Storage c ereferencing a gs – pointers fo s, Two dimensi structures – a s –Enumerate g sequential st g selective str ng repetitive str	a pointe or string onal ar rrays as d type tructure uctures	er, para g manig ray of s s struct	ameter bulation strings ture me	9 passing - string 9 mbers -
Unit - IV Pointers : mechanism handling fu Unit - V Structure b arrays of s List of Exe 1. Writing 2. Writing 3. Writing 4. Progra 5. Progra	ction from Pointer Memory a ns, opera- inctions : s User-d vasics –de tructure – ercises / E g algorithm g algorithm g algorithm ums for de ential struc- ums to Illus	another function – recursive functions –Variable scope ar rs and Strings: access and pointers, pointer basics, declaring, initializing tions on pointers. Strings : Basics, declaring and initializing standard and user defined functions – character oriented for efined Data Types: claring and defining a structure – attributes of structures – Passing structures as arguments to functions – Unions – I Experiments : Ins and drawing flowcharts using Raptor Tool for problems Ins and Drawing flowchart	nd lifetin g and d ng string unctions • nested Bit Field involvin involvin involvin hmetic,	ereferencing a gs – pointers fo s, Two dimensi structures – a s –Enumerate g sequential st g selective str ng repetitive str logical, relation	a pointe or string onal ar rrays as d type aructures ructures ructures ructures	er, para g manig ray of s s struct s s ternar	ameter bulation strings ture me	9 passing - string 9 mbers -
Unit - IV Pointers : mechanism handling fu Unit - V Structure b arrays of s List of Exe 1. Writing 2. Writing 3. Writing 4. Progra (Sequi 5. Progra structu	ction from Pointer Memory a ns, operations : s User-d asics –de tructure – ercises / E g algorithm g algorithm g algorithm must for de ential structures)	another function – recursive functions –Variable scope ar rs and Strings: access and pointers, pointer basics, declaring, initializing tions on pointers. Strings : Basics, declaring and initializing terfined Data Types: Inclaring and defining a structure – attributes of structures – Passing structures as arguments to functions – Unions – I Experiments : Ins and drawing flowcharts using Raptor Tool for problems Ins and Drawing flowcharts using Raptor Tool for problems In	nd lifetim g and d ng string unctions nested Bit Field involvin involvin involvir hmetic, , condit	ereferencing a gs – pointers fo s, Two dimensi structures – a s –Enumerate g sequential st g selective str logical, relation ional and unc	a pointe or string onal ar rrays as d type tructure uctures uctures nal and	er, para g manip ray of s s struct s s ternary nal 'go	ameter bulation strings ture me	passing – string 9 mbers –
Unit - IV Pointers : mechanism handling fu Unit - V Structure b arrays of s List of Exe 1. Writing 2. Writing 3. Writing 4. Progra 6. Progra structu	ction from Pointer Memory a ns, opera- inctions : s User-d pasics –de tructure – ercises / E g algorithm g algorithm g algorithm ms for de ential struct ms to Illus ims using irres) ms for de	another function – recursive functions –Variable scope ar rs and Strings: access and pointers, pointer basics, declaring, initializing tions on pointers. Strings : Basics, declaring and initializing terms and defining a structure – attributes of structures – Passing structures as arguments to functions – Unions – I Experiments : Ins and drawing flowcharts using Raptor Tool for problems Ins and Drawing flowcharts using Raptor Tool for problems monstrating the use of different types of operators like arit ctures) strate the different formatting options for input and output g decision making statements like 'if', 'else if', 'switch',	nd lifetim g and d ng string unctions • nested Bit Field involvin involvin involvir hmetic, , condit and 'do-	ereferencing a gs – pointers fo s, Two dimensi structures – a s –Enumerate g sequential st g selective str logical, relation ional and unc	a pointe or string onal ar rrays as d type tructure uctures uctures nal and	er, para g manip ray of s s struct s s ternary nal 'go	ameter bulation strings ture me	passing – string 9 mbers –
Unit - IV Pointers : mechanism handling fu Unit - V Structure b arrays of s List of Exe 1. Writing 2. Writing 3. Writing 4. Progra 5. Progra 5. Progra 8. Progra	ction from Pointer Memory a inctions : s User-d vasics –de tructure – ercises / E g algorithm g algorithm g algorithm ins for de ential structures) ins for de ins for de ins for de ins for de	another function – recursive functions –Variable scope ar rs and Strings: access and pointers, pointer basics, declaring, initializing tions on pointers. Strings : Basics, declaring and initializing terms and drawing a structure – attributes of structures – Passing structures as arguments to functions – Unions – I Experiments : Ins and drawing flowcharts using Raptor Tool for problems Ins and drawing flowcharts using Raptor Tool for problems monstrating the use of different types of operators like arite trues) strate the different formatting options for input and output g decision making statements like 'if', 'else if', 'switch', monstrating repetitive control statements like 'for', 'while' a	nd lifetim g and d ng string unctions nested Bit Field involvin involvin involvir hmetic, , condit and 'do- ic array	ne – Storage cl ereferencing a gs – pointers fo s, Two dimensi structures – a s –Enumerate g sequential st g selective str logical, relation ional and unc while' (Iterative	a pointe or string onal ar rrays as d type tructures ructures ructures ructures ructures anal and conditio	er, para g manig ray of s s struct s s ternar nal 'go ures)	ameter bulation strings ture me	g passing string g mbers – tors
Unit - IV Pointers : mechanism handling fu Unit - V Structure b arrays of s List of Exe 1. Writing 2. Writing 3. Writing 4. Progra 6. Progra 8. Progra 9. Progra	ction from Pointer Memory a ns, opera- inctions : s User-d basics –de tructure – ercises / E g algorithm g algorithm g algorithm ans for de ential struct arms to Illus arms for de arms for de arms for de arms for de arms for de arms for de arms for de	another function – recursive functions –Variable scope ar rs and Strings: access and pointers, pointer basics, declaring, initializing tions on pointers. Strings : Basics, declaring and initializing termed Data Types: Inclaring and defining a structure – attributes of structures – Passing structures as arguments to functions – Unions – I Experiments : Ins and drawing flowcharts using Raptor Tool for problems ins and Drawing statements like 'if, 'else if, 'switch', intervention making statements like 'if, 'else if, 'switch', intervention making statements like 'if, 'else if, 'switch', intervention making one-dimensional and two-dimensional numeric	nd lifetim g and d ng string unctions nested Bit Field involvin involvin involvin hmetic, , condit and 'do- ic array (Using	ereferencing a gs – pointers fo s, Two dimensi structures – a s –Enumerate g sequential st g selective str logical, relation ional and unc while' (Iterative built-in and u	a pointe or string onal ar rrays as d type uctures ructures ructures ructures conditio	er, para g manig ray of s s struct s s ternary nal 'go ures) ned fui	ameter bulation strings ture me	orgeneration of the second sec
Unit - IV Pointers : mechanism handling fu Unit - V Structure b arrays of s List of Exe 1. Writing 2. Writing 3. Writing 4. Progra 6. Progra 8. Progra 8. Progra 9. Progra	ction from Pointer Memory a inctions : s User-d asics –de tructure – ercises / E g algorithm g algorithm g algorithm g algorithm ins for de ential structures) ins for de ins for ins for de ins for ins for ins for de ins for ins for i	another function – recursive functions –Variable scope ar rs and Strings: access and pointers, pointer basics, declaring, initializing tions on pointers. Strings : Basics, declaring and initializing terms and defining a structure – attributes of structures – Passing structures as arguments to functions – Unions – I Experiments : Ins and drawing flowcharts using Raptor Tool for problems ins and drawing flowcharts using Raptor Tool for problems monstrating the use of different types of operators like arite trues) strate the different formatting options for input and output g decision making statements like 'if', 'else if', 'switch', monstrating repetitive control statements like 'for', 'while' a monstrating one-dimensional and two-dimensional numerinonstrate modular programming concepts using functions	nd lifetim g and d ng string unctions nested Bit Field involvin involvin involvin hmetic, , condit and 'do- ic array (Using	ereferencing a gs – pointers fo s, Two dimensi structures – a s –Enumerate g sequential st g selective str logical, relation ional and unc while' (Iterative built-in and u	a pointe or string onal ar rrays as d type uctures ructures ructures ructures conditio	er, para g manig ray of s s struct s s ternary nal 'go ures) ned fui	ameter bulation strings ture me	tors

Lecture:45, Practical:30, Total: 75

TEXT BOOK:

1. Sumitabha Das, "Computer Fundamentals and C Programming", 1st Edition, McGraw Hill, 2018.

REFERENCES:

1. YashavantKanetkar,"Let us C", 16 th Edition, BPB Publications, 2018.	
--	--

- 2. Reema Thareja, "Programming in C", 2nd Edition, Oxford University Press, New Delhi, 2018.
- 3. Balagurusamy E., "Programming in ANSI C", 7th Edition, McGraw Hill Education, 2017.
- 4. Raptor and C Compiler

COUF On co	BT Mapped (Highest Level)	
CO1	outline the basics of computers and apply problem solving techniques to express the solution for the given problem	Applying (K3)
CO2	identify the appropriate looping and control statements in C and develop applications using these statements	Applying (K3)
CO3	develop simple C programs using the concepts of arrays and modular programming	Applying (K3)
CO4	recall the basic concepts of pointers and develop C programs using strings and pointers	Applying (K3)
CO5	make use of user defined data types to solve given problems	Applying (K3)
CO6	demonstrate the execution of flowchart for the given problem using Raptor	Applying (K3), Precision (S3)
C07	demonstrate the application of sequential, selective and repetitive control structures	Applying (K3), Precision (S3)
CO8	implement solutions to the given problem using derived and user defined data types and functions	Applying (K3), Precision (S3)

COs/POs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2			2								2	1
CO2	3	2	2										2	1
CO3	3	2	2										2	1
CO4	3	2	2										2	1
CO5	3	2	2										2	1
CO6	3	2	1	1	1					1			2	1
CO7	3	2	1	1	1					1			2	1
CO8	3	2	1	1	1					1			2	1

	ASSESSMENT PATTERN - THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	20	30	50				100					
CAT2	10	30	60				100					
CAT3	10	30	60				100					
ESE	10	30	60				100					

20ITT11 FOUNDATIONS OF IT

Programme & Branch	BTech - Information Technology	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	1	ES	3	0	0	3

Preamble This course is intended to introduce the fundamental concepts of computers and foundations of Information Technology

Unit - I Data and Information, Acquisition of Numbers and Textual Data:

Data and Information: Introduction -Types of Data - Simple Model of a Computer -Data Processing Using a Computer -Desktop Computer. Acquisition of Numbers and Textual Data: Introduction - Input Units - Internal Representation of Numeric Data - Representation of Characters in Computers -Error-Detecting Codes.

Unit - II Acquiring Image Data, Acquiring Audio and Video Data:

Acquiring Image Data: Introduction - Acquisition of Textual Data - Acquisition of Pictures - Storage Formats for Pictures - Image Compression Fundamentals - Image Acquisition with a Digital Camera. Acquiring Audio and Video Data: Introduction - Basics of Audio Signals -Acquiring and Storing Audio Signals -Compression of Audio Signals-Acquisition of Video – Introduction-Capturing a Moving Scene with a Video Camera - Compression of Video Data-MPEG Compression Standard.

Unit - III Data Storage and Central Processing Unit:

Data Storage: Introduction - Storage Cell - Physical Devices Used as Storage Cells - Random Access Memory - Read Only Memory - Secondary Storage - Compact Disk Read Only Memory (CDROM) - Archival Store.Central Processing Unit: Introduction- Structure of a Central Processing Unit-Specifications of a CPU- Interconnection of CPU with Memory and I/O Units - Embedded Processors

Unit - IV Output Devices, Computer Software and Computer Networks:

Output Devices and Computer Software: Introduction -Video Display Devices -Touch Screen Display - E-Ink Display -Printers -Audio Output -Computer Software- Introduction - Operating System -Programming Languages- Classification of Programming Languages Based on Applications.Computer Networks: Introduction - Local Area Network (LAN) - Applications of LAN - Wide Area Network (WAN) -Internet - Naming Computers Connected to Internet- Future of Internet Technology.

Unit - V Data Organization, Processing Numerical Data and Displaying Textual Data:

Data Organization: Introduction- Organizing a Database - Structure of a Database - Database Management System -Example of Database Design - Non-Text Databases - Archiving Databases. Processing Numerical Data and Displaying Textual Data: Introduction - Use of Spreadsheets -Numerical Computation -Processing and Displaying Textual Data -Introduction -Word Processor-Desktop Publishing - Page Description Language - Markup Languages. Some Internet Applications – Introduction-Email - World Wide Web - Information Retrieval from the World Wide Web - Other Facilities Provided by Browsers.

TEXT BOOK:

1. Rajaraman V., "Introduction to Information Technology", 3rd Edition, PHI Publications, India, 2018.

REFERENCES:

1. Pearson Team, "Introduction to Computers and Information Technology", 2nd Edition, Pearson, 2015

9

9

9

9

9

Total: 45

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	differentiate between data and information	Remembering (K1)
CO2	summarize the ways of acquiring various types of data	Understanding (K2)
CO3	illustrate the importance of data storage and Central Processing Unit	Understanding (K2)
CO4	discuss the functions of output devices and system software	Understanding (K2)
CO5	apply appropriate tools for organizing the data	Applying (K3)

					Маррі	ng of C	Os with	n POs a	nd PSC)s				
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	1	2										3	2
CO2	2	1	2										2	1
CO3	3	1	2										3	2
CO4	3	2	2										3	2
CO5	3	1	2										2	1
I – Slight, 2 –	Modera	ate, 3 –	Substar	tial, BT	- Bloom	's Taxo	nomy							

20

ASSESSMENT PATTERN - THEORY Test / Bloom's Remembering Understanding Applying Analyzing Evaluating Creating (K3) % (K4) % (K5) % (K6) % Category* (K1) % (K2) % CAT1 13 87 CAT2 40 60 CAT3 30 50 20

60

* ±3% may be varied (CAT 1,2,3 – 50 marks & ESE – 100 marks)

20

ESE

Total

%

100

100

100

100

20PHL11 PHYSICAL SCIENCES LABORATORY I

(Common to All Engineering and Technology Branches)

Programme & Branch	All BE/BTech Branches	Sem.	Category	L	Т	Р	Credit
Prerequisites	NIL	1	BS	0	0	2	1

Preamble	This course aims to impart hands on training in the determination of the physical parameters such as Young's modulus, rigidity modulus, frequency of vibration, velocity of ultrasonic waves, compressibility of water, wavelength of laser, acceptance angle and the numerical aperture of an optical fiber, and to develop the skills in handling different basic instruments and also aims to impart the basic concepts of volumetric, conductometric, and her meter
	different basic instruments and also aims to impart the basic concepts of volumetric, conductometric and pH meter experiments and thereby, to improve the analytical capability.

List of Exercises / Experiments:

	•
1.	Determination of the Young's modulus of the material of a given beam using uniform bending method.
2.	Determination of the rigidity modulus of the material of a given wire using torsional pendulum.
3.	Determination of frequency of electrically vibrating rod by forming standing waves using Melde's apparatus.
4.	Determination of the velocity of ultrasonic waves in a liquid and the compressibility of a liquid using ultrasonic interferometer.
5.	Determination of (i) the wavelength of a semiconductor laser and (ii) the acceptance angle and the numerical aperture of a given optical fiber.
6.	Estimation of total, temporary and permanent hardness of water by EDTA method.
7.	Estimation of Ca ²⁺ and Mg ²⁺ hardness separately by EDTA method.
8.	Estimation of alkalinity of the given water sample.
9.	Conductometric titration -Mixture of acids.
10.	Estimation of hydrochloric acid using pH meter.

REFERENCES:

- 1. Tamilarasan K. and Prabu K.,"Physics Laboratory Manual', 1st Edition, SCM Publishers, Erode, 2020.
- 2. Palanisamy P.N., Manikandan P., Geetha A. and Manjula Rani K., "Chemistry Laboratory Manual", 1st Edition, Rajaganapathy Publishers, Erode, 2020.

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	determine the Young's modulus of a material using the concepts of elasticity and bending moment of a beam and to determine the rigidity modulus of a wire using the concepts of twisting couple and to compute the frequency of electrically vibrating rod using the concept of standing waves formed in fixed vibrating string.	Applying (K3), Precision (S3)
CO2	determine the wavelength of a semiconductor laser beam using the concept of diffraction of light, and to compute the acceptance angle and the numerical aperture of an optical fiber using the concepts of total internal reflection and divergence of light in air and estimate the amount of hardness for the given water sample by EDTA method, and the amount of alkalinity for the given water sample.	Applying (K3), Precision (S3)
CO3	demonstrate the conductivity meter and pH meter to estimate the amount of the given solution.	Applying (K3), Precision (S3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1				3										
CO2				3										
CO3				3										

Total: 30

Mapping of COs with POs and PSOs

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

20ITL11 IT ESSENTIALS LABORATORY

Programme & Branch	BTech - Information Technology	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	1	ES	0	0	2	1

Preamble To Assemble and upgrade personal computer systems and to Troubleshoot system, software, and hardware problems List of Exercises / Experiments: Study the function of the following components i) Input devices ii) Central Processing Unit (CPU) iii) Output devices iv) 1. Memory v) Networking components (Network Interface Card (NIC), switch, hub, router, and modem) 2. Install and configure Windows and Linux Operating System. 3. Customize Operating System and maintenance of system application software. Perform the following operations in word processing: i) Modifying Layout of a Paragraph ii) Managing Headers 4. iii) Managing Footers iv) Managing Styles v) Insert Graphical Objects and Illustrations vii) Text Wrapping viii) Inserting Objects ix) Insert Shapes, Symbols and Special Characters x) Insert tables - insert/delete rows and columns, merge andsplit cells. Perform the following operations using Presentation tool: i) Inserting a Movie Clip ii) Inserting an Audio Clip iii) Working 5. with Tables iv) Working with Charts v) Inserting Transitions vi) Inserting Animations vii) Grouping Objects ix) Reviewing Content x) Preparing to Deliver a Presentation Perform the following operations in Spreadsheets: i) Use Auto sum in Cells ii) Conditional Formatting iii) Hide / Unhide / 6. Freeze Rows and Columns iv) Set Page Breaks v) Set Page Layout vi) Manage Workbook Views vii) Apply Cell and Range Names viii) Create Modify and Format Charts ix) Sort and Filter Data x) Calculate Data across Worksheets 7. Install Printer, Scanner and troubleshoot their faults. Perform the following operations in Email Messaging: i) Working with Calendar ii) Schedule an Appointment iii) Categorize 8. an Appointment iv) Share a Calendar v) Creating a Meeting Request vi) Respond to a Meeting Request vii) Create and Edit a Task viii) Create and Edit a Note ix) Create and Edit a Journal Entry Perform any one online transaction: i) Ticket Booking (Train Ticket, Bus Ticket, Flight Ticket, Cinema Ticket) ii) Bill 9. Payment (EB Bill, Mobile Recharge, Insurance Premium, EMI) iii) Online Purchase (Flipkart, Amazon)

Total: 30

REFERENCE BOOKS:

DT Mannad

1. MS-Office suite

Installation and Configurations notes.

COURSE OUTCOMES:

	mpletion of the course, the students will be able to	(Highest Level)
CO1	organize the functional parts of computers and network components	Applying (K3), Manipulation (S2)
CO2	utilize various tools like word processing, spreadsheets, presentation and database	Applying (K3), Precision (S3)
CO3	experiment with computer hardware and software configurations.	Applying (K3), Precision (S3)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1									3	2
CO2	3	2	1	1									3	2
CO3	3	2	1	1									3	2

Mapping of COs with POs and PSOs
1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

20EGT21 ADVANCED COMMUNICATION SKILLS

(Common to all Engineering and Technology Branches)

Programme & Branch	All BE/BTech branches	Sem.	Category	L	Т	Р	Credit
Prerequisites	20EGT11 – English Language Skills	2	HS	3	0	0	3

Preamble	This course is designed to impart required levels of fluency in using the English Language at B1Level in the Common European Framework (CEFR).
Unit - I	Listening, Speaking, Reading, Writing and Grammar & Vocabulary. Activity Based Learning – Phase – VI
Career cho careers -	Job and career related descriptions and conversations – requests of different kinds and the responses – Speaking ices and professional skills – making requests and responding to requests – Reading – Using texts about jobs and about different societies and cultural differences – Writing – Resumes, CVs and job oriented advertisements – nd career related emails – Grammar &Vocabulary – Gerunds and elements of comparison – requests and indirect
Unit - II	Listening, Speaking, Reading, Writing and Grammar & Vocabulary. Activity Based Learning – Phase – VII
Narrating a technology	 Expository and narrative descriptions – information about different cultures, nations and societies. Speaking - nd describing – talking about other countries and other cultures – Reading – Using texts about media and informatior living abroad and experiencing different cultures – Writing – Blog writing – brochures and tourist pamphlets - & Vocabulary – The past tense forms - noun phrases and relative clauses.
Unit - III	Listening, Speaking, Reading, Writing and Grammar & Vocabulary. Activity Based Learning – Phase – VIII
	- Consumerism - product description - complaints and redressal - environmental issues - ecology - saving the
planet – Sp Reading – reviews, ar	eaking – Talking about problems, issues, complaints – solutions and redressal – talking about environmental issues - Using texts on segregating wastes – recycling and reusing – texts on environmental issues – Writing – Online
planet – Sp Reading – reviews, ar	Deaking – Talking about problems, issues, complaints – solutions and redressal – talking about environmental issues – Using texts on segregating wastes – recycling and reusing – texts on environmental issues – Writing – Online ticles and writing web content – Grammar & Vocabulary – Phrases and sentences used for describing problems – prepositions and infinitives. Listening Speaking Reading Writing and Grammar & Vocabulary Activity Based Learning – Phase –
planet – S p Reading – reviews, ar passives – Unit - IV Listening improveme services – about pers everyday li	 beaking – Talking about problems, issues, complaints – solutions and redressal – talking about environmental issues – Using texts on segregating wastes – recycling and reusing – texts on environmental issues – Writing – Online ticles and writing web content – Grammar & Vocabulary – Phrases and sentences used for describing problems – prepositions and infinitives. Listening, Speaking, Reading, Writing and Grammar & Vocabulary. Activity Based Learning – Phase – Complexity

of the past – **Speaking** – Talking about the past, present and the future – talking about important line events, milestones and happenings about new technologies and future science – using texts about social organization, culture and social practices – Writing – Biographical sketches – historical events – famous personalities, stages of life and getting along with people – Grammar & Vocabulary – Future tense forms – time clauses and certain "if clauses".

TEXT BOOK:

Total: 45

1. Jack C. Richards, Jonathan Hull, and Susan Proctor, "Interchange - Student's Book 3", 4th Edition, Cambridge University Press, New York, 2017.

REFERENCES:

- 1. Sanjay Kumar and Pushp Lata, "Communication Skills: A Workbook based on AICTE Syllabus", Oxford University Press, 2018.
- 2. Board of Editors, "Skills Annexe: Functional English for Success", Orient BlackSwan, Hyderabad, 2013.

🥸 Kongu Engineering College, Perundurai, Erode – 638060, India

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	use functional grammar for improving communication skills	Applying (K3)
CO2	listen and comprehend different spoken excerpts critically and infer Unspoken and implied meanings.	Applying (K3)
CO3	read different genres of texts, infer implied meanings and critically analyze and evaluate them for ideas as well as for method of presentation.	Analyzing (K4)
CO4	write effectively and persuasively and produce different types of writing such as narration, description, exposition and argument as well as creative, critical, analytical and evaluative writing.	Creating (K6)
CO5	speak effectively, to express opinions clearly, initiate and sustain a discussion and also negotiate using appropriate communicative strategies.	Creating (K6)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						2			1	3	1	1		
CO2									2	3		1		
CO3						1				3	1	1		
CO4										3		2		
CO5	CO5 2 3 2													
1 - Slight, 2 -	Modera	te, 3 – 3	Substar	tial, BT·	- Bloom	's Taxor	nomy							

		ASSESSMENT	PATTERN - T	HEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1		13	30	33	-	17	100
CAT2		13	33	37	-	17	100
CAT3		20	30	33	-	17	100
ESE		6	40	36	-	18	100

20MAC21 MULTIVARIABLE CALCULUS AND COMPLEX ANALYSIS

(Common to All Engineering and Technology Branches)

Programme & Branch	All BE/BTech branches	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	2	BS	3	1*	2 *	4

Preamble	To impart the knowledge of partial derivatives, evaluation of real and complex integrals, vector cal and analytic functions to the students for solving the problems related to various engineering discipli	
Unit - I	Functions of Several Variables:	9
- ·		-

Functions of two or more variables – Partial derivatives – Total differential – Taylor's series for functions of two variables – Maxima and minima – Constrained maxima and minima – Lagrange's multiplier method

Unit - II Multiple Integrals:

Double integration in cartesian coordinates – Change of order of integration – Application: Area between two curves – Triple integration in cartesian coordinates –Volume as triple integrals

Unit - III Vector Calculus:

Directional derivative – Gradient of a scalar point function – Divergence of a vector point function – Curl of a vector – Solenoidal and Irrotational vectors – Green's, Stoke's and Gauss divergence theorems (without proof) – Verification of the above theorems and evaluation of integrals using them.

Unit - IV Analytic Functions:

Functions of a complex variable – Analytic functions – Necessary and sufficient conditions (excluding proof) – Cauchy–Riemann equations (Statement only) – Properties of analytic function (Statement only) – Harmonic function – Construction of analytic function – Conformal mapping: w = z + a, az, 1/z – Bilinear transformation.

Unit - V Complex Integration:

Introduction – Cauchy's theorem (without proof) – Cauchy's integral formula – Taylor's and Laurent series – Singularities – Classification – Cauchy's residue theorem (without proof) – Applications: Evaluation of definite integrals involving sine and cosine functions over the circular contour.

List of Exercises / Experiments:

1.	Finding ordinary and partial derivatives
2.	Computing extremes of a single variable function
3.	Evaluating double and triple integrals
4.	Finding the area between two curves
5.	Computing gradient, divergence and curl of point functions
6.	Applying Milne-Thomson method for constructing analytic function
7.	Determination of Mobius transformation for the given set of points
8.	Finding poles and residues of an analytic function

*Alternate week

Lecture: 45, Tutorial and Practical:15, Total:60

TEXT BOOK:

Lecture. 45, Tutorial and Fractical. 15, Total.00

1. Ravish R. Singh, Mukul Bhatt "Engineering Mathematics", 1st Edition, McGraw Hill Education, New Delhi, 2016. **REFERENCES:**

- 1. Kreyszig E., "Advanced Engineering Mathematics", 10th Edition, John Wiley Sons, 2011.
- 2. Dass H K, "Higher Engineering Mathematics", 3rd Revised Edition, S.Chand and Co., New Delhi, 2014.
- Duraisamy C., Vengataasalam S., Arun Prakash K. and Suresh M., "Engineering Mathematics I", 2nd Edition, Pearson India Education, New Delhi, 2018.

9

9

9

9

4. M	ATLAB Manual.	
	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	compute extremal values which arise in function of several variables.	Applying (K3)
CO2	solve Problems involving Double and Triple integrals.	Understanding (K2)
CO3	apply the concept of vectors in engineering problems.	Applying (K3)
CO4	identify, construct and apply analytic functions in electrostatics and fluid flow problems.	Applying (K3)
CO5	evaluate complex integrals which are extensively applied in engineering.	Applying (K3)
CO6	compute maxima and minima of a single variable function, gradient, curl and divergence of a vector function using MATLAB.	Understanding (K2), Manipulation (S2)
CO7	evaluate Double, Triple integrals and determine area between two curves using MATLAB	Applying (K3), Manipulation (S2)
CO8	construct analytic function, find bilinear transformation and compute poles and residues using MATLAB.	Applying (K3), Manipulation (S2)

					Марр	oing of	COs w	ith PO	s and P	SOs				
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1	0 PO11	PO12	PSO1	PSO2
CO1	3	3												
CO2	3	3	2											
CO3	3	3												
CO4	3	3												
CO5	3	3	2											
CO6					3									
CO7					3									
CO8					3									
1 – Slight, 2 -	- Moder	ate, 3 -	- Substa	ntial, B	T- Bloor	n's Tax	conomy	/						
					ASS	ESSME		TTERN	I - THEO	ORY				
Test / Bloom's Remembering Category* (K1) %			Jnders (K2	tanding 2) %	g A	Applyin (K3) %		alyzing (4) %	Evaluating (K5) %		reating (K6) %	Total %		
CAT	1		10		20			70						100
CAT2 10			20			70						100		

70

70

20

20

10 * ±3% may be varied (CAT 1,2,3 – 50 marks & ESE – 100 marks)

10

CAT3

ESE

100

100

20PHT23 PHYSICS FOR COMMUNICATION AND COMPUTER SCIENCE ENGINEERING

(Common to Electronics and Communication Engineering, Computer Science and Engineering and Information Technology branches)

Branch	BE, Electronics and Communication Engineering, BE-Computer Science and Engineering, BTech- Information Technology	Sem.	Category	L	т	Р	Credit
Prerequisites	Applied Physics	2	BS	3	0	0	3

Preamble This course aims to impart the knowledge on the physics of conductors, superconductors, semiconductors, magnetic materials, dielectrics, optoelectronic materials and nano materials. It also describes the working of the select solid state and optoelectronic devices and the applications of aforementioned materials in Communication Engineering and Computer Science and Engineering and Information Technology and provides motivation towards innovations.

Unit - I Conducting and Superconducting Materials:

Conducting Materials: Introduction - Classical free electron theory of metals - Electrical conductivity - Drawbacks of classical free electron theory - Quantum statistics: Fermi distribution function and Effect of temperature on Fermi function - Superconducting Materials: Introduction - Properties of superconductors - Type I and Type II superconductors - Applications: Cryotron - Superconducting quantum interference device (SQUID).

Unit - II Semiconducting Materials and Devices:

Introduction - Intrinsic semiconductor: Carrier concentration, Fermi level in intrinsic semiconductor, Variation of intrinsic conductivity with temperature and Determination of band gap - Extrinsic semiconductor: Carrier concentration in N-type and P-type semiconductors, Fermi level in Extrinsic semiconductors, Variation of Fermi level with temperature and impurity concentration - Hall effect: Determination of Hall coefficient and its applications - Uni-junction Transistor: Construction and characteristics – Junction field Effect Transistor: Construction and characteristics.

Unit - III Magnetic and Dielectric Materials:

Magnetic materials: Introduction - Classification of magnetic materials based on magnetic moment - Ferromagnetism: Domain theory of ferromagnetism, Hysteresis loss, Soft and hard magnetic materials and Application: Transformer core. Dielectrics Materials: Introduction - Dielectric constant - Types of polarization (qualitative) - Temperature dependence of polarization - Frequency dependence of total polarization - Dielectric loss (qualitative) - Dielectric breakdown – Ferroelectricity and its applications.

Unit - IV Optoelectronic Materials and Devices:

Introduction - Photodetectors: p-i-n photo diode - Avalanche photo diode – Effect of Anisotropic crystals in light propagation: Index ellipsoid of uniaxial and biaxial crystals -Electro-Optic effect: Pockel's effect and Kerr effect - Light modulators - Types of light modulators - Electro refractive modulators: Electro-optic amplitude and Phase modulators - Electro absorptive modulators: Franz - Keldysh and Stark effect modulators.

Unit - V Nano Materials:

Introduction - Properties of nano-materials - Low dimensional structures: Quantum dot, quantum wire and quantum well -Production techniques: Ball Milling, lithographic method, physical vapor deposition method, chemical vapor deposition method and sol gel method - Applications of nano-materials – Carbon nanotubes: Structures, properties, synthesis by laser ablation method - Applications of carbon nanotubes.

TEXT BOOK:

Total:45

9

9

9

9

9

Avadhanulu M.N., Kshirsagar P.G. and Arun Murthy T.V.S., "A Textbook of Engineering Physics", 11th Edition, S. Chand & Company Pvt. Ltd., New Delhi, 2019 for Unit I, II, III and Unit V.
 Palanisamy P.K., "Semiconductor Physics and Opto electronics", 2nd Edition, Sci Tech Publications, Chennai, 2010, for Unit IV.

REFERENCES:

- 1. Kachhava C.M., "Solid State Physics, Solid State Device and Electronics", 1st Edition, New Age International, New Delhi, 2003.
- 2. Charles Kittel, "Introduction to Solid State Physics", 8th Edition, John Wiley& Sons, New Jersey, 2004.
- 3. Tamilarasan K. and Prabu K., "Materials Science", 1st Edition, McGraw Hill Education Pvt. Ltd., New Delhi, 2019.

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	apply the concepts of classical and quantum free electron theory of metals to compute the electrical conductivity of metals and to comprehend the effect of temperature on Fermi function and to summarize the types, properties and applications of superconductors (Cryotron and Superconducting quantum interference device).	
CO2	use the concept of density of states to compute the carrier concentration, electrical conductivity and band gap of intrinsic semiconductors and to compute the carrier concentration of extrinsic semiconductors, and also to explain the phenomenon related to Hall Effect and the working of UJT and JFET.	Applying (K3)
CO3	apply the domain theory of ferromagnetism to explain hysteresis and to apply the concept of electric dipole moment and electric polarization to comprehend the select polarization mechanisms in dielectrics and to describe the related phenomenon.	Applying (K3)
CO4	apply the theory of photoconductivity and p-n junction to describe the materials, construction, working and applications of the select optoelectronic devices and to apply the concept of index ellipsoid of uniaxial and biaxial crystals to explain the principle, working and application of opto-electric modulators.	Applying (K3)
CO5	utilize appropriate methods to prepare nano-materials and carbon nano-tubes, and to comprehend their properties, types and applications.	Applying (K3)

					Марр	ing of C	Os witl	h POs a	and PSC)s				
COs/POs	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1											
CO2	3	2	1											
CO3	3	2	1											
CO4	3	2	1											
CO5	3	2	1											
1 – Slight, 2 –	Modera	te, 3 – S	Substan	tial, BT-	Bloom	s Taxon	omy							

		ASSESSMEN	T PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	40	40				100
CAT2	20	40	40				100
CAT3	25	35	40				100
ESE	20	40	40				100

20CYT23 CHEMISTRY OF ELECTRONIC MATERIALS

Programme & Branch	B.E – ECE, CSE, EEE, EIE & B.TECH- IT branches	Sem.	Category	L	Т	Р	Credit
Prerequisites	Applied Chemistry	2	BS	3	0	0	3

Preamble Chemistry of electronic materials aims to equip the engineering students to realize the importance of chemistry in polymeric materials, metal finishing, organic electronic materials, fuel cells, renewable energy and e-waste management.

Unit - I Chemistry of Polymeric and Composite Materials :

Introduction - structure and property relationship of polymers - plastics - properties and uses of plastics as engineering materials - rubbers (elastomers) - natural rubber- processing of latex- vulcanization of rubber - synthetic rubbers- preparation, properties and uses of thiokol and butyl rubber- polymer blends and alloys - fibres-physical properties-types-spinning processes- composites - classification of composites - fibre reinforced plastics- processing , properties and uses of fiber reinforced plastics

Unit - II Industrial Metal Finishing :

Introduction – technological importance of metal finishing- methods of metal finishing - manufacturing of electronic component-PCB fabrication- essential of metal finishing: polarization, decomposition potential and overpotential - surface preparation -Electroplating – Process - effect of plating variables on the nature of electrodeposit - electroplating of chromium and silver. Electroless plating - electroless copper plating on printed circuit board - electroless nickel plating process -Distinction between electroplating and electroless plating- advantages of electroless plating.

Unit - III Chemistry of Organic Electronic Materials and Fuel Cells:

Introduction-Organic semiconducting materials – principle and applications - advantages over inorganic semiconducting materials - P-type and N-type organic semiconducting materials (definition and examples) - conducting polymers and its applications - organic dielectrics (principle and example) - organic light emitting diodes - working and applications. Fuel Cells: Importance and classification of fuel cells - description, principle, components, applications and environmental aspects of fuel cells: alkaline fuel cells, phosphoric acid, molten carbonate and direct methanol fuel cells.

Unit - IV Renewable Energy Resources:

Introduction – global energy consumption scenario- types of energy resources - nuclear energy - nuclear power reactor - breeder reactors - applications and disadvantages of nuclear energy - design, working, advantages and disadvantages of solar energy, hydropower, wind energy, geothermal energy, tidal and wave power, ocean thermal energy - biomass and biofuels - hydrogen as an alternate fuel - hydrogen production - advantages ,disadvantages and applications - nanotechnology for energy sector.

Unit - V E-Waste and its Management:

E- Waste – definition - sources of e-waste– hazardous substances in e-waste - effects of e-waste on environment and human health- need for e-waste management– e-waste handling rules - waste minimization techniques for managing e-waste – recycling of e-waste - disposal treatment methods of e- waste – global Scenario of E-waste – E-waste in India- case studies.

TEXT BOOK:

Total: 45

9

9

9

9

9

- 1. Wiley editorial board. "Wiley Engineering Chemistry". 2nd Edition, Wiley India Pvt. Ltd, New Delhi, Reprint 2019, for Units I,II,IV.
- 2. Palanisamy P.N., Manikandan P., Geetha A., Manjula Rani K.& Kowshalya V.N., "Environmental Science", Revised Edition, Pearson Education, New Delhi, 2019 for Units I, III, IV, V.

REFERENCES:

- 1. Palanna O., "Engineering Chemistry", McGraw Hill Education, New Delhi, 2017 for Units II,III.
- 2. B.Joshi & Shashank Deep, "Engineering Chemistry", Oxford University Press, New Delhi, 2019.

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	utilize the polymeric and composite materials for various applications	Applying (K3)
CO2	employ the concept of coating techniques in industrial metal finishing	Applying (K3)
CO3	apply the concepts of fuel cells, organic electronic materials and its applications	Applying (K3)
CO4	explain the role of renewable energy resources to attain sustainability	Understanding (K2)
CO5	utilize the knowledge to handle the e-waste and reduce its impacts on environment	Applying (K3)

					Маррі	ng of C	Os with	n POs a	nd PSC)s				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1										
CO2	3	2	1	1										
CO3	3	1												
CO4	3	2	1	1										
CO5	CO5 3 2 1 1													
1 – Slight, 2 –	Modera	ate, 3 –	Substar	tial, BT	- Bloom	's Taxo	nomy							

		ASSESSMENT	PATTERN - T	HEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	35	40				100
CAT2	25	35	40				100
CAT3	25	35	40				100
ESE	25	35	40				100

20MEC11 ENGINEERING GRAPHICS

(Common to Civil, Mechanical, Mechatronics, Automobile Engineering, Chemical & Food Technology Branches)

Programme & Branch	BE(Civil, Mech, MTS, Auto) &BTech(Chem, FT)	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	2	ES	2	0	2	3

Preamble To impart knowledge on orthographic, isometric projections, sectional views and development of surfaces by solving different application oriented problems.

Unit - I General Principles of Orthographic Projection:

Importance of graphics in engineering applications - Use of drafting instruments - BIS conventions and specifications - Size, layout and folding of drawing sheets - Lettering and dimensioning - Projections of Points, Lines and Planes - General principles of orthographic projection - First angle projection - Layout of views - Projection of points located in all quadrant and straight lines located in the first quadrant - Determination of true lengths and true inclinations and location of traces - Projection of polygonal surface and circular lamina inclined to both reference planes.

Unit - II Projections of Solid:

Projections of simple solids like prisms, pyramids, cylinder and cone when the axis is inclined to one reference plane by change of position method.

Unit - III Sectioning of Solids:

Sectioning of solids - prisms, pyramids, cylinder and cone in simple vertical position by cutting planes inclined to one reference plane and perpendicular to the other - Obtaining true shape of section.

Unit - IV Development of Surfaces:

Development of lateral surfaces of simple solids like prisms, pyramids, cylinders and cones – development of simple truncated solids involving prisms, pyramids, cylinders and cones.

Unit - V Isometric Projection and Introduction to AutoCAD:

Principles of isometric projection - Isometric scale - Isometric projections of simple and truncated solids like prisms, pyramids, cylinders and cones - Conversion of isometric projection into orthographic projection - Introduction to AutoCAD.

Lecture:30, Practical:30, Total:60

9

9

9

9

9

TEXT BOOK:

1. Venugopal K. and Prabhu Raja V., "Engineering Graphics", 15th Edition, New Age International Pvt. Ltd., New Delhi, 2018. **REFERENCES:**

1. Basant Agrawal, Agrawal C.M., "Engineering Drawing", 2nd Edition, McGraw Hill Education, 2019.

2. Gopalakrishnana K.R. "Engineering Drawing", Volume. I & II, Subhas Publications, Bengaluru, 2014.

3. Parthasarathy N.S., Vela Murali. "Engineering Drawing", 1st Edition, Oxford University Press, 2015.

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	interpret international standards of drawings and sketch the projections of points, lines and planes.	Understanding (K2)
CO2	draw the projections of 3D primitive objects like prisms, pyramids, cylinders and cones.	Applying (K3)
CO3	construct the various sectional views of solids like prisms, pyramids, cylinders and cones.	Applying (K3)
CO4	develop the lateral surfaces of simple and truncated solids.	Applying (K3)
CO5	sketch the isometric projections of simple and truncated solids and convert isometric drawing in to orthographic projection.	Applying (K3)

					Маррі	ng of C	Os with	POs a	nd PSO)s				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2								3	2	2	2	3
CO2	3	2	1	1						3	2	3	2	3
CO3	3	2	1	1						3	2	3	2	3
CO4	3	2	1	1						3	2	3	2	3
CO5	3	2	1	1						3	2	3	2	3
I – Slight, 2 –	Modera	ate, 3 –	Substar	ntial, BT	- Bloom	's Taxo	nomy							

		ASSESSMENT	PATTERN - T	HEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	40	40				100
CAT2	20	40	40				100
CAT3	20	40	40				100
ESE	25	35	40				100

20ITT21 PROGRAMMING AND LINEAR DATA STRUCTURES

Programme & Branch	B.Tech. – Information Technology	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Problem Solving and Programming	2	PC	3	0	2	4

Preamble This course helps the students to learn the advanced concepts of C language, and basic concepts and applications of Linear data Structures like linked list, stack and queue. 9

Unit - I Pointers and Arrays, Pointers and Strings :

Pointers- Introduction – Pointers and 1D array – passing an array to a function – returning an array from function – NULL pointers – Array of pointers - Pointer-to-pointer - Pointers and 2D array - Generic pointers - Dangling Pointer-Using Pointers for string manipulation - Two dimensional array of strings - array of pointers to strings.

Unit - II Dynamic memory allocation, Pointers and Functions, Pointers and structures:

Dynamic memory allocation, Function pointers - calling a function using a function pointer- Structures - Introduction - Structures in Functions -Pointers to structures-Accessing structure members - Using pointer as a function argument - Array of structures - self referential structures.

Unit - III File Handling and Preprocessor Directives :

File Handling Basics - opening and closing files - Detecting the end-of-file -File pointer and file buffer - File read/write functions formatted functions fscanf() and fprintf() – Text and Binary files- Reading and writing binary files – Manipulating file position indicator -Renaming and Removing a file - Command line Arguments. Preprocessor - #define macros with and without arguments - #include directive-Conditional Compilation.

Unit - IV Data structures and Linked List:

Introduction to Data Structures - Classification - Introduction to linked lists - Linked lists vs Arrays - Singly linked list-Creating a list-Traversing a list-Adding a node-Deleting a node-Sorting a list-Destroying a list-printing linked list in reverse order-reverse a singly listcopy a singly linked list.

Unit - V Stack and Queue:

Introduction - Stack - Implementation of stack using array and linked list - Application of stack - Infix to Postfix expression conversion, Postfix expression evaluation – Queue – Implementation of Queue using array and linked list– Other variations of Queue Applications of Queue.

List of Exercises:

1.	Program to access an array(1D and 2D) using pointers
2.	Program to manipulate strings using pointers
3.	Program to demonstrate dynamic memory allocation for 1D and 2D array
4.	Program to pass an array as an argument to function and access the array using pointers
5.	Programs using pointers and structures
6.	Program to perform operations on files
7.	Program using conditional preprocessor directives
8.	Program to implement singly linked list
9.	Program to implement Stack and Queue using array and linked list
10.	Infix to Postfix conversion, postfix evaluation using stack

TEXT BOOK:

	Sumitabha Das, "Computer Fundamentals &C Programming", McGraw Hill Education(India) Private Limited, 1 st Edition, 2018, for Units I,II,III,IV.										
2.	PradipDey, Manas Ghosh, "Programming in C", Oxford Higher education, 2 nd Edition, 2016, for Unit V.										
REFE	REFERENCES:										
1.	Yashavant Kanetkar, "Pointers in C", BPP Publications, 4 th Edition, 2017.										

9

9

9

9

Lecture: 45, Practical: 30, Total: 75

COURS On com	BT Mapped (Highest Level)	
CO1	make use of pointers to perform array and string operations	Applying (K3)
CO2	implement functions and structures with pointers	Applying (K3)
CO3	demonstrate file operations and preprocessor directives	Applying (K3)
CO4	describe the different operations on singly linked list and make use of it for developing simple applications	Applying (K3)
CO5	manipulate the operations on stacks and queues	Applying (K3)
CO6	implement programs to solve problems using pointers to arrays and structures	Applying (K3), Precision (S3)
C07	develop programs using files and preprocessor directives	Applying (K3), Precision (S3)
CO8	use appropriate linear data structure for solving given problems	Applying (K3), Precision (S3)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	2	1	1									2	1
CO2	3	2	1	1									2	1
CO3	3	2	1	1									2	1
CO4	3	2	1										2	1
CO5	3	2	1	1									2	1
CO6	3	2	1	1									2	1
CO7	3	2	1	1									2	1
CO8	3	2	1	1									2	1
1 – Slight, 2 –	Modera	ite, 3 – 8	Substan	tial, BT-	Bloom	s Taxor	nomy							

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	10	10	80				100							
CAT2	10	10	80				100							
CAT3	10	20	70				100							
ESE	10	30	60				100							

20PHL28 PHYSICAL SCIENCES LABORATORY II

Prog. & Branch	BTech - Information Technology	Sem.	Category	L	Т	Ρ	Credit
Pre requisite	Nil	2	BS	0	0	2	1

l	Preamble	This course aims to impart hands on training in the determination of physical parameters such as specific	
		resistance, band gap, hysteresis loss and thickness of a nano-structured material and also the working UJT, and to	
		develop the skills in handling different basic instruments. This course also aims to impart the significance of Cl ⁻ , Cr ⁶⁺ ,	
l		DO, Fe ²⁺ and Cu ²⁺ and thereby, to improve the analytical capability.	

List of Exercises / Experiments:

1.	Determination of the specific resistance of the material of a wire using Carey-Foster's bridge.
2.	Determination of the band gap of a semiconductor using post office box.
3.	Observation of the I-V characteristics of a uni junction transistor.
4.	Determination of hysteresis loss in a ferromagnetic material.
5.	Determination of the thickness of a nano-structured material using air-wedge arrangement.
6.	Estimation of chloride ion in the given water sample using Argentometric method.
7.	Estimation of chromium (Cr ⁶⁺) in wastewater sample.
8.	Determination of dissolved oxygen in the given wastewater sample.
9.	Estimation of iron using permanganometry.
10.	Estimation of copper in the given solution by lodometric method.

REFERENCES:

- 1. Tamilarasan K. and Prabu K., "Physics Laboratory Manual", 1st Edition, SCM Publishers, Erode, 2020.
- 2. Palanisamy P.N., Manikandan P., Geetha A. and Manjula Rani K., "Chemistry Laboratory Manual", 1st Edition, Kalaikathir Publishers, Coimbatore, 2020.

COURSE OUTCOMES:

On co	mpletion of the course, the students will be able to	(Highest Level)
CO1	determine the specific resistance of conducting materials and the band gap of semiconducting materials using the concept of electrical conductivity and to obtain the V-I characteristics of a UJT using the concept of creation of a region with negative resistance.	Applying (K3), Precision (S3)
CO2	determine the hysteresis loss in ferromagnetic materials using the concept of domain theory of ferromagnetism and to determine the thickness of nano-crystalline thin films using the concept of interference of light. Estimation of Chloride and Chromium (Cr^{6+}) in the given water sample and also to determine the dissolved oxygen in the given wastewater sample.	Applying (K3), Precision (S3)
CO3	estimation of iron and copper in the given solution.	Applying (K3), Precision (S3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1			3											
CO2			3											
CO3			3											
1 – Slight, 2 –	- Modera	ate, 3 –	Substar	ntial, BT	- Bloom	's Taxo	nomy							

Total: 30

BT Mapped

20MEL11 ENGINEERING PRACTICES LABORATORY

(Common to Civil, Mechanical, Mechatronics, Automobile Engineering, Chemical & Food Technology Branches)

Programme & Branch	BE (Civil, Mech, MTS, Auto) & BTech (Chem, FT)	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	2	ES	0	0	2	1

Preamble This course is designed to provide a hands-on experience in basic of mechanical and electrical engineering practices.

List of Exercises / Experiments:

	PART A – MECHANICAL ENGINEERING
1.	To prepare square or rectangular shaped MS plates using power tools for cutting, polishing and shaping to the required dimensions.
2.	To carryout drilling, tapping and assembly on the given MS plates.
3.	To carryout thread forming on a GI/PVC pipes and prepare water leak proof water line from overhead tank.
4.	To prepare a wood or plywood box/tray/any innovative models using modern power tools like cutting machine, router, jigsaw, power screw driver etc.
5.	Welding practice through arc welding / simulator
	PART B – ELECTRICAL AND ELECTRONICS ENGINEERING
1.	Safety Aspects of Electrical Engineering, Electrical Symbols, Components Identification, Fuse selection and installation, Circuit Breakers selection
2.	Wiring circuit for fluorescent lamp and Stair case wiring
3.	Measurement of Earth resistance
4.	Soldering of Simple Circuits and trouble shooting
5.	Implementation of half wave and full wave Rectifier using diodes
	Total: 30

REFERENCES /MANUAL / SOFTWARE:

Total: 30

1. Engineering Practices Laboratory Manual.

COURSE OUTCOMES:

	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	plan the sequence of operations for effective completion of the planned models/ innovative articles	Creating (K6), Precision (S3)
CO2	identify and use appropriate modern power tools and complete the exercises/models accurately	Applying (K3), Precision (S3)
CO3	select fuses and Circuit breakers	Understanding (K2), Manipulation (S2)
CO4	perform house wiring and realize the importance of earthing	Applying (K3), Manipulation (S2)
CO5	trouble shoot the electrical and electronic circuits	Applying (K3), Manipulation (S2)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2		3	3	2	1			3	3		3		
CO2	2		3	3	2				3	3		3		
CO3	3		3	3	1				2	2		3		
CO4	3		3	3	1				2	3		3		
CO5	3		3	3	1				2	2		3		

B.Tech.- Information Technology, Regulation, Curriculum and Syllabus - R2020

20VEC11 YOGA VALUES FOR HOLISTIC DEVELOPMENT (Common to all Engineering and Technology branches)

Programme & Branch	All BE/BTech Branches	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	2	HS	1	0	1	1

Preamble Providing Value Education to improve the Students' character - understanding yogic life and physical health - maintaining youthfulness - Measure and method in five aspects of life

Unit - I Physical Health:

Manavalakalai (SKY) Yoga: Introduction - Education as a means for youth empowerment - Greatness of Education - Yoga for youth Empowerment. Simplified Physical Exercises: Need and Objectives of Simplified Physical Exercise - Hand, Leg, Breathing, Eye exercises - Kapalabathi, Makarasana Part I, Makarasana Part II, Body Massage, Acu pressure, Relaxation exercises - Benefits. Yogasanas: Pranamasana - Hastha Uttanasana - Pada Hasthasana - Aswa Sanjalana Asana - Thuvipatha asva Sanjalana asana - Astanga Namaskara - Bhujangasana - Atha Muktha Savasana - Aswa Sanjalana Asana - Pada Hasthasana - Hastha Uttanasana - Hastha Uttanasana - Atha Muktha Savasana - Aswa Sanjalana Asana - Pada Hasthasana - Hastha Uttanasana - Pada Hasthasana - Aswa Sanjalana Asana - Pada

Unit - II Life Force: 4 Reasons for Diseases: Body Function - Reason for Diseases and Prevention - Natural reasons (Genetic / imprints, Planetary Position, Natural calamities and climatic changes) - Unnatural reasons (Food habits, Thoughts, Deeds). Philosophy of Kaya kalpa: Reasons for Diseases: Bio-Magnetism - Physical body - Sexual vital fluid - Life force - Bio-Magnetism - Natural fluid. Maintaining

kalpa: Enriching Bio-Magnetism - Physical body - Sexual vital fluid - Life force - Bio-Magnetism - Mind. **Maintaining youthfulness:** Postponing old age - Transformation of food into seven components - Importance of sexual vital fluid - Measure and method in five aspects of life - Controlling undue Passion. **Kayakalpa practice:** Aswini Mudra - Ojas breath - Benefits of Kaya Kalpa.

Unit - III Mental Health:

Mental Frequencies: Beta, Apha, Theta and Delta wave - Agna Meditation explanation - benefits. **Shanti meditation:** Shanthi Meditation explanation – benefits. **Thuriya Meditation:** Thuriya Meditation explanation – benefits. **Benefits of Blessing:** Self blessing (Auto suggestion) - Family blessing - Blessing the others - World blessing - Divine protection.

Unit - IV Values:

Human Values: Self control - Self confidence - Honesty Contentment - Humility – Modesty - Tolerance - Adjustment - Sacrifice – Forgiveness - Purity (Body, Dress, Environment) - Physical purity - Mental purity - Spiritual purity. Social Values: Non violence – Service. Patriotism – Equality. Respect for parents and elders - care and protection - Respect for teacher. Punctuality - Time Management.

Unit - V Morality (Virtues):

Importance of Introspection: I - Mine (Ego, Possessiveness). Six Evil Temperaments - Greed - Anger - Miserliness - Immoral sexual passion - Inferiority and superiority Complex – Vengeance. Maneuvering of Six Temperaments: Contentment - Tolerance - Charity - Chastity - Equality - Pardon (Forgiveness). Five essential Qualities acquired through Meditation: Perspicacity - Magnanimity - Receptivity - Adaptability - Creativity (Improved Memory Power).

TEXT BOOK:

1. Thathuvagnani Vethathiri Maharishi, "Yoga for Youth Empowerment", Vethathiri Publications, 2019.

REFERENCES:

1. Thathuvagnani Vethathiri Maharishi, "Yoga for Modern Age", Vethathiri Publications, 2019.

2. Thathuvagnani Vethathiri Maharishi, "Simplified Physical Exercises", Vethathiri Publications, 2019.

3. Neelam Sharma, "Holistic Education and Yoga", Shipra Publications, 2017.

4. Dr. Joseph Murphy, "The Power of Your Subconscious Mind", Pushpak Publication, 2019.

4

4

4

4

Total:20

	COURSE OUTCOMES: On completion of the course, the students will be able to						
CO1	understand the importance of physical health and practice simplified physical yoga exercise.	Applying (K3)					
CO2	understand the importance of Kayakalpa exercise to enrich Bio-Magnetism and practice it.	Applying (K3)					
CO3	understand the significance of meditation and do meditation to get sound mind.	Applying (K3)					
CO4	understand the human and social values to provide service to society.	Applying (K3)					
CO5	understand the evil temperaments and five essential qualities acquired through meditation	Applying (K3)					

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						3		2	1			1		
CO2						3		2				1		
CO3						3		3				1		
CO4						3		2	1			1		
CO5						3		3				1		
1 – Slight, 2 –	Modera	ate, 3 – 3	Substar	tial, BT	- Bloom	's Taxor	nomy							

		ASSESS	MENT PATTER	RN		
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %
CAT1	NA					
CAT2	NA					
CAT3			100			

NA

ESE

Total %

100

20MAT34 DISCRETE MATHEMATICAL STRUCTURES

(Common to Computer Science and Engineering & Information Technology branches)

Programme & Branch	BE – Computer Science and Engineering & BTech – Information Technology	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	3	BS	3	1	0	4

Unit - I	Propositional Calculus:	9+3
Preamble	To impart knowledge in mathematical logic, partial ordering and lattices, investigate various category of fun and develop skills to apply graph theoretic concepts in networking and group structures in coding theory.	ctions

Unit - I Propositional Calculus:

Propositions - Logical connectives - Compound propositions - Conditional and biconditional propositions - Truth tables -Tautologies and Contradictions – Inverse, Converse and Contrapositive – Logical equivalences and implications – Normal forms – Principal conjunctive normal form and Principal disjunctive normal form – Rules of inference – Arguments – Validity of arguments.

Unit - II Predicate Calculus:

Predicates – Statement function – Variables – Quantifiers – Universe of discourse – Theory of inference – Rules of universal specification and generalization – Rules of Existential specification and generalization - Validity of arguments.

Unit - III Set Theory:

Cartesian product of sets - Relations on sets - Types of relations and their properties - Matrix representation of a relation -Graph of a relation – Equivalence relations – Partial ordering – Poset – Hasse diagram – Lattices – Properties of lattices.

Unit - IV Functions:

Definition – Classification of functions – Composition of functions – Inverse functions – Characteristic function of a set Recurrence relations – Solution of recurrence relations – Generating Functions – Solving recurrence relation by generating functions.

Unit - V Group Theory:

Groups and Subgroups (Definitions only) – Homomorphism – Cosets – Lagrange's theorem – Normal subgroups – Coding Theory : Group codes -Hamming distance - Basic notions of error correction - Error recovery in group codes (Excluding theorems in coding theory).

Lecture: 45, Tutorial: 15, Total: 60

9+3

9+3

9+3

9+3

TEXT BOOK:

1. Veerarajan T., "Discrete Mathematics with Graph Theory and Combinatorics", Reprint Edition, Tata McGraw Hill Publishing Company, New Delhi, 2013.

REFERENCES:

Tremblay J.P. and Manohar R., "Discrete Mathematical Structures with Applications to Computer Science", Tata McGraw-Hill, New Delhi, Reprint 2010.

2. Kenneth H. Rosen, "Discrete Mathematics and its Applications", 7th Edition, Tata McGraw Hill Publishing Company, 2012.

Susanna S. Epp, "Discrete Mathematics with Applications", Metric Edition, Cengage Learning, USA, 2019. 3.

4. Alan Doerr, Kenneth Levasseur, "Applied Discrete Structures", 3rd Edition, 2018.

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	apply propositional logic to validate the arguments.	Applying (K3)
CO2	apply the rules of inference and methods of proof in predicate calculus to verify the validity of arguments.	Applying (K3)
CO3	possess knowledge of various set theoretic concepts.	Applying (K3)
CO4	understand different types of functions and solve recurrence relations.	Understanding (K2)
CO5	apply the concepts of group structures in coding theory.	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	2	1										1	
CO2	3	2	1										1	
CO3	3	2	1											
CO4	3	2	1										1	
CO5	3	2	1										1	
1 – Slight, 2 –	Modera	ate, 3 – S	Substar	tial, BT	- Bloom	's Taxoi	nomy							

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	15	20	65				100						
CAT2	10	20	70				100						
CAT3	10	40	60				100						
ESE	10	30	60				100						

20ITC31 DIGITAL LOGIC AND MICROPROCESSORS

Progra Branch	nme &	B.Tech. & Information Technology	Sem.	Category	L	т	Р	Credit
Prereq	uisites	Nil	3	ES	3	0	2	4
			1		1		1	
Pream	circu	course enables the students to understand the basi uits and how to design different types of counters. And its interfaces.						
Unit - I	Con	nbinational Logic:						g
functior Subtrac	ns using k	ealization of functions using Logic gates-Canonical and Karnaugh Map – Don't Care Conditions – NAND and I Subtractor – 4 bit Binary Adder-Subtractor – Code	NOR Impler	nentation -Ha	lf Adde	r – Fu	ll Adde	r - Hal
Unit - I	l Seq	uential Logic:						ç
		F and D – Characteristic table and equation - Triggering SIPO– PISO–PIPO–Universal Shift register	g – Realizatior	n of one flip-flo	p using	other	flip-flop	s - Shift
Unit - I	ll Des	ign of Synchronous Sequential Circuits:						9
		State table – State minimization – State assignment. nter – BCD Counter – modulo-N Counter – Ring Counte			unters:	Binary	Counte	∍r – up·
Unit - l	V 808	6 Microprocessor:						9
Unit - \		6 Interfacing and Stack: ack - Interrupt and interrupt service routines- Interfaci	na Memorv-	8255 (PPI), 8	254 (Ti	mer). 8	3251 (U	9 JSART),
		Display Interface)	ing monitory	0200 (111), 0	201 (11	mor), c	201 (0	0, ((1))
List of	Exercises	s / Experiments :						
1 Si	implify and	I Implement boolean functions using Combinational Cire	cuits					
2 In	nplement A	Adder and Subtractor						
3 In	nplement (Code converters						
4 In	nplement [Decoder and Encoder						
5 In	nplement N	Aultiplexer and Demultiplexer						
6 D	esign Cou	nters and Shift Registers						
7 W	/rite simple	e programs for performing the following operations: add	ition, subtracti	on, multiplicati	on and	divisio	n using	8086.
8 W	/rite a prog	ram to find the maximum and minimum value in the giv	en list using 8	086.				
9 W	/rite a prog	ram to arrange the given list in ascending/descending	order using 80	86.				
10 0	Generate a	square ware and rectangular wave by interfacing 8255	with 8086.					
TEXT E	BOOK:			Lectu	re:45, F	Practic	al:30, 1	fotal:75
Edi	ition, Pears	M., Micheal D. Ciletti, "Digital Design: With an Introdu son Education, 2019, for Units I, II, III.		-				
Edi	ition, Pears	Ali Mazidi, Janice Gillispie Mazidi, Rolin McKinlay and son Education, 2013, for Units IV, V.	Lyla B. Da,	Microprocess	ors and	Micro	controll	ers", 1 ^s

REFERENCES:

1. Charles H. Roth, "Fundamentals of Logic Design", 6th Edition, Thomson Learning, 2013.

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	design Combinational logic circuits	Applying (K3)
CO2	design Sequential logic circuits	Applying (K3)
CO3	implement synchronous counters	Applying (K3)
CO4	comprehend the concepts of 16-bit microprocessor and apply their programming for simple problems	Applying (K3)
CO5	apply assembly language programming to interface peripheral devices with 16-bit microprocessor	Applying (K3)
CO6	design and implement combinational logic circuits	Applying (K3), Precision (S3)
CO7	implement Sequential logic circuits using flip-flops	Applying (K3), Precision (S3)
CO8	write assembly language programs for problem solving and to interface peripherals with 16 bit microprocessor	Applying (K3), Precision (S3)

					Марр	ing of C	Os with	POs ar	nd PSOs	3				
COs/POs	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1									3	2
CO2	3	2	1	1									3	2
CO3	3	2	1	1									3	2
CO4	3	2	1	1									3	2
CO5	3	2	1	1									3	2
CO6	3	2	1	1									3	2
CO7	3	2	1	1									3	2
CO8	3	2	1	1									3	2
– Slight, 2	2 – Mod	erate, 3	– Substa	antial, B	T- Bloon	ı's Taxo	nomy							

	ASSESSMENT PATTERN - THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	10	50	40				100					
CAT2	10	30	60				100					
CAT3	10	30	60				100					
ESE	10	30	60				100					

20ITT31 DATA STRUCTURES

Programme & Branch	B. Tech & Information Technology	Sem.	Category	L	Т	Р	Credit
Prerequisites	Problem Solving and Programming	3	PC	3	0	0	3

Preamble	This course introduces the basic concepts of nonlinear data structures and applications of linear data st	ructures.
Unit - I	Linear Data Structures and its Applications:	9
 Reversing 	 Doubly Linked List – Circular Linked List– Applications of List: Polynomial Addition – Representing Spars a Linked List – Cloning a Linked List – Sorting of Linked List – Applications of Stack: Towers of Hanoi – String Reversal– Applications of Queue: Reversing the Queue using Stack. 	
Unit - II	Trees:	9
	s: Implementation of trees – Tree Traversals with an Application – Binary trees: Implementation – Express	nian trans
The Search	Tree ADT– Binary Search Trees: Construction – Searching – Insertion – Deletion – Find Min – Find Max– nsertion – Deletion.	

Definitions – Representation of Graphs – Types of Graph – Depth-first traversal – Breadth-first traversal – Topological Sort – Applications of DFS: Bi-connectivity – Euler circuits – Finding Strongly Connected Components – Applications of BFS: Bipartite graph – Graph Coloring.

Unit - IV Advanced Trees:

Splay Trees: Splaying – B tree– Red-Black Trees: Rotation – Insertion – Deletion – Priority Queues (Heaps) – Binary heap – Applications of Priority Queues: Selection problem – Event Simulation – d-heaps.

Unit - V Searching, Sorting and Hashing:

Searching: Linear search – Binary Search – Sorting: Internal sorting: Bubble sort – Shell sort – Bucket sort – External sorting: Multiway Merge – Polyphase Merge – Replacement Selection – Hashing: Hash Functions – Separate Chaining – Open Addressing: Linear Probing – Quadratic Probing – Double Hashing – Rehashing – Extendible Hashing.

Total: 45

9

9

TEXT BOOK:

1. Weiss M. A., "Data Structures and Algorithm Analysis in C", 2nd Edition, Pearson Education, London, 2016.

REFERENCES:

1. Cormen T. H., Leiserson C. E., Rivest R. L., & Stein C., "Introduction to Algorithms", 3rd Edition, MIT Press, USA, 2009.

2. Horowitz E., Sahni S., "Fundamentals of Data Structures in C", 2nd Edition, Galgotia Publications, New Delhi, 2008.

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	solve the problems involving lists using linear data structures.	Applying (K3)
CO2	build trees and perform its various operations.	Applying (K3)
CO3	choose appropriate graph algorithm for solving problems.	Applying (K3)
CO4	identify suitable advanced trees and perform operations on them	Applying (K3)
CO5	demonstrate the concept of sorting, searching and hashing techniques.	Applying (K3)

PO2	DOO											
1.02	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
2	1	1									3	2
2	1	1									3	2
2	1	1									3	2
2	1	1									3	2
2	1	1									3	2
	2 2 2	2 1 2 1 2 1	2 1 1 2 1 1 2 1 1	2 1 1 2 1 1 2 1 1	2 1 1 2 1 1 2 1 1	2 1 1 2 1 1 2 1 1	2 1 1 2 1 1 2 1 1	2 1 1 2 1 1 2 1 1	2 1 1	2 1 1	2 1 1 2 1 1 2 1 1	2 1 1 3 2 1 1 3 2 1 1 3 2 1 1 3

	ASSESSMENT PATTERN - THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	10	25	65				100					
CAT2	10	20	70				100					
CAT3	10	15	75				100					
ESE	10	20	70				100					

20ITT32 OBJECT ORIENTED PROGRAMMING

Programme & Branch	B. Tech & Information Technology	Sem.	Category	L	Т	Р	Credit
Prerequisites	Problem Solving and Programming	3	PC	3	0	0	3

Preamble This course provides an overview of object oriented programming concepts with a comprehensive introduction to Java programming. Topics include class definitions, polymorphism by overloading functions, inheritance, packages, interfaces, virtual functions, abstract classes, exception handling, multithreading, string handling and generics. This course also focuses on GUI programming concepts. 9

Unit - I Introduction to OOP, Java, Classes and Objects:

Software Development and object-oriented programming paradigms - History and Evolution of Java – Overview – Data Types -Variables - Arrays - Operators - Control Statements - Classes - Fundamentals - Declaring Objects - Assigning Object Reference Variables - Methods - Constructors - this keyword - Garbage collection - finalize method.

Unit - II Reusability, Packages and Interfaces:

Overloading Methods -Objects as Parameters -Argument Passing -Returning Objects – Recursion - Access Control – Static – Nested and Inner Classes – Command - Line Arguments – Variable Length Arguments. Inheritance – Basics – Super keyword -Multilevel Hierarchy - Method Overriding - Dynamic Method Dispatch - Abstract Classes - final with Inheritance. Packages -Access Protection - Importing Packages - Interfaces.

Unit - III Exception Handling, Multithreading and I/O:

Exception Handling basics - Multiple catch Clauses- Nested try Statements - Java's Built-in Exceptions - User defined Exception - Chained exceptions. Java Thread Model - Creating a Thread - Priorities - Synchronization - Interthread Communication – Multithreading. I/O Basics - Reading and Writing Console I/O – PrintWriter Class - Reading and Writing Files

Unit - IV String Handling, Generics and Collection:

String Class – methods. Wrappers – Auto boxing- Generics – Example – Parameters - General Form- Generic class, Method and Interfaces - Collection: Overview – Interface- List – Set – Map - Classes – ArrayList – LinkedList – Map–Stack – Queue

Unit - V AWT and Event Handling:

AWT Classes - Window Fundamentals - Frame Windows - Frame Window in an Applet. AWT Controls - Layout Managers -Event Handling – Mechanisms -Delegation Event Model - Event Classes -ActionEvent -ItemEvent- Sources of Events - Event Listener Interfaces – ActionListener - Mouse and Keyboard events. Handling Events by Extending AWT Components

TEXT BOOK:

1. Herbert Schildt, "Java: The Complete Reference", 11th Edition, McGraw Hill Education, New Delhi, 2019.

REFERENCES:

1. Buyya Rajkumar, ThamaraiSelvi S. and Xingchen Chu, "Object Oriented Programming with Java Essentials and Applications", 1st Edition, Tata McGraw Hill, New Delhi, 2009.

2. Deitel Paul and Deitel Harvey, "Java How to Program", 11th Edition, Pearson Education, New Delhi, 2017.

Cay S. Horstmann, "Core Java Fundamentals", 11th Edition, Prentice Hall of India, New Delhi, 2018. 3

9

9

9

9

Total: 45

	COURSE OUTCOMES: On completion of the course, the students will be able to						
CO1	apply the concepts of classes and objects to solve simple problems	Applying (K3)					
CO2	develop applications using inheritance, packages and interfaces	Applying (K3)					
CO3	build applications with exception handling mechanisms, multithreaded model and Stream classes	Applying (K3)					
CO4	make use of string classes, generics and collection concepts to solve real world problems	Applying (K3)					
CO5	develop event-based GUI applications using AWT classes and controls	Applying (K3)					

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	2	1	1									3	2
CO2	3	2	1	1									3	2
CO3	3	2	1	1									3	2
CO4	3	2	1	1									3	2
CO5	3	2	1	1									3	2
1 – Slight, 2 –	Modera	ate, 3 – 3	Substar	tial, BT	- Bloom	's Taxoi	nomy							

	ASSESSMENT PATTERN - THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	20	30	50	-	-	-	100			
CAT2	10	40	50	-	-	-	100			
CAT3	10	40	50	-	-	-	100			
ESE	15	40	45	-	-	-	100			

20ITT33 COMPUTER ORGANIZATION

Programme & Branch	B.Tech. & Information Technology	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	3	PC	3	1	0	4

Preamble This course deals with the basics of computer organization and its sub-components like ALU, CU, and data-path. It also analyzes performance of processor, memory and I/O of a digital computer.

Unit - I Basic Structure of Computers and Machine Instructions:

Functional Units – Basic Operational Concepts – Number Representation and Arithmetic Operations – Performance – Memory Locations and Addresses – Memory Operations – Instruction and Instruction Sequencing – Addressing Modes – CISC Instruction Sets – RISC and CISC Styles.

Unit - II Arithmetic Unit:

Addition and Subtraction of Signed Numbers – Design of Fast Adders – Multiplication of Unsigned Numbers – Multiplication of Signed Numbers – Fast Multiplication – Integer Division – Floating Point Numbers and Operations.

Unit - III Basic Processing Unit and Pipelining:

Fundamental Concepts – Instruction Execution – Hardware Components – Instruction Fetch and Execution Steps – Control Signals - Hardwired control – CISC Style Processors. Pipelining – Basic concepts – Pipeline Organization – Pipelining Issues - Data Dependencies – Memory Delay – Branch Delay – Performance Evaluation.

Unit - IV Memory System:

Basic Concepts – Semiconductor RAM Memories – Read-Only Memories – Direct Memory Access – Memory Hierarchy - Cache Memories: Mapping Functions – Performance Consideration – Virtual Memory – Secondary Storage: Magnetic Hard Disks.

Unit - V I/O Organization:

Accessing I/O Devices – Interrupts – Enabling and Disabling Interrupts – Handling Multiple Devices – Bus Structure – Bus Operation – Arbitration – Interface Circuits – Interconnection Standards: USB.

TEXT BOOK:

Lecture:45, Tutorial:15, Total:60

9+3

9+3

9+3

9+3

9+3

1. Carl Hamacher, Zvonko Vranesic, Safwat Zaky and Naraig Manjikian, "Computer Organization and Embedded Systems", 6th Edition, McGraw Hill International Edition, New York, 2012.

REFERENCES:

- 1. Patterson David, A. and Hennessy John L., "Computer Organization and Design: The Hardware / Software Interface", 5th Edition, Harcourt Asia, Morgan Kaufmann, Singapore, 2014.
- 2. Stallings William, "Computer Organization and Architecture: Designing for Performance", 9th Edition, Pearson Education, New Delhi, 2012.

	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	describe the basic structure, arithmetic and memory operations of a digital computer and determine the addressing modes for the set of instructions	Applying (K3)
CO2	describe and apply algorithms for performing different arithmetic operations.	Applying (K3)
CO3	make use of the data path in a processor to write the sequence of steps to fetch and execute a given instruction and apply the concepts of pipelining to determine and handle the hazards	Applying (K3)
CO4	distinguish between different types of memory and apply the mapping functions between main memory and cache	Applying (K3)
CO5	illustrate various types of interrupts in I/O transfer and the role of different types of bus in I/O operations.	Applying (K3)

					Марр	ing of C	Os with	POs an	nd PSOs	5				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1									3	2
CO2	3	2	1	1									3	2
CO3	3	2	1	1									3	2
CO4	3	2	1	1									3	2
CO5	3	2	1	1									3	2

	ASSESSMENT PATTERN - THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	20	50	30				100				
CAT2	20	40	40				100				
CAT3	30	40	30				100				
ESE	20	40	40				100				

20ITL31 DATA STRUCTURES LABORATORY

Programme & Branch		B.Tech. & Information Technology	Sem.	Category	L	Т	P	Credit
rere	quisites	Programming and Linear Data structures	3	PC	0	0	2	1
	mble	This course provides practical exposure to develo Data Structures.	p applications u	using the cond	epts o	f Linea	r and N	Non-linear
_ist c	of Exercises /	Experiments :						
1.	i) Add 10x ⁵ +	polynomial operations using linked list: 2x ³ -1 to 8x ⁴ -x ³ +16x ² 00x ⁴ -19x ² -7x from 150x ³ +8x-14						
2.		music player using appropriate data structure. The gs can be played either from starting or ending of the		player are lin	ked to	previou	us and	next son
3.	list and then CPU is giver	le applications are running on a PC, it is common fo to cycle through them, giving each of them a slice o n to another application. When the operating system ssist the operating system to perform the above oper	f time to execu reaches the er	te and then m nd of the list it	aking t can cy	them watche	ait whil und to	le the
4.	void main { printf("KO if((a>b)&& printf(" a is } When the pr	NGU";	ssing parenthe	sis". Show ho	w the o	compile	r deter	
	error. b. Implemen	t a Stack and Queue using Deque.	g p			somplie		ots the
5.	b. Implemen a. Write a pr Example: Gi 70, 80, 90, 1	t a Stack and Queue using Deque. ogram to reverse the first k elements of a Queue. ven Q = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] and	k = 5. The out	put should be				
5. 6.	b. Implemen a. Write a pr Example: Gi 70, 80, 90, 1 b. Implement Implement a	t a Stack and Queue using Deque. ogram to reverse the first k elements of a Queue. ven Q = $[10, 20, 30, 40, 50, 60, 70, 80, 90, 100]$ and 00]	k = 5. The out pairwise conse value in the lef	put should be cutive.	Q = [5	50, 40, 1	30, 20,	, 10, 60,
	 b. Implement a. Write a pr Example: Gi 70, 80, 90, 1 b. Implement b. Implement a every desce Consider that 	t a Stack and Queue using Deque. ogram to reverse the first k elements of a Queue. ven $Q = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]$ and 00] t a program to check if the elements of a queue are program with the criteria, every descendant node's	k = 5. The out pairwise conse value in the lef n the value n	put should be cutive. t subtree of n	Q = [t is less	50, 40, than th	30, 20, ie valu	, 10, 60, e of n and
6.	b. Implement a. Write a pr Example: Gi 70, 80, 90, 1 b. Implement every desce Consider that Implement it Given a File that file F is digit) of loca \rightarrow L as H(K):	t a Stack and Queue using Deque. ogram to reverse the first k elements of a Queue. ven $Q = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]$ and 00] t a program to check if the elements of a queue are program with the criteria, every descendant node's ndant node's value in the right subtree is greater tha at the height of the student has to be maintained in a	k = 5. The out pairwise conse value in the lef n the value n tree. The tree t) which unique emory locations e Integers. Des	put should be cutive. t subtree of n height must b ely determine s with L as the ign a program	Q = [{ is less e bala the re e set of n that u	50, 40, than th nced at cords i f memo uses Ha	30, 20, le valu all the n file F rry add ish fun	, 10, 60, e of n and e time. F. Assume lresses (2 loction H: k
6. 7.	 b. Implement a. Write a pr Example: Gi 70, 80, 90, 1 b. Implement a every desce Consider that Implement it Given a File that file F is digit) of loca →L as H(K): L. Resolve ti A person was 	t a Stack and Queue using Deque. ogram to reverse the first k elements of a Queue. ven Q = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] and 00] t a program to check if the elements of a queue are program with the criteria, every descendant node's ndant node's value in the right subtree is greater tha at the height of the student has to be maintained in a with a suitable data structure. of N employee records with a set K of Keys(4-digi maintained in memory by a Hash Table(HT) of m me tions in HT. Let the keys in K and addresses in L are =K mod m (remainder method), and implement hash	k = 5. The out pairwise conse value in the lef n the value n tree. The tree t) which unique emory locations integers. Des ning technique	put should be ecutive. t subtree of n height must b ely determine s with L as the ign a program to map a give	Q = [{ is less e balan the re e set of n that u en key	50, 40, 50, 40, 50, 40, 50, 50, 50, 50, 50, 50, 50, 50, 50, 5	30, 20, e valu all the n file F ry add ish fun e addr	, 10, 60, e of n and time. F. Assume resses (2 iction H: k ess space
6. 7. 8.	b. Implement a. Write a pr Example: Gi 70, 80, 90, 1 b. Implement every desce Consider that Implement it Given a File that file F is digit) of loca \rightarrow L as H(K) L. Resolve that and so on. V A person wat	t a Stack and Queue using Deque. ogram to reverse the first k elements of a Queue. ven Q = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] and 00] t a program to check if the elements of a queue are program with the criteria, every descendant node's ndant node's value in the right subtree is greater tha at the height of the student has to be maintained in a with a suitable data structure. of N employee records with a set K of Keys(4-digi maintained in memory by a Hash Table(HT) of m me tions in HT. Let the keys in K and addresses in L are =K mod m (remainder method), and implement hash he collision using linear probing. ants to visit some places. He starts from a vertex ar What traversal methodology suits best for him? Imple ants to visit some places. He starts from a vertex a tracks and then explore other vertex from same	k = 5. The out pairwise conse value in the lef n the value n tree. The tree t) which unique emory locations e Integers. Des ning technique and then wants to ment it using C nd then wants	put should be cutive. t subtree of n height must b ely determine s with L as the ign a program to map a give to visit every p C. to visit every	Q = [{ is less e balan the re e set of n that u en key place of vertex	50, 40, 50, 40, 50, 40, 50, 50, 50, 50, 50, 50, 50, 50, 50, 5	30, 20, all the n file F ry add sh fun e addr ed to t	, 10, 60, e of n and e time. F. Assume lresses (2 loction H: k ress space this verte) s from one

1. Linux / GCC Compiler

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	identify and apply the appropriate data structure for solving the given problem	Applying (K3), Manipulation (S2)
CO2	implement various operations on non-linear data structures	Applying (K3), Manipulation (S2)
CO3	perform searching and traversing on various data structures	Applying (K3), Manipulation (S2)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	2	1	1									3	2
CO2	3	2	1	1									3	2
CO3	3	2	1	1									3	2
1 – Slight, 2 –	Modera	ate, 3 –	Substar	tial, BT	- Bloom	's Taxo	nomy							

20ITL32 OBJECT ORIENTED PROGRAMMING LABORATORY

Programme & Branch	B.Tech. & Information Technology	Sem. Category		L	Т	Р	Credit
Prerequisites	Problem Solving and Programming	3	PC	0	0	2	1
Preamble	This course provides practical knowledge to develop concepts.	applica	ations using	object	oriente	ed prog	gramming

List of Exercises / Experiments :

1.	Cimple jove programs using operators, control statements and errove
1.	 Simple java programs using operators, control statements and arrays Calculate Simple interest, Area of rectangle and triangle
	Generate Electricity bill using control statements
	 Calculate factorial of given numbers
	 Finding the prime numbers between 1 to n
	 Multiplication of two matrices
2.	Develop bank application using class and object.
3.	Program to demonstrate inheritance & polymorphism.
	 Create one base class for student personal details and inherit those details into the sub class of student educational details to display complete student information.
	• Create an abstract class named shape that contains two integers and an empty method named printArea()
	Provide two classes named Rectangle and Triangle such that each one of the classes extends the class shape.
	Each one of the class contains only the method printArea() that print the area of the given shape.
4.	Develop the Employee payroll application using packages and interfaces.
5.	Program to illustrate exception handling in java and creation of user defined exception.
6.	Program to demonstrate multithread concepts like synchronisation and inter-thread communication.
7.	Program to copy the contents of one file into another file, count the number of characters and print the file size in bytes
8.	Program to demonstrate the features of generics and collection classes and interfaces.
	 Implement sorting algorithm for integer, character, float and double data types
	Demonstrate simple application using collection classes and interfaces
	Create simple application using String class and methods
9.	Design and develop a bio-data application using AWT layer and components
10.	Program to capture and experiment with various keyboard and mouse events
	Total: 30

REFERENCES/MANUAL/SOFTWARE:

ວເ

1.	Operating System : Windows/Linux

2. Software : Eclipse/Netbeans IDE, Java	SE
--	----

3. Laboratory Manual

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	implement programs using basic concepts of Java to solve the given problems	Applying (K3), Manipulation (S2)
CO2	develop application using inheritances, packages, exception handling, multithreading, string handling, generics and collection classes.	Applying (K3), Manipulation (S2)
CO3	design and develop applications with GUIs and event driven programming.	Applying (K3), Manipulation (S2)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1									3	2
CO2	3	2	1	1									3	2
CO3	3	2	1	1									3	2
1 – Slight, 2 –	- Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

20EGL31 ENGLISH FOR WORKPLACE COMMUNICATION LABORATORY

(Common to all BE/BTech Engineering and Technology branches)

& Branch	All BE/BTech Engineering & Technology branches	Sem.	Category	L	Т	Р	Credit
Prerequisite	Nil	3/4	HS	0	0	2	1
Preamble:	This course is designed to impart required levels of fluence CEFR through activities, hands-on training and application.	y in using th	e English Lang	juage	at B1	/B2 le	vel in the
Unit -I	Listening:						6
	r effective listening and note taking; listening to audio scripts, pakers and imitating; improving pronunciation; introduction to						
Unit -II	Reading:						6
	g skills; reading to gain knowledge; reading newspaper artid word power; reading aloud with proper stress and intonation; Soft Skills:	•	•		ic jou	irnals	to enrich
	1						
	soft skills at workplace - understanding soft skills through ca nent; team work; telephone etiquette; developing professionalis					ie; goa	al setting;
	Writing:						6
Unit -IV							0
Introduction to writing; nuan	pre-writing, style and mechanics of writing; mind mapping; cr ces of academic writing; writing Statement of Purpose (SO uctural and grammatical accuracy.						d resume
Introduction to writing; nuan	ces of academic writing; writing Statement of Purpose (SO						d resume
Introduction to writing; nuan readability; stru Unit -V Verbal and nor	ces of academic writing; writing Statement of Purpose (SO uctural and grammatical accuracy.	P), editing,	revising and p	roof re	ading	for cl	d resume arity and
Introduction to writing; nuand readability; stru Unit -V Verbal and not using prepared	ces of academic writing; writing Statement of Purpose (SO uctural and grammatical accuracy. Speaking: n-verbal communication; fluency and spoken English; introduc	P), editing,	revising and p	roof re	ading	for cl	d resume arity and
Introduction to writing; nuand readability; stru Unit -V Verbal and not using prepared	ces of academic writing; writing Statement of Purpose (SO actural and grammatical accuracy. Speaking: n-verbal communication; fluency and spoken English; introduc material; mock interviews; dynamics of Group Discussion. ises / Experiments :	P), editing,	revising and p	roof re	ading	for cl	d resume arity and

2.	Presentation	
3.	Reading Aloud	
4.	Group Discussion	
5.	Soft Skills through Case Studies	
6.	Listening Test	
	Tot	al: 30

REFERENCES/MANUAL/SOFTWARE:

1.	Jeff Butterfield, "Soft Skills for Everyone", 1 st Edition, Cengage Learning, New Delhi, 2011.
2.	Bob Dignen, Steve Flinders and Simon Sweeney, "Professional English for Work and Life, English 365, Student's Book 2", 1 st Edition, Cambridge University Press, New Delhi, 2004.

	E OUTCOMES: pletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1:	acquire effective listening and reading skills	Understanding (K2), Imitation (S1)
CO2:	acquire and demonstrate appropriate professional skills for the workplace	Applying (K3), Naturalization (S5)
CO3:	speak fluently and write meaningfully in English in the given context	Applying (K3), Articulation (S4)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1									2	3		2		
CO2									2	3		2		
CO3									3	3		3		
1 – Slight, 2 –	Moderat	te, 3 – S	ubstanti	al, BT- I	Bloom's	Taxono	my							

20GET31 UNIVERSAL HUMAN VALUES (Common to All BE/BTech branches)

Programme & Branch	All BE/BTech Engineeirng & Technology branches	Sem.	Category	L	Т	Р	Credit
Prerequisites	NIL	3/4	HS	2	0	0	2

Preamble To make the student to know what they 'really want to be' in their life and profession, understand the meaning of happiness and prosperity for a human being. Also to facilitate the students to understanding of harmony at all the levels of human living, and live accordingly

Unit - I Introduction:

Need and Basic Guidelines of Value Education – Content and Process of Value Education – Self Exploration – purpose of self-Exploration – Content and Process of Self exploration – Natural Acceptance – Realization and Understanding – Basic Human Aspirations – Continuous Happiness and Prosperity – Exploring Happiness and Prosperity – Basic Requirement for Fulfillment of Human Aspirations – Relationships – Physical Facilities – Right Understanding.

Unit - II Harmony in the Self and Body:

Human Being and Body – Understanding Myself as Co–existence of Self ('I') and Body, Needs of the Self and Body, Activities in the Self and Body, Self ('I') as the Conscious Entity, the Body as the Material Entity – Exercise – Body as an Instrument–Harmony in the Self ('I) – Understanding Myself – Harmony with Body.

Unit - III Harmony in the Family and Society:

Harmony in the Family – Justice – Feelings (Values) in Human Relationships – Relationship from Family to Society -Identification of Human Goal – Five dimensions of Human Endeavour.

Unit - IV Harmony in Nature and Existence:

Order of Nature – Interconnectedness – Understanding the Four order – Innateness – Natural Characteristic – Basic Activity – Conformance – Introduction to Space – Co–existence of units of Space – Limited and unlimited – Active and No–activity – Existence is Co–existence.

Unit - V Implications of the above Holistic Understanding of Harmony on Professional Ethics:

Values in different dimensions of Human Living – Definitiveness of Ethical Human Conduct –Implications of Value based Living – Identification of Comprehensive Human Goal – Humanistic Education – Universal Human Order – Competence and Issues in Professional Ethics.

TEXT BOOK:

1. Gaur R.R., Sangal R., Bagaria G.P., "A Foundation Course in Human Values and Professional Ethics", 1st Edition, Excell Books Pvt. Ltd., New Delhi, 2016.

REFERENCES:

1. Ivan Illich, "Energy & Equity", The Trinity Press, USA, 1974.

2. Schumacher E.F., "Small is Beautiful: a study of economics as if people mattered", Britain, 1973.

6

6

6

6

6

Total: 30

	DURSE OUTCOMES: completion of the course, the students will be able to				
CO1	restate the meaning of happiness and prosperity and do a correct appraisal of the current scenario in the society	Applying (K3)			
CO2	distinguish between the Self and the Body, understand the meaning of Harmony in the Self, the Co-existence of Self and Body	Applying (K3)			
CO3	infer the value of harmonious relationship based on trust, respect and other naturally acceptable feelings in human-human relationships and explore their role in ensuring a harmonious society	Applying (K3)			
CO4	transform themselves to co-exist with nature by realising interconnectedness and four order of nature	Applying (K3)			
CO5	distinguish between ethical and unethical practices, and extend ethical and moral practices for a better living	Applying (K3)			

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						3	3	3	3	3				
CO2						3	3	3	3	3				
CO3						3	3	3	3	3				
CO4						3	3	3	3	3				
CO5						3	3	3	3	3				
– Slight, 2 –	- Modera	ate, 3 –	Substar	tial, BT	- Bloom	's Taxo	nomy		1	1		1		1

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	25	75					100						
CAT2	25	75					100						
CAT3	NA												
ESE	NA												

* ±3% may be varied (CAT 1, 2 – 100 marks)

20MAT42 PROBABILITY AND STATISTICS (Common to Computer Science and Engineering & Information Technology branches)

	BE - Computer Science Engineering & BTech – Information Technology	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	4	BS	3	1	0	4

PreambleTo provide an in-depth knowledge about random variables, correlation, sampling theory and promote the ability to
use probability distributions and analysis of variance to experimental data.Unit - IRandom Variables:9+3

Introduction to Probability – Random VariableS – Discrete and Continuous random variables – Probability Mass and Probability density functions – Mathematical expectation and Variance – Moments – Moment generating function – Functions of random variable.

Unit - II Standard Probability Distributions:

Discrete Distributions: Binomial distribution – Poisson distribution – Geometric distribution – Continuous Distributions: Uniform distribution – Exponential distribution – Normal distribution.

Unit - III Two Dimensional Random Variables:

Introduction – Joint probability distributions – Marginal and conditional distributions – Covariance – Correlation and regression – Transformation of random variables.

Unit - IV Testing of Hypothesis:

Introduction – Critical region and level of significance – Types of Errors – Large sample tests: Z-test for single proportion and difference of two sample proportions – Z-test for single mean and difference of means – Small sample tests: Student's t-test for testing significance of single mean and difference of means – F-test for comparison of variances – Chi-square test: Test of goodness of fit – Test of independence of attributes.

Unit - V Design of Experiments:

Analysis of variance – One way classification: Completely Randomized Design – Two way classification: Randomized Block Design – Three way classification: Latin Square Design.

Lecture: 45, Tutorial: 15, Total: 60

9+3

9+3

9+3

9+3

TEXT BOOK:

1. Veerarajan, T, "Probability, Statistics, Random Processes and Queuing Theory", 1st Edition, Tata McGraw-Hill, New Delhi, 2019.

REFERENCES:

- 1. William Mendenhall, Robert J. Beaver and Barbara M. Beaver, "Introduction to Probability and Statistics", 14th Edition, Cengage Learning, USA, 2013.
- 2. Jay L. Devore, "Probability and Statistics for Engineering and the Sciences", 9th Edition, Cengage Learning, USA, 2016.
- 3. Walpole R.E., Myers R.H., Myers S.L. and Ye K., "Probability and Statistics for Engineers and Scientists", 9th Edition, Pearson Education, Asia, 2016.
- Douglas C. Montgomery & George C. Runger, "Applied Statistics and Probability for Engineers ", 7th Edition, John Wiley and Sons, USA, 2018.

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	interpret the concept of random variables.	Applying (K3)
CO2	apply different types of distributions in engineering problems.	Applying (K3)
CO3	understand the concepts of two dimensional random variables and regression.	Applying (K3)
CO4	apply statistical tests for solving engineering problems involving small and large samples.	Applying (K3)
CO5	apply the concepts of analysis of variance to experimental data.	Applying (K3)

					Маррі	ng of C	Os with	n POs a	nd PSC)s				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	1										1	
CO2	3	2	1										2	
CO3	3	2	1										1	
CO4	3	2	1	3									2	
CO5	3	2	1	3									2	
1 – Slight, 2 –	Modera	ate, 3 – 3	Substar	tial, BT	- Bloom	's Taxoi	nomy							

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %Applying (K3) %Analyzing (K4) %			Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	10	20	70				100						
CAT2	10	20	70				100						
CAT3	10	30	60				100						
ESE	10	25	65				100						

20ITT41 PRINCIPLES OF COMMUNICATION

Programme & Branch	B.Tech. & Information Technology	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	4	ES	3	1	0	4

Preamble	This course explains the concepts of Analog and Digital communication systems that are used for the transmission	
	of information from source to destination. A detailed quantitative framework for analog and digital transmission	
	techniques is addressed.	

Unit - I Amplitude Modulation:

Principles of amplitude modulation – AM envelope - Frequency spectrum and bandwidth - Modulation index and percentage modulation - AM power distribution - AM modulator circuits – Low level AM modulator - AM transmitters – Low level transmitter - AM receivers – Super heterodyne receivers

Unit - II Angle Modulation:

Angle Modulation – FM and PM waveforms - Phase deviation and modulation index - Frequency deviation - Direct FM and PM demodulators - Frequency spectrum of angle modulated waves - Bandwidth requirement - Narrowband FM and Broadband FM - Average power - FM and PM modulators, Direct FM transmitter - Angle modulation Vs. Amplitude modulation –Indirect FM transmitter.

Unit - III Digital Modulation:

Sampling - Time Division Multiplexing - Digital T-carrier System – Pulse code modulation – Amplitude shift keying - Frequency and phase shift keying – Modulator and demodulator - bit error rate calculation.

Unit - IV Data Communication:

Data communication codes: ASCII - BAR codes - Error Control - Error Detection - Redundancy checking - Error Correction -Hamming – Line coding: AMI – NRZ - RZ - Serial interfaces : RS232 - RS485 - Data communication circuits - Data communication modems - Public Switched Telephone Network(PSTN) – ISDN.

Unit - V Spread Spectrum:

PN sequence code and its properties- Direct sequence spread spectrum system - Processing gain- Frequency hopping spread spectrum.

TEXT BOOK:

1. Wayne Tomasi, "Electronic Communications Systems: Fundamentals through Advanced", 5th Edition, Pearson Education, 2008.

REFERENCES:

1.	Michael Moher and Simon Haykin, "Communication System", 5th Edition, Wiley India Pvt. Ltd., New Delhi, 2011.
•	

2. Frenzel and Louis E., "Principles of Electronic Communication Systems", 3rd Edition, Tata McGraw Hill Publishing Company, New Delhi, 2008.

3. Anokh Singh, "Principles of Communication Engineering", S. Chand & Co., New Delhi, 2006.

9+3

9+3

9+3

9+3

9+3

Lecture:45, Tutorial:15, Total:60

	COURSE OUTCOMES: On completion of the course, the students will be able to					
CO1	illustrate amplitude modulation techniques	Applying (K3)				
CO2	use the different angle modulation schemes	Applying (K3)				
CO3	apply the concepts of digital modulation techniques	Applying (K3)				
CO4	detect and correct the errors introduced in the channel using error control coding schemes	Applying (K3)				
CO5	illustrate the spread spectrum techniques for modern communication	Applying (K3)				

1 PO2				Mapping of COs with POs and PSOs										
1 102	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2		
2	1	1									3	2		
2	1	1									3	2		
2	1	1									3	2		
2	1	1									3	2		
2	1	1									3	2		
	2 2 2 2 2 2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 1 1 2 1 1 2 1 1 2 1 1 2 1 1	2 1 1 2 1 1 2 1 1 2 1 1 2 1 1	2 1 1 2 1 1 2 1 1 2 1 1	2 1 1	2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1	2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1	2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1	2 1 1 3 2 1 1 3 2 1 1 3 2 1 1 3 2 1 1 3 2 1 1 3 3 3 3		

	ASSESSMENT PATTERN - THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	30	40	30				100					
CAT2	30	40	30				100					
CAT3	30	40	30				100					
ESE	30	40	30				100					

20ITT42 DATABASE MANAGEMENT SYSTEMS

Programme & Branch	B. Tech & Information Technology	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	4	PC	3	0	0	3

Preamble This course provides the fundamentals of database concepts, SQL queries and transactions. It also deals with various concurrency control techniques for transactions.

Unit - I Data Models and Relational Model:

Introduction–Database System Applications–Purpose of database systems – View of data – Database Languages – Relational Databases– Database Architecture – Database Users and administrators - Relational Model – Structure of Relational Databases – Database Schema – Keys – Schema Diagrams – Relational Query Languages - Relational Operations- Relational Algebra.

Unit - II SQL and Database Design:

Database Design - E-R model- Constraints – ER diagrams – Reduction to Relational Schema – ER design issues. SQL: Basic structure – Operations –Aggregate Functions –Sub queries - Nested Sub queries - Intermediate SQL: Joins – views– Index – Integrity Constraints– SQL data types and schemas – Authorization.

Unit - III Relational Database Design:

Features of good relational designs- Functional dependency theory - Decomposition using functional dependencies–Algorithms for decomposition. Normal Forms: 1NF, 2NF, 3NF, BCNF, 4NF, 5NF–Data Storage: RAID – Tertiary storage - File Organization – Organization of Records in Files – Data dictionary storage.

Unit - IV Indexing, Hashing and Transactions:

Ordered indices– B trees - B+ Tree index files–Multiple key access - Static and Dynamic Hashing – Bitmap indices. Overview of Query Processing- Transaction concept–Transaction model–Storage structure–Transaction atomicity and durability – Isolation – Serializability.

Unit - V Concurrency Control and Recovery System:

Lock-based Protocols - Deadlock Handling – Multiple Granularity – Timestamp and Validation Based Protocols - Failure classification – Storage – Recovery and atomicity – Algorithm – Buffer management – Failure with loss of nonvolatile storage

TEXT BOOK:

1. Silberschatz Abraham, Korth Henry F. and Sudarshan S., "Database System Concepts", 7th Edition, McGraw Hill, New York, 2019.

REFERENCES:

- 1. Elmasri, Ramez and Navathe, Shamkant B., "Fundamental Database Systems", 6th Edition, Pearson Education, New Delhi, 2010.
- 2. Date C.J., Kannan A. and Swamynathan S., "An Introduction to Database Systems", 8th Edition, Pearson Education, New Delhi, 2006.

9

9

9

9

9

Total: 45

COUF On co	BT Mapped (Highest Level)	
CO1	outline the features, architecture and applications of database system	Applying (K3)
CO2	design an ER model and use relational database with SQL statements	Applying (K3)
CO3	design relational database using normalization methods	Applying (K3)
CO4	apply indexing and hashing techniques in relational database, and perform transaction processing	Applying (K3)
CO5	apply the concepts of concurrency control and recovery in a relational database	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1									3	2
CO2	3	2	1	1									3	2
CO3	3	2	1	1									3	2
CO4	3	2	1	1									3	2
CO5	3	2	1	1									3	2
1 – Slight, 2 –	Modera	ate, 3 – 3	Substar	tial, BT	- Bloom	's Taxoi	nomy							

ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	10	20	70				100					
CAT2	10	20	70				100					
CAT3	10	30	60				100					
ESE	10	30	60				100					

20ITT43 DESIGN AND ANALYSIS OF ALGORITHMS

Programme & Branch	B.Tech. & Information Technology	Sem.	Category	L	Т	Р	Credit
Prerequisites	Data Structures, Problem Solving and Programming	4	PC	3	1	0	4

Preamble	This course imparts a formal introduction to various algorithm design techniques, methods for analyzin performance of algorithms and improving their efficiency.	g the
Unit - I	Introduction:	9+3

Unit - I Introduction:

Notion of an Algorithm - Fundamentals of Algorithmic Problem Solving - Important Problem Types - Fundamentals of the Analysis of Algorithm Efficiency - Analysis Framework - Asymptotic Notations and its properties - Mathematical analysis for Recursive and Non-recursive algorithms - Empirical analysis of algorithm - Algorithm visualization.

Unit - II Brute Force:

Selection and Bubble Sort, Sequential search and String Matching - closest pair and convex hull problem- Divide and Conquer methodology: Merge sort - Quick sort - Binary search - Binary tree traversals and related properties - Multiplication of large integers and Strassen's Matrix Multiplication - closest pair and convex hull problem.

Unit - III Decrease and Conquer:

Insertion sort -Topological Sorting - Fake coin problem - Computing a Median and the Selection Problem - Transform and conquer: Presorting - Balanced search trees -AVL trees -2-3 Trees- Heaps and Heap sort.

Unit - IV **Dynamic Programming:**

Warshall's and Floyd's algorithm - Optimal Binary Search Trees - Knapsack Problem and Memory functions - Greedy Technique: Prim's algorithm - Kruskal's Algorithm - Dijkstra's Algorithm - Huffman Trees.

Unit - V Backtracking:

n-Queens problem - Hamiltonian Circuit Problem - Subset Sum Problem - Branch and Bound: Assignment problem - Knapsack Problem - Traveling Salesman Problem - Overview of P, NP and NP-Complete Problems.

TEXT BOOK:

1. Anany Levitin, "Introduction to the Design and Analysis of Algorithms", 3rd Edition, Pearson Education, New Delhi, 2012.

REFERENCES:

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, "Introduction to Algorithms", 3rd Edition, MIT 1 Press, London, 2009.

2. Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, "Data Structures and Algorithms", Pearson Education, New Delhi, 2006.

9+3

9+3

9+3

9+3

Lecture:45, Tutorial:15, Total:60

	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	examine various frameworks for algorithmic design	Analyzing (K4)
CO2	apply brute force and divide-and-conquer techniques to various problems and analyze their efficiency.	Analyzing (K4)
CO3	utilize decrease and conquer and transform & conquer strategies for solving problems	Applying (K3)
CO4	make use of dynamic programming and greedy techniques to solve problems	Applying (K3)
CO5	solve difficult combinatorial problems with backtracking and branch & bound techniques	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	1								3	3
CO2	3	3	2	2	1								3	3
CO3	3	2	1	1									3	2
CO4	3	2	1	1									3	2
CO5	3	2	1	1									3	2

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	10	30	40	20			100						
CAT2	10	30	50	10			100						
CAT3	10	40	50				100						
ESE	10	20	50	20			100						

20ITT44 WEB TECHNOLOGY

Programme & Branch	B. Tech & Information Technology	Sem.	Category	L	Т	Р	Credit
Prerequisites	Object Oriented Programming	4	PC	3	0	0	3

Preamble This course provides an introduction to HTML, CSS and Bootstrap. It also deals with Client-side JS and S	Server
Side JS Framework. Unit - I UI Design:	9
	-
HTML5: Introduction– Basic tags – HTML Forms Element– Page Structured Elements– Media Tags –Cascading S Responsive Web Design: Introduction - Bootstrap - Grid basics – Tables –Images - Button - list - Drop down - Navs Forms-Input – Input Groups.	•
Unit - II JavaScript ES6:	9
Introduction – Variables – Operators - Control structures -Functions - Scope - Objects - Array, Date - Math – RegE DOM – Collections - Event Handling.	xp – HTML
Unit - III Server-side JS Framework:	9
Node JS: Introduction – Architecture – Features- Creating Web Servers with HTTP -Request - Response – Event GET and POST Methods - Connect to NoSQL Database using Node JS – Implementation of CRUD operations.	Handling -
Unit - IV TypeScript and Angular 6.0:	9
TypeScript: Introduction – Features – Variables – Data types – Enum – Array – Tuples – Functions – OOP of Interfaces. Angular 6.0: Introduction - Needs - Evolution – Features – Setup and Configuration – Components and Templates – Change Detection – Directives – Data Binding - Pipes – Nested Components.	
Unit - V Client-side JS Framework:	9
Services - HTTP - Routing -Template Driven Forms - Model Driven Forms - Reactive Forms - Custom Validators - d Injection.	ependency
TEXT BOOK:	Total: 4
1. Infosys campus connect material shared by Infosys	

REFERENCES:

1. Paul Deitel, Harvey M.Deitel and Abbey Deitel, "Internet and World Wide Web - How To Program", 5th Edition, Prentice Hall, 2011.

2. https://www.javatpoint.com

	OURSE OUTCOMES: n completion of the course, the students will be able to						
CO1	design static web pages using HTML, CSS and Bootstrap.	Applying (K3)					
CO2	develop interactive and dynamic web pages using basics constructs of Javascript ES6	Applying (K3)					
CO3	develop a web application using node JS with database connectivity	Applying (K3)					
CO4	apply the features of Typescript and Angular to develop web applications.	Applying (K3)					
CO5	demonstrate full stack web development using Typescript, Angular and Node JS	Applying (K3)					

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1									3	2
CO2	3	2	1	1									3	2
CO3	3	2	1	1									3	2
CO4	3	2	1	1									3	2
CO5	3	2	1	1									3	2
1 – Slight, 2 –	Modera	ate, 3 – 3	Substan	tial, BT	- Bloom	's Taxo	nomy							

L.	Oligin, 2	mouchate, o	Cubstantial, DT	Bloom's raxonomy	

	ASSESSMENT PATTERN - THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	20	20	60				100			
CAT2	20	20	60				100			
CAT3	10	20	70				100			
ESE	15	25	60				100			

20ITL41 DATABASE MANAGEMENT SYSTEMS LABORATORY

Programme & Branch	B.Tech. & Information Technology	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	4	PC	0	0	2	1
Preamble	This course provides hands-on experience in databases a languages	and its o	operations usi	ng SQL	and o	ther hig	jh level

List of Exercises / Experiments :

1.	Data definition language, commands, integrity constraints
2.	Data manipulation language, Data control language commands and TCL commands
3.	Nested queries
4.	Join operations
5.	Views and index
6.	PL/SQL statements
7.	Cursors
8.	Triggers
9.	Procedures and Functions
10.	Mini project: (Application Development using Oracle/ SQL SERVER / MYSQL) Sample Applications: > Inventory Control System > Hospital Management System > Railway Reservation System > Web Based User Identification System > Hotel Management System > Student Information System > Library Information System and etc.,
	Total: 3

REFERENCES/MANUAL/SOFTWARE:

1. Front End: Microsoft Visual Studio 6.0, Microsoft .NET Framework SDK v2.0, Java etc

2. Back End : ORACLE / SQL SERVER / MYSQL

	DURSE OUTCOMES: n completion of the course, the students will be able to					
CO1	develop SQL and PL/SQL commands to create and manipulate databases	Applying (K3), Precision (S3)				
CO2	execute queries using concepts of embedded query languages	Applying (K3), Precision (S3)				
CO3	apply database concepts to solve real world problems	Applying (K3), Precision (S3)				

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1									3	2
CO2	3	2	1	1									3	2
CO3	3	2	1	1									3	2
I – Slight, 2 –	- Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

20ITL42 WEB TECHNOLOGY LABORATORY

Programme & Branch	B.Tech. & Information Technology	Sem.	Category	L	т	Р	Credit
Prerequisites	Object Oriented Programming	4	PC	0	0	2	1
Preamble	This course provides hands-on experience in databases languages	and its o	operations usi	ng SQI	_ and o	ther hi	gh level

List of Exercises / Experiments :

1.	Design a web page using HTML tags and host it in github repository.
2.	Design a responsive website using Bootstrap.
3.	Design a Registration page and perform form validation using JavaScript.
4.	Design an webpage to create simple interactive CGPA calculator using DOM.
5.	Develop simple login page by performing event handling using GET and POST method.
6.	Design a webpage to maintain personal information using CRUD operations in MongoDB.
7.	Create an Angular service for an eCart application.
8.	Design a web application using components, modules and router in Angular.
9.	Design a reactive form to maintain personal information and perform validation using Angular.
10.	Develop and deploy eCart management system using Angular.

REFERENCES/MANUAL/SOFTWARE:

1.	Visual Stu	udio code/	GEdit, No	de JS+NPM,	MongoDB
----	------------	------------	-----------	------------	---------

2. Angular, Github

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	develop interactive web pages using HTML, CSS, JavaScript and Bootstrap.	Applying (K3), Precision (S3)
CO2	develop a web application to maintain information in a database using server-side scripting.	Applying (K3), Precision (S3)
CO3	apply the concepts of Angular to design full-fledged web applications.	Applying (K3), Precision (S3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1									3	2
CO2	3	2	1	1									3	2
CO3	3	2	1	1									3	2
1 – Slight, 2 –	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

Total: 30

20MNT31 ENVIRONMENTAL SCIENCE

Programme Branch	& All BE/BTech Engineering & Technology branches	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	3/4	MC	2	0	0	0

Preamble This course provides an approach to understand the various natural resources, ecosystem, bio-diversity, pollution control & monitoring methods for sustainable life and also to provide knowledge and to create awareness for engineering students on biological sciences. 5

Unit - I **Environmental Studies and Natural Resources:**

Introduction to Environmental Science – uses, over-exploitation and conservation of forest, water, mineral, food, energy and land resources-case studies

Unit - II **Ecosystem and Biodiversity:**

Ecosystems: concept and components of an ecosystem -structural and functional features - Functional attributes (Food chain and Food web only). Biodiversity: Introduction - Classification - Bio geographical classification of India- Value of biodiversity Threats and Conservation of biodiversity - case studies.

Unit - III **Environmental Pollution:**

Environmental Pollution: Definition – causes, effects and control measures of: (a) Air pollution - Climate change, global warming, acid rain, ozone layer depletion (b)Water pollution (c) Soil pollution - Role of an individual in prevention of pollution - case studies.

Unit - IV **Environmental Monitoring:**

Sustainability -three pillars of sustainability- factors affecting environmental sustainability-approaches for sustainable development - Introduction to EIA - objectives of EIA - environment protection act - air (prevention and control of pollution) act water (prevention and control of pollution) act.

Unit - V Introduction to Biological Science:

Functions of Carbohydrates, lipids, proteins and nucleic acids - Cells and its organelles - plasma membrane, mitochondria and nucleus- Heredity and DNA - organization of DNA in cells - Genes and chromosomes- Cell division -Types of cell division- mitosis & meiosis - Cell cycle and molecules that control cell cycle.

TEXT BOOK:

Anubha Kaushik, and Kaushik C.P., "Environmental Science and Engineering", 6th Multicolour Edition, New Age International Pvt. Ltd., New Delhi, 2018.

Lodish. H., Berk A., Zipurursky S.L., Matsudaria P., Baltimore D. and Darnell J., "Molecular Cell Biology", 4th Edition, 2. Freeman Press, 2000.

REFERENCES:

- Palanisamy P.N., Manikandan P., Geetha A., Manjula Rani K., Kowshalya V.N., "Environmental Science", Pearson 1. Education, New Delhi, Revised Edition 2019.
- 2. Satyanarayan, U., & Chakrapani, U., "Textbook of Biochemistry", 1999 Ed. June 2017

5

5

5

5

Total: 25

	COURSE OUTCOMES: On completion of the course, the students will be able to						
CO1	illustrate the various natural resources and role of individual for its conservation	Understanding (K2)					
CO2	elaborate the features of ecosystem and biodiversity to find the need for conservation.	Understanding (K2)					
CO3	manipulate the sources, effects and control methods of various environmental pollution.	Applying (K3)					
CO4	make use of the knowledge of EIA and environmental legislation laws towards sustainability.	Applying (K3)					
CO5	explain the functions of carbohydrates, lipids, proteins, nucleic acids, Cells and its organelles	Understanding (K2)					

PSO2			Mapping of COs with POs and PSOs											
F 302	PSO1	PO12	PO11	PO10	PO9	PO8	P07	PO6	PO5	PO4	PO3	PO2	P01	COs/POs
							3					1	2	CO1
							3					1	2	CO2
							3				1	2	3	CO3
							3				1	2	3	CO4
												1	3	CO5
							3					2	3 3 3	CO3 CO4

	ASSESSMENT PATTERN - THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	25	40	35				100					
CAT2	25	40	35				100					
CAT3	NA						100					
ESE	NA						100					

*±3% may be varied (CAT 1,2 – 50 marks)

20ITT51 COMPUTER NETWORKS

Prerequisites	Nil			1			Credit
		5	PC	3	1	0	4
	his course deals with the fundamental concepts of configuration of the inferent layers along with their concepts and protocols.	mputer netw	orks. It prese	ents bo	ottom u	ip app	oroach of
Unit - I	letwork Models and Physical Layer				9		
	cations – Networks – Networks Types. Network Models: ⁻ e coding – Line Coding Schemes – Transmission Modes					•	•
Unit - II 🛛 🛛	Data Link Layer						9
Framing – HDI LAN: Standard	Link Layer Addressing – Error Detection and Correction C - Point-to-point protocol. Media Access Control Protoc Ethernet – Connecting Devices – Virtual LANs.						n - Wired
Unit - III 🛛 🗈	letwork Layer						9
	Services- Network layer performance - IPV4 addresses – tance Vector and Link-state routing – Routing Protocols:						
Unit - IV 1	ransport Layer						9
	Fransport layer protocols: Simple – Stop-and-wait - Go-ba ice: Data Flow Characteristics -Techniques to improve Qo		tive Repeat - F	Piggyba	acking -	- UDP	– TCP.
Unit - V 🛛	pplication Layer						9
WWW - HTTP	FTP - Electronic mail - Telnet - SSH, DNS. Network Man	agement: Intr	oduction - SN	MP.			
					Lectu	re [.] 45	Total: 4

TEXT BOOK:

1. Behrouz A. Forouzan, "Data Communications and Networking", McGraw-Hill, 5th Edition, 2013.

REFERENCES:

1. Kurose James F. and Ross Keith W., "Computer Networking: A Top-Down Approach", 6th Edition, Pearson Education, New Delhi, 2017.

2. Stallings, "Data and Computer Communications", PHI, 10th Edition, New Delhi, 2015.

	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	explain the basic fundamentals of networks for data communication and apply the different line coding schemes for digital-to-digital conversion	Applying (K3)
CO2	demonstrate the knowledge of error detection and correction methods and protocols at data link layer	Applying (K3)
CO3	interpret the different addressing schemes and apply various routing protocols at network layer	Applying (K3)
CO4	illustrate the different transport layer protocols and employ suitable flow control and QoS techniques	Applying (K3)
CO5	generalize the various protocols and their working principles at application layer	Applying (K3)

	Mapping of COs with POs and PSOs														
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	1	1									3	2	
CO2	3	2	1	1									3	2	
CO3	3	2	1	1									3	2	
CO4	3	2	1	1									3	2	
CO5	3	2	1	1									3	2	
– Slight, 2 –	Modera	ite, 3 – 3	Substar	tial, BT	- Bloom	's Taxoi	nomy	-	-	-					

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	30	50	20				100							
CAT2	20	50	30				100							
CAT3	30	50	20				100							
ESE	20	50	30				100							

20ITT52 OPERATING SYSTEMS

Programme Branch	8	B. Tech & Information Technology	Sem.	Category	L	т	Р	Credit
Prerequisit	es	Nil	5	PC	3	0	0	3
Preamble		ourse describes about operating system abstractions and a stractions where the synchronization, scheduling, dea			lemen	tations	such a	as
Unit - I	Opera	ting Systems Overview						9
Security and	d Protec	puter System Organization – Computer System tion – Virtualization – Computing Environments Calls – Linkers and Loaders – Operating system S	. Operating Syst	ems Structure	es: Se			
Unit - II	Proces	ss Management:						9
Message Pa	assing S	Process Scheduling, Operations on Processes, I ystems. Threads: Overview - Multicore Program g Algorithms.						,
Unit - III	Proces	ss Synchronization						g
		blem – Mutex Locks – Semaphores – Monito – Deadlock Prevention and Avoidance – Deadloc					– Me	thods for
Unit - IV	Memo	ry Management						9
					ructure	e of th	e pag	e table -
	Storag	ackground – Contiguous Memory Allocation – emory: Background – Demand Paging – Page Re	eplacement – thr	•				
Unit - V	Silliag		eplacement – thr					g

TEXT BOOK:

1. Silberschatz A, Peter Baer Galvin and Greg Gagne, "Operating System Concepts", 10th Edition, John Wiley & Sons Inc., 2018.

REFERENCES:

- 1. William Stallings, "Operating Systems Internals and Design Principles", 9th Edition, Prentice Hall, 2018.
- 2. Andrew S. Tanenbaum, "Modern Operating Systems", 4th Edition, Pearson Education, New Delhi, 2016.

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	outline operating system structure, services and system calls	Applying (K3)
CO2	demonstrate various process scheduling algorithms and describe multithreading models	Applying (K3)
CO3	apply different methods for process synchronization and for handling deadlocks	Applying (K3)
CO4	illustrate memory management strategies and demonstrate various page replacement algorithms	Applying (K3)
CO5	summarize the features of file systems and apply various disk scheduling algorithms	Applying (K3)

					Mappi	ng of C	Os with	POs a	nd PSO	s				
COs/POs	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1									3	2
CO2	3	2	1	1									3	2
CO3	3	2	1	1									3	2
CO4	3	2	1	1									3	2
CO5	3	2	1	1									3	2

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

	ASSESSMENT PATTERN - THEORY														
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %								
CAT1	25	25	50				100								
CAT2	20	20	60				100								
CAT3	20	20	60				100								
ESE	15	25	60				100								

20ITT53 SOFTWARE ENGINEERING

Programme & Branch	B. Tech & Information Technology	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	5	PC	3	0	0	3

Preamble	This course promotes the practice of software engineering concepts at a higher level of abst acquired by software engineers and developers. It also covers software engineering principle to the analysis, design, development and testing of software systems.	
Unit - I	Process Models	9
	process structure – Process models - Waterfall model, Incremental process models, Evoluti d process models – Unified Process - Agile development: Agile process - Extreme programmin	
Unit - II	Requirement Gathering and Analysis	9
	ents engineering – Eliciting requirements, Developing use cases – Building the analysis nts – Requirements monitoring – Validating requirements – Requirements analysis.	s model – Negotiating
Unit - III	UML Modeling	9
diagram –	on – Unified Modeling Language – Static model – Dynamic model – UML diagrams– UML cla - UML dynamic modeling – UML interaction diagrams –UML state chart diagram – U tation Diagrams –Component diagram –Deployment diagram.	
Unit - IV	Software Design	9
Component	oncepts and model – Architectural design: Software architecture, Architectural styles – nt level design: Designing class-based components, Conducting component level design – Use analysis and design – Interface analysis –Interface design steps – Design patterns.	
Unit - V	Software Testing Fundamentals	9
	testing strategies: Strategic approach – Issues – Test strategies for conventional and Obje and System testing – Debugging – Testing conventional applications: White box testing – Basi	

Lecture: 45, Total: 45

TEXT BOOK:

1. Roger S. Pressman, Bruce R. Maxim, "Software Engineering: A Practitioner's Approach", 8th Edition, McGraw-Hill Education, India, 2019.

REFERENCES:

1. Ali Bahrami, "Object Oriented Systems Development", 1st Edition, Tata McGraw-Hill, New Delhi, 2008.

structure testing – Black box testing – Software configuration management – SCM repository – SCM process.

2. Jalote Pankaj, "An Integrated Approach to Software Engineering", 3rd Edition, Narosa Publishing House, New Delhi, 2000.

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	identify various software development models	Applying (K3)
CO2	apply the requirement engineering tasks to identify the requirements for a given scenario	Applying (K3)
CO3	use different methods for modeling and design of a software system	Applying (K3)
CO4	apply the different design principles for a software system	Applying (K3)
CO5	make use of various software testing techniques to test the software systems	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	2	1	1									3	2
CO2	3	2	1	1									3	2
CO3	3	2	1	1									3	2
CO4	3	2	1	1									3	2
CO5	3	2	1	1									3	2
I – Slight, 2 –	Modera	ate, 3 –	Substar	tial, BT	- Bloom	's Taxoi	nomy							

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	20	30	50				100							
CAT2	30	30	40				100							
CAT3	20	30	50				100							
ESE	10	40	50				100							

20ITL51 NETWORK LABORATORY

Programme & Branch	B.Tech. & Information Technology	Sem.	Category	L	т	Р	Credit	
Prerequisites	Nil	5	PC	0	0	2	1	
Preamble	This course provides an exposure to configure the router enables the students to configure routing protocols using						It also	

List of Exercises / Experiments :

1.	Simulate the network topologies (Bus, Ring, Star and Mesh) using Cisco Packet Tracer
2.	Simulate and identify the difference in working operation of Hub and Switch using Cisco Packet Tracer
3.	Configure a Web server, DHCP server and a DNS server all together in a single simulation through which IP have to be allocated for the host through DHCP server, Conversion of Canonical Name to IP address to be done by DNS server and Access to the webpage has to give by web server using Cisco Packet Tracer.
4.	Simulate a network that performs Network address Translation to share a single public IP to the entire host connected in the network.
5.	Implement bit stuffing and byte stuffing using C program.
6.	Implement the functionality of FTP server using Cisco packet tracer.
7.	Simulate the TCP and UDP communications using Cisco packet tracer.
8.	Study of Packet Analyzer wireshark Tool.
9.	Emulate the working operation of Address Resolution Protocol using GNS3 Emulator and capture the packets using wireshark tool.
10.	Configure Routing Information Protocol and OSPF Protocol in a network to route packets using Cisco packet Tracer

Practical: 30,Total: 30

REFERENCES/MANUAL/SOFTWARE:

1. Cisco Packet Tracer/C Language/Wireshark Tool

	SE OUTCOMES: apletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	demonstrate and configure networking protocols using Cisco Packet Tracer	Applying (K3), Precision (S3)
CO2	implement the working mechanism of supporting protocols of each layer through Packet Tracer	Applying (K3), Precision (S3)
CO3	experiment with network layer and transport layer protocols using simulator tool	Applying (K3), Precision (S3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1									3	2
CO2	3	2	1	1									3	2
CO3	3	2	1	1									3	2
1 – Slight, 2 –	Modera	ate, 3 – S	Substar	itial, BT	- Bloom	's Taxoi	nomy							

20ITL52 OPERATING SYSTEMS LABORATORY

Programme & Branch	B.Tech. & Information Technology	Sem.	Category	L	Т	Р	Credit	
Prerequisites	Nil	5	PC	0	0	2	1	
Preamble	This course provides practical knowledge in basic Linux c calls and synchronization.	commar	nds, shell scrip	ot, proc	ess cre	ation, s	system	

List of Exercises / Experiments :

1.	Basic Linux Commands (Process / File / Directory/ Memory / Disk / User / Filters / Pipes)
2.	Simple Shell programs - Arithmetic operations and String operations
3.	Shell program using loops and conditional statements
4.	Write a CPU bound C program and a I/O bound C program (e.g. use a number of printf statements within a while (1) loop). Compile and execute both of them. Observe the effect of their CPU share using the top display and comment.
5.	Write a C program to simulate UNIX commands like cp, ls, grep
6.	Implementation of system calls - fork, exec, getpid, exit, wait, close, stat, opendir, readdir.
7.	Implementation of I/O system calls (open, read, write, close, etc)
8.	Write a C-program to implement the producer – consumer problem using semaphores
9.	Write a C Program to implement IPC using Pipe
10.	Write a C program perform Round Robin CPU scheduling algorithm by reading all the necessary data from file.

Practical : 30,Total: 30

REFERENCES/MANUAL/SOFTWARE:

1. Linux Operating System

2. C Language

	E OUTCOMES: pletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	Demonstrate the Linux commands and shell script	Applying (K3), Manipulation (S2)
CO2	Implement different system calls in Linux and thread management	Applying (K3), Precision (S3)
CO3	Implement process synchronization and inter process communication.	Applying (K3), Precision (S3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	2	1	1									3	2
CO2	3	2	1	1									3	2
CO3	3	2	1	1									3	2
1 – Slight, 2 –	- Modera	ate, 3 – 3	Substar	itial, BT	- Bloom	's Taxo	nomy							

20ITL53 CASE TOOLS LABORATORY

Programme & Branch	B.Tech. & Information Technology	Sem.	Category	L	т	Р	Credit	
Prerequisites	Nil	5	PC	0	0	2	1	
Preamble	This course provides hands-on experience in designing a oriented concepts.	and deve	eloping softwa	re syst	ems us	ing ob	ject	

List of Exercises / Experiments :

1.	Define problem statement, develop business and domain models with UML diagrams, implement the interfaces and do testing for the Passport Automation system
2.	Define problem statement, develop business and domain models with UML diagrams, implement the interface and do testing for the Library Management system
3.	Define problem statement, develop business and domain models with UML diagrams, implement the interface and do testing for the Exam Registration System
4.	Define problem statement, develop business and domain models with UML diagrams, implement the interface and do testing for the Stock Maintenance system
5.	Define problem statement, develop business and domain models with UML diagrams, implement the interface and do testing for the Online Course Registration system
6.	Define problem statement, develop business and domain models with UML diagrams, implement the interface and do testing for the E-ticketing system
7.	Define problem statement, develop business and domain models with UML diagrams, implement the interface and do testing for the Insurance management system
8.	Define problem statement, develop business and domain models with UML diagrams, implement the interface and do testing for the Credit card processing system
9.	Define problem statement, develop business and domain models with UML diagrams, implement the interface and do testing for the Employee Recruitment system
10.	Define problem statement, develop business and domain models with UML diagrams, implement the interface and do testing for the Bank Management system
	Practical : 30,Total: 30

REFERENCES/MANUAL/SOFTWARE:

1. IBM Rational Suite

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	design and implement projects using Object oriented concepts	Applying (K3), Precision (S3)
CO2	use UML analysis and design diagrams in various applications	Applying (K3), Precision (S3)
CO3	apply appropriate design patterns for the given scenarios	Applying (K3), Precision (S3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	2	1	1									3	2
CO2	3	2	1	1									3	2
CO3	3	2	1	1									3	2
1 – Slight, 2 –	- Modera	ate, 3 – 3	Substar	itial, BT	- Bloom	's Taxo	nomy							

20GEL51 PROFESSIONAL SKILLS TRAINING I (Common to all BE/ BTech / MSc / MCA /BSc Branches)

Programme & Branch	B.E. & Computer Science and Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	NIL	5	EC	0	0	0	2

Preamble	This subject is to enhance the employability skills and to develop career competency	
Unit - I	Soft Skills – I	20

Soft skills and its importance: Pleasure and pains of transition from an academic environment to work environment-Need for change- Fear, stress and competition in the professional world-Importance of positive attitude- Self motivation and continuous knowledge upgradation-Self-confidence. Professional grooming and practices: Basics of corporate culture-Key pillars of business etiquette- Basics of etiquette-Introductions and greetings-Rules of the handshake, earning respect, business manners-Telephone etiquette- Body Language.

Unit - II Quantitative Aptitude & Logical Reasoning - I

Problem solving level I: Number System-LCM &HCF-Divisibility test-Surds and indices-Logarithms- Ratio-proportions and variation-Partnership-Time speed and distance-Data interpretation-data representation. Logical reasoning: Family tree-Deductions-Logical connectives-Binary logic Linear arrangements- Circular and complex arrangement

Unit - III Written Communication & Verbal Aptitude

Writing Skills: Writing strategies and formats – Importance of Résumés – Writing a Cover letter – Writing a fresher's CV / Résumés – Responding to Job Advertisements – Professional e-mail Writing – Responding to e-mails and business letters – Technical Report writing – Interpretation of Technical Data (Transcoding) – Writing One-page Essays. Verbal Aptitude – Synonyms – Antonyms – Homonyms – One word substitution – Idioms and Phrases – Paired words – Analogies – Spelling test – Cloze test – using suitable verb forms – using appropriate articles and prepositions; Spotting Errors – Sentence Correction and Formation – Grammar Based questions (Transformation : Active-Passive & Direct-Indirect); Rearranging Jumbled Sentences & Jumbled paragraphs, Identifying Facts, Inferences and Judgements statements.

TEXT BOOK:

Thorpe, Showick and Edgar Thorpe, "Objective English For Competitive Examination", 6th Edition, Pearson India Education Services Pvt Ltd, 2017.

REFERENCES:

- 1 Bailey Stephen, "Academic Writing: A practical guide for students", Routledge, New York, 2011.
- 2 Raman, Meenakshi and Sharma, Sangeeta, "Technical Communication Principles and Practice", 3rd Edition, Oxford University Press, New Delhi, 2015.

30

30

Total: 80

	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	develop the soft skills of learners to support them work efficiently in an organization as an individual and as a team	Applying (K3), Precision (S3)
CO2	solve real time problems using numerical ability and logical reasoning	Applying (K3), Precision (S3)
CO3	apply communication skills effectively to understand and deliver information in various written discourses grammatically with accuracy	Applying (K3), Precision (S3)

					Маррі	ing of C	Os with	POs an	d PSOs	5				
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2				3	3		3		3	2		
CO2	3	2				3	3		3		3	2		
CO3		2				3	3		3	3	3	2		

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	20	50	30				100							
CAT2		50	50				100							
CAT3		50	50				100							
ESE	NA						NA							

20ITT61 INTERNET OF THINGS AND ITS APPLICATIONS

Programme & Branch	B. Tech & Information Technology	Sem.	Category	L	Т	Ρ	Credit
Prerequisites	Computer Networks	6	ES	3	0	0	3

Preamble This course provides an introduction to Internet of Things and its technologies that enables the students to develop real world applications using it.

Unit - I Introduction to Internet of Things

Introduction to Internet of Things: Definition and Characteristics of IoT, Physical Design of IoT – IoT Protocols, IoT Communication Models - IoT Communication APIs – IoT enabled Technologies – Wireless Sensor Networks - Cloud Computing – Big data analytics – Communication Protocols- Embedded Systems – IoT Levels and Templates.

Unit - II IoT Design Methodology

M2M – Difference between M2M &IoT – Software defined networks – Network function Virtualization – IoT Platform design Methodologies – Domain Specific IoT – Home Automation – Smart Agriculture.

Unit - III Python packages

HTTPLib- URLLib-SMTPLib. **IoT Physical Devices and Endpoints:** Introduction to Raspberry PI – Interfaces: serial- SPI- 12C-Programming – Python program with Raspberry PI with focus of interfacing external gadgets – controlling output – reading input from pins

Unit - IV IoT Cloud Storage

Introduction to cloud storage models - Amazon Web Services for IoT- MQTT- Storing data in database. Data Analytics for IoT: Apache Hadoop – Using Hadoop, MapReduce for Batch Data Analysis – Apache Spark – Apache Storm – Using Apache Storm for Real-time Data Analysis

Unit - V Tools for IoT

Introduction – Chef – Puppet – NETCONF-YANG – Case Studies – IoT Code Generator- Case Studies.

Lecture: 45, Total: 45

9

9

9

9

9

TEXT BOOK:

1. Arshdeep Bahga and Vijay Madisetti, "Internet of Things – A Hands-on Approach", 1st Edition, University Press, 2015 **REFERENCES:**

1. Honbo Zhou, "The Internet of Things in the Cloud: A Middleware Perspective", 1st Edition, CRC Press, 2012

2. https://aws.amazon.com/

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	apply IoT architecture, infrastructure and constraints	Applying (K3)
CO2	utilize the design methodologies for IoT applications	Applying (K3)
CO3	experiment with simple applications using python and Raspberry Pi	Applying (K3)
CO4	develop IoT product with the use of cloud storage and data analytics	Applying (K3)
CO5	make use of different IoT tools for implementing real time applications	Applying (K3)

					Маррі	ng of C	Os with	n POs a	nd PSO)s				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1									3	2
CO2	3	2	1	1									3	2
CO3	3	2	1	1									3	2
CO4	3	2	1	1									3	2
CO5	3	2	1	1									3	2
1 – Slight, 2 –	Modera	ate, 3 –	Substar	tial, BT	- Bloom	's Taxoi	nomy							

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	40	50	10				100							
CAT2	30	50	20				100							
CAT3	30	30	40				100							
ESE	25	35	40				100							

20ITT62 MACHINE LEARNING

Programme & Branch	B. Tech & Information Technology	Sem.	Category	L	Т	Р	Credit
Prerequisites	Design and Analysis of Algorithms	6	PC	3	0	0	3

Preamble This course provides an insight into different types of machine learning algorithms and their utility in various realworld problems

Unit - I Machine Learning

Introduction- Types - Applications - Tools in machine learning - Types of data - Exploring structure of data - Data Quality – Remediation - Data preprocessing. Design and Analysis of Machine Learning experiments: Factors - Guidelines - Cross Validation and Resampling methods- Measuring classifier performance-Assessing classifier algorithm's performance.

Unit - II Modeling and Evaluation

Introduction to model – Model Selection: Predictive Model-Descriptive Model-Training a Model - Model representation, Interpretation – Evaluating performance of Model – Improving performance of a Model. Feature Engineering: Feature Transformation - Feature Subset Selection.

Unit - III Supervised learning: Classification

Introduction - examples- Classification Model- Classification learning -Classification algorithms: Naive Bayes - K-nearest Neighbour - Decision tree - Random forest model - Support Vector Machine. Regression: Examples – Regression algorithm: simple linear regression - Multiple linear regression - polynomial regression model - Logistic regression.

Unit - IV Neural Networks

Introduction to biological and artificial neuron – Activation functions –Architecture of neural network: Single layered feed forward ANN - Multilayered feed forward ANN-competitive network-Recurrent Network -Learning process in ANN- Back Propagation-Deep Learning. Unsupervised Learning: Introduction –Applications – Clustering algorithms.

Unit - V Other Types of Learning

Reinforcement learning - Elements of Reinforce learning - Types of Reinforcement Learning. Representation Learning-Active learning –Instance based Learning – Ensemble Learning Algorithm - Regularization Algorithm.

Lecture: 45, Total: 45

9

9

9

9

9

TEXT BOOK:

1. Saikat Dutt, Subramanian Chandramouli, Amit Kumar Das, "Machine Learning", 1stedition, Pearson Education, 2019.

REFERENCES:

1. Ethem Alpaydin, "Introduction to Machine Learning", 3rd edition, Prentice Hall, 2015

2. Tom M. Mitchell, "Machine Learning,", 1st edition, Tata McGraw-Hill Education, 2017.

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	perform data preprocessing and choose appropriate machine learning algorithm	Applying (K3)
CO2	utilize model selection and feature engineering methods to choose suitable models	Applying (K3)
CO3	employ supervised learning methods to solve real world problems	Applying (K3)
CO4	Solve problems using neural networks and unsupervised learning	Applying (K3)
CO5	apply the concepts of reinforcement learning and other types of machine learning algorithms for various domains	Applying (K3)

					Mappi	ng of C	Os with	n POs a	nd PSO)s				
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1									3	2
CO2	3	2	1	1									3	2
CO3	3	2	1	1									3	2
CO4	3	2	1	1									3	2
CO5	3	2	1	1									3	2
1 – Slight, 2 –	Modera	ate, 3 – 3	Substar	tial, BT	- Bloom	's Taxoi	nomy							

	ASSESSMENT PATTERN - THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	30	50	20				100				
CAT2	30	40	30				100				
CAT3	30	40	30				100				
ESE	30	30	40				100				

20ITT63 CLOUD COMPUTING

Programn Branch								Credit
Prerequis	ites	Operating Systems & Computer Networks	6	PC	3	0	0	3
Preamble		rse provides understanding of cloud computing and its plications.	s services in	order to desig	n and	develo	o vario	us cloud
Unit - I	Distribut	ed System Models						9
		 Network Based Systems – System Models – Softwarright – Energy Efficiency. 	are Environr	nent for Distri	buted a	and Clo	ud cor	nputing –
Unit - II	Virtualiza	ation						9
		els of Virtualization – Virtualization Structures – Te al Clusters and Resource Management – Virtualizatio				Memo	ry, I/O	devices
Unit - III	Cloud Pl	atform Architecture over Virtualized Data Centers						9
	louds.Pub	ervice models – Data-Center Design and Interconnec lic Cloud Platforms : Google App Engine – AWS – nagement.						
Unit - IV	Cloud Pr	rogramming and Software Environments						9
Amazon A	WS – Micı	orms – Parallel and Distributed Programming Paradig rosoft Azure – Cloud Frameworks : Eucalyptus – Niml oud and Appliances.						
Unit - V	Ubiquito	us Clouds and the Internet of Things						9
		porting Ubiquitous Computing Performance of Distril ngs – Innovative Applications of the Internet of Things						
								Total: 4

TEXT BOOK:

1. Kai Hwang, Geoffrey C Fox and Jack G Dongarra, "Distributed and Cloud Computing, From Parallel Processing to the Internet of Things", 1st Edition, Morgan Kauffmann, USA, 2017

REFERENCES:

- 1. Thomas Erl, ZaighamMahood and Richard Puttini, "Cloud Computing, Concept, Technology and Architecture", First Edition, Prentice Hall, 2013
- 2. Rajkumar Buyya, James Broberg and Andrzej M. Goscinski, "Cloud Computing: Principles and Paradigms", First Edition, John Wiley & Sons, 2013

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)				
CO1	utilize the concepts, characteristics, and benefits of cloud enabling technologies to build cloud models	Applying (K3)				
CO2	apply virtualization tools for virtual resource management	Applying (K3)				
CO3	use and evaluate various cloud computing services	Applying (K3)				
CO4	illustrate the elements of cloud programming and software environments	Applying (K3)				
CO5	CO5 develop strategies for ubiquitous clouds and Internet of Things					

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1									3	2
CO2	3	2	1	1									3	2
CO3	3	2	1	1									3	2
CO4	3	2	1	1									3	2
CO5	3	2	1	1									3	2
1 – Slight, 2 –	Modera	ate, 3 – 3	Substar	tial, BT	- Bloom	's Taxoi	nomy							

	ASSESSMENT PATTERN - THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	20	50	30				100		
CAT2	20	50	30				100		
CAT3	20	50	30				100		
ESE	20	50	30				100		

20ITL61 INTERNET OF THINGS LABORATORY

Programme & Branch	B.Tech. & Information Technology	Sem.	Category	L	Т	Р	Credit		
Prerequisites	Nil 6 ES 0 0 2						1		
Preamble	This course provides practical knowledge on IoT tools and technologies to develop real world applications.								

List of Exercises / Experiments :

1.	Design a simple LED bargraph using Arduino
2.	Find the obstacle distance using Arduino
3.	Create simple security alarm system using Arduino
4.	Interface and control an LED with NODEMCU in online
5.	Control and monitor the temperature of the elements using temperature sensor with NODEMCU
6.	Create a smart light using Raspberry pi
7.	Monitor pollution levels using SMTP in Raspberry pi.
8.	Control an electrical appliance via webpage using Raspberry pi/Arduino
9.	Push IoT sensor data for cloud storage and analyze the data.
10.	Develop a mini-project using Raspberry pi/Arduino

REFERENCES/MANUAL/SOFTWARE:

		1.	Raspberry pi,	Arduino,	NODEMCU,	GSM Module and Sensors	
--	--	----	---------------	----------	----------	------------------------	--

2. Linux ,Python and C

	SE OUTCOMES: pletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	design and develop smart objects	Applying (K3), Precision (S3)
CO2	control and monitor smart objects via web application	Applying (K3), Precision (S3)
CO3	build solutions for real world problems	Applying (K3), Precision (S3)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1									3	2
CO2	3	2	1	1									3	2
CO3	3	2	1	1									3	2
1 – Slight, 2 –	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

Total: 30

20ITL62 MACHINE LEARNING LABORATORY

Programme & Branch	B.Tech. & Information Technology	Sem.	Category	L	т	Р	Credit	
Prerequisites	Design and Analysis of Algorithms, Object oriented programming	6	PC	0	0	2	1	
Preamble	This course provides implementation of various machine learning algorithms for designing solutions for real life problems							

List of Exercises / Experiments :

1.	Impute missing values in data inputs
2.	Use feature selection/extraction method to perform dimensionality reduction
3.	Demonstrate Naïve Bayes Classification
4.	Classify the input dataset using decision tree
5.	Perform classification using Support Vector Machines
6.	Perform multivariate classification and regression
7.	Develop a program to implement feed-forward neural networks
8.	Implement K-means clustering
9.	Develop a simple application to demonstrate reinforcement learning
10.	Assess machine learning algorithms using cross validation methods

REFERENCES/MANUAL/SOFTWARE:

1. Python/ R/ Java

2. Jupyter Notebook/Eclipse

COURSE OUTCOMES

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	preprocess the dataset by data cleaning and dimensionality reduction	Applying (K3), Precision (S3)
CO2	perform classification using various supervised learning methods	Applying (K3), Precision (S3)
CO3	demonstrate unsupervised learning and reinforcement learning methods	Applying (K3), Precision (S3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1									3	2
CO2	3	2	1	1									3	2
CO3	3	2	1	1									3	2
1 – Slight, 2	- Moder	rate, 3 –	Substa	ntial, B1	Γ- Bloon	ı's Taxo	nomy							

Total: 30

20ITL63 CLOUD COMPUTING LABORATORY

Programme & Branch	B.Tech. & Information Technology	Sem.	Category	L	Т	Р	Credit
Prerequisites	Operating Systems, Computer Networks	6	PC	0	0	2	1
Preamble	This course enables the students to design, develop, and	l deploy	cloud-based v	web ap	plicatio	ns.	

List of Exercises / Experiments :

1.	Install Virtualbox/VMware Workstation with different flavours of linux or windows OS on top of windows7 or 8.
2.	Install a C compiler in the virtual machine created using virtual box and execute Simple Programs
3.	Install Google App Engine. Create hello world app and other web applications using python/java
4.	Use GAE launcher to launch web applications
5.	Create EC2-AWS S3 bucket based static web pages
6.	Create EC2-AWS- instance and migration
7.	Create EC2-AWS web application using Beanstalk
8.	Perform AWS load balancing and auto scaling
9.	Implement PaaS-Mobile sensor based IoT application hosted via PaaS environment
10.	Install Hadoop single node cluster and run simple applications like wordcount.

REFERENCES/MANUAL/SOFTWARE:

Total: 30

1. VMware, Google App Engine 2. C/Python/Java

3. Hadoop

	E OUTCOMES: pletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	configure various virtualization tools such as Virtual Box and VMware workstation.	Applying (K3), Manipulation (S2)
CO2	create EC2-AWS buckets, instances and web applications	Applying (K3), Precision (S3)
CO3	manipulate large data sets in a parallel environment.	Applying (K3), Precision (S3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1									3	2
CO2	3	2	1	1									3	2
CO3	3	2	1	1									3	2
1 – Slight, 2 –	Modera	ite, 3 – 3	Substar	tial, BT	- Bloom	's Taxo	nomy							

20GEL61 PROFESSIONAL SKILLS TRAINING II (Common to all BE/ BTech / MSc/ MCA /BSc Branches)

Programme & Branch	B.E. & Computer Science and Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	NIL	6	EC	0	0	0	2

Preamble	This subject is to enhance the employability skills and to develop career competency	
Unit - I	Soft Skills – II	20

Group discussions: Advantages of group discussions-Structured GD- Team work: Value of team work in organizations- Definition of a team, why team-Elements of leadership, disadvantages of a team, stages of team formation- Group development activities. Facing an interview: Foundation in core subject- industry orientation / knowledge about the company- professional personality-Communication skills-Activities before Interview, upon entering interview room, during the interview and at the end Mock interviews.

Unit - II Quantitative Aptitude & Logical Reasoning - II

Problem solving level II: Money related problems-Mixtures-Symbol base problem-Clocks and calendars-Simple-linear-quadratic and polynomial equations-Special, equations-Inequalities-Sequence and series-Set theory-Permutations and combinations-Probability-Statistics-Data sufficiency- Geometry-Trigonometry-Heights and distances-Co-ordinate geometry-Mensuration. Logical reasoning: Conditionality and grouping-Sequencing and scheduling- Selections-Networks:-Codes; Cubes-Venn diagram in logical reasoning- Quant based reasoning-Flaw detection- Puzzles-Cryptarithms.

Unit - III Reading & Speaking Skills

Reading: Reading comprehension– Effective Reading strategies – Descriptive, Inferential, & Argumentative reading passages – Identifying and locating factual information within a text – global reading/skimming for general understanding – selective comprehension / scanning for specific information – detailed comprehension / intensive reading – understanding the development of an argument – identifying the writer's attitude and opinions – Reading news articles in business magazines, newspapers – Reading notices and book reviews –Interpreting graphic data & Advertisements. Speaking: Mock Interviews –Self-Introduction – Sharing of Real Time Experience; Conversational Practices –Role Play – Short Talks / TED Talks –Extempore; Giving a Presentation on Various Topics – Technical / Non-Technical Topics – Project Review Presentation – Oratory and Effective Public Speaking; Pair Discussion – Group Discussion – The process of Group Discussion – Strategies to be adopted – Skills Assessed – Telephonic Conversations & Skills – Negotiating Skills.

TEXT BOOK:

Thorpe, Showick and Edgar Thorpe, "Objective English For Competitive Examination", 6th Edition, Pearson India Education Services Pvt Ltd, 2017.

REFERENCES:

1	Aruna Koneru, "Professional Speaking Skills," Oxford University Press India, 2015.
2	Thorpe, Showick and Edgar Thorpe, "Winning at Interviews," 5 th edition, Pearson Education, India, 2013.
3	Rizvi, Ashraf M, "Effective Technical Communication," 2 nd Edition, McGraw Hill Education India, 2017.

30

30

Total: 80

	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	Develop the soft skills of learners to support them work efficiently in an organization as an individual and as a team	Applying (K3), Precision (S3)
CO2	Solve real time problems using numerical ability and logical reasoning	Applying (K3), Precision (S3)
CO3	Apply reading and speaking skills effectively for various academic and professional purposes	Applying (K3), Precision (S3)

00 /D0 D		Mapping of COs with POs and PSOs												
COs/POs P	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	0	0	0	3	3	0	3	0	3	2		
CO2	3	2	0	0	0	3	3	0	3	0	3	2		
CO3	0	2	0	0	0	3	3	0	3	3	3	2		

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	20	40	40				100							
CAT2		50	50				100							
CAT3		50	50				100							
ESE														

20GET71 ENGINEERING ECONOMICS AND MANAGEMENT

Programn Branch	ne &	B. Tech & Information Technology	Sem.	Category	L	т	Р	Credit
Prerequis	ites	Nil	7	HS	3	0	0	3
Preamble	income,	urse provides fundamental knowledge on manageme , marketing, operations management and accounting		ing concepts I	ike ecc	onomics	s, natic	
Unit - I		ction to Economics						9
Basics Co Market Eq	•	nd Principles – Demand and Supply – Law of demand	 Determina 	ints - Law of S	upply -	- Deter	minant	s -
Unit - II	Nationa	al Income & Management Functions						9
	Cycle. Ma	ome - National Income and its measurement techniqu anagement Functions: Planning – Organizing – Staffir					•	
Unit - III	Marketi	ing						9
Core Cono Decisions.	epts of N	Marketing - Four P_s of Marketing - New product deve	lopment - Pro	oduct Life Cyc	le - Prie	cing Sti	ategie	s and
Unit - IV	Operati	ions Management						9
		ement - Resources - Types of Production system - Sit tory - EOQ Determination.	e selection –	Plant Layout.	Steps i	n Prod	uction	Planning

Accounting Principles – Financial Statements and its uses – Depreciation: Straight Line and Diminishing Balance Method – Break Even Analysis – Capital Budgeting: Meaning – Methods of capital Budgeting.

TEXT BOOK:

 Compiled by Department of Management Studies, Kongu Engineering College, "Economics and Management for Engineers", 1st Edition, McGraw Hill Education, Noida, 2013.

REFERENCES:

1. Geetika, Piyali Ghosh & Purba Roy Choudhury, "Managerial Economics", 3rd Edition, McGraw Hill Education, Noida, 2017.

2. William J. Stevenson, "Operations Management Paperback", 12th Edition, McGraw Hill Education, Noida, 2018.

3. Jain S.P, Narang K.L, Simmi Agrawal & Monika Sehgal, "Financial Accounting for Management", 1st Edition, Kalyani Publishers, New Delhi, 2018

Total: 45

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	understand demand and supply functions and estimate market equilibrium between demand and supply	Applying (K3)
CO2	analyse the impact of macro economic variables in business organisations	Applying (K3)
CO3	interpret marketing decisions taken by organisations	Applying (K3)
CO4	assess suitable operation management concepts in business situations	Applying (K3)
CO5	apply accounting and financial concepts in decision making	Applying (K3)

					Маррі	ng of C	Os with	n POs a	nd PSC)s				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	2	1	1									3	2
CO2	3	2	1	1									3	2
CO3	3	2	1	1									3	2
CO4	3	2	1	1									3	2
CO5	3	2	1	1									3	2
1 – Slight, 2 –	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	20	50	30				100							
CAT2	20	50	30				100							
CAT3	20	50	30				100							
ESE	20	50	30				100							

20ITT71 BLOCK CHAIN TECHNOLOGY

Programme & Branch	B. Tech & Information Technology	Sem.	Category	L	Т	Р	Credit
Prerequisites	Cryptography and Network Security	7	PC	3	0	0	3

Preamble This course provides comprehensive introduction to the theoretical and practical aspects of block chain technologies and its applications.

Unit - I Blockchain 101

Distributed systems - The history of blockchain - Introduction to blockchain – definitions - elements - Features - Applications of blockchain technology - Tiers - Types of blockchain - Consensus in blockchain - CAP theorem - Benefits and limitations of blockchain

Unit - II Decentralization and Cryptography and Technical Foundations

Decentralization using blockchain – Methods – Routes - Blockchain and full ecosystem decentralization -.Smart contract -Decentralized applications - Platforms for decentralization. Cryptography and Technical Foundations – Introduction -Cryptography - Confidentiality - Integrity – Authentication - Cryptographic primitives - Asymmetric cryptography - Public and private keys – RSA - Discrete logarithm problem - Hash functions - Elliptic Curve Digital signature algorithm

Unit - III Bitcoin

Bitcoin – Transactions – Blockchain - Bitcoin payments - Alternative Coins - Theoretical foundations - Bitcoin limitations – Namecoin - Litecoin – Primecoin – Zcash - Smart Contracts

Unit - IV Ethereum 101

Introduction - Ethereum blockchain - Elements of the Ethereum blockchain - Precompiled contracts – Accounts – Block – Block header – Messages – Mining - Clients and wallets - The Ethereum network - Ethereum Development

Unit - V Hyperledger

Projects – protocol - Hyperledger Fabric - Sawtooth lake – Corda - Blockchain-Outside of Currencies: Internet of Things – Government – Health – Finance

Lecture: 45, Total: 45

9

9

9

9

9

TEXT BOOK:

1. Imran Bashir, "Mastering Blockchain Distributed ledgers, decentralization and smart contracts Explained", 2 Edition, Packt Publishing, 2018.

REFERENCES:

1. Brenn Hill, Samanyu Chopra, Paul Valencourt, "Blockchain Quick Reference: A guide to exploring decentralized blockchain application development", 1 Edition, Packt publishing, 2018.

2. Andreas Antonopoulos, "Mastering Bitcoin: Programming the open blockchain", 2 Edition, O'Reilly Media, 2017.

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	outline the history and different applications of blockchain, and choose appropriate consensus in blockchain	Applying (K3)
CO2	make use of practical aspect of cryptography in decentralization of blockchain	Applying (K3)
CO3	use bitcoins, identify alternative coins and smart contracts for your application	Applying (K3)
CO4	develop a distributed application using Ethereum	Applying (K3)
CO5	implement an application using Hyperledger	Applying (K3)

					Маррі	ng of C	Os with	n POs a	nd PSO)s				
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1									3	2
CO2	3	2	1	1									3	2
CO3	3	2	1	1									3	2
CO4	3	2	1	1									3	2
CO5	3	2	1	1									3	2
1 – Slight, 2 –	Modera	ate, 3 – 3	Substar	tial, BT	- Bloom	's Taxoi	nomy							

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	30	50	20				100							
CAT2	30	50	20				100							
CAT3	30	50	20				100							
ESE	30	40	30				100							

20ITE01 COMPUTER GRAPHICS

Programme & Branch	B. Tech & Information Technology	Sem.	Category	L	Т	Р	Credit
Prerequisites	Mathematics I	5	PE	3	0	0	3

Preamble This course describes about the basic algorithms of 2D and 3D objects representation and applications of computer graphics. 9

Unit - I Introduction

Introduction - Graphics applications -Graphics systems - Output Primitives: Line, Circle and Ellipse drawing algorithms Attributes of Output Primitives

Unit - II 2D Transformations

Two Dimensional Geometric Transformations – Basic Transformation – Matrix Representation and Homogeneous Coordinate – Composite Transformation – Other Transformation - Two Dimensional Clipping and Viewing

Unit - III 3D Transformations

Concepts - Three dimensional object representations: Polygon Surfaces - Curved Lines and Surfaces - Quadratic Surfaces -Spline Representations - Visualization of Datasets

Unit - IV 3D Modeling

Three Dimensional Geometric and Modeling Transformations - Three Dimensional Viewing - Viewing Pipeline - Viewing Coordinates – Projection – Parallel Projection – Perspective Projection

Unit - V Color Models and Computer Animations

Properties of Light – Standard Primaries – XYZ Color Model – RGB – YIQ – CMY – HSV – Conversion between HSV and RGB Model. Design of Animation sequences – Animation Functions – Raster Animation – Key Frame Systems.

Lecture: 45, Total: 45

9

9

9

9

TEXT BOOK:

1. Hearn, Donald and Baker, M. Pauline, "Computer Graphics - C Version", 2nd Edition, Pearson Education, India, 2008.

REFERENCES:

1. John F. Hughes, Andries Van Dam, Morgan Mcguire, David F. Sklar, James D. Foley, Steven K. Feiner, and Kurt Akeley, "Computer Graphics: Principles & Practice", 3rd Edition, Pearson Education, India, 2013.

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	interpret the fundamental concepts of computer graphics and the components that constitute 2D and 3D graphics	Applying (K3)
CO2	manipulate 2D objects by applying transformation, clipping, and viewing operations	Applying (K3)
CO3	apply 3D concepts and 3D object representations	Applying (K3)
CO4	perform 3D transformations, viewing, projection and volume	Applying (K3)
CO5	make use of color models and computer animations	Applying (K3)

					Mappi	ng of C	Os with	n POs a	nd PSO)s				
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1									3	2
CO2	3	2	1	1									3	2
CO3	3	2	1	1									3	2
CO4	3	2	1	1									3	2
CO5	3	2	1	1									3	2
1 – Slight, 2 –	Modera	ate, 3 – 3	Substar	tial, BT	- Bloom	's Taxoi	nomy							

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	20	30	50				100							
CAT2	20	55	25				100							
CAT3	20	50	30				100							
ESE	20	35	45				100							

20ITE02 ADVANCED JAVA PROGRAMMING

Programme & Branch	B. Tech & Information Technology	Sem.	Category	L	т	Р	Credit
Prerequisites	Object oriented programming	5	PE	3	0	0	3

Preamble This course deals with Spring and Spring Boot frameworks to build web applications quickly with less code.

Unit - I Software Architectures

Types of software architectures - SOA and Monolith Architecture - Micro Services - Micro Service Architecture - Application Layer - Business Layer - Enterprise Layer - Infra Layer - REST API - Advantages with Micro Services - Need of Spring and Spring Boot frameworks

Unit - II Spring Framework

Basics of Spring framework - Basics of Spring Boot Framework - Differences between Spring & Spring Boot. Spring Boot: Building Spring Boot Application - Normal Spring - Manual Approach - Maven - Gradle - Overview - Spring Initializer - STS -Understanding the Spring Boot autoconfiguration

Unit - III Configuration of Spring Framework

Annotation - Built annotations - Dependency injection - Starters : Web Starter - Data JPA Starter - DevTools for rapid application development : Run JAR - Application Properties - Automatic Restart - Live Reload - Server Port Number

Unit - IV Database access using Spring Boot

Working with JPA - POJO classes - MYSQL - Working with Hibernate - Data JPA with crud Repositories - Data JPA with custom methods - Data JPA with custom queries

Unit - V Restful Microservice and Database Connectivity

Add view all posts functionality - Add view specific post functionality - REST client - Postman - Add post functionality - Update - Delete operation

Lecture: 45, Total: 45

9

9

9

9

9

TEXT BOOK:

1. Mark Heckler, "Spring Boot: Up and Running: Building Cloud Native Java and Kotlin Applications", 1st Edition, O'Reilly Media Inc., USA, 2021

REFERENCES:

- 1. Claudio Eduardo de Oliveira, Greg L. Turnquist, Alex Antonov, "Developing Java Applications with Spring and Spring Boot", Packt publishing, Mumbai, 2018
- 2. Craig Walls, "Spring in Action", 5th Edition, Manning Publications, Dream Tech Press, New Delhi, 2018

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	use the micro services architecture and its concepts	Applying (K3)
CO2	experiment the spring boot installation and its auto configuration	Applying (K3)
CO3	interpret and configure annotations, dev tools in Spring Boot Framework	Applying (K3)
CO4	implement a Web Application using JPA/Hibernate with Spring Boot	Applying (K3)
CO5	design and develop Restful micro web services using Spring Boot	Applying (K3)

					Маррі	ng of C	Os with	n POs a	nd PSO)s				
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1									3	2
CO2	3	2	1	1									3	2
CO3	3	2	1	1									3	2
CO4	3	2	1	1									3	2
CO5	3	2	1	1									3	2
I – Slight, 2 –	Modera	ite, 3 – 3	Substar	tial, BT	- Bloom	's Taxo	nomy							

		ASSESSMEN	FPATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40	40	20				100
CAT2	40	30	30				100
CAT3	40	30	30				100
ESE	30	40	30				100

20ITE03 USER INTERFACE DESIGN

Programme & Branch	B. Tech & Information Technology	Sem.	Category	L	Т	Р	Credit
Prerequisites	Web Technology	5	PE	3	0	0	3

Preamble	This course provides knowledge on creating user interfaces using React javascript.	
Unit - I	Introduction	9
	React - installation - Environment - ES6: Objects and Arrays Arrow Functions - Classes - Virtual DC - Introduction to JSX - Create element - Rendering element - Adding style to React elements - Dynan	
Unit - II	Component	9
	components - Class component - Function component - constructor - Rendering a component - ts - Extracting components - Styling Component - Mobile responsive components	Composing
Unit - III	Props and State	9
	property - Validation - Creating state - Using state - Changing the state - Passing data - Props in constru Lifecycle of components - Mount - Unmount - Update	ictor. React
Unit - IV	React Events	9
	ndlers - Bind. React Form: Controlled component - Uncontrolled component - Working with lists and key vent handling - Conditional rendering - Submitting forms - Adding multiple fields - Validation	/s - Adding
Unit - V	Router and Hooks	9

Lecture: 45, Total: 45

TEXT BOOK:

Redux

1. Wieruch, Robin, "The Road to Learn React: Your Journey to Master Plain Yet Pragmatic React. Js.", Germany, Lean Publishing, 2017.

REFERENCES:

- 1. Banks, Alex, and Porcello, Eve, "Learning React: Functional Web Development with React and Redux", United States, O'Reilly Media, 2017.
- 2. https://reactjs.org
- 3. Martin Sauter, "From GSM to LTE, An Introduction to Mobile Networks and Mobile Broadband", Wiley, 2014.

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	develop applications using react and its basic elements	Applying (K3)
CO2	apply the fundamental concepts of components in react	Applying (K3)
CO3	demonstrate properties and state of UI Components in react	Applying (K3)
CO4	implement simple applications using react events	Applying (K3)
CO5	design web applications using React	Applying (K3)

					Маррі	ng of C	Os with	n POs a	nd PSC)s				
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1									3	2
CO2	3	2	1	1									3	2
CO3	3	2	1	1									3	2
CO4	3	2	1	1									3	2
CO5	3	2	1	1									3	2
1 – Slight, 2 –	Modera	ite, 3 – 3	Substar	tial, BT	- Bloom	's Taxoi	nomy							

		ASSESSMEN	T PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	40	40				100
CAT2	20	40	40				100
CAT3	20	40	40				100
ESE	20	40	40				100

20ITE04 SEARCH METHODS FOR PROBLEM SOLVING

(Offered by Department of Information Technology)

Artificial Intelligence provides basic knowledge about different kinds of sea ards solving real world problems. blems by Searching : xamples problems-Search Algorithms-Uninformed Se th-Depth-first search-Depth-limited search-Iterative de	earch Strate	egies-Breadth	3 Ilement	0 tation	0	3
ards solving real world problems. blems by Searching: xamples problems-Search Algorithms-Uninformed Se	earch Strate	egies-Breadth	lement	tation		
xamples problems-Search Algorithms-Uninformed Se						
						9+3
		epth-first sear		irection	al	
earch Strategies:						9+3
* search-Optimality of A*-Memory-bounded heuristic	search-lea	rning to searc	h bette	er-Heuri	istic	
omplex Environments:						9+3
ation Problems-Local Search in Continuous Spaces-S onments-Online Search Agents and Unknown Enviror		n Nondetermin	nistic A	ctions-S	Search	ı in
Search and Games:						9+3
cisions in Games-Heuristic Alpha–Beta Tree Search-l e-Limitations of Game Search Algorithm.	Monte Car	lo Tree Searc	h-Stoc	hasticG	ame-	
5						9+3
Satisfaction Problems:		ktracking Sea	rch for	CSPs-L	_ocal	
3-LII	sfaction Problems:	sfaction Problems: n Problems-Constraint Propagation: Inference in CSPs-Bac	sfaction Problems: n Problems-Constraint Propagation: Inference in CSPs-Backtracking Sea e of Problems.	sfaction Problems: n Problems-Constraint Propagation: Inference in CSPs-Backtracking Search for e of Problems.	sfaction Problems: n Problems-Constraint Propagation: Inference in CSPs-Backtracking Search forCSPs-L e of Problems.	sfaction Problems:

TEXT BOOK:

1

1

Stuart Russell and Peter Norvig, —Artificial Intelligence – A Modern Approach", 4th Edition, Pearson Education Press, 2020.

REFERENCES:

George F. Luger, —Artificial Intelligence", 1st Edition, Pearson Education, 2001.

	COURSE OUTCOMES: On completion of the course, the students will be able to				
CO1	explain search strategies and solve problems by applying a suitable search method	Applying (K3)			
CO2	Apply heuristic search techniques	Applying (K3)			
CO3	apply search strategies in complex environments	Applying (K3)			
CO4	apply appropriate solution techniques for game applications	Applying (K3)			
CO5	design and implement appropriate solutions for search problems	Applying (K3)			

Mapping of COs with POs and PSOs														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1										
CO2	3	2	1	1										
CO3	3	2	1	1										
CO4	3	2	1	1										
CO5	3	2	1	1										

ASSESSMENT PATTERN - THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	25	50	25				100		
CAT2	20	30	50				100		
CAT3	25	50	25				100		
ESE	25	30	45				100		

20ITE05 INFORMATION THEORY AND CODING

Programme & Branch	B. Tech & Information Technology	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	5	PE	3	0	0	3

Preamble This course aims at introducing information theory and the practical aspects of various data compression techniques and error-control coding.

Unit - I Information Entropy Fundamentals

Uncertainty, Information and Entropy – Source coding Theorem – Data Compaction – Discrete Memoryless channels – Mutual Information - Channel Capacity – Channel Coding Theorem.

Unit - II Error Control Coding

Discrete-Memory less Channels- Linear Block codes- Syndrome - Minimum Distance Considerations – Syndrome Decoding - Cyclic codes – Generator Polynomial – Parity Check Polynomial – Generator and Parity-Check Matrices -Encoder for Cyclic codes – Calculation of the Syndrome – Convolutional Codes: Code Tree, Trellis and State Diagram.

Unit - III Text and Image Compression

Compression Principles – Text compression: Static Huffman Coding - Dynamic Huffman coding – Arithmetic coding – LZW coding - Image Compression: Graphics Interchange format – Tagged Image File Format – Digitized documents – Digitized Pictures - JPEG Standards.

Unit - IV Audio Compression

Audio Compression: Differential Pulse code Modulation – Adaptive Differential Pulse Code Modulation – Adaptive predictive coding – Code-excited LPC – Perceptual coding- MPEG audio coders – Dolby audio coders.

Unit - V Video Compression

Principles: Frame types-Motion estimation and compensation-Implementation issues – H.261- H.263- MPEG :MPEG-1 - MPEG-2 - MPEG-3 - MPEG-4 video standards.

TEXT BOOK:

Lecture: 45, Total: 45

9

9

9

9

9

1. Simon Haykins, "Communication Systems", 4th Edition, John Wiley and Sons, New York, 2012.

2. Fred Halsall, "Multimedia Communications, Applications, Networks, Protocols and Standards", 4th Edition, Pearson Education, New Delhi, 2009.

REFERENCES:

1. Ranjan Bose, "Information Theory, Coding and Cryptography", 2nd Edition, Tata McGraw-Hill, India, 2008.

2. Mark S. Drew, Ze-Nian Li, "Fundamentals of Multimedia", 1st Edition, Pearson Education, New Delhi, 2003.

3. Mark Nelson, "Data Compression Book", 2nd Edition, BPB Publication, New Delhi, 2004.

	COURSE OUTCOMES: On completion of the course, the students will be able to					
CO1	illustrate source coding theorem and entropy to quantify information	Applying (K3)				
CO2	outline various error control coding and apply to given problem.	Applying (K3)				
CO3	make use of different compression standards for image and text compression.	Applying (K3)				
CO4	apply various audio compression coding standards in different applications	Applying (K3)				
CO5	use the different video compression standards in different applications	Applying (K3)				

					Mappi	ng of C	Os with	POs a	nd PSO	s				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1									3	2
CO2	3	2	1	1									3	2
CO3	3	2	1	1									3	2
CO4	3	2	1	1									3	2
CO5	3	2	1	1									3	2

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

	ASSESSMENT PATTERN - THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	40	50	10				100				
CAT2	30	30	40				100				
CAT3	30	60	10				100				
ESE	20	55	25				100				

20ITE06 FUNDAMENTALS OF RESEARCH

Programme & Branch	B. Tech & Information Technology	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	5	PE	3	0	0	3

Preamble	This course familiarize the fundamental concepts/techniques adopted in research, problem formulation	and also
ricambic	disseminate the process involved in collection, consolidation of published literature and rewriting t	
	presentable form using latest tools.	
Unit - I	Introduction to Research	9
	n to Research: Types and Process of Research - Outcome of Research - Sources of Characteristics of a Good Research Problem - Errors in Selecting a Research Problem - Importance of Keyw	Research vords.
Unit - II	Literature Review	9
Literature F	Review: Literature Collection - Methods - Analysis - Citation Study - Gap Analysis - Problem Formulation Tec	chniques.
Unit - III	Research Methodology	9
	Methodology: Appropriate Choice of Algorithms/Methodologies/Methods - Measurement and Result Appropriate Choice of Algorithms/Methodologies/Methods - Measurement and Result Appropriate Operation - Research Limitations.	Analysis -
Unit - IV	Journals and Papers:	9
Journals a	nd Papers: Journals in Science/Engineering - Indexing and Impact factor of Journals. Plagiarism and Resear	rch Ethics.
	esearch Papers - Original Article/Review Paper/Short Communication/Case Study.	
Unit - V	Reports and Presentations	9
Reports an	nd Presentations: How to Write a Report - Language and Style - Format of Project Report - Title Page -	Abstract -

Reports and Presentations: How to Write a Report - Language and Style - Format of Project Report - Title Page - Abstract - Table of Contents - Headings and Sub-Headings - Footnotes - Tables and Figures - Appendix - Bibliography etc - Different Reference Formats. Presentation using PPTs. Research Tools.

Lecture: 45, Total: 45

TEXT BOOK:

1. Walliman, Nicholas. "Research Methods: The basics". Routledge, 2017.

REFERENCES:

1. Melville S, Goddard W. "Research Methodology: An Introduction For Science and Engineering Students". Kenwyn: Juta & Co Ltd., 1996.

2. Kumar, Ranjit. "Research Methodology: A step-by-step guide for beginners". SAGE Publications Limited, 2019.

	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	list the various stages in research and categorize the quality of journals.	Analyzing (K4)
CO2	formulate a research problem from published literature/journal papers	Evaluating K5)
CO3	write, present a journal paper/ project report in proper format	Creating (K6)
CO4	select suitable journal and submit a research paper.	Applying (K3)
CO5	compile a research report and the presentation	Applying (K3)

	Mapping of COs with POs and PSOs														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	2	2	1	3	3	3	3	3	3	3	3	3	
CO2	3	3	3	3	2	3	3	3	3	3	3	3	3	3	
CO3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
CO4	3	2	1	1		3	3	3	2	2	3	3	3	3	
CO5	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
- Slight, 2 -	Modera	ate 3 – 1	Substan	tial BT	- Bloom	's Taxor	nomy								

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

	ASSESSMENT PATTERN - THEORY														
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %								
CAT1		40	35	25			100								
CAT2		30	40	30			100								
CAT3				50	50		100								
ESE		25	25	25	25		100								

20ITE07 NATIVE APPLICATION DEVELOPMENT USING ANDROID

Programm Branch	ie &	B. Tech & Information Technology	Sem.	Category	L	т	Р	Credit
Prerequisi	tes	Object Oriented Programming	7	PE	3	0	0	3
Preamble	This cour	se enables the students to gain knowledge in applicati	on develop	ment using ar	ndroid.			
Unit - I	Introduct	tion						9
Android Ma	anifest file	chitecture –Setup Android studio – New project basics - Creating an Android Virtual Device - Run the app in ding components with the design editor -Activity - Activ	the emulat	tor- Debugging				
Unit - II								9
- Layout – EditText –	Types of	utton call a method - Building the custom Java class- layout - relative, linear, and grid - Basic UI compor ase Study Programs: Message sending - Addition of the	ents- Ever	t Handling - (OnClic	Listen	er - Te	xtView -
Unit - III								9
OrderActiv	ity- List v	sions – Colors –drawable - Adding action items - view – Adapters - clicks with a Listener-array ac er() – OnClickListener- Action Bars – Navigation drawe	lapter-Frag	ments – life	cycle-			
Unit - IV								9
delete() c	ursor –on	duction - persist data - SQLite classes - SQL functions PreExecute() method-doInBackgound() method -onPro reads overview–Services overview -Case Study : stud	ogressUpda	ate() method -				
Unit - V								9
		mation - Property animation- View animations- Activit - Sensors - Jetpack - Introduction to Kotlin - variable						
ТЕХТ ВОС	DK:							Total: 4
1. Dawn (Griffiths ,	David Griffiths "Head First Android Development". 2 th E	dition, O'R	eilly Media In	c., US/	۹, 2017		
REFEREN								

1. https://developer.android.com/

2. www.javapoint.com

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	experiment with a simple android application	Applying (K3)
CO2	design an application using UI and Layouts	Applying (K3)
CO3	build application using resources, fragments and navigations	Applying (K3)
CO4	develop applications using database and services	Applying (K3)
CO5	develop applications using location, jetpack and kotlin	Applying (K3)

	Mapping of COs with POs and PSOs														
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	1	1									3	2	
CO2	3	2	1	1									3	2	
CO3	3	2	1	1									3	2	
CO4	3	2	1	1									3	2	
CO5	3	2	1	1									3	2	
I – Slight, 2 –	Modera	ite, 3 – 3	Substar	ntial, BT	- Bloom	's Taxo	nomy								

	ASSESSMENT PATTERN - THEORY														
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %								
CAT1	40	40	20				100								
CAT2	30	30	40				100								
CAT3	30	30	40				100								
ESE	20	30	50				100								

20ITE08 3D MODELING AND MIXED REALITY APPLICATIONS

Programn Branch	ne &	B. Tech & Information Technology	Sem.	Category	L	т	Р	Credit
Prerequis	ites	Mathematics I	7	PE	3	0	0	3
Preamble		rse imparts the basic concepts in Virtual Reality and Augr ons. It also provides foundations in 2D and 3D object mode		Reality which	includ	e conte	nt crea	ation and
Unit - I	2D Mode	ling						9
		eometric Transformations – Basic Transformation – Matrix mation – Other Transformations - Two Dimensional Clippir	•		Homog	eneou	s Coor	dinates –
Unit - II	3D Mode	ling						9
		Geometric and Modeling Transformations – Three Dir ctions – Parallel Projection – Perspective Projection	nension	al Viewing –	Viewir	ig Pipe	eline –	Viewing
Unit - III	Getting s	started with VR and AR						9
		I augmented reality – Introduction – Types of VR and A t state of augmented reality.	R – Ex	ploring the cu	irrent s	tate of	virtua	l reality -
Unit - IV	Consum	ing content in VR and AR						9
	Consumin	in VR: Exploring Consumer-Grade VR - Identifying Near- g Content in AR: Exploring Consumer-Grade AR - Identi						
Unit - V	Creating	content in VR and AR						9
	Augmente	Assessing Project's Technology Needs - Choosing VR - d Reality Project - Creating Content for Virtual and A						
Capturing	Real Life.							To

TEXT BOOK:

	1.	Hearn	, Dona	ald a	nd Bał	ker,	Pauline.M	, "Co	mput	er	Graphics	C١	√ersi	on",	2nd	Editi	ion,	Pearsor	Education,	2008.	(Unit-I,II)
1																					

2. Allen Paul Mealy, "Virtual & Augmented Reality For Dummies", 1st Edition, John Wiley & Sons, 2018.(III,IV,V)

- 1. John F. Hughes, Andries Van Dam, Morgan Mcguire, David F. Sklar, James D. Foley, Steven K. Feiner, and Kurt Akeley, "Computer Graphics: Principles & Practice", 3rd Edition, Pearson Education, 2013.
- 2. Steve Aukstakalnis, "Practical Augmented Reality: A Guide to the Technologies, Applications, and Human Factors for AR and VR", 1st Edition, Addison Wesley, 2016.

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	manipulate 2D objects using transformation, clipping, and viewing operations	Applying (K3)
CO2	perform 3D transformations, viewing, projection and view volume	Applying (K3)
CO3	outline the current states of virtual and augmented reality	Applying (K3)
CO4	develop different applications for consuming VR and AR contents and indicate near future hardware for VR and AR experience.	Applying (K3)
CO5	design and develop contents for VR and AR projects	Applying (K3)

	Mapping of COs with POs and PSOs														
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	1	1									3	2	
CO2	3	2	1	1									3	2	
CO3	3	2	1	1									3	2	
CO4	3	2	1	1									3	2	
CO5	3	2	1	1									3	2	
1 – Slight, 2 –	Modera	ate, 3 – 3	Substar	tial, BT	- Bloom	's Taxo	nomy								

	ASSESSMENT PATTERN - THEORY														
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %								
CAT1	20	30	50				100								
CAT2	20	35	45				100								
CAT3	20	40	40				100								
ESE	20	35	45				100								

20ITE09 NETWORK COMMUNICATION PROTOCOLS AND STANDARDS

Programme & Branch	B.Tech. & Information Technology	Sem.	Category	L	Т	Р	Credit
Prerequisites	Computer Networks	7	PE	3	0	0	3

Preamble This course covers protocols involved in computer networks which help in establishing communication between two end systems.

Unit - I Introduction and Link layer Protocols

Introduction – The Architecture and Protocols of the TCP/IP Suite - Standardization Process – Link Layer – Introduction -Ethernet and the IEEE 802 LAN/MAN Standards - Bridges and Switches: Spanning Tree Protocol - Multiple registration protocol – Point to point protocol – Address Resolution Protocol

Unit - II Internet Protocol and DHCP

Internet Protocol – Introduction - IPv4 and IPv6 Headers - IPv6 Extension Headers - IP Forwarding – Dynamic Host Configuration Protocol - Stateless Address Autoconfiguration - DHCP and DNS Interaction

Unit - III NAT and ICMP

Firewalls and Network Address Translation – Introduction – Firewalls - Network Address Translation (NAT) - NAT Traversal -Configuring Packet-Filtering Firewalls and NATs - ICMPv4 and ICMPv6: Internet Control Message Protocol – Introduction - ICMP Messages - ICMP Error Messages - ICMP Query/Informational Messages - Neighbor Discovery in IPv6 - Translating ICMPv4 and ICMPv6

Unit - IV IGMP and UDP

Broadcasting and Local Multicasting – Introduction – Broadcasting – Multicasting - The Internet Group Management Protocol (IGMP) and Multicast Listener Discovery Protocol (MLD) - User Datagram Protocol (UDP) and IP Fragmentation – Introduction – Header – Check sum - Path MTU Discovery with UDP - Maximum UDP Datagram Size - UDP Server Design - Translating UDP/IPv4 and UDP/IPv6 Datagrams - UDP in the Internet

Unit - V DNS and TCP

Name Resolution and the Domain Name System – Introduction – Domain Name Space – DNS Protocol - Open DNS Servers and DynDNS - Translating DNS from IPv4 to IPv6 - TCP: The Transmission Control Protocol – Introduction – Connection Management – Establishment and Termination – TCP Options – TCP Server Operation - TCP Timeout and Retransmission - TCP Data Flow and Window Management

TEXT BOOK:

1. Kevin R. Fall, W. Richard Stevens, "TCP/IP Illustrated volume1", 2 Edition, Pearson Education, 2012.

REFERENCES:

1. Behrouz A. Forouzan, "TCP/IP Protocol Suite", 4 Edition, McGraw-Hill Education, 2011.

2. "Network Protocols Handbook", 2 Edition, Javvin Technologies Inc, 2005.

9

9

9

9

9

Total:45

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	Identify the link layer protocols in a TCP/IP communication	Understanding (K2)
CO2	Summarize Internet Protocol and use DHCP in address autoconfiguration	Applying (K3)
CO3	Choose appropriate protocol to be used for network translation and inform error using ICMP	Applying (K3)
CO4	Utilize the role of IGMP and unacknowledged transport layer protocols in taking the data from one device to another device	Understanding (K2)
CO5	Identify the role of DNS, and re-transmission and flow control techniques of TCP	Understanding (K2)

	Mapping of COs with POs and PSOs																						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2									
CO1	3	2	1	1									3	2									
CO2	3	2	1	1									3	2									
CO3	3	2	1	1									3	2									
CO4	3	2	1	1									3	2									
CO5	3	2	1	1									3	2									
- Slight, 2 -	Modera	ate, 3 –	Substar	tial, BT	- Bloom	's Taxo	nomy				Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy												

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	20	50	30				100							
CAT2	25	50	25				100							
CAT3	20	40	40				100							
ESE	30	40	30				100							

20ITE10 BIG DATA ANALYTICS

Programn Branch	ne &	B. Tech & Information Technology	Sem.	Category	L	т	Р	Credit
Prerequis	ites	Database Management Systems	7	PE	3	0	0	3
Preamble		rrse provides basic knowledge about Big data, its frame ARK and KAFKA.	work, stora	ige in databas	es and	Stream	n proce	essing
Unit - I	BIG DAT	ΤΑ						9
		s of Digital Data – characteristics – evolution – definiticience – terminologies used in Big Data environments-			Data -	- Big D	ata Ar	nalytics -
Unit - II	HADOO	P						9
Unit - III Introductio Cassandra	MONGO n to Mon a – Featur	ing - Sorting - Compression. DB AND CASSANDRA : goDB – Terms used in MongoDB– Data types in Mor res of Cassandra – CQL Data types – CQLSH– CRUD ing System tables.						
Unit - IV		5,						9
Pig – Pig	on Hadoo	 Architecture – Data types – File format – Hive Quer Data types – Running Pig – Execution modes of F Data types. 						
Unit - V	APACH	E SPARK AND KAFKA						9
		with SPARK: Introduction – SPARK architecture- SPA s – Apache KAFKA – KAFKA Architecture – Use cases.	RK Eco s	/stem – SPAF	RK for	Big Dat	ta Proc	essing -
1						Lectu	re: 45,	Total:

TEXT BOOK:

1. Seema Acharya and Subhashini Chellappan, "Big Data and Analytics", 2nd Edition, Wiley, 2019.

2. Dr.Anil Maheshwari, "Big Data", 1st Edition, McGraw Hill Education, New Delhi, 2017

REFERENCES:

1. EMC Education Services, "Data science and Big data Analytics: Discovering, Analyzing, Visualizing and Presenting Data", 1st Edition, John Wiley and Sons, 2015.

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	apply the concepts and characteristics of big data	Applying (K3)
CO2	make use of MapReduce programs in Hadoop framework	Applying (K3)
CO3	utilize MongoDB and Cassandra to solve real world problems	Applying (K3)
CO4	develop solutions for big data problems using Hive and Pig	Applying (K3)
CO5	identify the need for stream processing and apply Spark and Kafka architectures.	Applying (K3)

	Mapping of COs with POs and PSOs														
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	1	1									3	2	
CO2	3	2	1	1									3	2	
CO3	3	2	1	1									3	2	
CO4	3	2	1	1									3	2	
CO5	3	2	1	1									3	2	

1 -	- Slight, 2 -	- Moderate,	3 – Substa	intial, BT- I	Bloom's [·]	Taxonomy

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	25	50	25				100							
CAT2	20	20	60				100							
CAT3	25	50	25				100							
ESE	25	30	45				100							

20ITE11 CRYPTOGRAPHY AND NETWORK SECURITY

Programm Branch	ne &	B. Tech & Information Technology	Sem.	Category	L	т	Р	Credit
Prerequis	ites	Computer Networks	7	PE	3	0	0	3
Preamble	that has	rse describes the explosive growth of security in compute increased the dependence of both organizations a cated using cryptographic systems.						
Unit - I	Symmet	ric Ciphers						9
Network S	ecurity –	Concepts – The OSI Security Architecture – Security / Classical encryption techniques – Block ciphers and D her operation.						
Unit - II	Asymme	tric Ciphers						9
· ·	••••	uphy and RSA – Other Public key cryptosystems – Diffie rve Arithmetic – Elliptic Curve Cryptography.	-Hellma	n Key Exchai	nge – I	Elgama	l Cryp	tographic
Unit - III	Cryptogr	raphic Data Integrity Algorithms						9
Authentica Functions:	tion Func HMAC –	n functions – Message authentication codes: Mess tions – Requirements for Message Authentication Code Digital signatures: Elgamal Digital Signature Scheme – – Elliptic Curve Digital Signature Algorithm.	es – Se	curity of MA	Cs – N	/IACs E	Based	on Hash
Unit - IV	Mutual T	rust and User authentication						9
keys – X.5	09 Certific	nd distribution: symmetric key distribution using symmetric cates – Public key infrastructure – Remote user authentica metric encryption – Kerberos – Federated identity manag	ation pri	nciples – Rem	note us	er auth	entica	
Unit - V	Network	and Internet Security						9
Network ac security	ccess con	trol and cloud security – Transport level security – Wirele	ess netv	ork security -	- Electr	onic m	ail sec	urity – IP

Total: 45

TEXT BOOK:

1. William Stallings, "Cryptography and Network Security", 7th Edition, Pearson Education, New Delhi, 2017.

- 1. Behrouz A. Ferouzan, Debdeep Mukhopadhyay, "Cryptography and Network Security", 3rd Edition, Tata McGraw-Hill Education, India, 2015.
- 2. Charles P Fleeger, "Security in Computing", 5th Edition, Prentice Hall of India, New Delhi, 2015.

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	apply symmetric key cryptography techniques to solve real world problems	Applying (K3)
CO2	apply various public key cryptography techniques to real case scenarios	Applying (K3)
CO3	demonstrate hashing and digital signature techniques to solve the problems	Applying (K3)
CO4	illustrate the various mutual trust and User authentication mechanisms	Applying (K3)
CO5	make use of the different Security Protocols and standards for various layers of wired and wireless networks	Applying (K3)

					Маррі	ng of C	Os with	n POs a	nd PSO	s				
COs/POs	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1									3	2
CO2	3	2	1	1									3	2
CO3	3	2	1	1									3	2
CO4	3	2	1	1									3	2
CO5	3	2	1	1									3	2
1 – Slight 2 –	Modore	to 2	Substan		Plaam	'a Taxa								

1 – Sligh	t, 2 – Moderate	e, 3 – Substantial,	BT- Bloom's Taxonomy
-----------	-----------------	---------------------	----------------------

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	20	20	60				100						
CAT2	20	20	60				100						
CAT3	30	50	20				100						
ESE	20	20	60				100						

20ITE12 DIGITAL IMAGE PROCESSING

Programme & Branch	B.Tech. & Information Technology	Sem.	Category	L	Т	Р	Credit
Prerequisites	NIL	7	PE	3	0	0	3

UNIT – I FUNDAMENTALS OF IMAGE PROCESSING

What is Digital Image Processing (DIP)? – the origins – use of DIP – Fundamental steps – components of image processing systems – elements of visual perception – Light and the electromagnetic spectrum – Image sensing and acquisition –Image sampling and quantization – some basic relationship between pixels – Basic mathematical tools used in DIP.

UNIT – II INTENSITY TRANSFORMATION AND SPATIAL FILTERING

Background - Basic intensity transformation functions – Histogram processing – Fundamentals of spatial filtering – Lowpass filtering – Highpass filtering –Bandpass and Band reject filtering from lowpass filters – Combining spatial enhancement methods.

UNIT – III FILTERING IN THE FREQUENCY DOMAIN

Background – Preliminary concepts – Sampling and the FT of sampled functions – DFT of one variable – Extensions to functions of two variables – Properties of 2D DFT and 1D DFT – Image smoothing – Filters – Image sharpening using highpass filters – Selective filtering – Fast Fourier Transforms.

UNIT – IV COLOR IMAGE PROCESSING AND WAVELET TRANSFORMS

Color fundamentals – Color models – Pseudo-color image processing – Full color image processing – Color transformations – Color Image smoothing and sharpening – Using colors in image segmentation. Matrix based transforms – Correlation – Basis functions in the time-frequency plane – Basis images – Fourier related transforms – Walsh Hadamard transforms – Slant Transform – Haar Transform – Wavelet Transform

UNIT – V IMAGE COMPRESSION AND WATERMARKING

Fundamentals – Huffman coding – Golomb coding – Arithmetic coding – LZW coding – Run-length coding – Symbol based coding – Bit-plane coding – Block transform coding – Predictive coding – Wavelet coding – Digital image watermarking

Total: 45

9

9

9

9

9

1. Rafael Gonzalez, Richard E. Woods, "Digital Image Processing", 4th Edition, Pearson Education, New York, 2018

REFERENCES:

TEXT BOOK:

1	Anil K. Jain, "Fundamentals of Digital Image Processing", PHI, India, 2011
1.	Ann N. Jain, Tunuamentais of Digital image Frocessing, Frin, India, 2011

2.	Milan Sonka, Vaclav Hlavac, Roger Boyle, "Image processing analysis and machine vision", 4th edition, Cengage Ind	dia,
	India, 2017	

	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1:	use basic mathematical tools for image processing operations	Applying (K3)
CO2:	apply intensity transformation and perform spatial filtering	Applying (K3)
CO3:	illustrate filtering in the frequency using Fourier Transforms	Applying (K3)
CO4:	manipulate color images and make use of Wavelet transforms	Applying (K3)
CO5:	implement image compression and digital image watermarking	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1									3	2
CO2	3	2	1	1									3	2
CO3	3	2	1	1									3	2
CO4	3	2	1	1									3	2
CO5	3	2	1	1									3	2
– Sliaht. 2 –	Moderat	te 3 – S	ubstant	ial BT-	Bloom's	Taxono	omv							

Slight, 2 - Moderate, 3 Substantial, BT- Bloom's Taxonomy 111

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	40	30	30				100						
CAT2	40	30	30				100						
CAT3	30	40	30				100						
ESE	30	40	30				100						

20ITE13 SOFTWARE TESTING

Programme & Branch	B. Tech & Information Technology	Sem.	Category	L	Т	Р	Credit
Prerequisites	Software Engineering	7	PE	3	0	0	3

Preamble This course provides an introduction to software testing with an emphasis on how to perform the various testing process and automated testing using open source tools

Unit - I Basics of Software Testing

Introduction- Definition - Testing Approaches-Essentials of software Testing –Important Features of testing process- Principles of software testing-salient features of good testing- Challenges- Test team approach - Cost of testing- Categories of defect – Test methodologies – Skills required by Tester.

Unit - II Software Testing Environment

Assessing Capabilities, Staff Competency, and User Satisfaction-Creating an environment supportive of software testing -Building the software testing process – Testing Guidelines. Overview of the Software Testing process- The Seven Step Software Testing Process

Unit - III Testing Process

Organizing for testing- Workbench- Procedure, Developing the test plan-Workbench- Procedure, Verification testing-Workbench- Procedure -Validation testing-Workbench- Procedure

Unit - IV Testing Process

Analyzing and reporting test results-Workbench-Procedure, Testing software system security- Using Agile Methods to Improve Software Testing

Unit - V Testing Process and Tools

Testing client/server systems- Testing web-based systems, Selenium: Introduction- History- Selenium IDE- Basic IDE Script - XPath finder -Basic test suits -Locator Types: ID, ClassName, Name, Link Text, XPath-CSS Selector -Locating elements in browser. Overview of Selenium WebDriver. Case Study - Using Selenium IDE, Write a test suite containing minimum 4 test cases -Conduct a test suite for any two web sites -Write and test a program to login a specific web page

Lecture: 45, Total: 45

9

9

9

9

9

TEXT BOOK:

	1.	Limaye M.G., —Software Testing -Principles, Techniques and Tools, 1stReprint, Tata McGraw-Hill, 2009.	
- 11			61

2. Perry William, —Effective Methods for Software Testing, 3rdEdition, Wiley India, Reprint 2013.

- 1. David Burns, "Selenium 2 Testing Tools Beginners Guide", 2nd Edition, Packt Publishing, UK, 2012
- Rajani Renu and Oak Pradeep, —Software Testing Effective Methods: Tools and Techniques, Tata McGraw-Hill, New Delhi, 2017
- 3. Gopalswamy Ramesh and Srinivasan Desikan, —Software Testing: Principles and PracticesII, 6th Impression, Pearson Education, New Delhi, 2014

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	make use of the features, approaches and methodologies of software testing.	Applying (K3)
CO2	apply the step by step activities and set up environment for software testing.	Applying (K3)
CO3	develop procedures and workbenches for various testing process.	Applying (K3)
CO4	identify the agile methods for improving the testing process and apply testing for client server, web based and software security systems.	Applying (K3)
CO5	use selenium tool to perform automated testing.	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1									3	2
CO2	3	2	1	1									3	2
CO3	3	2	1	1									3	2
CO4	3	2	1	1									3	2
CO5	3	2	1	1									3	2
1 – Slight, 2 –	Modera	ate, 3 – 3	Substar	tial, BT	- Bloom	's Taxoi	nomy							

		ASSESSMEN	FPATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	50	20				100
CAT2	20	30	50				100
CAT3	20	30	50				100
ESE	20	40	40				100

20ITE14 **MOBILE COMMUNICATION**

Programme & Branch	B. Tech & Information Technology	Sem.	Category	L	т	Р	Credit
Prerequisites	Computer Networks	7	PE	3	0	0	3

Preamble	This course enables the students to understand the concepts of wireless communication, telecommunication systems, different mobile networks and various operating systems that support mobile devices.
Unit - I	Wireless communication 9
	ransmission –Frequencies for radio transmission –Signals –Antennas –Signal Propagation –Multiplexing –Spread -cellular systems-MAC-Motivation –SDMA –FDMA –TDMA –CDMA
Unit - II	Telecommunication Systems 9
	unications –GSM: Mobile services -System architecture -Radio interface -Protocols -Localization and calling – Security -New data services–Satellite Systems –Basics –Routing -Localization-Handover.
Unit - III	Wireless Networks 9
	AN -Infrared Vs Radio Transmission –Infrastructure Networks and Adhoc Networks -IEEE 802.11 –HIPERLAN: I1 –Bluetooth-User scenarios-Architecture.
Unit - IV	Mobile Network and Transport Layer 9
Mobile IP - network	-Dynamic Host Configuration Protocol-Mobile ad-hoc Networks –Improvement on TCP for mobile and wireless
Unit - V	Mobile Platforms and Application Layer 9
	tecture-Wireless application environment–Mobile Device Operating Systems: Special constraints and Requirements- al mobile Operating System: Windows Mobile, Palm OS, iOS, Android, BlackBerry

Lecture: 45, Total: 45

TEXT BOOK:

	Ш	1.	Schiller J., —Mobile	Communication. 2	2 nd Edition.Pearson	Education.	New Delhi.	2020. I. II. III. IV	/
--	---	----	----------------------	------------------	---------------------------------	------------	------------	----------------------	---

2. Prasant Kumar Pattnaik, Rajib Mall, —Fundamentals of Mobile Computing I, PHI Learning Pvt. Ltd., 1st Edition, New Delhi, 2016, V

- 1. Raj Kamal Mobile Computing, 3rd edition, oxford university press Inc. New Delhi, 2019
- 2. Asoke K Talukder, Hasan Ahmed, Roopa R Yavagal–Mobile Computing Technology, applications and Service Creation , Second Edition, McGraw Hill Education Private Ltd, New Delhi, 2018
- 3. Martin Sauter, "From GSM to LTE, An Introduction to Mobile Networks and Mobile Broadband", Wiley, 2014.

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	illustrate the fundamental concepts of wireless transmission and make use of MAC mechanisms for multiplexing schemes.	Applying (K3)
CO2	utilize the concepts and features of GSM, satellite systems	Applying (K3)
CO3	identify the concepts of Wireless LAN and explain the principles of IEEE 802.11, HIPERLAN and Bluetooth	Applying (K3)
CO4	apply the routing algorithms and transport layer techniques to support mobility for MANET	Applying (K3)
CO5	make use of WAP architecture, commercial mobile operating systems and their features	Applying (K3)

					Маррі	ng of C	Os with	n POs a	nd PSC)s				
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1									3	2
CO2	3	2	1	1									3	2
CO3	3	2	1	1									3	2
CO4	3	2	1	1									3	2
CO5	3	2	1	1									3	2
1 – Slight, 2 –	Modera	ate, 3 – 3	Substar	tial, BT	- Bloom	's Taxoi	nomy							

ASSESSMENT PATTERN - THEORY Analyzing Test / Bloom's Remembering Understanding Evaluating Creating Applying Total % (K4) % (K5) % Category* (K1) % (K2) % (K3) % (K6) % CAT1 40 40 100 20 CAT2 40 100 50 10 CAT3 40 100 50 10 ESE 30 50 20 100

20ITE15 EMBEDDED LINUX BASICS

Programme & Branch	B. Tech & Information Technology	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	7	PE	3	0	0	3

Preamble This course provides the fundamentals of Embedded Linux, various distributions and basics of GNU cross platform tool chain along with kernel configuration.

Unit - I Basic Concepts and Host-Target Setup

Definitions-Real Life Embedded Linux Systems – Design and Implementation Methodology. Basic Concepts: Types of Hosts – Host/Target Development Setups – Host/Target Debug Setups – Generic Architecture of an Embedded Linux System– System Startup – Types of Boot Configuration – System memory Layout –Processor Architectures - Buses and Interfaces - I/O – Storage.

Unit - II Kernel Configurations

Development Tools - A Practical Project Workspace - GNU Cross-Platform Development Toolchain - C Library Alternatives-Other Programming Languages - Eclipse: An Integrated Development Environment - Terminal Emulators. **Kernel Considerations:** Selecting a Kernel - Configuring the Kernel - Compiling the Kernel - Installing the Kernel.

Unit - III Root File Systems

Basic Root Filesystem Structure - Libraries - Kernel Modules and Kernel Images - Device Files – MainSystem Applications -System Initialization. Storage Device Manipulation: MTD supported devices – Disk Devices – swap decisions. Root File system Setup: File system types for Embedded Devices – Writing a File system to Flash using an NFS – Placing a Disk File system on a RAM Disk – Rootfs and Initramfs – Choosing a File system Type and Layout – Handling software upgrades.

Unit - IV Setting up the Bootloader and Networking Services

Embedded Bootloaders – Server Setup for Network Boot – Using the U-Boot Bootloader. Setting up Networking Services: Network Settings – Busy box – Dynamic Configuration – The Internet Super Server – Remote Administration with SNMP – Network Login through Telnet – Secure Communication with SSH – Serving Web Content through HTTP – Provisioning.

Unit - V Debugging Tools and Real Time Linux Systems

Eclipse – Debugging Application with gdb – Tracing – Performance Analysis – Memory Debugging – Hardware Tools. Real-Time Linux: Real-Time Processing – Real Time Kernel Requirements –Users of Real-Time Linux Computing. The Xenomai Real-Time System: Porting traditional RTOS applications to Linux –The Xenomai Architecture and Working – The real time Driver Model. RT Patch: Configuring the Kernel with the RT Patch.

Lecture: 45, Total: 45

9

9

9

9

9

TEXT BOOK:

1. Karim Yaghmour, Jon Masters, Gilad Ben-Yossef and Philippe Gerum, "Building Embedded Linux Systems", 2nd Edition, SPD -O'Reilly Publications, 2009.

- 1. P.Raghavan, Amol Lad and SriramNeelakandan, "EmbeddedLinux System Design & Development", Auerbach Publications, 2012.
- 2. Jonathan Corbet, Alessandro Rubini and Greg Kroah-Hartman, "Linux Device Drivers", 3rd Edition, SPD -O'Reilly Publications, 2011.

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	use Linux desktop and GNU tool chain with Eclipse IDE.	Applying (K3)
CO2	perform cross compilation of Linux kernel and port it to target board.	Applying (K3)
CO3	make use of the kernel modules and Images and setup a File System using Embedded Devices.	Applying (K3)
CO4	interpret the configuration of embedded Boot loaders and Networking services and build the communication using protocols.	Applying (K3)
CO5	perform debugging of hardware tools and develop the real time Driver model using real-Time Linux Systems.	Applying (K3)

					Маррі	ng of C	Os with	n POs a	nd PSO)s				
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1									3	2
CO2	3	2	1	1									3	2
CO3	3	2	1	1									3	2
CO4	3	2	1	1									3	2
CO5	3	2	1	1									3	2
– Slight, 2 –	Modera	ate, 3 – 3	Substar	tial, BT	- Bloom	's Taxo	nomy							

		ASSESSMEN	FPATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	40	30				100
CAT2	20	50	30				100
CAT3	20	40	40				100
ESE	30	40	30				100

20ITE16 DEEP LEARNING

Programme & Branch	B. Tech & Information Technology	Sem.	Category	L	Т	Р	Credit
Prerequisites	Machine Learning	7	PE	3	0	0	3

Preamble This course provides an introduction to machine learning, neural networks, and deep learning techniques. It also helps to understand and solve few real world problems using deep learning.

Unit - I Overview of Machine Learning

Learning Algorithms – Capacity, Overfitting and Underfitting – Hyper parameters and Validation Sets – Estimators, Bias and Variance – Bayesian Estimates – Maximum Likelihood Estimation – Supervised Learning Algorithms – Unsupervised Learning Algorithms – Stochastic Gradient Descent – Building a Machine Learning Algorithm – Challenges Motivating Deep Learning.

Unit - II Deep Feed forward Networks

Development Tools - A Practical Project Workspace - GNU Cross-Platform Development Toolchain - C Library Alternatives-Other Programming Languages - Eclipse: An Integrated Development Environment - Terminal Emulators. Kernel Considerations: Selecting a Kernel - Configuring the Kernel - Compiling the Kernel - Installing the Kernel.

Unit - III Regularization for Deep Learning

Parameter Norm Penalties – Dataset Augmentation – Noise Robustness – Semi-Supervised Learning – Multi-Task Learning – Early Stopping – Parameter Tying and Parameter Sharing – Bagging and Other Ensemble Methods – Dropout – Adversarial Training.

Unit - IV Convolution Networks

The Convolution Operation – Motivation – Pooling – Variants of the Basic Convolution Function – Structured Outputs - Efficient Convolution Algorithms - Random or Unsupervised Features. Application: Computer Vision

Unit - V Sequence Modeling - Recurrent and Recursive Nets

Recurrent Neural Networks – Bidirectional RNNs – Encoder-Decoder Sequence-to-Sequence Architectures – Deep Recurrent Networks – Recursive Neural Networks – The Long Short-Term Memory and Other Gated RNNs. Applications: Natural Language Processing.

Lecture: 45, Total: 45

9

9

9

9

9

TEXT BOOK:

1. Ian Goodfellow, Yoshua Bengio, and Aaron Courvill, "Deep Learning", 1st Edition, MIT Press, USA, 2016.

REFERENCES:

 Josh Patterson and Adam Gibsonosh Patterson and Adam Gibson, "Deep Learning – A Practitioner's Approach", 1st Edition, O'Reilly Media, 2017.

2. Indra den Bakker, "Python Deep Learning Cookbook", 1st Edition, Packt Publishing, 2017.

COURSE On comple		-	se, the s	students	will be a	able to							BT Map (Highest	
CO1 I	utilize th	e conce	pts of m	achine I	earning	algorith	ms						Applying	g (K3)
CO2	explain t	he funda	amental	s of dee	p neural	networl	ks and s	olve sin	nple prot	olems			g (K3)	
CO3 I	nake us	e of diffe	erent reg	gularizat	tion meth	nods for	Deep le	arning					Applying	g (K3)
	exemplif problem		oncepts	of CN	N mode	els and	apply it	for so	lving co	omputer v	ision rela	ated	Applying	g (K3)
CO5	explicate	e the cor	ncepts o	f RNN n	nodels a	nd apply	y it for so	olving N	atural La	anguage p	oroblems		Applying	g (K3)
					Мар	ping of	COs wi	th POs	and PS	Os				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1									3	2
CO2	3	2	1	1									3	2
CO3	3	2	1	1									3	2
CO4	3	2	1	1									3	2
CO5	3	2	1	1									3	2

		ASSESSMEN	FPATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	50	30				100
CAT2	20	50	30				100
CAT3	20	50	30				100
ESE	20	50	30				100

20ITE17 ETHICAL HACKING

Programme & Branch	B. Tech & Information Technology	Sem.	Category	L	Т	Р	Credit
Prerequisites	Computer Networks	7	PE	3	0	0	3

Preamble This course provides the fundamental knowledge about risks in computer and network security. It also provides information about various vulnerabilities and countermeasures

Unit - I Penetration Testing

Terminologies - Categories of Penetration Test - Writing Reports - Structure of a Penetration Testing Report - Vulnerability Assessment Summary - Risk Assessment – Methodology - Linux Basics: Major Linux Operating Systems - File Structure - Linux Scheduler -Users inside of Linux - Common Applications – BackTrack.

Unit - II Information Gathering, Target Enumeration and Port Scanning Techniques

Active, Passive and Sources of information gathering - Copying Websites Locally –Traceroute - NeoTrace - Cheops-ng -Intercepting a Response –WhatWeb –Netcraft - Basic Parameters -Xcode Exploit Scanner - Interacting with DNS Servers – Nslookup – DIG - Fierce, Zone Transfer with Host Command and Automation - DNS Cache Snooping-Attack Scenario -Automating Attacks - SNMP –Problem - Sniffing Passwords - SolarWinds Toolset -Sweep, Brute Force and Dictionary – Tools -Attack – Enumeration - Intelligence Gathering Using Shodan - Target enumeration and Port Scanning Techniques.

Unit - III Vulnerability Assessment & Network Sniffing

Introduction to Vulnerability Assessment - Pros and Cons –Nmap -Updation of database - Testing SCADA Environments with Nmap – Nessus. Sniffing: Types - Hubs versus Switches -Promiscuous versus Nonpromiscuous Mode - MITM Attacks - ARP Protocol Basics – working – Attacks -DoS Attacks –Dsnifftool - Using ARP Spoof to Perform MITM Attacks - Sniffing the Traffic with Dsniff - Sniffing Pictures with Drifnet - Urlsnarf and Webspy - Sniffing with Wireshark –Ettercap-ARP Poisoning - Hijacking Session with MITM Attack - ARP Poisoning with Cain and Abel - Sniffing Session Cookies with Wireshark - Hijacking the Session.

Unit - IV Basics of Exploitation

Introduction to Remote Exploitation -Understanding Network Protocols – Server Protocols - Attacking Network Remote Services - Common Target Protocols -Tools for cracking network remote services - Attacking SMTP - Attacking SQL Servers - Client Side Exploitation Methods: E-Mails Leading to Malicious Attachments & Malicious Links - Compromising Client Side Update -Malware Loaded on USB Sticks - Postexploitation:Acquiring Situation Awareness - Privilege Escalation - Maintaining Access -Data Mining - Identifying and Exploiting Further Targets.

Unit - V Wireless & Web Hacking

Wireless Hacking - Requirements -Aircracking- Hidden SSIDs - Monitor Mode - Monitoring Tool- Beacon Frames on Wireshark, Airodump-ng- Wireless Adapter in Monitor Mode - Determining the Target - Cracking a WPA/WPA2 Wireless Network Using Aircrack-ng- Capturing Packets and Four-Way Handshake. Web Hacking: Attacking the Authentication - Brute Force and Dictionary Attacks - Types of Authentication - Crawling Restricted Links - Testing for the Vulnerability - Authentication Bypass with Insecure Cookie Handling - SQL injection - XSS –DOM based XSS, BeEF – CSRF - Bypassing CSRF and BeEF with XSS.

Lecture: 45, Total: 45

9

9

9

9

9

TEXT BOOK:

1. Rafay Baloch, Ethical Hacking and Penetration Testing Guide –CRC Press, 1st Edition, 2015

- 1. Sean-Philip Oriyano, CEH v9: Certified Ethical Hacker Version 9, Wiley publication, 3rd Edition, 2016.
- 2. Stuart McClure, Joel Scambray and Goerge Kurtz, "Hacking Exposed 7 : Network Security" Secrets & Solutions", Tata Mcgrawhill Publishers, Seventh Edition, 2012.
- 3. EC- Council, Ethical Hacking and Countermeasures: Attack Phases, Cengage Learning, 2009.

COURSE On compl		-	se, the s	students	will be a	able to							BT Ma (Highest		
	Illustrate about lin	•			ng, vulne	erabilitie	s and ris	sks avai	lable in a	a system a	and expla	in	Applying (K3)		
	outline a various t	0		Applying (K3)											
CO3	interpret various vulnerabilities and apply suitable tools to carry out sniffing in the networks												Applying (K3)		
	make us USBs.	e of the	exploita	ition ava	ilable in	network	< protoc	ols, serv	ers, clie	nts, servio	es and		Applying	g (K3)	
CO5	demons	trate how	v to exe	cute wire	eless an	d web h	acking (using ap	propriat	e tools			Applying	g (K3)	
					Мар	ping of	COs wi	ith POs	and PS	Os					
COs/POs	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	1	1									3	2	
CO2	3	2	1	1									3	2	
CO3	3	2	1	1									3	2	
CO4	3	2	1	1									3	2	
CO5	3	2	1	1									3	2	
1 – Slight,	2 – Mo	derate, 3	8 – Subs	tantial, I	BT- Bloc	om's Tax	konomy								

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	30	30	40				100						
CAT2	20	30	50				100						
CAT3	20	30	50				100						
ESE	20	30	50				100						

tasks and analysis of their performance for massive data sets.

20ITE18 INFORMATION RETRIEVAL

Programme & Branch	B. Tech & Information Technology	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	7	PE	3	0	0	3
Preamble This cou	rse provides a solid grasp of the fundamental ideas of in	formatio	n retrieval stra	ategies	and a	n idea	to apply

modeling techniques to various applications. It also deals with the development of retrieval algorithms for web search

Unit - I Introduction and Modeling

Information Retrieval – The IR Problem – The IR System – Modeling: Classic Information Retrieval – Set Theoretic, Algebraic and Probabilistic Models – Retrieval Evaluation.

Unit - II Relevance Feedback and Documents

A Framework for feedback methods-Explicit feedback-Implicit feedback through local analysis-Global analysis- Documents: Metadata-Document Formats-Text Properties-Document Preprocessing-Organizing documents-Text Compression.

Unit - III Queries, Indexing and Searching

Query Languages-Query Properties-Indexing and Searching: Introduction-Inverted Indexes –Signature Files –Suffix Trees and Suffix Arrays-Sequential Searching –Multidimensional Indexing.

Unit - IV Web Retrieval and Web Crawling

Introduction-The Web-Search Engine Architectures-Ranking-User Interaction-Browsing-Web Crawling.

Unit - V Structure Text and Multimedia Information Retrieval

Structured Text Retrieval-Multimedia Information Retrieval-Enterprise Search-Tasks-Architecture-Evaluation.

Lecture: 45, Total: 45

9

9

9

9

9

TEXT BOOK:

1. Ricardo Baeza-Yate, Berthier Ribeiro-Neto, "Modern Information Retrieval", 2nd Edition, Pearson Education, 2011.

REFERENCES:

1. Chowdhury G.G, "Introduction to Modern Information Retrieval", 2nd Edition, Neal-Schuman Publishers, 2003.

2. Daniel Jurafsky and James H. Martin, "Speech and Language Processing", 2nd Edition, Prentice Hall, 2008.

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	apply the basic concepts of information retrieval	Applying (K3)
CO2	utilize the principles of relevance feed back and perform preprocessing on documents	Applying (K3)
CO3	make use of different indexing and searching mechanisms	Applying (K3)
CO4	perform web crawling for web information retrieval	Applying (K3)
CO5	develop and evaluate search engines	Applying (K3)

Mapping of COs with POs and PSOs														
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1									3	2
CO2	3	2	1	1									3	2
CO3	3	2	1	1									3	2
CO4	3	2	1	1									3	2
CO5	3	2	1	1									3	2

1 – Slight, 2 – Moderate, 3 – Substantial, BT- E	Bloom's Taxonomy
--	------------------

		ASSESSMEN	FPATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	50	20				100
CAT2	30	40	30				100
CAT3	30	40	30				100
ESE	30	30	40				100

20ITE19 SOFTWARE DEFINED NETWORKS

Programme & Branch	B. Tech & Information Technology	Sem.	Category	L	Т	Р	Credit
Prerequisites	Computer Networks	7	PE	3	0	0	3

Preamble This course deals with the concepts of Software Defined Networking and its use cases in various environments.

Unit - I Introduction to SDN

Introduction to SDN: Basic packet switching terminology – The modern data center – Traditional switch architecture – Autonomous and dynamic forwarding table. Why SDN?: Evolution of switches and control planes – Cost-Data center innovation – Data center needs. The Genesis of SDN: The evolution of networking technology – Forerunners of SDN

Unit - II SDN and OpenFlow

SDN and OpenFlow: How SDN works: Fundamental characteristics of SDN – SDN operation – SDN devices – SDN controllers – Alternate SDN methods. The OpenFlow specification: OpenFlow overview – OpenFlow 1.0 and OpenFlow basics – OpenFlow 1.1 Additions – OpenFlow 1.2 Additions – OpenFlow 1.3 Additions – OpenFlow Limitations.

Unit - III SDN Interfaces

SDN Interfaces: Alternative definitions of SDN: Potential drawbacks of open SDN – SDN via APIs – SDN via hypervisor based overlays – SDN via opening up the device – Network Functions virtualization – Alternatives overlap and ranking. SDN open source: Open source licensing issues – OpenFlow source code – Switch implementation – Controller implementations – Orchestration and Network virtualization – Simulation, Testing and Tools – OpenStack – Applying SDN open source.

Unit - IV SDN in Data Center

SDN in data center: Data center definition – Data center demands – Tunneling technologies for the data center- Path technologies in the data center – SDN and shortest path complexity – Ethernet fabrics in the data center – SDN use cases in the data center – Open SDN versus Overlays in the data center – Real-world data center implementation.

Unit - V SDN Environments and Applications

SDN environments and applications: SDN in other environment: Wide area networks – Service provider and carrier networks – Campus networks – Hospitality networks – Mobile networks – In-Line network functions – Optical networks. SDN Applications: Reactive versus Proactive applications – A simple reactive Java application – Creating network virtualization tunnels – offloading flows in the data center – Access control for the campus – Traffic engineering for the service providers.

Lecture: 45, Total: 45

9

9

9

9

9

TEXT BOOK:

1. Paul Goransson and Chuck Black, "Software Defined Networks: A Comprehensive Approach", 1st Edition, Morgan Kaufmann, USA, 2014.

REFERENCES:

1. SiamakAzodolmolky, "Software Defined Networking with OpenFlow", 1st Edition, Packt Publishing, 2013

2. Thomas D. Nadeau, Ken Gray, "SDN: Software Defined Networks", 1st Edition, O'Reilly Media, 2013

COURSE On comp			se, the s	students	will be a	able to							BT Map (Highest			
CO1	outline th	ne differe	ence bet	tween tr	aditional	networ	ks and s	oftware	defined	networks			Applying (K3)			
CO2	model a	network	ing task	using C	penFlov	N							Applying (K3)			
CO3	make us	e of SDI		Applying (K3)												
CO4	utilize SDN in the data center Applying (K3)												J (K3)			
CO5	develop	various	applicat	ions of S	SDN								Applying	J (K3)		
					Мар	ping of	COs wi	th POs	and PS	Os						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	3	2	1	1									3	2		
CO2	3	2	1	1									3	2		
CO3	3	2	1	1									3	2		
CO4	3	2	1	1									3	2		
CO5	3	2	1	1									3	2		
1 – Slight	, 2 – Moo	derate, 3	8 – Subs	tantial, I	BT- Bloc	m's Tax	konomy									

		ASSESSMEN	FPATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	35	45				100
CAT2	20	40	40				100
CAT3	10	30	60				100
ESE	20	30	50				100

20ITE20 GAME THEORY AND ITS APPLICATIONS

Programn Branch	ne &	B. Tech & Information Technology	Sem.	Category	L	т	Р	Credit
Prerequis	ites	Nil	7	PE	3	0	0	3
Preamble		se on game theory deals with mathematical mode also describes how game theory is applied in ec	• •		•			
Unit - I	Games							9
		Behavior in Game Best responses and Domin d strategies and dynamic strategies.	ant Strategies N	lash Equilibri	um Mi	xed St	rategie	es-Pareto
Unit - II	Non-coo	perative Games						9
Discrete s problems.	tatic game	es Continuous static games Relation to other M	lathematical Pro	blems: Nonlin	ear op	timizati	on Fix	ed point-
Unit - III	Equlibria	and Dynamic Games						9
Existence Games un		ria Computation of Equilibria Special matrix gam tainty.	es Uniqueness o	f Equilibria Re	epeate	d and [Dynam	ic-games
Unit - IV	Coopera	tive Games						9
Solutions I	based on o	characteristic function-Conflict Resolution-Multi o	bjective optimiza	tion-Social cho	oice.			
Unit - V	Case stu	dies and Applications						9
A salesr distributior		emma- Oligopoly in water management A fo	restry managem	ent problem	Interna	ational	fishing	g Water-

Lecture: 45, Total: 45

TEXT BOOK:

1. David Easley and jon Kleinberg, "Networks, Crowds and Markets: Reasoning about a highmy Connected World", Cambridge University, USA, 2010

2. Matsumoto A., Szidarovszky F, "Game Theory and Applications", Springer, 2016

REFERENCES:

1. E.M.Barron, "Game Theory: An Introduction", Wiley, 2009.

2. Leon Petrosjan, ValdimirV.Mazalov, "Game Theory & Applications", Nova Science Publishers Inc, 2015.

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	apply the strategies of game theory and Nash Equilibria to the real world problems	Applying (K3)
CO2	solve the problems of non-cooperative static games and find their optimized solutions	Applying (K3)
CO3	apply the concept of equilibria and dynamic games to identify the certainty	Applying (K3)
CO4	solve problems in cooperative games and relate them to multi objective optimization	Applying (K3)
CO5	model some real world problems using the principles of game theory and its applications	Applying (K3)

					Mappi	ng of C	Os with	POs a	nd PSO	s				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1									3	2
CO2	3	2	1	1									3	2
CO3	3	2	1	1									3	2
CO4	3	2	1	1									3	2
CO5	3	2	1	1									3	2

1 – Slight, 2 – Moderate, 3 – Substantial, BT- E	Bloom's Taxonomy
--	------------------

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	20	60	20				100							
CAT2	30	60	10				100							
CAT3	30	50	20				100							
ESE	20	50	30				100							

20ITE21 SOFTWARE QUALITY ASSURANCE

Programme & Branch	B. Tech & Information Technology	Sem.	Category	L	Т	Р	Credit
Prerequisites	Software Engineering	7	PE	3	0	0	3

Preamble This course presents methods, tools and procedures that enable to control the quality of software products and provides the student with a foundation for building quality software

Unit - I Software Quality in Business Context

Defining Quality – Need for Quality – Quality Control Vs Quality assurance – Quality assurance at each phase of SDLC. Managing software Quality in an Organization: QMS – Need for SQA group in an Organization. Planning for SQA : Software Quality assurance plans – Organizational level initiatives

Unit - II Product Quality and Process Quality

Introduction – Software systems evolution – Product quality – Models for software product Quality – Process Quality. Software Measurement and Metrics : Introduction – Measurement during software life cycle context – Defect metrics – Metrics for software maintenance – Classification of software metrics – Requirements related metrics – Measurements and process improvement – Measurement principles.

Unit - III Walkthroughs and Inspections

Introduction – Structured walkthroughs – Inspections – Various roles and responsibilities involved in Reviews / Inspections – Some psychological aspects of reviews. Software Configuration Management : Need for SCM – Software configuration management activities – Personnel in SCM activities

Unit - IV Software Quality Assurance Standardization

ISO 9000 – Origin of ISO 9000 – Work of ISO – ISO standards development process. ISO 9001 : 2000 – ISO Certification – Assessment / Audit preparation – Assessment process – ISO consulting services and consultants. Software CMM and other Process Improvement Models : The Capability Maturity Model for software – An overview – Practices followed at mature organizations – Types of CMMs Model

Unit - V Software Testing

Purpose of testing – Differences between inspection and testing – Testing Vs debugging – Testing life cycle – Roles and responsibilities in testing – Test artifacts – The test plan – The V- Model for testing phases – Testing techniques – Test metrics – Risk-based testing – Human issues and challenges in testing.

Lecture: 45, Total: 45

9

9

9

9

9

TEXT BOOK:

1. Nina S. Godbole, —Software Quality Assurance Principles and Practice, Narosa Publishing House, Second Edition, 2017

- 1. Mordechai Ben-Menachem, Garry S. Marliss, —Software Quality, 2nd Edition, Vikas Publishing House Pvt. Ltd., New Delhi, 2014
- 2. Gopalswamy Ramesh and Srinivasan Desikan, —Software Testing: Principles and PracticesII, 6th Impression, Pearson Education, New Delhi, 2014

COURSE On comple		-	se, the s	tudents	will be a	able to							BT Map (Highest			
CO1 ι	utilize th	e conce	ots, met	rics, and	l models	s of softw	ware qua	ality assu	urance ir	n business	s context		Applying (K3)			
CO2 a	apply va	rious pro	oduct an	d proce	ss qualit	y metric	s in SQ/	4					Applying (K3)			
CO3 i	llustrate	the sigr	ificance	of walk	throughs	s, inspec	ctions ar	nd SCM					Applying (K3)			
CO4 a	apply IS	C and C	MM pra	ctices in	SQA								Applying	J (K3)		
CO5	choose t	he appro	opriate s	oftware	testing	techniqu	ues to ca	ater the r	need of a	a project			Applying	J (K3)		
					Мар	ping of	COs wi	th POs a	and PSC	Os						
COs/POs	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	3	2	1	1									3	2		
CO2	3	2	1	1									3	2		
CO3	3	2	1	1									3	2		
CO4	3	2	1	1									3	2		
CO5	3	2	1	1									3	2		

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	30	50	20				100						
CAT2	30	30	40				100						
CAT3	20	30	50				100						
ESE	10	40	50				100						

20ITE22 CYBER FORENSICS

Programme & Branch	IT	Sem.	Category	L	т	Р	Credit
Prerequisite	Cryptography and Network Security	7	PE	3	0	0	3

Preamble This course imparts knowledge on fundamental principles and techniques essential for digital forensics investigation and security management.

Unit – I

Computer Investigations: Computer Investigations: Preparing a Computer investigation – Taking a systematic approach – Assessing the case – Planning Investigation – Securing evidence– Procedures for Corporate High – Tech investigations – Conducting an Investigation – Completing the case.

Unit - II

Data Acquisition: Understanding storage formats for digital evidence – Determining the best acquisition method - Contingency planning for image acquisitions – Using Acquisition tools: Windows XP Write-protection with USB Devices – Validating Data Acquisitions: Windows Validation Methods – Performing RAID Data Acquisitions – Using Remote Network Acquisition tools – Using other Forensics Acquisition tools.

Unit – III

Processing Crime and Incident Scenes: Identifying Digital Evidence – Collecting Evidence in Private Sector Incident Scenes – Processing Law Enforcement Crime Scenes – Preparing for a Search –Securing a Computer Incident or Crime Scene –Seizing Digital Evidence at the Scene –Storing Digital Evidence –Obtaining a Digital Hash –Reviewing a Case.

Unit - IV

Computer Forensic Tools, Analysis and Validation: Evaluating Computer Forensics Tool Needs -Computer Forensics Software Tools – Computer Forensics Hardware Tools –Validating and Testing Forensic Software - Computer Forensics Analysis and Validation: Determining Data Collection and Analysis –Validating Forensic Data –Addressing Data-Hiding Techniques – Performing Remote Acquisitions.

Unit - V

Recovering Graph Files, Email Investigations: Recognizing Graph File- Understanding Data Compression- Locating And Recovering Graphic Files- Identifying Un known File Formats- Understanding Copyright Issues- Investigating Email Crimes And Violations- Understanding Email Servers- Using Specialized Email Forensic Tools.

Lecture: 45, Total: 45 Hours

9

9

9

9

9

TEXT BOOK:

1. Nelson Bill, Phillips Amelia and Steuart Christopher, "Guide to Computer Forensics and Investigations", 4th Edition, Cengage Learning, USA, 2017.

- 1. Marie-Helen Mara, "Computer Forensics", 2nd Edition, Jones and Bartlett Learning, 2015.
- 2. Albert Marcella Jr, "Cyber Forensics", 2nd Edition, Auerbach Publications, 2007.

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	apply digital forensic investigation with a systematic approach	Applying (K3)
CO2	make use of various tools for data acquisition	Applying (K3)
CO3	illustrate the significance of digital evidence in a crime scene	Applying (K3)
CO4	apply forensic tools in forensic examination	Applying (K3)
CO5	build the recovery of graphic files and investigate E-mail crimes	Applying (K3)

					Mappi	ng of C	Os with	n POs a	nd PSO	s				
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1									3	2
CO2	3	2	1	1									3	2
CO3	3	2	1	1									3	2
CO4	3	2	1	1									3	2
CO5	3	2	1	1									3	2
1 - Slight, 2 -	Modera	ate, 3 – 3	Substar	tial, BT	- Bloom	's Taxoi	nomy							

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	25	50	25				100							
CAT2	25	50	25				100							
CAT3	25	50	25				100							
ESE	20	50	30				100							

20ITE23 MULTICORE ARCHITECTURE

Programme & Branch	B.E. – Computer Science and Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Computer Organization	7	PE	3	0	0	3

Preamble This course focuses on performance improvement using instruction level, data level, thread level and request level parallelism.

Unit - I Fundamentals of Quantitative Design and Analysis

Classes of Computers – Trends in Technology, Power, Energy and Cost – Dependability – Measuring, Reporting and Summarizing Performance – Quantitative Principles of Computer Design – Classes of Parallelism ILP, DLP, TLP and RLP – Multi Threading – SMT and CMP Architectures – Limitations of Single Core Processors – The Multicore era – Case Studies of Multicore Architectures.

Unit - II Memory Hierarchy Design

Introduction – Basics of Memory Hierarchies – Memory Technology and Optimizations – Ten Advanced Optimizations of Cache Performance – Virtual Memory and Virtual Machines – Design of Memory Hierarchies – Case Studies

Unit - III TLP and Multiprocessors

Introduction – Vector Architectures – SIMD Instruction Set Extensions for Multimedia – Graphics Processing Units – Detecting and Enhancing Loop Level Parallelism – Comparison of a GPU and a MIMD With Multimedia SIMD – Case Studies

Unit - IV TLP and Multiprocessors

Centralized Shared-Memory Architectures – Performance of Symmetric Shared-Memory Multiprocessors – Distributed Shared-Memory and Directory-Based Coherence – Synchronization basics – Models of Memory Consistency introduction – Inter Connection Networks – Buses, Crossbar and Multi-stage interconnection networks – Performance and Energy Efficiency of the Intel i7 920 Multicore – Shared Memory Programming with OpenMP

Unit - V RLP and DLP in Warehouse Scale Computers

Programming Models and Workloads for Warehouse scale Computers – Computer Architecture of Warehouse-Scale Computers – Domain Specific Architectures: Introduction – Guidelines for DSAs – Example Domain: Deep Neural Network – Google's Tensor Processing Unit, an interface Data Center Accelerator

Lecture: 45, Total:45

9

9

9

9

9

TEXT BOOK:

1. John L. Hennessey and David A. Patterson, "Computer Architecture – A Quantitative Approach", 6th Edition, Morgan Kaufmann, Elsevier, 2019. (Units 1-5)

2. Richard Y. Kain, "Advanced Computer Architecture: A Systems Design Approach", 1st Edition, Prentice Hall, 2015.

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	investigate the limitations of ILP and the need for multicore architectures	Analyzing (K4)
CO2	analyze the importance of memory hierarchy and benefits of cache memory	Analyzing (K4)
CO3	explain the architecture of Vector/GPU processor and make use of loop level parallelism to achieve data level parallelism	Applying (K3)
CO4	analyze the cache coherence issues using different memory architectures and different types of inter connection networks	Analyzing (K4)
CO5	inspect the architectures of GPUs, warehouse scale computers and choose an appropriate model for a given problem	Analyzing (K4)

			Mapping of COs with POs and PSOs											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	3	2										3	2
CO2	3	3	2										3	2
CO3	3	2	1										3	2
CO4	3	3	2										3	2
CO5	3	3	2										3	2
I – Slight, 2 –	Moderate	e, 3 – Su	bstantia	I, BT- B	loom's	Taxonoi	my							

ASSESSMENT PATTERN - THEORY							
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	30	30	20			100
CAT2	20	40	40				100
CAT3	20	30	30	20			100
ESE	10	30	30	30			100

20ITE24 BUSINESS INTELLIGENCE AND ITS APPLICATIONS

Programme& Branch	IT	Sem.	Category	L	Т	Р	Credit
Prerequisite	Database management systems	7	PE	3	0	0	3

Preamble	This course enables the students to apply BI concepts and techniques to various applications for making better decisions.	
Unit – I	9	

Unit – I

Introduction and Business View of Information Technology Applications: Core Business Processes - Baldrige Business Excellence Framework - Purpose of using IT in Business - Characteristics of Internet-ready IT Applications - Enterprise Applications – Information users and their requirements. Case Study: GoodLife HealthCare Group, Good Food Restaurants Inc, TenToTen Retail Stores. Types of Digital Data: Introduction – Structured Data – Unstructured Data – Semi-Structured Data -Difference between semi-structured and structured data.

Unit – II

Business Intelligence and Data Integration: Business Intelligence: Definition – Evolution – Need for BI – BI Value Chain – Business Analytics – BI Framework – BI Users – BI Applications – BI Roles and Responsibilities – Data Integration : Need for Data Warehouse – Definition of Data Warehouse – Data mart – Ralph Kimball's Approach vs. W.H.Inmon's Approach – Goals of Data Warehouse – ETL Process – Data Integration Technologies – Data Quality – Data Profiling.

Unit - III

OLTP, OLAP and Multidimensional Data Modeling: OLTP – OLAP – OLAP Architectures – Data Models – Role of OLAP Tools in BI - OLAP Operations - Basics of Data Modeling - Types of Data Model - Data Modeling Techniques - Fact Table -Dimension Table – Dimensional Models – Dimensional Modeling Life Cycle – Designing the Dimensional Model.

Unit - IV

Performance Management and Enterprise Reporting: Measures, Metrics, KPIs and Performance Management: Understanding Measures and Performance – Measurement System – Role of metrics – KPIs – Enterprise Reporting: Reporting Perspectives – Report Standardization and Presentation Practices – Enterprise Reporting Characteristics – Balanced Scorecard – Dashboards – Creating Dashboards – Scorecards vs. Dashboards – Analysis.

Unit - V

BI Applications: Understanding Business Intelligence and Mobility- the need for business intelligence on the move – BI Mobility time line – Data Security Concerns for Mobile BI – Business Intelligence and Cloud Computing – Business Intelligence for ERP systems – Social CRM and Business Intelligence.

TEXT BOOK:

Lecture: 45, Total: 45Hours

9

9

9

9

1. Prasad R.N. and Seema Acharya, "Fundamentals of Business Analytics", 2nd Edition, Wiley, 2016.

REFERENCES:

1. Ramesh Sharda, DursunDelen, Efraim Turban, "Business Intelligence, Analytics, and Data Science: A Managerial Perspective", 4th Edition, Pearson Education, 2017.

2. David Loshin, "Business Intelligence: The Savvy Manager's Guide", 2nd Edition, Morgan Kaufmann, USA, 2012.

	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	demonstrate the enterprise view of IT applications and identify the different types of digital data	Applying (K3)
CO2	make use of BI concepts and techniques to experiment ETL process	Applying (K3)
CO3	illustrate OLTP, OLAP systems and design their multi-dimensional models	Applying (K3)
CO4	design model dashboard, balanced score card for performance management	Applying (K3)
CO5	apply BI to mobile, cloud, ERP and social CRM systems	Applying (K3)

					Маррі	ng of C	Os with	n POs a	nd PSC)s				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	2	1	1									3	2
CO2	3	2	1	1									3	2
CO3	3	2	1	1									3	2
CO4	3	2	1	1									3	2
CO5	3	2	1	1									3	2
1 – Slight 2 –	Moders	to 3 -	Substan	tial BT	- Bloom	'e Tavo	nomv							

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

		ASSESSMEN	FPATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	40	40				100
CAT2	20	40	40				100
CAT3	20	40	40				100
ESE	20	40	40				100

20ITE25 PATTERN RECOGNITION

Programme& Branch	B.Tech. & Information Technology	Sem.	Category	L	Т	Р	Credit
Prerequisites	NIL	7	PE	3	0	0	3

UNIT – I ESTIMATION

Statistical pattern recognition –Stages in pattern recognition problem – Issues – Supervised vs. unsupervised – Approaches to statistical pattern recognition. Estimation – Normal based models – Normal mixture models – Bayesian estimates. Density estimation – Histogram methods – K-NN method – Expansion by basis function - Kernel methods.

UNIT – II LINEAR and NON-LINEAR DISCRIMINANT ANALYSIS

Introduction – two class algorithm – multiclass algorithm – logistic discrimination – Nonlinear discriminant analysis (Neural Networks) – introduction – optimization criteria – Radial basis functions –multilayer perceptron – Bayesian approaches.

UNIT – III CLASSIFICATION TREES AND FEATURE SELECTION AND EXTRACTION

Introduction – Classification tree construction – Other issues – Feature Selection and Extraction - Introduction – feature selection – Linear feature extraction – multidimensional scaling

UNIT – IV CLUSTERING

Introduction – Hierarchical methods – Quick partitions – Mixture Models – Sum of Squares methods – Cluster validity. Additional topics - Performance Assessment – Comparing classifier performance – Model selection – Learning with unreliable classifiers – Missing Data – Outlier detection and robust procedures – Discrete Discriminant Analysis – Combining classifiers

UNIT – V HMMs and SVM

State machines - Hidden Markov Models: Maximum Likelihood for the HMM, The Forward and Backward algorithm, Sum-Product Algorithm for the HMM, Scaling factors, The Viterbi algorithm, Extensions of the Hidden Markov Model - Support Vector Machines: Maximum Margin Classifiers, Relevance Vector Machines

Total: 45

9

9

9

9

9

TEXT BOOK:

1. Andrew Webb, "Statistical Pattern Recognition", 2nd Edition, Wiley-Blackwell, London, 2002

REFERENCES:

1. Richard O. Duda, Peter E. Hart and David G. Stork, "Pattern Classification", 2nd Edition, Wiley, London, 2007

2. M. Narashimha Murthy, V. Susheela Devi, "Pattern Recognition", Springer, 2011

	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1:	Paraphrase pattern classifier algorithms and model estimation procedures.	Applying (K3)
CO2:	Illustrate the difference between linear and non-linear discriminant analysis	Applying (K3)
CO3:	Utilize classification trees and outline feature extraction and selection	Applying (K3)
CO4:	model clustering algorithmsand paraphrase performance issues	Applying (K3)
CO5:	apply Support Vector Machines and Hidden Markov Model algorithms for real time applications	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1									3	2
CO2	3	2	1	1									3	2
CO3	3	2	1	1									3	2
CO4	3	2	1	1									3	2
CO5	3	2	1	1									3	2
1 – Slight, 2 –	Moderat	te, 3 – S	ubstanti	ial, BT- I	Bloom's	Taxono	my							

	ASSESSMENT PATTERN - THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	40	30	30				100					
CAT2	40	30	30				100					
CAT3	30	40	30				100					
ESE	30	40	30				100					

20ITE26 SOFTWARE PROJECT MANAGEMENT

Prerequisites Software Engineering 7 PE 3 0 0 Preamble estimation, monitoring and control especially for software projects. This course provides knowledge about project management activities which include project evaluation, planning, estimation, monitoring and control especially for software projects. Unit -1 Introduction to Software Project Management: Introduction to Software Project Management: Types of project – Activities – Plans, methods methodologies – Ways of Categorizing software projects – Stakeholders – Setting objectives – Business case – Project Evalua Introduction – A business case – Project Portfolio Management – Evaluation of Individual Projects – Cost Benefit Evalua Introduction – A business case – Project Portfolio Management – Evaluation of resources within programme – Strat Techniques – Risk Evaluation – Programme management – Managing the allocation of resources within programme – Strat management – Benefits. Unit -11 Project Planning Project Planning: Introduction – Select project - Identify project scope and objectives, project infrastructure – Analyse pro characteristics – Identify project products and activities – Estimate effort for activity – Identify activity risks – Allocate Resourc Review plan – Execute plan. Software Effort Estimation : Introduction – Estimates – Problems with over and under estimat Basis – Techniques – Bottom-up Estimating – Top down approach and parametric models – Expert Judgement – Estimatin analogy – Albrecht Function Point analysis – Function Points Mark II - COSMIC FFP – COCOMO II. Unit -111 Activity Planning: Identifying the critical apth	Programm Branch	ne &	B. Tech & Information Technol	logy	Sem.	Category	L	т	Р	Credit
estimation, monitoring and control especially for software projects. Unit - 1 Introduction to Software Project Management: Introduction to Software Project Management: Introduction - Importance – Types of project – Activities – Plans, methods methodologies – Ways of Categorizing software projects – Stakeholders – Setting objectives – Business case – Project Evalua and failure - Management and management control – Traditional vs. Modern project management practices. Project Evalua Introduction – A business case – Project Portfolio Management – Evaluation of Individual Projects – Cost Benefit Evalua Techniques – Risk Evaluation – Programme management – Managing the allocation of resources within programme – Strata Programme management – Creating a programme – Aids to programme management – Reservations about program management – Benefits. Unit - II Project Planning Project Planning: Introduction – Select project - Identify project scope and objectives, project infrastructure – Analyse procharacteristics – Identify project products and activities – Estimate effort for activity – Identify activity risks - Allocate Resource Review plan – Execute plan. Software Effort Estimation : Introduction – Estimates – Problems with over and under estimate Basis – Techniques – Bottom-up Estimating – Top down approach and parametric models – Expert Judgement – Estimatin analogy – Albrecht Function Point analysis – Function Points Mark II - COSMIC FFP – COCOMO II. Unit - III Activity Planning Project Duration – Time dimension - Forward Pass – Backward Pass – Identifying the critical path - Activity Planning the Project Duration – Identifying critical activities - Activity on Arrow Networks. Risk Management. Tevaluating risks to the schedule – Applying the		ites	Software Engineering		7	PE	3	0	0	3
estimation, monitoring and control especially for software projects. Unit - 1 Introduction to Software Project Management: Introduction to Software Project Management: Introduction - Importance – Types of project – Activities – Plans, methods methodologies – Ways of Categorizing software projects – Stakeholders – Setting objectives – Business case – Project Evalua and failure - Management and management control – Traditional vs. Modern project management practices. Project Evalua Introduction – A business case – Project Portfolio Management – Evaluation of Individual Projects – Cost Benefit Evalua Techniques – Risk Evaluation – Programme management – Managing the allocation of resources within programme – Strata Programme management – Creating a programme – Aids to programme management – Reservations about program management – Benefits. Unit - II Project Planning Project Planning: Introduction – Select project - Identify project scope and objectives, project infrastructure – Analyse procharacteristics – Identify project products and activities – Estimate effort for activity – Identify activity risks - Allocate Resource Review plan – Execute plan. Software Effort Estimation : Introduction – Estimates – Problems with over and under estimate Basis – Techniques – Bottom-up Estimating – Top down approach and parametric models – Expert Judgement – Estimatin analogy – Albrecht Function Point analysis – Function Points Mark II - COSMIC FFP – COCOMO II. Unit - III Activity Planning Cativity Planning: Objectives – Project Schedule – Projects and Activities - Sequencing and Scheduling Activity F - Shothening the Project Duration – Identifying critical activities - Activity on Arrow Networks. Risk Management. Net Categories of Risk – Framework for										
Introduction to Software Project Management: Introduction - Importance – Types of project – Activities – Plans, methods methodologies – Ways of Categorizing software projects – Stakeholders – Setting objectives – Business case – Project Soft Successes and failure - Management and management control – Traditional vs. Modern project management practices. Project Evalua Introduction – A business case – Project Portolio Management – Evaluation of Individual Projects – Cost Benefit Evalua Techniques – Risk Evaluation – Programme management – Managing the allocation of resources within programme – Strat programme management – Creating a programme – Aids to programme management – Reservations about program management – Benefits. Unit · II Project Planning Project Planning: Introduction – Select project - Identify project scope and objectives, project infrastructure – Analyse procharacteristics – Identify project products and activities – Estimate effort for activity – Identify activity risks - Allocate Resource Review plan – Execute plan. Software Effort Estimation : Introduction – Estimates – Problems with over and under estimatin Basis – Techniques – Bottom-up Estimating – Top down approach and parametric models – Expert Judgement – Estimatin analogy – Albrecht Function Point analysis – Function Points Mark II - COSMIC FFP – COCOMO II. Unit · III Activity Planning Activity Planning: Objectives – Project Schedule – Projects and Activities - Sequencing and Scheduling Activities – Nett Planning Models – Formulation - Identifying critical activities - Activity on Arrow Networks. Risk Management Ric Categories of Risk – Framework for dealing with risk – Risk Identification – Risk Assessment – Risk Planning – Management – Evaluating risks to the schedule – Applying the PERT Technique – Monte Carlo Simulation – Critical concepts. Unit · V Monitoring and Control Wonitoring and Control: Creating Framework – Collecting the Data – Review - Visualizing Progress – Cost Monintoring – Ea Value Analysis – Prioritizing Monintoring –					ies which	n include proje	ect eva	luation	plann	ing,
methodologies – Ways of Categorizing software projects – Stakeholders – Setting objectives – Business case – Project Evalua and failure - Management and management control – Traditional vs. Modern project management practices. Project Evalua Introduction – A business case – Project Profolio Management – Evaluation of Individual Projects – Cost Benefit Evaluz Techniques – Risk Evaluation – Creating a programme management – Managing the allocation of resources within programme – Strat programme management – Creating a programme – Aids to programme management – Reservations about program management – Benefits. Unit - II Project Planning Project Planning: Introduction – Select project - Identify project scope and objectives, project infrastructure – Analyse procharacteristics – Identify project products and activities – Estimate effort for activity – Identify activity risks - Allocate Resource Review plan – Execute plan. Software Effort Estimation : Introduction – Select project - Top own approach and parametric models – Expert Judgement – Estimatin analogy – Albrecht Function Point analysis – Function Points Mark II - COSMIC FFP – COCOMO II. Unit - III Activity Planning Activity Planning: Objectives – Project Schedule – Projects and Activities - Sequencing and Scheduling Activities – Neth Planning Models – Formulation - Time dimension - Forward Pass – Backward Pass – Identifying the critical path - Activity Planning Models – Formulation - Time dimension - Forward Pass – Backward Pass – Identifying the critical path - Activity Concepts. Unit - IV Monitoring and Control Monitoring and Control Monitoring - Getting Project Back To Target – Change Control. Managing Contracts: Introducti Types of Contract – Stages In Contract Placement – Typical Terms of a Contract – Contract Management – Acceptance. Unit - V Managing People Hanaging People: Introduction – Understanding Behaviour – Dragizational Behaviour: A Background – Selecting the Ferson For The Job – Instruction in the best methods – Motivation – The Oldham–Hackman	Unit - I	Introduc	tion to Software Project Manage	ement:						9
Project Planning: Introduction – Select project - Identify project scope and objectives, project infrastructure – Analyse procharacteristics – Identify project products and activities – Estimate effort for activity – Identify activity risks - Allocate Resource Review plan – Execute plan. Software Effort Estimation : Introduction – Estimates – Problems with over and under estimate Basis –Techniques – Bottom-up Estimating – Top down approach and parametric models – Expert Judgement – Estimatin analogy – Albrecht Function Point analysis – Function Points Mark II - COSMIC FFP – COCOMO II. Unit - III Activity Planning Activity Planning: Objectives – Project Schedule – Projects and Activities - Sequencing and Scheduling Activities –Netr Planning Models – Formulation - Time dimension - Forward Pass – Backward Pass – Identifying the critical path - Activity F Planning the Project Duration – Identifying critical activities - Activity on Arrow Networks. Risk Management: Ris Categories of Risk – Framework for dealing with risk – Risk Identification – Risk Assessment – Risk Planning – management – Evaluating risks to the schedule – Applying the PERT Technique – Monte Carlo Simulation – Critical c concepts. Unit - IV Monitoring and Control Monitoring and Control: Creating Framework – Collecting the Data – Review - Visualizing Progress – Cost Monitoring – Ea Value Analysis – Prioritizing Monitoring – Getting Project Back To Target – Change Control. Managing Contract: Introducti Types of Contract – Stages In Contract Placement – Typical Terms of a Contract – Contract Management – Acceptance. Unit - V Managing People Managing People: Introduction – Understanding Behaviour – Organizational Behaviour: A Background – Selecting the F Person For The Job – Instruction in the best methods – Motivation – The Oldham–Hackman Job Characteristics Model – St –Health and Safety. Working in Teams: Introduction - Becoming a Team –Decision Making– Organizational & Team Structur	methodolo and failure Introductio Technique programme	gies – W - Manag n – A bu s – Risk e manag	ays of Categorizing software proje ement and management control – Isiness case – Project Portfolio M Evaluation – Programme manage ement – Creating a programme	ects – Stakeholders – Se - Traditional vs. Modern /anagement – Evaluatic ment – Managing the al	project project on of Ind location	ectives – Bus management lividual Project of resources	iness (practic cts – C within	case – es. Pro cost Be progran	Projec ject E nefit E nme –	t success valuation: valuation Strategic
characteristics – Identify project products and activities – Estimate effort for activity – Identify activity risks - Allocate Resourc Review plan – Execute plan. Software Effort Estimation : Introduction – Estimates – Problems with over and under estimat Basis –Techniques – Bottom-up Estimating – Top down approach and parametric models – Expert Judgement – Estimatin analogy – Albrecht Function Point analysis – Function Points Mark II - COSMIC FFP – COCOMO II. Unit - III Activity Planning Activity Planning: Objectives – Project Schedule – Projects and Activities - Sequencing and Scheduling Activities – Netr Planning Models – Formulation - Time dimension - Forward Pass – Backward Pass – Identifying the critical path - Activity F – Shortening the Project Duration – Identifying critical activities - Activity on Arrow Networks. Risk Management: Ris Categories of Risk – Framework for dealing with risk – Risk Identification – Risk Assessment – Risk Planning – management – Evaluating risks to the schedule – Applying the PERT Technique – Monte Carlo Simulation – Critical c concepts. Unit - IV Monitoring and Control Monitoring and Control: Creating Framework – Collecting the Data – Review - Visualizing Progress – Cost Monitoring – Ea Value Analysis – Prioritizing Monitoring – Getting Project Back To Target – Change Control. Managing Contracts: Introducti Types of Contract – Stages In Contract Placement – Typical Terms of a Contract – Contract Management – Acceptance. Unit - V Managing People Managing People: Introduction – Understanding Behaviour – Organizational Behaviour: A Background – Selecting the F Person For The Job – Instruction in the best methods – Motivation – The Oldham–Hackman Job Characteristics Model – St –Health and Safety. Working in Teams: Introduction - Becoming a Team –Decision Making– Organizational & Team Structur	Unit - II	Project	Planning							9
 management – Evaluating risks to the schedule – Applying the PERT Technique – Monte Carlo Simulation – Critical concepts. Unit - IV Monitoring and Control Monitoring and Control: Creating Framework – Collecting the Data – Review - Visualizing Progress – Cost Monitoring – Ea Value Analysis – Prioritizing Monitoring – Getting Project Back To Target – Change Control. Managing Contracts: Introducti Types of Contract – Stages In Contract Placement – Typical Terms of a Contract – Contract Management – Acceptance. Unit - V Managing People Managing People: Introduction – Understanding Behaviour – Organizational Behaviour: A Background – Selecting the Person For The Job – Instruction in the best methods – Motivation – The Oldham–Hackman Job Characteristics Model – St – Health and Safety. Working in Teams: Introduction - Becoming a Team – Decision Making– Organizational & Team Structur 	analogy – . Unit - III Activity Pla Planning I – Shorten	Albrecht Activity anning: C Models – ing the I	Function Point analysis – Function Planning Dbjectives – Project Schedule – Formulation - Time dimension - F Project Duration – Identifying cri	Points Mark II - COSMI Projects and Activities Forward Pass – Backwar itical activities - Activity	IC FFP - - Seque rd Pass - / on Arr	- COCOMO II ncing and Sc - Identifying to ow Networks	heduli he criti . Risk	ng Acti cal path Manag	vities n - Act gemen	9 –Network ivity Float t: Risk –
Monitoring and Control: Creating Framework – Collecting the Data – Review - Visualizing Progress – Cost Monitoring – Ea Value Analysis – Prioritizing Monitoring – Getting Project Back To Target – Change Control. Managing Contracts: Introducti Types of Contract – Stages In Contract Placement – Typical Terms of a Contract – Contract Management – Acceptance. Unit - V Managing People Managing People: Introduction – Understanding Behaviour – Organizational Behaviour: A Background – Selecting the P Person For The Job – Instruction in the best methods – Motivation – The Oldham–Hackman Job Characteristics Model – St –Health and Safety. Working in Teams: Introduction - Becoming a Team –Decision Making– Organizational & Team Structur	manageme									
Managing People: Introduction – Understanding Behaviour – Organizational Behaviour: A Background – Selecting the F Person For The Job – Instruction in the best methods – Motivation – The Oldham–Hackman Job Characteristics Model – St –Health and Safety. Working in Teams: Introduction - Becoming a Team –Decision Making– Organizational & Team Structur	Unit - IV	Monitor	ing and Control							9
Managing People: Introduction – Understanding Behaviour – Organizational Behaviour: A Background – Selecting the F Person For The Job – Instruction in the best methods – Motivation – The Oldham–Hackman Job Characteristics Model – St –Health and Safety. Working in Teams: Introduction - Becoming a Team –Decision Making– Organizational & Team Structur	Value Ana	lysis – Pi	ioritizing Monitoring – Getting Pro	oject Back To Target – C	hange C	Control. Manag	ging Co	ontracts	s: Intro	duction -
Person For The Job – Instruction in the best methods – Motivation – The Oldham–Hackman Job Characteristics Model – St –Health and Safety. Working in Teams: Introduction - Becoming a Team –Decision Making– Organizational & Team Structur	Unit - V	Managir	ng People							9
Coordination Dependencies – Dispersed and virtual teams – Communication Generes – Communication Plans – Leadership	Person Fo -Health an	r The Job d Safety	 Instruction in the best methods Working in Teams: Introduction - 	s – Motivation – The Old Becoming a Team –Dec	lham–Ha cision Ma	ackman Job C aking– Organi	haract zation	eristics al & Tea	Mode am Str	– Stress uctures -
Tota TEXT BOOK:		<u>م</u> د.								Total: 4
 Bob Hughes, Mike Cotterell and Rajib Mall, "Software Project Management", 5th Edition, Tata McGraw Hill, New Delhi, 2th 										

REFERENCES:

1. Pankaj Jalote, "Software Project Management in Practice", 8th Edition, Pearson Education, 2002.

2. Watts S. Humphrey, "PSP: A self-improvement process for software engineers", 1st Edition, Addison-Wesley, 2005.

COURSE On comp			se the s	tudents	will be a	able to							BT Map (Highest			
	carry out the process of software project management												Applying (K3)			
CO2	, build a p	roject pl	an and o	calculate	the effo	orts requ	uired.						Applying (K3)			
CO3	organize planning, schedule and sequence activities and determine the risks.										Applying (K3)					
CO4	develop	visualiza	ation cha	arts to m	onitor th	e progre	ess of pi	rojects a	ind conti	rol the risk	s involved	J.	Applying	J (K3)		
CO5	outline th	ne metho	ods of m	anaging	people	and org	anising	teams.					Applying	J (K3)		
					Мар	ping of	COs wi	th POs	and PS	Os						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2		
CO1	3	2	1	1									3	2		
CO2	3	2	1	1									3	2		
CO3	3	2	1	1									3	2		
CO4	3	2	1	1									3	2		
CO5	3	2	1	1									3	2		
1 – Slight	, 2 – Moo	derate, 3	- Subs	tantial, E	3T- Bloo	m's Tax	onomy									

	ASSESSMENT PATTERN - THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	20	40	40				100					
CAT2	20	40	40				100					
CAT3	20	60	20				100					
ESE	20	40	40				100					

20ITE27 BUILDING ENTERPRISE APPLICATIONS

ry I	у	L	т	Р	Credit
		3	0	0	3
enterpri	nterp	prise	applica	ations.	
					9
	plicat	ations	s: Ente		enterprise analysis-
					9
nitectur	itectu	ture -	- Techr	nical ar	chitecture
					9
sign doo	gn do	docun	nentati	ion	
					9
	ncep	pt of	Softwa	are Co	ting up a nstruction
					9
testing	testin	ing-u	ser acc	ceptano	e testing-
_					testing-user acceptanc

TEXT BOOK:

1. Anubhav Pradhan, Satheesha B. Nanjappa, Senthil K. Nallasamy, Veerakumar Esakimuthu, "Raising Enterprise Applications", 1st Edition, Wiley India Pvt. Ltd, 2010.

REFERENCES:

- Brian Berenbach, Daniel J. Paulish, Juergen Kazmeier, Arnold Rudorfer, "Software Systems Requirements and Engineering: In Practice", 1st Edition, McGraw-Hill Education, 2009.
- ². Srinivasan Desikan, Gopalaswamy Ramesh, "Software Testing Principles and Practices ", 1st Edition, Pearson Education, 2006.

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	identify challenges in building an enterprise application and build a business model	Applying (K3)
CO2	build a logical, technical and data architecture of an application	Applying (K3)
CO3	design infrastructure architecture of an application and document key elements of architecture	Applying (K3)
CO4	construct application framework components and perform code review and analysis	Applying (K3)
CO5	apply various testing methods and rolling out an enterprise application	Applying (K3)

					Mappi	ng of C	Os with	POs a	nd PSO	s				
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1									3	2
CO2	3	2	1	1									3	2
CO3	3	2	1	1									3	2
CO4	3	2	1	1									3	2
CO5	3	2	1	1									3	2

1 – Slight, 2 – Moderate, 3 – Substantial, BT- E	Bloom's Taxonomy
--	------------------

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	20	40	40				100						
CAT2	20	40	40				100						
CAT3	20	50	30				100						
ESE	20	45	35				100						

20ITE28 WEB APPLICATION SECURITY

Programr Branch	ne &	B. Tech & Information Technology	Sem.	Category	L	т	Р	Credit
Prerequis	ites	Web Technology	8	PE	3	0	0	3
Preamble		se deals with various components of web application from oplication testing methodologies.	the sec	curity point of v	view an	d impa	rts kno	wledge
Unit - I	Security	Fundamentals and Security Principles						9
		amentals- Input Validation, Attack surface reduction, c Best Practices, Authorization-Access control - Session M						ntication
Unit - II	Browser	and Database Security Principles						9
		nciples- cross-site scripting - cross-site request forgery- D n-stored procedure security- Insecure Direct object referer		e security princ	ciples -	- SQL i	njectio	n- setting
Unit - III	File secu	rity and Security Methodologies						9
		ples- source code secret- forceful browsing directory - industry standard secure development methodologies						
Unit - IV	Web Tes	ting Fundamentals						9
Observing	Live Rec	esting Fundamentals - Basic Observation HTML Page So quest Headers with Firebug - Observing Live Post Data ponse Headers with Tamper Data – Web Oriented Data E	with W	eb Scarab - S				
Unit - V	Bypass of	client-side input validation and Session Manipulation						9
	Finding S	WWW-Perl, Seeking Design Flaws, Attacking AJAX, Ma Session Identifiers in Requests - Finding Authorization Hea vith Burp						

Lecture: 45, Total: 45

TEXT BOOK:

1. Bryan Sullivan, Vincent Liu, "Web Application Security- A Beginner's Guide", 1st Edition, McGrawHill Education, New Delhi, 2011.

REFERENCES:

1. Paco Hope, Ben Walther, "Web Security Testing Cookbook", 1st Edition, O'Reilly Media, 2008.

2. Georgia Weidman, "Penetration Testing: A Hands-On Introduction to Hacking", 1st Edition, No Starch Press, 2014.

COURSE On comple			se, the s	tudents	will be a	able to							BT Map (Highest		
CO1 i	llustrate	web se	curity fu	ndamen	tals, aut	henticat	ion and	authoriz	ation				Applying (K3)		
CO2	apply the	e princip	les of br	owser s	ecurity a	ind data	base se	curity					Applying (K3)		
CO3 i	implement file security and secure development methodologies												Applying (K3)		
CO4	demonst	rate var	ious test	ting tech	niques f	or web a	applicati	on					Applying	ı (K3)	
CO5	carry out	t client s	ide valic	lation ar	nd secur	e sessio	on manip	ulation 1	for web a	applicatior	าร		Applying	ı (K3)	
					Мар	ping of	COs wi	th POs	and PSC	Os					
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	1	1									3	2	
CO2	3	2	1	1									3	2	
CO3	3	2	1	1									3	2	
CO4	3	2	1	1									3	2	
CO5	3	2	1	1									3	2	

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	30	30	40				100						
CAT2	20	30	50				100						
CAT3	20	30	50				100						
ESE	20	30	50				100						

20ITE29 WIRELESS SENSOR NETWORKS

Programme & Branch	B. Tech & Information Technology	Sem.	Category	L	Т	Р	Credit
Prerequisites	Computer Networks	8	PE	3	0	0	3

Preamble This course provides the fundamental concepts of wireless sensor networks and explains functionalities of different layers. It also helps to devise appropriate node and network management strategies and throws light on sensor networks security.

Unit - I Introduction

Introduction-Motivation and Wireless Sensor Nodes: Definitions and Background, Challenges and Constraints - Applications: Structural Health Monitoring, Traffic Control, Health Care, Pipeline Monitoring, Precision Agriculture, Active Volcano, Underground Mining - Node Architecture: The Sensing Subsystem, The Processor Subsystem, Communication Interfaces, Prototypes - Operating Systems: Functional Aspects, Nonfunctional Aspects, Prototypes, Evaluation.

Unit - II Basic Architectural Framework and Medium Access Control

Physical Layer: Basic Components, Source Encoding, Channel Encoding, Modulation, Signal Propagation. Medium Access Control: Overview, Wireless MAC Protocols, Characteristics of MAC Protocols in Sensor Networks, Contention-Free MAC Protocols, Contention-Based MAC Protocols, Hybrid MAC Protocols.

Unit - III Routing Protocols and Power Management

Network Layer: Overview, Routing Metrics, Flooding and Gossiping, Proactive Routing, On-Demand Routing, Hierarchical Routing, Location-Based Routing, QoS-Based Routing Protocols. Power Management: Local Power Management Aspects, Dynamic Power Management, Conceptual Architecture.

Unit - IV Node and Network Management and Localization

Node and Network Management: Time Synchronization: Clocks and the Synchronization Problem, Time Synchronization in Wireless Sensor Networks, Basics of Time Synchronization, Time Synchronization Protocols. Localization: Overview, Ranging Techniques, Range-Based Localization, Range-Free Localization, Event-Driven Localization.

Unit - V Security and Sensor Network Programming

Security: Fundamentals of Network Security, Challenges of Security in Wireless Sensor Networks, Security Attacks in Sensor Networks, Protocols and Mechanisms for Security, IEEE 802.15.4 and ZigBee Security. Sensor Network Programming: Challenges in Sensor Network Programming, Macro programming, Dynamic Reprogramming, Sensor Network Simulators.

Total: 45

9

9

9

9

9

TEXT BOOK:

1. Waltenegus Dargie, Christian Poellabauer, "Fundamentals of Wireless Sensor Networks: Theory and Practice", 1st Edition, John Wiley & Sons, 2011.

REFERENCES:

- 1. Mohammad S. Obaidat, Sudip Misra, "Principles of Wireless Sensor Networks", 1st Edition, Cambridge University Press, London, 2014.
- ¹2. Feng Zhao, Leonidas Guibas, "Wireless Sensor Networks", 1st Edition, Elsevier, 2004.

	RSE OUTCOMES: Impletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	apply the basic concepts of wireless sensor networks in real life applications	Applying (K3)
CO2	illustrate the basic architectural framework using physical and MAC layer protocols	Applying (K3)
CO3	utilize various network layer protocols for inter and intra communication patterns	Applying (K3)
CO4	apply different synchronization and localization algorithms for managing node and network level functions	Applying (K3)
CO5	develop software and hardware components required for a sensor network application	Applying (K3)

					Маррі	ng of C	Os with	n POs a	nd PSO)s				
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1									3	2
CO2	3	2	1	1									3	2
CO3	3	2	1	1									3	2
CO4	3	2	1	1									3	2
CO5	3	2	1	1									3	2
1 – Slight, 2 –	Modera	ate, 3 – 3	Substar	tial, BT	- Bloom	's Taxoi	nomy							

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	30	50	20				100						
CAT2	30	50	20				100						
CAT3	30	30	40				100						
ESE	25	35	40				100						

20ITE30 REALTIME PROGRAMMING FOR EMBEDDED SYSTEMS

Programme & Branch	B. Tech & Information Technology	Sem.	Category	L	Т	Р	Credit
Prerequisites	Python and C Programming, Operating Systems	8	PE	3	0	0	3
Preamble This co	ourse provides knowledge on real-time programming with en	nbedded	systems using	g raspt	erry pi		
Unit - I Explo	ring Embedded Linux Systems						9
The RPi Hardwar	edded Linux-Managing Linux Systems -Raspberry Pi Hardwa e-Raspberry Pi Accessories-HATs-Raspberry Pi Software: L vith the RPi-Controlling the Raspberry Pi-Configuring the Ra	_inux on	the Raspberry				

Unit - II Programming on the Raspberry Pi

Introduction-Scripting Languages-Dynamically Compiled Languages-C and C++ on the RPi-Overview of Object-Oriented Programming-Interfacing to the Linux OS-Improving the Performance of Python-Interfacing to the Raspberry Pi Input/Outputs: Introduction-General-Purpose Input/Outputs-C++ - Control of GPIOs using sysfs-Memory-Based GPIO Control.

Unit - III Cross-Compilation and the Eclipse IDE

Setting up a Cross-Compilation Tool chain-Cross-Compilation using Eclipse-Building Linux-Interfacing to the Raspberry Pi Buses: Introduction to Bus Communication-I²C-SPI-UART-Logic-Level Translation.

Unit - IV Interacting with the Physical Environment

Interfacing to Actuators, Interfacing to Analog Sensors, Interfacing to Local Displays, Building C/C++ Libraries-Real-Time Interfacing Using the Arduino: The Arduino-An Arduino Serial Slave-An Arduino I2C Slave-An Arduino SPI Slave-Programming the Arduino from the RPi Command Line

Unit - V The Internet of Things

The Internet of Things (IoT)-The RPi as an IoT Sensor-The RPi as a Sensor Web Server-A C/C++ Web Client-The RPi as a "Thing"-Large-Scale IoT Frameworks-The C++ Client/Server-IoT Device Management.

Lecture: 45, Total: 45

9

9

9

9

TEXT BOOK:

1. Derek Molloy, "Exploring Raspberry Pi Interfacing to the Real World with Embedded Linux", 1st Edition, John Wiley & Sons, Inc., Indianapolis, 2016

REFERENCES:

- 1. Qing Li, Caroline L.Yao, "Real-Time Concepts for Embedded Systems", 1st Edition, CMP Books, UK, 2003.
- ¹2. Rajkamal, "Embedded Systems Architecture, Programming and Design", 3rd Edition, McGraw-Hill, New Delhi, 2014.

COURSE		-	rse, the	studen	ts will b	e able to	D							Mapped nest Level)	
	interpre Pi.	t variou	s hardv	vare an	d softw	are feat	tures in	embed	ded pro	ogrammin	g using F	Raspberry	Арр	Applying (K3)	
CO2	experim	ent with		Арр	lying (K3)										
CO3	nanipulate cross compilation tools and bus communication of Raspberry Pi.													lying (K3)	
CO4	illustrate	e interfa	cing coi	ncepts v	with rea	l physic	al enviro	onment	and Arc	duino			Арр	lying (K3)	
CO5	O5 apply embedded programming knowledge for IoT application developments											Applying (K3)			
					М	apping	of COs	with P	Os and	PSOs					
COs/POs	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	1	1									3	2	
CO2	3	2	1	1									3	2	
CO3	3	2	1	1									3	2	
CO4	3	2	1	1									3	2	
CO5	3	2	1	1									3	2	

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	10	60	30				100						
CAT2	10	60	30				100						
CAT3	10	60	30				100						
ESE	10	60	30				100						

20ITE31 INFORMATION STORAGE AND MANAGEMENT

Programme & Branch	B. Tech & Information Technology	Sem.	Category	L	Т	Р	Credit
Prerequisites	Database Management Systems	8	PE	3	0	0	3

Preamble This course provides an insight into the recent technologies in Information storage and describes various operations involved in it.

Unit - I Introduction to Storage Systems

Introduction to evolution of storage architecture, key data center elements, virtualization, and cloud computing. Key data center elements – Host (or computer), connectivity, storage, and application in both classic and virtual environments. RAID implementations, techniques and levels along with the impact of RAID on application performance. Components of intelligent storage provisioning and intelligent storage implementations.

Unit - II Storage Networking Technologies

Fibre channel SAN components, connectivity options, and topologies including access protection mechanism "Zoning", FC protocol stack, addressing operations, SAN-based virtualization and VSAN technology, iSCS and FCIP protocols for storage access over IP network, Converged protocol FCoE and its components Network Attached Storage (NAS) – components, protocol and operations, File level storage virtualization. Object based storage and unified storage platform.

Unit - III Backup, Archive and Replication

Business continuity terminologies, planning and solutions, clustering and multipathing architecture to avoid single points of failure, Backup and recovery – methods, targets and topologies, Data duplication and backup in virtualized environment, Fixed content and data archive, Local replication in classic virtual environments, Remote replication in classic and virtual environment services and deployment models

Unit - IV Cloud Computing

Cloud Computing: Business drivers for Cloud computing, Definition of Cloud computing, Characteristics of cloud computing, Steps involved in transitioning from Classic data center to Cloud computing environment services and deployment models, Cloud infrastructure components, Cloud migration considerations.

Unit - V Securing and Managing Storage Infrastructure

Securing the Storage Infrastructure: Information security Framework – Risk Triad – Security Implementations in Storage Networking: FC SAN – NAS – IP SAN - Managing the storage Infrastructure: Monitoring storage infrastructure – Storage Infrastructure Management Activities - Information lifecycle management - Storage tiering

Lecture: 45, Total: 45

9

9

9

9

9

TEXT BOOK:

1. EMC Education Services, "Information Storage and Management : Storing Managing, and Protecting Digital Information in Classic, Virtualized, and Cloud Environments", 2nd Edition, Wiley, 2015.

REFERENCES:

2. Mark Lippitt and Erik Smith, "Networked Storage Concepts and Protocols Tech book", V2.3 Edition, EMC Tech books, 2014.

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	outline different implementations of storage systems like virtualization and RAID	Applying (K3)
CO2	illustrate various storage networking Technologies and demonstrate the effectiveness of NAS	Applying (K3)
CO3	interpret the concept of storage management and data backup in virtualized environment	Applying (K3)
CO4	outline the cloud architecture and Practice on public clouds	Applying (K3)
CO5	demonstrate the need for security in storage networking	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1									3	2
CO2	3	2	1	1									3	2
CO3	3	2	1	1									3	2
CO4	3	2	1	1									3	2
CO5	3	2	1	1									3	2

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy	
---	--

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	40	50	10				100						
CAT2	30	50	20				100						
CAT3	30	30	40				100						
ESE	25	35	40				100						

20ITE32 TOTAL QUALITY MANAGEMENT

Programme & Branch	B. Tech & Information Technology	Sem.	Category	L	т	Р	Credit
Prerequisites	NIL	8	PE	3	0	0	3

Preamble This course deals with Quality concepts and TQM principles focusing on process quality to assure product quality to the customers. It also deals with the Basic and modern Quality management tools including ISO standards

Unit - I Quality Concepts and Principles:

Quality Concepts and Principles: Definition of Quality - Dimensions of Quality - Quality Planning - Quality costs - Basic concepts of Total Quality Management - Historical Review. Principles of TQM - Leadership –Concepts - Quality Council - Quality Statements - Strategic Planning - Deming Philosophy - Barriers to TQM Implementation

Unit - II Total Quality Management-Principles and Strategies:

Total Quality Management-Principles and Strategies: Customer satisfaction –Customer Perception of Quality - Customer Complaints - Customer Retention - Employee Involvement –Motivation - Empowerment - Teams - Recognition and Reward - Performance Appraisal - Benefits. Continuous Process Improvement –Juran Trilogy - PDSA Cycle - 5S - Kaizen - Supplier Partnership –Partnering - sourcing - Supplier Selection - Supplier Rating - Relationship Development - Performance Measures

Unit - III Control Charts for Process Control:

Control Charts for Process Control: The seven tools of quality - Statistical Fundamentals –Measures of central Tendency and Dispersion - Population and Sample - Normal Curve - Control Charts for variables and attributes - Process capability - Concept of six sigma.

Unit - IV TQM-Modern Tools:

TQM-Modern Tools: The new seven tools of quality - Benchmarking-Need - Types and process; Quality Function Deployment-HOQ construction - case studies; Taguchi's Robust design-Quality loss function - DOE; Total Productive Maintenance-uptime enhancement; Failure Mode and Effect Analysis-Risk Priority Number - Process - case studies.

Unit - V Quality Systems:

Quality Systems: Need for ISO 9000 and Other Quality Systems - ISO 9000 : 2015 Quality System –Elements - Implementation of Quality System - Documentation - Quality Auditing - Introduction to TS 16949 - QS 9000 - ISO 14000 - ISO 18000 - ISO 20000 - ISO 22000. Process of implementing ISO - Barriers in TQM implementation.

Total: 45

9

9

9

9

9

TEXT BOOK:

1. Dale H. Besterfield, "Total Quality Management", 3rd Edition, Pearson Education, New Delhi, 2011.

REFERENCES:

1.	Subburaj Ramasamy, "Total Quality Management", Tata McGraw Hill, New Delhi, 2008.
----	---

2. Feigenbaum A.V., "Total Quality Management", 4th Edition, Tata McGraw Hill , New Delhi, 2004.

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	demonstrate the need, history and principles of quality and TQM	Applying (K3)
CO2	illustrate the principles and strategies of TQM	Applying (K3)
CO3	make use of various tools and techniques of quality management	Analyzing (K4)
CO4	apply various quality tools and techniques in both manufacturing and service industry	Applying (K3)
CO5	explain the concepts of quality management system and ISO.	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	1				2	2	3	2	2	1	1		3
CO2	1	1				3	2	3	3	3	1	1	2	3
CO3	3	2	2	2	2	2		1	2	2	1	1	1	3
CO4	2	2	2	2	2	2		1	2	2	1	1	2	3
CO5						3	3	2	3	2	1	1		3
1 – Slight, 2 –	Modera	ate, 3 – 3	Substar	tial, BT	- Bloom	's Taxor	nomy							

		ASSESSMEN	FPATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	45	30				100
CAT2	20	30	30	20			100
CAT3	25	45	30				100
ESE	20	30	35	15			100

	20ITO01 ARTIFICIAL INTELLIGENCE												
Prog. & Branch	All Engineering and Technology Branches	Sem.	Category	L	Т	Ρ	Credit						
Pre requisite	Nil	4	OE	3	1	0	4						

Preamble The course focuses on the methodology of how to translate a datadrivenbusiness problem into an effective solution by using the powerful AI technologies and Machine Learning paradigm. Unit - I 9

Introduction to Artificial Intelligence

Introduction- Definition, Symbolic and Non-Symbolic Representation, Research Focus of Artificial Intelligence. Artificial Intelligence: History, Applications, Objectives, Artificial Intelligence Programming and future of AI.

Unit - II Machine Learning Definition and Basics

Introduction- Resurgence of ML, Relation with Artificial Intelligence (AI), Machine Learning Problems. Mathematical needs - Basics of Matrices, Numerical Methods, Probability and Statistics, Linear Algebra and Differential Calculus towards Machine Learning.

Unit - III Machine Learning Categories and Tool Box

Supervised Learning – Unsupervised Learning – Reinforcement Learning – ML Toolbox: Data – Infrastructure - Algorithms. Advanced Toolbox: Big data – Infrastructure – Advanced Algorithms. Machine Learning tool kit in MATLAB.

Unit - IV Data Scrubbing and Setting up your Data

Data Scrubbing: Feature Selection - Row Comparison - One hot Encoding - Binning - Handling Missing Data - Calculation of Mean, Variance and Standard Deviation. Setting up your Data: Generalization of Data – Train and Test segments – Deciding of total quantity of data needed - Cross Validation.

Unit - V Basics of Regression, Clustering and Error Measurements

Linear Regression - Multilinear Regression - Logistic Regression - Clustering: K-Nearest Neighbors - K Means - Setting K. Bias and Variance. Error calculation: Mean Absolute Error (MAE) - Root Mean Squared Error (RMSE) - Relative Squared Error (RSE) - Relative Absolute Error (RAE) - Coefficient of Determination (R2 or R-squared)

Lecture: 45, Total:45

9

9

9

9

TEXT BOOK:

Oliver Theobald, "Machine Learning for Absolute Beginners", Independently Published, Second Edition, 2017. 1.

REFERENCE BOOK:

1. RajendraAkerkar, "Introduction to Artificial Intelligence", PHI Learning Pvt Ltd, Second Edition August, 2014.

GopinathRebala, Ajay Ravi, Sanjay Churiwala, "An Introduction to Machine Learning", Springer Nature, Switzerland, 1st edition, 2019. 2.

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	illustrate ai-based problems, and identify its keycompetitive advantages and issues.	Applying (K3)
CO2	relatemachine learning basics and the importance of mathematics towards machine learning technologies.	Applying (K3)
CO3	use toolbox for basic methods for differentai-based applications	Applying (K3)
CO4	perform pre-processing on data data to be used in machine learning models	Applying (K3)
CO5	formulate own learning model for a specified ai application.	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1									3	1
CO2	3	2	1	1									3	1
CO3	3	2	1	1									3	1
CO4	3	2	1	1									3	1
CO5	3	2	1	1									3	1
1 – Slight, 2	– Mode	rate, 3 ·	– Subs	tantial	, BT- B	loom's	s Taxoi	nomy						

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Bloom's (K1) % (K2) % (K3) % (K4) % (K5) % (K6) %													
CAT1	25	60	15				100							
CAT2	25	55	20				100							
CAT3	20	40	40				100							
ESE	20	50	30				100							

20ITO02 WEB TECHNOLOGIES

Programme & Branch	B.E. – Computer Science and Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Object Oriented Programming	4	OE	3	1	0	4

Preamble This course provides an introduction to HTML, CSS, Bootstrap, Client Side JS and Server Side JS Framework. The course also addresses the application of ReactJS for developing web applications. Unit - I HTML UI Design 9 Introduction – Basic tags – HTML Forms Element – Page Structured Elements – Media Tags. Cascading Style Sheet: Types of CSS – Positioning Elements – Backgrounds – Box Model – Dropdown Menus. Responsive Web Design: Introduction Bootstrap – Grid basics – Nav – Nav Bar – List – Drop down – Tables – Button – Images – Forms-Input – Input Groups. Unit - II JavaScript 9 Introduction - Operators - Control Structures: Selection: if - if-else - switch. Repetition: while - do-while - for - break and continue. Functions: Function Definition - Scope Rules - Recursion. Array: Declaration - Initialization - Growing Arrays Passing Arrays to Function. Event Handling. Unit - III Server-side JS Framework 9 Node JS: Introduction – Architecture – Features – Creating Web Servers with HTTP Request – Response – Event Handling – GET and POST Methods – Modules – Connect to NoSQL Database using Node JS – Implementation of CRUD operations. Unit - IV ReactJS Basics 9 React: Introduction – Installation – create React app – components – state – props - props validation – state vs props constructor - Component API - Component Life cycle - Forms - controlled and uncontrolled component - Events - conditional rendering. Unit - V ReactJS Animation and API 9

ReactJS: list – keys – refs – Fragments - Router – CSS – Animation – Map – Table – Code splitting – hooks – API Integration.

Lecture: 45, Total: 45

TEXT BOOK:

1.	Paul Deitel, Harvey M.Deitel and Abbey Deitel, "Internet and World Wide Web - How To Program", 5th Edition, Prentice Hall,	
	2011. (Unit 1[first half], 2)	

- 2. Infosys campus connect material (Unit 1[Second Half],3)
- 3. https://www.javatpoint.com (Unit 4, 5)

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	design static web pages using HTML, CSS and Bootstrap.	Applying (K3)
CO2	develop interactive and dynamic web pages using javascript	Applying (K3)
CO3	develop a web application using node JS with database connectivity	Applying (K3)
CO4	apply the features of React to develop web applications.	Applying (K3)
CO5	utilize client side JS framework to develop web applications	Applying (K3)

Mapping of COs with POs and PSOs														
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1										3	2
CO2	3	2	1										3	2
CO3	3	2	1										3	2
CO4	3	2	1										3	2
CO5	3	2	1										3	2

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	20	20	60				100						
CAT2	20	20	60				100						
CAT3	10	20	70				100						
ESE	15	25	60				100						

20IT003 INTRODUCTION TO OPERATING SYSTEMS

Programme & Branch	All Engineering and Technology Branches	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	4	OE	3	1	0	4

Preamble	This course provides the fundamentals of various operating system services and enables the students to learn about how those services are implemented in an operating system.
Unit - I	Introduction to Operating Systems 9
	computer System Organization - A Real-Time Control Application - An Operational Overview - Processes and vironment - Linux File System - Linux Commands.
Unit - II	File System and Process Management 9
	ess Rights – File Access and Security Concerns - File Storage Management - The Root File System. Process – ement – Process States – Scheduling - Choosing a Scheduling Policy – Context Switch.
Unit - III	Memory Management 9
•	Management - Memory Relocation Concept - Linking and Loading Concepts - Process and Main Memory Memory Allocation – Virtual Memory – Paging - Segmentation.
Unit - IV	Input Output (IO) Management 9
	nagement – IO Organisation - HW/SW Interface - Management of Buffers - Motivation for Disk Scheduling - Disk ies – USB – PCI bus – Bluetooth Interface.
Unit - V	Resource Sharing and Management 9
	luling - Mutual Exclusion – Deadlocks - Deadlock Prevention Method - Deadlock Detection and Prevention e Study: Linux: Introduction - Linux Kernel Architecture.
	Lecture :45, Total:45

TEXT BOOK:

1

Oliver Theobald, "Machine Learning for Absolute Beginners", Independently Published, Second Edition, 2017. (Unit-3,4,5)

REFERENCES:

1 RajendraAkerkar, "Introduction to Artificial Intelligence", PHI Learning Pvt Ltd, Second Edition August, 2014. (Unit-1)

2 GopinathRebala, Ajay Ravi, Sanjay Churiwala, "An Introduction to Machine Learning", Springer Nature, Switzerland, 1st edition, 2019. (Unit-2)

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	outline operating system structure, services and demonstrate the various Linux commands	Applying (K3)
CO2	demonstrate various process scheduling algorithms and describe file system management	Applying (K3)
CO3	illustrate memory management strategies and the need for virtual memory	Applying (K3)
CO4	summarize the functions of IO management and apply various disk scheduling policies	Applying (K3)
CO5	apply different methods for handling deadlocks and discuss about Linux operating system	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1										
CO2	3	2	1	1										
CO3	3	2	1	1										
CO4	3	2	1	1										
CO5	3	2	1	1										
1 – Slight, 2 –	- Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	20	40	40				100						
CAT2	20	40	40				100						
CAT3	20	40	40				100						
ESE	20	40	40				100						

20ITO04 PROGRAMMING IN PYTHON

Programme & Branch		B.Tech. Food Technology	Sem.	Category	L	Т	Р	Credit			
Prerequisites		Problem Solving and Programming	4	OE	3	3 1 0 4					
Preamble		s course introduces the core python programmin es, functions, classes, objects and numpy	g. It emphasizes	on developi	ng pyth	non prog	grams \	vith all data			
Prerequisites		programming									
UNIT – I	Introdu	ction:									
identifiers - d	lata types - i	es – program design tools – Types of errors input operation – comments – reserved words – – conditional statement – iterative statements – N	indentation - C	perators and	d Expre	essions	– Deci	sion Contro			
UNIT – II	Lists, 1	Fuples and Dictionary:									
operations, as	ssignments,	sted, cloning, operations, methods, comprehen returning multiple values, nested tuples, index ar ed, built-in methods – list vs tuple vs dictionary.									
UNIT – III	String	s and Regular Expressions:									
Strings:Conca operation – fr finditer function	unctions – c	ppend, multiply on strings – Immutable – forma pperators – comparing – iterating – string modu tions.	itting operator – ile – Regular E	Built-in strir xpressions -	ng met • matcl	hods ar n, searc	nd func ch, sub	tions – slic , findall an			
UNIT – IV	Funct	ions and Modules:									
	ojects: Class	t Orientation: and objects – class methods and self – const nPy :NumPy Arrays – Computation on NumPy A						- public an			
List of Exerc	isos/Expori	ments									
	•	onal and looping statements									
2. Implementa	ation of list a	nd tuple operations									
3. Implementa	ation of dictio	onary operations									
4. Perform va	rious string o	operations									
5. Use regula	r expression	s for validating inputs									
6. Demonstra	tion of differe	ent types of functions and parameter passing									
7. Develop pr	ograms usin	g classes and objects									
8. Perform co	mputation or	n Numpy arrays									
9. Draw differ	ent types of	plots using Matplotlib									
				Lec	ture:4	5, Prac	tical :	15 Total: 6			
TEXT BOOK:			L N. Ord	A A A A A A A A A A		_					
1		non Programming using problem solving approac	h", 3 ^{ra} impressio	n, Oxford Un	iversity	/ Press	., New I	Jelhi, 2017			
1 Nageswa		e Python Programming", 2 nd Edition, DreamTech	Press. New Del	hi. 2018.							
				, _,							

² Jake Vander Plas ," Python Data Science Handbook Essential Tools for Working with Data", O'Reilly publishers, 1st Edition, 2016.

B.Tech.– Information Technology, Regulation, Curriculum and Syllabus – R2020

		n of the		, the stu	udents	will be a	able to							В	T Mapped (Highest Level)
CO1:	unde	erstand	the bas	ics of p	ython p	rogram	ming us	sing nes	sted an	d contro	ol statem	ients.			Jnderstanding (K2)
CO2:	appl	y list, tu	ple and	l diction	ary to h	andle v	variety c	of data.							Applying (K3)
CO3:	appl	y string	s and re	egular e	xpressi	on for s	earchir	ng in a s	string.						Applying (K3)
CO4:	solve	e the pr	oblems	using f	unction	s and m	nodules								Applying (K3)
CO5:	unde	derstand the object oriented concepts and perform data science operations											Applying (K3)		
CO6:	imple	nplement the basic data types and control statements.												Applying (K3)	
CO7:	dem	demonstrate functions, regular expressions and object oriented concepts.										Applying (K3)			
CO8:	perfo	orm nun	npy ope	erations	and an	alyse re	esults u	sing ma	atplotlib						Applying (K3)
						M	apping	of COs	s with I	POs an	d PSOs				
COs/P	Os	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	P S O 1	PSO2
CO1				3		3								3	
CO2	2			3		3								2	2
CO3	•			3		3							3	2	2
CO4				3		3							3	2	2
CO5	;			3		3							3	2	3
CO6	;			3		3							3		3
C07	·			3		3							3		3
CO8	;			3		3							3		3

 $1-Slight,\,2-Moderate,\quad 3-Substantial,\,BT-Bloom's \ Taxonomy$

ASSESSMENT PATTERN

Test/Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1-50 marks	25	25	50				100
CAT 2-50 marks	20	20	60				100
CAT 3-50 marks	20	20	60				100
ESE -100 marks	25	25	50				100

20ITO05 COMPUTER VISION

Programme &	Branch	All Engineering and Technology Branches	Sem.	Category	L	Т	Р	Credit
Prerequisites		Nil	5	OE	3	1	0	4
Preamble	featu	is a basic course on Computer Vision. Starting with fund ire based alignment. It also deals with motion and image puter vision.						
Unit - I	Fun	damentals of Vision:						9+3
What is compu The digital carr		? – A brief history – Image formation: geometric primitiv	ves and tr	ansformation -	- photo	metric	image f	ormation –
Unit - II		Image Processing and Feature detection:						9+3
		nt operators – linear filtering – more neighbourhood op ns – global optimizations. Feature detection and match						wavelets -
Unit - III		Segmentation and Feature based Alignment:						9+3
		contours – split and merge – mean shift and mode find d alignment : 2D and 3D feature-based alignment – pose						ərgy-based
Unit - IV		Motion:						9+3
and motion. D	ense mo	: Triangulation – Two-frame structure from motion – fa tion estimation: Translational alignment – parametric primotion models – global alignment – compositing.						
Unit - V		Applications for Computer Vision:						9+3
Recognition: recognition dat		tection – face recognition – instance recognition – cate nd test-sets.	egory reco	ognition – con	text an	d scene	e undei	standing -
TEXT BOO)K.			Lectu	ıre :45,	Tutori	al:15, T	otal:60
		Computer Vision: Algorithms and Applications", Springe	r Intornati	onal 2011				
i Nichalu	OZCIISKI,	computer vision. Algorithms and Applications, springe	memal	01101, 2011.				

REFERENCES:

1	Reinhard Klette, "Concise Computer Vision: An introduction into Theory and Algorithms", Springer International, 2014
2	E.R. Davies, "Computer and Machine Vision",4th Edition, Elsevier, 2012

	E OUTCOMES: pletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	outline the fundamental concepts of computer vision	Applying (K3)
CO2	make use of basic image processing and feature detection concepts	Applying (K3)
CO3	experiment with different types of segmentation and feature-based alignments	Applying (K3)
CO4	interpret how different types of motion affect the structure of the objects	Applying (K3)
CO5	illustrate recognition as an application of computer vision	Applying (K3)

				wapp	ing or c	JUS WIT	n POS a	and PSC	JS				
PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
3	2	1	1									3	2
3	2	1	1									3	2
3	2	1	1									3	2
3	2	1	1									3	2
3	2	1	1									3	2
	3 3 3 3	3 2 3 2 3 2 3 2 3 2 3 2	3 2 1 3 2 1 3 2 1 3 2 1 3 2 1	3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1	3 2 1 1 3 2 1 1 3 2 1 1 3 2 1 1 3 2 1 1	3 2 1 1 3 2 1 1 3 2 1 1 3 2 1 1 3 2 1 1	3 2 1 1 3 2 1 1 3 2 1 1 3 2 1 1 3 2 1 1	3 2 1 1	3 2 1 1	3 2 1 1	3 2 1 1	3 2 1 1 Image: Constraint of the second seco	3 2 1 1 3 3 3 3 2 1 1 3 3 3 3 2 1 1 3 3 3 3 3 2 1 1 3

		ASSESSMEN	T PATTERN - ⁻	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40	30	30				100
CAT2	40	30	30				100
CAT3	30	40	30				100
ESE	30	40	30				100

20ITO06 DATA SCIENCE

Programme & Branch	All Engineering and Technology Branches	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	5	OE	3	1	0	4

Preamble	This course provides basic concepts of data science , analyze large amounts of data using approaches and store and process data in distributed environment	machine learning
Unit - I	Introduction to data science:	9+3
The Data Science	Science – Facets of Data – Data Science Process –Big Data Ecosystem and Data Science–Examp Process: Overview – Defining Research Goals – Retrieving Data – Data Preparation – Explorator Building Applications	
Unit - II	Machine learning and handling big data:	9+3
	lachine Learning in Data Science – Machine Learning in Data Science Process – The Modeling F ems in Handling Large Data – General Techniques – Programming Tips – Case Studies.	Process. Handling
Unit - III	Distributed data storage and processing:	9+3
Distributing Data S	Storage and Processing with Frameworks: Hadoop – Spark – Case Study: Assessing Risk with Loanir	ng Money.
Unit - IV	NoSQL and graph database:	9+3
	D- CAP Theorem – The BASE Principles of NoSQL Databases – NoSQL Database Types – Case Stu atabase: Introducing Connected Data and Graph Databases – Connected Data Example.	udy: What disease
Unit - V	Text Mining and Text Analytics:	9+3
Test Mining in Rea Study: Classifying	al World – Text Mining Techniques: Bag of Words – Stemming and Lemmatization – Decision Tree Reddit Posts.	Classifier – Case

Lecture :45, Tutorial:15, Total:60

TEXT BOOK:

1	Davy Cielen, Arno D. B. Meysman, Mohamed Ali, "Introducing Data Science – Big Data, Machine Learning and more, Using Python Tools", First Edition, Manning Publications, 2016
R	REFERENCES:
1	http://education.EMC.com/academicalliance, "Data Science and Big data Analytics: Discovering, Analyzing, Visualizing and Presenting Data", 1 st Edition, EMC Education Services, 2015

2 Joel Grus, "Data Science from the Scratch", 2nd Edition, O"Reilly Publications, 2019

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	make use of data science principles in developing applications	Applying (K3)
CO2	apply machine learning methods to solve problems with large data	Applying (K3)
CO3	experiment with Hadoop and Spark platform for data science applications	Applying (K3)
CO4	apply the data science process to solve real world problems using NoSQL database and Graph database	Applying (K3)
CO5	make use of text analytics techniques for building solutions for text mining problem	Applying (K3)

Mapping of COs with POs and PSOs

						5	·							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1										
CO2	3	2	1	1										
CO3	3	2	1	1										
CO4	3	2	1	1										
CO5	3	2	1	1										
1 – Slight, 2 –	Modera	ate, 3 – 3	Substar	ntial, BT	- Bloom	's Taxoi	nomy							

		ASSESSMEN	FPATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	50	30				100
CAT2	20	50	30				100
CAT3	20	50	30				100
ESE	20	50	30				100

20IT007 ADVANCED JAVA PROGRAMMING

Programme& Branch	B.E. – Computer Science and Design	Sem.	Category	L	Т	Р	Credit
Prerequisites	NIL	5	OE	3	1	0	4

Preamble This course enables the students to develop, test, and deploy applications ready for production and how to establish them as cloud-based applications using Spring Boot.

Unit - I Spring Boot

Introduction – Features - Advantages, Microservices, System Requirements, Setting up the environment, 12-factor app, Spring Initializr, Build Tools – Maven and Gradle, pom.xml and build.gradle, Building application using Maven and Gradle, entry point class, Bootstrap Application Context, Spring Boot Starter Dependencies - Auto-Configuration

Unit - II Spring Annotations and Data

Spring Boot Annotations: Java annotations – Existence of Spring Annotations - Spring and Spring Boot Annotations. Working with Spring Data JPA and Caching: Accessing relational data using JdbcTemplate and Spring Data JPA with the in-memory database and MySQL - Query methods in Spring Data JPA - Caching.

Unit - III Learning RESTFul API

Building RESTFul Microservices: Creating and Consuming RESTFul APIs- Spring Boot Actuators – Custom health check indicators – Exception handling -Service discovery – RestTemplate - Routing a request – Spring Cloud Gateway. Securing a Web Application: Authentication and Authorization concepts – Spring security filters – Enabling and Disabling security – Oauth security – Accessing REST secured APIs – REST services

Unit - IV Implementing Resilience4J and Swagger

Building Resilient System: Client-side load balancing – Circuit breaker – Implementing Resilience4J. Logging: Logging Data – Logback – Spring Cloud Sleuth and Zipkin – ELK. Working with the Swagger API Management Tool: API documentation – Implementing Swagger - Swagger UI – Swagger documentation – Swagger Codegen.

Unit - V Testing and Deploying

Testing a Spring Boot Application: Unit Testing and Integration Testing – JUnit and Mockito framework – Checking code coverage – Testing RESTFul web services – Cucumber automation testing. Deploying a Spring Boot Application – Docker and containerization - Setting up Docker- Heroku CLI and deployment. Case Study.

TEXT BOOK:

Lecture:45, Tutorial :15, Total: 60

- Shagun Bakliwal, "Hands-on Application Development using Spring Boot: Building Modern Cloud Native Applications by Learning RESTFul API, Microservices, CRUD Operations, Unit Testing, and Deployment", BPB Publications, 1st Edition, 2021.
- 2. Rajput, D. "Mastering Spring Boot 2.0: Build modern, cloud-native, and distributed systems using Spring Boot", Packt Publishing Ltd, 2018.

3 Claudio and Greg, "Developing Java Applications with Spring and Spring Boot", Packt Publishing Ltd, 2018.

9+3

9+3

9+3

9+3

9+3

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	Apply the Spring Boot and all its capabilities.	Applying (K3)
CO2	Demonstrate the common annotations of the Spring Data and Spring Data JPA	Applying (K3)
CO3	Build RESTFul Microservices and Secured Web Application	Applying (K3)
CO4	Implement Resilience4J and Swagger API and host the apps on Cloud.	Applying (K3)
CO5	Learn to demonstrate Testing and Deploying a Spring Boot Application	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1										2	1
CO2	3	2	1										2	1
CO3	3	2	1										2	1
CO4	3	2	1										2	1
CO5	3	2	1										2	1
1 – Slight, 2 – N	Noderat	e, 3 – S	Substan	tial, BT	Г- Bloor	n's Tax	onomy	,						

- 3 - ,		,	,				
		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	5	20	75	-	-	-	100
CAT2	10	20	70	-	-	-	100
CAT3	10	20	70	-	-	-	100
ESE	10	20	70	-	-	-	100

20ITO08 NCC STUDIES (AIR WING) - I

Programme & Branch	All Engineering and Technology Branches	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	5/6	OE	3	0	2	4

Preamble	This course is designed especially for NCC Cadets. This course will help develop character , camaraderie, discipline,
	secular outlook, the spirit of adventure, sportsman spirit and ideals of selfless service amongst cadets by working in
	teams, honing qualities such as self-discipline, self-confidence, self-reliance and dignity of labour in the cadets.

Unit – I NCC Organization & National Integration

NCC Organization – History of NCC- NCC Organization- NCC Training- NCC Uniform – Promotion of NCC cadets – Aim and advantages of NCC Training- NCC badges of Rank- Honors' and Awards – Incentives for NCC cadets by central and state govt. History and Organization of IAF-Indo-Pak War-1971-Operation Safed Sagar. National Integration- Unity in diversity- contribution of youth in nation building- national integration council- Images and Slogans on National Integration.

Unit – II Drill & Weapon Training

Drill- Words of commands- position and commands- sizing and forming- saluting- marching- turning on the march and wheeling- saluting on the march- side pace, pace forward and to the rear- marking time- Drill with arms- ceremonial drill- guard mounting.(WITH DEMONSTRATION). Main Parts of a Rifle- Characteristics of .22 rifle- loading and unloading – position and holding- safety precautions – range procedure- MPI and Elevation- Group and Snap shooting- Long/Short range firing (WITH PRACTICE SESSION).

Unit – III Principles of Flight

Laws of motion-Forces acting on aircraft-Bernoulli's theorem-Stalling-Primary control surfaces - secondary control surfaces-Aircraft recognition.

Unit - IV Aero Engines:

Introduction of Aero engine-Types of engine-piston engine-jet engines-Turboprop engines-Basic Flight Instruments-Modern trends.

Unit – V Aero Modeling:

History of aero modeling-Materials used in Aero-modeling-Types of Aero-models – Static Models-Gliders-Control line models-Radio Control Models-Building and Flying of Aero-models.

TEXT BOOK:

1

"National Cadet Corps- A Concise handbook of NCC Cadets" by Ramesh Publishing House, New Delhi, 2014.

REFERENCES:

1	"Cadets Handbook – Common Subjects SD/SW" by DG NCC, New Delhi.
2	"Cadets Handbook – Specialised Subjects SD/SW" by DG NCC, New Delhi.
3	"NCC OTA Precise" by DGNCC, New Delhi.

9

9

9

9

9

Lecture :45, Practical30, Total:75

	COURSE OUTCOMES: On completion of the course, the students will be able to					
CO1	Display sense of patriotism, secular values and shall be transformed into motivated youth who will carry out nation building through national unity and social cohesion.	Applying (K3)				
CO2	Demonstrate the sense of discipline with smartness and have basic knowledge of weapons and their use and handling	Applying (K3)				
CO3	Illustrate various forces and moments acting on aircraft	Applying (K3)				
CO4	Outline the concepts of aircraft engine and rocket propulsion	Applying (K3)				
CO5	Design, build and fly chuck gliders/model airplanes and display static models.	Applying (K3)				

					Маррі	ing of C	Os with	n POs a	nd PSO	s				
COs/POs	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						3	3	3	3	3				
CO2					3									
CO3	3	2	1	1										
CO4	3	2	1	1										
CO5	3	2	1	1										
I – Slight, 2 –	- Moderate	e, 3 – Su	bstantia	I, BT- B	loom's T	Taxonom	ıy							

ASSESSMENT PATTERN - THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	0 11 2 0		Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	-	-	-	-	-	-	-				
CAT2	-	-	-	-	-	-	-				
CAT3	-	-	-	-	-	-	-				
ESE	The examination and all K1 to K6 knowledg converted to 100 marl	e levels.The maximur									

20IT009 BIO NATURAL LANGUAGE PROCESSING

Prerequisites	ranch All Circuit Branches	Sem.	Category	L	T	P	Credit
Fielequisites	Nil	6	OE	3	0	0	3
Preamble	The course provides the foundation on Natural Langua language, this course deals with statistical models, wor architectures. It also illustrates some practical NLP syste chatbots.	d embeddings a	and sequence	modelii	ng usin	ng adva	nced neura
Unit - I	Words and Their Statistical Models						9
Evaluating Lang		Kneser-Ney Sn	noothing – Hu	ge Lang	guage I	Models	– Backoff -
Unit - II	Vectors and Embeddings						9
Evaluating vecto Nets – Neural La	I Information (PMI) – Applications of TF-IDF and PPMI – V or models. Neural Network Language Models – Units – XC anguage Models.	R problem – Fe					iining Neura
Unit - III	Sequence I abeling and Deep I earning Architectures						9
English word cla Fields – Evaluat	Sequence Labeling and Deep Learning Architectures Isses –Part-of-Speech (PoS) Tagging – Named Entities ar tion of Named Entity Recognition. Deep Learning Architectures tts in RNNs: LSTMs and GRUs – Self Attention Networks	d Named Entiti	ence modeling	g – Rec	urrent	Neural	nal Random Networks -
English word cla Fields – Evaluat Managing conte	usses –Part-of-Speech (PoS) Tagging – Named Entities ar tion of Named Entity Recognition. Deep Learning Archite	d Named Entiti cturesfor seque Transformers) -	ence modeling	g – Rec	urrent	Neural	nal Random Networks - lodels.
English word cla Fields – Evaluat Managing contex Unit - IV Language diver	isses –Part-of-Speech (PoS) Tagging – Named Entities ar tion of Named Entity Recognition. Deep Learning Archite xts in RNNs: LSTMs and GRUs – Self Attention Networks	d Named Entiti cturesfor seque Transformers) - els Encoder-Decod	ence modeling - Potential har er with RNNs	g – Rec rms fron s – Atte	urrent n Lang ention	Neural uage M – Bea	Networks - lodels.
English word cla Fields – Evaluat Managing conte: Unit - IV Language diver Encoder-Decode	Asses –Part-of-Speech (PoS) Tagging – Named Entities ar tion of Named Entity Recognition. Deep Learning Archite xts in RNNs: LSTMs and GRUs – Self Attention Networks Machine Translation (MT) and Encoder-Decoder Mod gences and Typology – The Encode-Decoder model –	d Named Entiti cturesfor seque Transformers) - els Encoder-Decod	ence modeling - Potential har er with RNNs	g – Rec rms fron s – Atte	urrent n Lang ention	Neural uage M – Bea	nal Randon Networks - lodels. m Search -
English word cla Fields – Evaluat Managing contex Unit - IV Language divery Encoder-Decode Unit - V Question Answ Answering – Us Dialogue system	Asses –Part-of-Speech (PoS) Tagging – Named Entities ar tion of Named Entity Recognition. Deep Learning Archite xts in RNNs: LSTMs and GRUs – Self Attention Networks Machine Translation (MT) and Encoder-Decoder Mod gences and Typology – The Encode-Decoder model – er with Transformers –Practical details on building MT syste	d Named Entiti cturesfor seque Transformers) - els Encoder-Decod ems – MT evalu on Answering - QA models –	ence modeling - Potential har er with RNNs ation – Bias a - Entity Linkir Evaluation of	g – Rec rms from s – Atte nd ethic	urrent n Langu ention al issu iowledg answe	Neural uage M – Bea es. ge bas ers. Ch	nal Random Networks - Iodels. m Search - ed Question natbots and
Fields – Evaluat Managing contex Unit - IV Language divery Encoder-Decode Unit - V Question Answ Answering – Us Dialogue system	Asses –Part-of-Speech (PoS) Tagging – Named Entities artition of Named Entity Recognition. Deep Learning Archite Atts in RNNs: LSTMs and GRUs – Self Attention Networks of Machine Translation (MT) and Encoder-Decoder Mood gences and Typology – The Encode-Decoder model – er with Transformers –Practical details on building MT syste Practical NLP Systems vering: Information Retrieval – IR based Factoid Questi sing Language Models for Question Answering – Classic ms – Properties of human conversations – Chatbots – GU	d Named Entiti cturesfor seque Transformers) - els Encoder-Decod ems – MT evalu on Answering - QA models –	ence modeling - Potential har er with RNNs ation – Bias a - Entity Linkir Evaluation of	g – Rec rms fron s – Atte nd ethic ng – Kn i factoid gue sys	urrent n Lang ention al issu nowledg answe tem – I	Neural uage M – Bea es. ge bas ers. Cr Evalua	nal Random Networks - Iodels. m Search - ed Question natbots and

1.	Daniel Jurafsky and James H. Martin, "Speech and Language Processing", 3rdEdition, Pearson Education, New Delhi, 2020.
Refere	ences:
2.	Christopher Manning and Hinrich Schuetze," Foundations of Statistical Natural Language Processing", 1 st Edition, MIT Press, London, 2000.
3.	Li Deng and Yang Liu, " Deep Learning in Natural Language Processing", 1 st Edition, Springer, 2018

	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	apply formal and statistical models for word processing	Applying (K3)
CO2	develop word vector embeddings for a given language	Applying (K3)
CO3	Utilize deep learning architectures for modeling sequences in NLP	Applying (K3)
CO4	make use of encoder-decoders models to build Machine Translation systems	Applying (K3)
CO5	build question answering and chatbots for practical applications	Applying (K3)

	Mapping of COs with POs s											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6						
CO1	3	2	1	1								
CO2	3	2	1	1								
CO3	3	2	1	1								
CO4	3	2	1	1								
CO5	3	2	1	1								

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

		ASSESSME	NT PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	40	30				100
CAT2	20	40	40				100
CAT3	20	40	40				100
ESE	20	40	40				100

* ±3% may be varied (CAT 1,2,3 – 50 marks & ESE – 100 marks)(CAT 1,2,3 – 50 marks & ESE – 100 marks)

20ITO10 DISASTER MANAGEMENT FOR INFORMATION TECHNOLOGY

rogramme	& Branch	All Engineering and Technology Branches	Sem.	Category	L	Т	P	Credit
Prerequisite	s	Nil	6	OE	3	0	0	3
Preamble		e introduces the concept of Business Continuity Proces sses various aspects like risk evaluation, strategies, awa						
Jnit - I	Introducti	on:						(
nformation-/ mpact –Ima	Alternative I Ige-Market F tivities-Busir	y of today's business organizations-Disaster - Classifica Business operations –Loss of information-Indirect imp Position-Growth or decline -Risk management – Building hess Continuity planning Strategy al Continuity Planning:	act-ripplin	g effects of I	ousines	s oper	ations-L	ong Term
		anning: Multilateral continuity planning-MCP approach-F						
Operational	risk manag	ection: a justification for funding of total asset prote ement-Senior management arrangements, systems an usiness continuity planning-BCP within a business strate	controls	- Understand				
Operational Business str Jnit - III	risk manag ategy and b Business	ement-Senior management arrangements, systems and usiness continuity planning-BCP within a business strate Continuity Planning:	l controls gic contex	- Understand kt	ing the	organi	zation's	business
Dperational Business str Jnit - III Business Co programme assessment strategies fo	risk manag ategy and b Business ontinuity Pla managemer -Risk evalua	ement-Senior management arrangements, systems and usiness continuity planning-BCP within a business strate Continuity Planning: unning: The business continuity planning methodology at-Understanding the organization - A practical approach tion and control-Business impact analysis-A walk throug ass or work areas-Business/work area recovery-Types of	I controls gic contex - The bu Risk eva h a comp	- Understand t siness contin luation and co prehensive BIA	uity ma ontrol:pr	organi nagem actical oping b	zation's ent lifec guidelin ousiness	business ycle-BCM es for risl continuit
Dperational Business str Jnit - III Business Co programme assessment strategies fo	risk manag ategy and b Business ontinuity Pla managemer -Risk evalua or the busine age consider	ement-Senior management arrangements, systems and usiness continuity planning-BCP within a business strate Continuity Planning: unning: The business continuity planning methodology at-Understanding the organization - A practical approach tion and control-Business impact analysis-A walk throug ass or work areas-Business/work area recovery-Types of	I controls gic contex - The bu Risk eva h a comp	- Understand t siness contin luation and co prehensive BIA	uity ma ontrol:pr	organi nagem actical oping b	zation's ent lifec guidelin ousiness	business sycle-BCN es for risk continuity mentation
Dperational Business str Jnit - III Business Co programme assessment strategies fo ssues-Salva Jnit - IV Developing strategies-H Strategies-S Business ch	risk manage ategy and b Business ontinuity Pla managemer Risk evalua or the busine age consider Developin Business (ardware str ttrategies for	ement-Senior management arrangements, systems and usiness continuity planning-BCP within a business strate Continuity Planning: Inning: The business continuity planning methodology at-Understanding the organization - A practical approach tion and control-Business impact analysis-A walk throug ass or work areas-Business/work area recovery-Types of ations	I controls gic contex - The bu Risk eva h a comp f conting f conting municati es-offsite the busin	- Understand at siness contin luation and co prehensive BIA encies-Vital re ons-Business storages an ess informatio	uity ma ontrol:pr A-Devel- cords a contin d facilit n flow-V	nagem actical oping b and pap uity strat /ulnera	zation's ent lifec guidelin ousiness per docu rategies-C bility ass	business ycle-BCM es for risk continuity mentatior Second Genera all centre sessment
Dperational Business str Jnit - III Business Co programme assessment strategies fo ssues-Salva Jnit - IV Developing strategies-H Strategies-S Business ch	risk manag ategy and bi Business ontinuity Pla managemer -Risk evalua or the busine age consider Developin Business (ardware str atrategies for allenges-Ma (irtualization	ement-Senior management arrangements, systems and usiness continuity planning-BCP within a business strate Continuity Planning: Inning: The business continuity planning methodology at-Understanding the organization - A practical approach tion and control-Business impact analysis-A walk throug ass or work areas-Business/work area recovery-Types of ations g Business Continuity Strategies: Continuity Strategies Business continuity for telecor ategies-Software strategies- Network service strategie communications products and services -Understanding	I controls gic contex - The bu Risk eva h a comp f conting f conting municati es-offsite the busin	- Understand at siness contin luation and co prehensive BIA encies-Vital re ons-Business storages an ess informatio	uity ma ontrol:pr A-Devel- cords a contin d facilit n flow-V	nagem actical oping b and pap uity strat /ulnera	zation's ent lifec guidelin ousiness per docu rategies-C bility ass	business ycle-BCM es for risl continuity mentation Second Genera all centre sessment

TEXT BOOK: 1 Andrew Hiles

Andrew Hiles, "The Definitive Handbook of Business Continuity Management", 2nd Edition, John Wiley& Sons, 2007

REFERENCES:

1 Snedaker, Susan, "Business continuity & disaster recovery planning for IT professionals", 2nd Edition Syngress, 2013.

	E OUTCOMES: pletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	utilize the significance of Business Continuity Planning in the event of a disaster	Applying (K3)
CO2	illustrate multilateral continuity planning and describe organization's business process and Strategy	Applying (K3)
CO3	carry out risk evaluation and control guidelines for risk assessment	Applying (K3)
CO4	choose appropriate Business continuity strategies for telecommunications and IT	Applying (K3)
CO5	make use of training, testing and auditing in Business continuity planning	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1										
CO2	3	2	1	1										
CO3	3	2	1	1										
CO4	3	2	1	1										
CO5	3	2	1	1										
1 – Slight, 2	– Modera	te, 3 – S	Substant	ial, BT-	Bloom's	Taxono	my							

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	20	40	40				100						
CAT2	20	40	40				100						
CAT3	20	40	40				100						
ESE	20	40	40				100						

20ITO11 MODERN APPLICATION DEVELOPMENT

Progra	mme & Branc	n A	II Engineering and Technology Branches	Sem.	Category	L	т	Р	Credit
Prereq	uisites	V	Veb Technologies	8	OE	3	0	0	3
Pream	ble This c and we		se provides knowledge about powerful modern web app ites	lications	that form the	e found	ation fo	or mobile	applicatior
Unit - I	Doma	in K	Knowledge:						ę
Introdu archite	•	s -	Selecting the supporting architecture - UX-driven design	gn - Arc	hitectural opti	ons fo	r a we	b solutio	n - Layered
Unit - I	II ASP.N	ΕT							ę
Introdu	ction - Technic	cal a	aspects of ASP.NET Core 1.0 – ASP.NET MVC						
Unit - I	II Boots	trap):						9
Introdu	iction – layouts	— ta	able – form - web elements – extensions - Organizing the	ASP.NI	ET MVC proje	ct			
Unit - I	V Data H	lan	dling:						9
Presen	ting Data: strue	ctur	e, display, adding views – Editing Data - Persistence and	modelin	g				
Unit - \	V User e	xpe	erience:						9
Creatir	ng more interac	tive	views - Pros and cons of responsive design - Making we	bsites m	obile-friendly				
т	EXT BOOK:						Lectu	re: 45, T	otal: 45
1.			odern Web Development: Understanding domains, techno	logies, a	ind user exper	rience"	, 1 st Edi	tion, Mic	rosoft
R	EFERENCES:								
1.	https://www.jav	atpo	oint.com/asp-net-tutorial						
2.	https://www.w3	sch	ools.com/bootstrap/						

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	illustrate the architectural options for a web solution	Applying (K3)
CO2	apply the technical aspects of ASP.NET	Applying (K3)
CO3	create simple applications using Bootstrap	Applying (K3)
CO4	develop data handling applications	Applying (K3)
CO5	design a responsive application using Bootstrap	Applying (K3)

Mapping of COs with POs and PSOs														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1										
CO2	3	2	1	1										
CO3	3	2	1	1										
CO4	3	2	1	1										
CO5	3	2	1	1										

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	30	50	20				100						
CAT2	20	40	40				100						
CAT3	20	40	40				100						
ESE	20	40	40				100						

20IT012 OBJECT ORIENTED SYSTEM DEVELOPMENT USING UML

Branch	All Engineering and Technology Branches	Sem.	Category	L	т	Ρ	Credit
Prerequisites	NIL	8	OE	3	0	0	3
Preamble	This course provides a concise introduction to the fun and UML diagrams.	ndamental cor	cepts of object ori	ented sys	stem des	ign with	patterns
Unit - I	Introduction:						9
development p	of object oriented systems development - Object ba process - Building high-quality software - Rumbaugh me s – Unified Approach						
Unit - II	UML:						9
dynamic mode	Unified Modeling Language – Static model - Dynamic mo eling - UML interaction diagrams -UML state chart diag oyment diagram - UML extensibility - Use-case model-D	ram - UML ac	tivity diagram - In	nplementa			
Unit - III	Object Oriented Analysis:						9
Noun Phrase	Approach-Common class patterns approach-Use case						
classes- Asso	ciations-Super-Sub Class relations-A-part of Relations ning Attributes by analysing Use cases and other UML di	hips – Aggreg	ations-Class Res	ponsibility	y: Identify		
classes- Asso Methods-Defir	ciations-Super-Sub Class relations-A-part of Relations	hips – Aggreg	ations-Class Res	ponsibility	y: Identify		ributes and
classes- Asso Methods-Defir Unit - IV Object oriente UML object c	ciations-Super-Sub Class relations-A-part of Relations ning Attributes by analysing Use cases and other UML di	hips – Aggreg iagrams-Objec ollaries- Coupl	ations-Class Res et Responsibilities- ing – Cohesion –E	Design Pa	y: Identify dy atterns- [ying Att	ributes and 9 g classes -
classes- Asso Methods-Defir Unit - IV Object oriente UML object c Objects-Packa	ciations-Super-Sub Class relations-A-part of Relations hing Attributes by analysing Use cases and other UML di Object Oriented Design: d design process - Object oriented design axioms-Corconstraint language-Class visibility - Refining attributes	hips – Aggreg iagrams-Objec ollaries- Coupl	ations-Class Res et Responsibilities- ing – Cohesion –E	Design Pa	y: Identify dy atterns- [ying Att	ributes and 9 g classes -
classes- Asso Methods-Defir Unit - IV Object oriente UML object c Objects-Packa Unit - V Introduction –	ciations-Super-Sub Class relations-A-part of Relations ing Attributes by analysing Use cases and other UML di Object Oriented Design: id design process - Object oriented design axioms-Cord constraint language-Class visibility - Refining attributes ages and Managing Classes	hips – Aggreg iagrams-Objec ollaries- Coupl s - Designing erns - Organiz	ations-Class Res of Responsibilities- ing – Cohesion –E methods and pro ing the Catalog -	Design Pa otocols-De	y: Identify dy atterns- E esigning	ying Att Designin Method	ributes and 9 g classes - s for Bank 9
classes- Asso Methods-Defir Unit - IV Object oriente UML object c Objects-Packa Unit - V Introduction –	ciations-Super-Sub Class relations-A-part of Relations ining Attributes by analysing Use cases and other UML di Object Oriented Design: id design process - Object oriented design axioms-Cord constraint language-Class visibility - Refining attributes ages and Managing Classes Design Patterns: Describing design patterns - Catalog of Design Patter w to Select a Design Pattern. Creational Patterns - Strue	hips – Aggreg iagrams-Objec ollaries- Coupl s - Designing erns - Organiz	ations-Class Res of Responsibilities- ing – Cohesion –E methods and pro ing the Catalog -	Design Pa otocols-De	y: Identify dy atterns- E esigning	ving Att Designin Method erns Sc	ributes and 9 g classes - s for Bank 9 olve Design
classes- Asso Methods-Defir Unit - IV Object oriente UML object c Objects-Packa Unit - V Introduction – Problems - Ho TEXT BC	ciations-Super-Sub Class relations-A-part of Relations ining Attributes by analysing Use cases and other UML di Object Oriented Design: id design process - Object oriented design axioms-Cord constraint language-Class visibility - Refining attributes ages and Managing Classes Design Patterns: Describing design patterns - Catalog of Design Patter w to Select a Design Pattern. Creational Patterns - Strue	hips – Aggreg iagrams-Objec ollaries- Coupl s - Designing erns - Organiz ctural Patterns	ations-Class Res of Responsibilities- ing – Cohesion –I methods and pro ing the Catalog - s - Behavioral Patte	Design Pa Design Pa Dotocols-De How Des erns.	y: Identify dy atterns- E esigning sign Patt	ying Att Designin Method erns Sc : 45, To	ributes and 9 g classes - s for Bank 9 olve Design

REFERENCES:

1	John Deacon, "Object Oriented Analysis and Design", 1 ^s t Edition, Pearson Education, 2009.
2	Craig Larman, "Object Oriented Analysis and Design", 3 rd Edition, Prentice Hall, India, 2005.

COURSE On compl			e, the st	udents w	vill be ab	ole to							BT Mapped (Highest Level)			
CO1 app	y differen	t technio	ques to g	get the s	ystem re	equirem	ents and	l presen	t it in sta	indard for	mat		Appl	ying (K3)		
CO2 utiliz	e softwa	re object	ts to buil	d systen	ns that a	ire more	robust						Applying (K3)			
CO3 des	3 design projects using the Object-Oriented Analysis and Design (OOAD) concepts												Applying (K3)			
	identify objects, relationships, services and attributes and construct UML diagrams using appropriate notations													Applying (K3)		
CO5 app	5 apply appropriate design patterns for solving real world problems												Applying (K3)			
					Μ	lapping	of COs	with PC	Os and I	PSOs						
COs/PO	B PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	3	2	1	1												
CO2	3	2	1	1												
CO3	3	2	1	1												
CO4	3	2	1	1												
CO5	3	2	1	1												
– Slight,	2 – Mode	erate, 3	– Substa	antial, B	Γ- Bloom	ı's Taxo	nomy									

ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	20	40	40				100					
CAT2	20	50	30				100					
CAT3	20	40	40				100					
ESE	30	40	30				100					

20ITO13 REINFORCEMENT LEARNING

	e & Branch All Engineering and Technology Branches	Sem.	Category			P	Credit
Prerequisit	tes NIL	8	OE	3	0	0	3
Preamble	This course deals with modeling, analysis tools and techniques for also deals with convergence and accuracy of such algorithms.	or problems	of dynamic de	cision I	making	under	uncertainty. I
					Lectu	re: 45,	Total: 45
Unit - I	Introduction and Basics of RL:						9
	nent Learning- Examples- Elements of Reinforcement Learning- L Reinforcement Learning.	imitations a	nd Scope- Ar	n Exten	ded Ex	ample:	Tic-Tac-Toe
Unit - II	Tabular Solution Methods:						9
	Bandits - An n-Armed Bandit Problem- Action-Value Methods- Incr Initial Values- Upper-Confidence-Bound Action Selection- Gradient				ig a No	nstatio	nary Problem
Unit - III	Finite Markov Decision Processes:						Ś
	t–Environment Interface- Goals and Rewards- Returns- Unified Markov Decision Processes- Value Functions- Optimal Value Functi					Tasks-	The Markov
1	Dynamic Programming and Monte Carlo Methods:						
Unit - IV							S S
Dynamic P	Programming - Policy Evaluation- Policy Improvement- Policy Iterati Monte Carlo Prediction- Monte Carlo Estimation of Action Values-						. Monte Carlo
Dynamic P Methods: N							. Monte Carlo nout Exploring
Dynamic P Methods: N Starts. Unit - V TD Predic	Monte Carlo Prediction- Monte Carlo Estimation of Action Values-	Monte Carlo	Control- Moi	nte Car	lo Cont	trol with	nout Exploring

 1
 Richard S. Sutton and Andrew G. Barto, "Reinforcement Learning: An Introduction", 2nd Edition, MIT Press, London, 2018..

 REFERENCES:

1 Phill winder, "Reinforcement Learning: Industrial applications of intelligent agents", 1st Edition, O'Reilly Media, 2020...

	JRSE OUTCOMES: completion of the course, the students will be able to												BT Mapped (Highest Level)		
CO1 illustra	te RL t	asks an	d the co	re princi	ples ber	nind the	RL						Applying (K3)		
CO2 Apply	tabular	method	ls to sol	ve classi	cal cont	rol probl	ems						Applying (K3)		
CO3 utilize	CO3 utilize Markov decision process in optimization of complex problems													ying (K3)	
CO4 solve	O4 solve problems using dynamic programming and Monte-Carlo methods													ying (K3)	
CO5 outline temporal-difference learning and Q-learning												Applying (K3)			
					Ν	/lapping	g of CO	s with P	Os and	PSOs					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	1	1											
CO2	3	2	1	1											
CO3	3	2	1	1											
CO4	3	2	1	1											
CO5	3	2	1	1											
1 – Slight, 2	– Mod	erate, 3	– Subst	antial, B	T- Bloor	n's Taxo	onomy								

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	20	40	40				100							
CAT2	20	50	30				100							
CAT3	20	40	40				100							
ESE	30	40	30				100							