KONGU ENGINEERING COLLEGE

(Autonomous Institution Affiliated to Anna University, Chennai)

PERUNDURAI ERODE – 638 060

TAMILNADU INDIA

Esta : 1984

REGULATIONS, CURRICULUM & SYLLABI - 2020

(CHOICE BASED CREDIT SYSTEM & OUTCOME BASED EDUCATION)

(For the students admitted during 2020 - 2021 and onwards)

BACHELOR OF TECHNOLOGY DEGREE IN ARTIFICAL INTELLIGENCE AND DATA SCIENCE

INDEX

SI.No.	CONTENTS	Page No.
1	VISION AND MISSION OF THE INSTITUTE	3
2	QUALITY POLICY	3
3	VISION AND MISSION OF THE DEPARTMENT	3
4	PROGRAM EDUCATIONAL OBJECTIVES (PEOs)	3
5	PROGRAM OUTCOMES (POs)	4
6	PROGRAM SPECIFIC OUTCOMES (PSOs)	5
7	REGULATIONS 2020	6
8	CURRICULUM BREAKDOWN STRUCTURE	23
9	CATEGORISATION OF COURSES	23
10	SCHEDULING OF COURSES	31
11	MAPPING OF COURSES WITH PROGRAM OUTCOMES	32
12	CURRICULUM OF B.TECH – ARTIFICIAL INTELLIGENCE AND DATA SCIENCE	39
13	DETAILED SYLLABUS	46

KONGU ENGINEERING COLLEGE PERUNDURAI ERODE – 638 060 (Autonomous)

INSTITUTE VISION

To be a centre of excellence for development and dissemination of knowledge in Applied Sciences, Technology, Engineering and Management for the Nation and beyond.

INSTITUTE MISSION

We are committed to value based Education, Research and Consultancy in Engineering and Management and to bring out technically competent, ethically strong and quality professionals to keep our Nation ahead in the competitive knowledge intensive world.

QUALITY POLICY

We are committed to

- Provide value based quality education for the development of students as competent and responsible citizens.
- Contribute to the nation and beyond through research and development
- Continuously improve our services

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING

VISION

To be a centre of excellence for nurturing competent computer professionals of high caliber and quality for catering to the ever-changing needs of the industry and society.

MISSION

Department of Computer Science Engineering is committed to:

- MS1: Develop innovative, competent and ethically strong computer engineers to meet global challenges.
- MS2: Foster consultancy and basic as well as applied research activities to solve real world problems.
- MS3: Endeavour for constant upgradation of technical expertise to cater to the needs of the industry and society.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

Graduate of Computer Science Engineering programme will:

- PEO1: Utilize the fundamental knowledge of basic sciences and engineering to succeed in their professional career.
- PEO2: Analyze, design, develop and verify computer-based solutions to real world problems.
- PEO3: Exhibit soft skills, ethical code of conduct and ability for life-long learning.

MS\PEO	PEO1	PEO2	PEO3		
MS1	2	2	3		
MS2	3	3	2		
MS3	3	2	3		

MAPPING OF MISSION STATEMENTS (MS) WITH PEOS

1 -Slight, 2 -Moderate, 3 -Substantial

PROGRAM OUTCOMES (POs)

Graduates of Computer Science Engineering will:

- **PO1** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO2 Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3 Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO6** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO7** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10** Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11 Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

Graduates of Computer Science Engineering will:

- **PSO1** Foundations of Computer Science: Ability to use the mathematical and computing knowledge to propose viable ideas and solutions to solve real world problems.
- **PSO2** Software design and Development: Ability to develop computer based systems using engineering skills, knowledge of software design process, programming languages and tools.

PEO\ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
PEO1	3	2	-	-	-	-	2	-	-	-	1	2	3	1
PEO2	-	3	3	3	2	-	1	-	-	-	2	2	1	3
PEO3	-	-	-	-	-	3	-	3	3	3	-	3	1	1

MAPPING OF PEOs WITH POS AND PSOS

1 - Slight, 2 - Moderate, 3 - Substantial

(Autonomous)

REGULATIONS 2020

CHOICE BASED CREDIT SYSTEM AND OUTCOME BASED EDUCATION

BACHELOR OF ENGINEERING (BE) / BACHELOR OF TECHNOLOGY (BTech) DEGREE PROGRAMMES

These regulations are applicable to all candidates admitted into BE/BTech Degree programmes from the academic year 2020 – 2021 onwards.

1. DEFINITIONS AND NOMENCLATU RE

In these Regulations, unless otherwise specified:

- i. "University" means ANNA UNIVERSITY, Chennai.
- ii. "College" means KONGU ENGINEERING COLLEGE.
- iii. "Programme" means Bachelor of Engineering (BE) / Bachelor of Technology (BTech) Degree programme
- iv. "Branch" means specialization or discipline of BE/BTech Degree programme, like Civil Engineering, Information Technology, etc.
- v. "Course" means a Theory / Theory cum Practical / Practical course that is normally studied in a semester like Mathematics, Physics etc.
- vi. "Credit" means a numerical value allocated to each course to describe the candidate's workload required per week.
- vii. "Grade" means the letter grade assigned to each course based on the marks range specified.
- viii. "Grade point" means a numerical value (0 to 10) allocated based on the grade assigned to each course.
- ix. "Principal" means Chairman, Academic Council of the College.
- x. "Controller of Examinations" means authorized person who is responsible for all examination related activities of the College.
- xi. "Head of the Department" means Head of the Department concerned of the College.

2. PROGRAMMES AND BRANCHES OF STUDY

The following programmes and branches of study approved by Anna University, Chennai and All India Council for Technical Education, New Delhi are offered by the College.

Programme	Branch						
	Civil Engineering						
	Mechanical Engineering						
	Electronics and Communication Engineering						
	Computer Science and Engineering						
BE	Electrical and Electronics Engineering						
	Electronics and Instrumentation Engineering						
	Mechatronics Engineering						
	Automobile Engineering						
	Computer Science and Design						
	Chemical Engineering						
	Information Technology						
BTech	Food Technology						
	Artificial Intelligence and Data Science						
	Artificial Intelligence and Machine Learning						

3. ADMISSION REQUIREMENTS

3.1 First Semester Admission

The candidates seeking admission to the first semester of the eight semester BE / BTech Degree Programme:

Should have passed the Higher Secondary Examination (10 + 2) in the academic stream with Mathematics, Physics and Chemistry as three of the four subjects of study under Part-III subjects of the study conducted by the Government of Tamil Nadu or any examination of any other University or authority accepted by the Anna University, Chennai as equivalent thereto.

(OR)

Should have passed the Higher Secondary Examination of Vocational stream (Vocational groups in Engineering / Technology) as prescribed by the Government of Tamil Nadu.

They should also satisfy other eligibility conditions as prescribed by the Anna University, Chennai and Directorate of Technical Education, Chennai from time to time.

3.2 Lateral Entry Admission

The candidates who hold a Diploma in Engineering / Technology awarded by the State Board of Technical Education, Tamilnadu or its equivalent are eligible to apply for Lateral entry admission to the third semester of BE / BTech in relevant branches of

Kongu Engineering College, Perundurai, Erode – 638060, India study.

(OR)

The candidates who hold a BSc degree (10+2+3 stream) with mathematics as one of the subjects at the BSc level from a recognised University are eligible to apply for Lateral entry admission to the third semester of BE / BTech. Such candidates shall undergo two additional Engineering course(s) in the third and fourth semesters as prescribed by the College.

They should satisfy other eligibility conditions prescribed by the Anna University, Chennai and Directorate of Technical Education, Chennai from time to time.

4. STRUCTURE OF PROGRAMMES

4.1 Categorisation of Courses

The BE / BTech programme shall have a curriculum with syllabi comprising of theory, theory cum practical, practical courses in each semester, professional skills training, project work, internship, etc. that have been approved by the respective Board of Studies and Academic Council of the College. All the programmes have well defined Programme Outcomes (PO), Programme Specific Outcomes (PSO) and Programme Educational Objectives (PEOs) as per Outcome Based Education (OBE). The content of each course is designed based on the Course Outcomes (CO). The courses shall be categorized as follows:

- i. Humanities and Social Sciences (HS) including Management Courses
- ii. Basic Science (BS) Courses
- iii. Engineering Science (ES) Courses
- iv. Professional Core (PC) Courses
- v. Professional Elective (PE) Courses
- vi. Open Elective (OE) Courses
- vii. Employability Enhancement Courses (EC) like Project work, Professional Skills, Comprehensive Test & Viva, Entrepreneurships/Start ups and Internship in Industry or elsewhere
- viii. Audit Courses (AC)
- ix. Mandatory Courses (MC) like Student Induction Program and Environmental Science.
- x. Honours Degree Courses (HC)

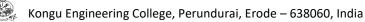
4.2 Credit Assignment and Honours Degree

4.2.1. Credit Assignment

Each course is assigned certain number of credits as follows:

Contact period per week	Credits
1 Lecture / Tutorial Period	1
2 Practical Periods	1
2 Project Work Periods	1
40 Training / Internship Periods	1

The minimum number of credits to complete the BE/BTech programme is 169.


4.2.2. Honours Degree

If a candidate earns 18 to 20 additional credits in an emerging area, then he/she can be awarded with Honours degree mentioning that emerging area as his/her specialization. The respective board of studies shall recommend the specializations for honours degree and appropriate additional courses to be studied by the candidate which shall get approval from Academic Council of the institution. A candidate shall have not less than 8.0 CGPA and no history of arrears during the entire programme to opt for the honours degree.

Various specializations for various branches recommended by the respective boards of studies are given below:

S. No.	Specializations for Honours degree in emerging areas	To be offered as Honours, Only for the following branches mentioned against the specialization					
1.	Construction Technology	Civil Engineering					
2.	Robotics	Mechanical Engineering					
3.	Electric Vehicles	Mechanical Engineering					
4.	Artificial Intelligence and Machine Learning	Mechatronics Engineering					
5.	Electric Vehicles	Automobile Engineering					
6.	Artificial Intelligence and Machine Learning	Electronics and Communication Engineering					
7.	Electric Vehicles	Electrical and Electronics Engineering					
8.	Control Systems and Sensors Technology	Electronics and Instrumentation Engineering					
9.	Cyber Security	Computer Science and Engineering					
10.	Data Science	Computer Science and Engineering					
11.	Cyber Security	Information Technology					
12.	Data Science	Information Technology					
13.	Waste Technology	Chemical Engineering					
14.	Food Processing and Management	Food Technology					

The courses specified under Honours degree in the emerging area may include theory, theory cum practical, practical, project work, etc. under the particular specialization. A candidate can choose and study these specified courses from fourth semester onwards and he/she shall successfully complete the courses within the stipulated time vide clause 5. Total number of credits earned in each semester may vary from candidate to candidate based on the courses chosen. The registration, assessment & evaluation pattern and classification of grades of these courses shall be the same as that of the courses in the regular curriculum of the programme of the candidate vide clause 6, clause 7 and clause 15 respectively. A candidate can earn Honours degree in only one specialization during the entire duration of the programme.

4.3 Employability Enhancement Courses

A candidate shall be offered with the employability enhancement courses like project work, internship, professional skills training, comprehensive test & viva, internship and entrepreneurships/start ups during the programme to gain/exhibit the knowledge/skills.

4.3.1 Professional Skills Training/ Entrepreneurships/Start Ups

A candidate may be offered with appropriate training courses imparting programming skills, communication skills, problem solving skills, aptitude skills etc. It is offered in two phases as phase I in fifth semester and phase II in sixth semester including vacation periods and each phase can carry two credits.

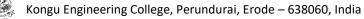
(or)

A candidate may be allowed to go for training at research organizations or industries for a required number of hours in sixth semester vacation period. Such candidate can earn two credits for this training course in place of Professional Skills Training course II in sixth semester. He/She shall attend Professional Skills Training Phase I in fifth semester and can earn two credits.

(or)

A candidate may be allowed to set up a start up and working part-time for the start ups by applying his/her innovations and can become a student entrepreneur during BE/BTech programme. Candidates can set up their start up from fifth semester onwards either inside or outside of the college. Such student entrepreneurs may earn a maximum of 2 credits per semester for two semesters each in place of either Professional Skills Training I or Professional Skills Training II. The area in which the candidate wants to initiate a start up may be interdisciplinary or multidisciplinary. The progress of the startup shall be evaluated by a panel of members constituted by the Principal through periodic reviews.

4.3.2 Comprehensive Test & Viva


The overall knowledge of the candidate in various courses he/she studied shall be evaluated by (i) conducting comprehensive tests with multiple choice questions generally with pattern similar to GATE and/or (ii) viva-voce examination conducted by a panel of experts assigned by the Head of the department. The members can examine the knowledge of the candidate by asking questions from various domains and the marks will be assigned based on their answers. This course shall carry two credits.

4.3.3 Internships

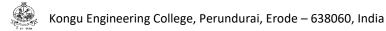
The curriculum enables a candidate to go for full time projects through internship during a part of seventh semester and/or entire final semester and can earn credits vide clause 7.6 and clause 7.11.

A candidate is permitted to go for full time projects through internship in seventh semester with the following condition: The candidate shall complete a part of the seventh semester courses with a total credit of about 50% of the total credits of seventh semester including Project Work I Phase II in the first two months from the commencement of the seventh semester under fast track mode. The balance credits required to complete the seventh semester shall be earned by the candidate through either approved Value Added Courses /Online courses / Self Study Courses or Add/Drop courses as per clause 4.4 and clause 4.5 respectively.

A candidate is permitted to go for full time projects through internship during eighth semester. Such candidate shall earn the minimum number of credits required to complete eighth semester other than project through either approved Value Added Courses /Online courses / Self Study Courses or Add/Drop courses as per

clause 4.4 and clause 4.5 respectively.

Assessment procedure is to be followed as specified in the guidelines approved by the Academic Council.


4.4 Value Added Courses / Online Courses / Self Study Courses

The candidates may optionally undergo Value Added Courses / Online Courses / Self Study Courses as elective courses.

- **4.4.1 Value Added Courses:** Value Added courses each with One / Two credits shall be offered by the college with the prior approval from respective Board of Studies. A candidate can earn a maximum of six credits through value added courses during the entire duration of the programme.
- **4.4.2 Online Courses:** Candidates may be permitted to earn credits for online courses, offered by NPTEL / SWAYAM / a University / Other Agencies, approved by respective Board of Studies.
- **4.4.3** Self Study Courses: The Department may offer an elective course as a self study course. The syllabus of the course shall be approved by the respective Board of Studies. However, mode of assessment for a self study course will be the same as that used for other courses. The candidates shall study such courses on their own under the guidance of member of the faculty following due approval procedure. Self study course is limited to one per semester.
- **4.4.4** The elective courses in the final year may be exempted if a candidate earns the required credits vide clause 4.4.1, 4.4.2 and 4.4.3 by registering the required number of courses in advance.
- **4.4.5** A candidate can earn a maximum of 30 credits through all value added courses, online courses and self study courses.

4.5 Flexibility to Add or Drop Courses

- **4.5.1** A candidate has to earn the total number of credits specified in the curriculum of the respective programme of study in order to be eligible to obtain the degree. However, if the candidate wishes, then the candidate is permitted to earn more than the total number of credits prescribed in the curriculum of the candidate's programme.
- **4.5.2** From the first to eighth semesters the candidates have the option of registering for additional elective/Honours courses or dropping of already registered additional elective/Honours courses within two weeks from the start of the semester. Add / Drop is only an option given to the candidates. Total number of credits of such courses during the entire programme of study cannot exceed eight.
- **4.6** Maximum number of credits the candidate can enroll in a particular semester cannot exceed 30 credits.
- **4.7** The blend of different courses shall be so designed that the candidate at the end of the programme would have been trained not only in his / her relevant professional field but also would have developed to become a socially conscious human being.

4.8 The medium of instruction, examinations and project report shall be English.

5. DURATION OF THE PROGRAMME

- **5.1** A candidate is normally expected to complete the BE / BTech Degree programme in 8 consecutive semesters/4 Years (6 semesters/3 Years for lateral entry candidate), but in any case not more than 14 semesters/7 Years (12 semesters/6 Years for lateral entry candidate).
- **5.2** Each semester shall consist of a minimum of 90 working days including continuous assessment test period. The Head of the Department shall ensure that every teacher imparts instruction as per the number of periods specified in the syllabus for the course being taught.
- **5.3** The total duration for completion of the programme reckoned from the commencement of the first semester to which the candidate was admitted shall not exceed the maximum duration specified in clause 5.1 irrespective of the period of break of study (vide clause 11) or prevention (vide clause 9) in order that the candidate may be eligible for the award of the degree (vide clause 16). Extension beyond the prescribed period shall not be permitted.

6. COURSE REGISTRATION FOR THE EXAMINATION

- **6.1** Registration for the end semester examination is mandatory for courses in the current semester as well as for the arrear courses failing which the candidate will not be permitted to move on to the higher semester. This will not be applicable for the courses which do not have an end semester examination.
- **6.2** The candidates who need to reappear for the courses which have only continuous assessment shall enroll for the same in the subsequent semester, when offered next, and repeat the course. In this case, the candidate shall attend the classes, satisfy the attendance requirements (vide clause 8), earn continuous assessment marks. This will be considered as an attempt for the purpose of classification.
- **6.3** If a candidate is prevented from writing end semester examination of a course due to lack of attendance, the candidate has to attend the classes, when offered next, and fulfill the attendance requirements as per clause 8 and earn continuous assessment marks. If the course, in which the candidate has a lack of attendance, is an elective, the candidate may register for the same or any other elective course in the subsequent semesters and that will be considered as an attempt for the purpose of classification.
- **6.4** A candidate shall register for the chosen courses as well as arrear courses (if any vide clause 6.2 and 6.3) from the list of courses specified under Honours degree.

7. ASSESSMENT AND EXAMINATION PROCEDURE FOR AWARDING MARKS

7.1 The BE/BTech programmes consist of Theory Courses, Theory cum Practical courses, Practical courses, Project Work, Professional Skills Training / Industrial Training, Internship and Entrepreneurships/ Start ups. Performance in each course of study shall be evaluated based on (i) Continuous Assessments (CA) throughout the semester and (ii)

End Semester Examination (ESE) at the end of the semester except for the courses which are evaluated based on continuous assessment only. Each course shall be evaluated for a maximum of 100 marks as shown below:

Sl. No.	Category of Course	Continuous Assessment Marks	End Semester Examination Marks		
1.	Theory / Practical	50	50		
2.	Theory cum Practical	The distribution of decided based weightage assigne practical componer	on the credit d to theory and		
3.	Professional Skills Training / / Comprehensive Test & Viva / Entrepreneurships / Start ups / Project Work 1 / Industrial Training / Mandatory Course	100			
4.	Project Work 2 Phase I / Project Work 2 Phase II / Internships	50	50		
5.	Value Added Course	The distribution of marks shall be			
6.	All other Courses	decided based on the credit weightage			

7.2 Examiners for setting end semester examination question papers for theory courses, theory cum practical courses and practical courses and evaluating end semester examination answer scripts, project works, internships and entrepreneurships/start ups shall be appointed by the Controller of Examinations after obtaining approval from the Principal.

7.3 Theory Courses

For all theory courses out of 100 marks, the continuous assessment shall be 50 marks and the end semester examination shall be for 50 marks. However, the end semester examinations shall be conducted for 100 marks and the marks obtained shall be reduced to 50. The continuous assessment tests shall be conducted as per the schedule laid down in the academic schedule. Three tests shall be conducted for 50 marks each and reduced to 30 marks each. The total of the continuous assessment marks and the end semester examination marks shall be rounded off to the nearest integer.

7.3.1 The assessment pattern for awarding continuous assessment marks shall be as follows:

Sl. No.	Туре	Max. Marks	Remarks				
	Test - I	30					
1.	Test - II	30	Average of best two				
	Test - III	30					
2.	Tutorial	15	Should be of Open Book/Objective Type. Average of best 4 (or more, depending on the nature of the course, as may be approved by Principal)				
3.	Assignment / Paper Presentation in Conference / Seminar / Comprehension / Activity based learning / Class notes	05	To be assessed by the Course Teacher based on any one type.				
	Total	50	Rounded off to the one decimal place				

However, the assessment pattern for awarding the continuous assessment marks may be changed based on the nature of the course and is to be approved by the Principal.

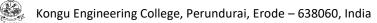
- **7.3.2** A reassessment test or tutorial covering the respective test or tutorial portions may be conducted for those candidates who were absent with valid reasons (Sports or any other reason approved by the Principal).
- **7.3.3** The end semester examination for theory courses shall be for a duration of three hours and shall be conducted between November and January during odd semesters and between April and June during even semesters every year.

7.4 Theory cum Practical Courses

For courses involving theory and practical components, the evaluation pattern as per the clause 7.1 shall be followed. Depending on the nature of the course, the end semester examination shall be conducted for theory and the practical components. The apportionment of continuous assessment and end semester examination marks shall be decided based on the credit weightage assigned to theory and practical components approved by Principal.

7.5 Practical Courses

For all practical courses out of 100 marks, the continuous assessment shall be for 50 marks and the end semester examination shall be for 50 marks. Every exercise / experiment shall be evaluated based on the candidate's performance during the practical class and the candidate's records shall be maintained.


7.5.1 The assessment pattern for awarding continuous assessment marks for each course shall be decided by the course coordinator based on rubrics of that particular course, and shall be based on rubrics for each experiment.

7.6 Project Work II Phase I / Project Work II Phase II

- **7.6.1** Project work shall be assigned to a single candidate or to a group of candidates not exceeding 4 candidates in a group. The project work is mandatory for all the candidates.
- **7.6.2** The Head of the Department shall constitute review committee for project work. There shall be two assessments by the review committee during the semester. The candidate shall make presentation on the progress made by him/her before the committee.
- **7.6.3** The continuous assessment and end semester examination marks for Project Work II (both Phase I and Phase II) and the Viva-Voce Examination shall be distributed as below:

		End Semester Examination (Max. 50 Marks)							
Zeroth Review I (Max 20 Marks)		vlarks)	Review II (Max. 30 Marks))	Report Evaluation (Max. 20 Marks)	Viva - V (Max. 301			
Rv. Com	Guide	Review Committee (excluding guide)	Guide	Review Committee (excluding guide)	Guide	Ext. Exr.	Guide	Exr.1	Exr.2
0	0	10	10	15	15	20	10	10	10

- **7.6.4** The Project Report prepared according to approved guidelines and duly signed by the Supervisor shall be submitted to Head of the Department. The candidate(s) must submit the project report within the specified date as per the academic schedule of the semester. If the project report is not submitted within the specified date then the candidate is deemed to have failed in the Project Work and redo it in the subsequent semester.
- **7.6.5** If a candidate fails to secure 50% of the continuous assessment marks in the project work, he / she shall not be permitted to submit the report for that particular semester and shall have to redo it in the subsequent semester and satisfy attendance requirements.
- **7.6.6** The project work shall be evaluated based on the project report submitted by the candidate in the respective semester and viva-voce examination by a committee consisting of two examiners and guide of the project work.
- **7.6.7** If a candidate fails to secure 50 % of the end semester examination marks in the project work, he / she shall be required to resubmit the project report within 30 days from the date of declaration of the results and a fresh viva-voce examination shall be conducted as per clause 7.6.6.
- **7.6.8** A copy of the approved project report after the successful completion of viva-voce examination shall be kept in the department library.

7.7 Project Work I Phase I / Industrial Training

The evaluation method shall be same as that of the Project Work II as per clause 7.6 excluding 7.6.3, 7.6.5, 7.6.6 and 7.6.7. The marks distribution is given below:

	Continuous Assessment (Max. 100 Marks)									
						Review III (Max. 50 Marks)				
Zeroth	Review	view Review I Review II (Max 20 Marks) (Max 30 Marks)			Report Evaluation (Max. 20 Marks)	Viva - Voce (Max. 30 Marks)				
Review Commi ttee	Guide	Review Committee (excluding guide)	Guide	Review Committee (excluding guide)	Guide	Review Committee	Guide	Review Committee		
0	0	10	10	15	15	20	10	20		

If a candidate fails to secure 50 % of the continuous assessment marks in this course, he / she shall be required to resubmit the project report within 30 days from the date of declaration of the results and a fresh viva-voce examination shall be conducted.

7.8 Professional Skills Training

Phase I training shall be conducted for minimum of 80 hours in 4th semester vacation and during 5th semester. Phase II training shall be conducted for minimum of 80 hours in 5th semester vacation and during 6th semester. The evaluation procedure shall be approved by the Principal.

7.9 Comprehensive Test/Viva

A candidate can earn 2 credits by successfully completing this course. The evaluation procedures shall be approved by the Principal.

7.10 Entrepreneurships/ Start ups

A start up/business model may be started by a candidate individually or by a group of maximum of three candidates during the programme vide clause 4.3.1. The head of the department concerned shall assign a faculty member as a mentor for each start up.

A review committee shall be formed by the Principal for reviewing the progress of the Start ups / Business models, innovativeness, etc. The review committee can recommend the appropriate grades for academic performance for the candidate(s) involved in the start ups. This course shall carry a maximum of two credits in fifth semester and two credits in sixth semester respectively and shall be evaluated through continuous assessments for a maximum of 100 marks vide clause 7.1. A report about the start ups is to be submitted to the review committee for evaluation for each start up and the marks will be given to Controller of Examinations after getting approval from Principal.

Kongu Engineering College, Perundurai, Erode – 638060, India

7.11 Projects through Internships

Each candidate shall submit a brief report about the internship undergone and a certificate issued from the organization concerned at the time of Viva-voce examination to the review committee. The evaluation method shall be same as that of the Project Work II as per clause 7.6.

7.12 Value Added Course

Minimum of two assessments shall be conducted during the value added course duration by the offering department concerned.

7.13 Online Course

The Board of Studies will provide methodology for the evaluation of the online courses. The Board can decide whether to evaluate the online courses through continuous assessment and end semester examination or through end semester examination only. In case of credits earned through online mode from NPTEL / SWAYAM / a University / Other Agencies approved by Chairman, Academic Council, the credits may be transferred and grades shall be assigned accordingly.

7.14 Self Study Course

The member of faculty approved by the Head of the Department shall be responsible for periodic monitoring and evaluation of the course. The course shall be evaluated through continuous assessment and end semester examination. The evaluation methodology shall be the same as that of a theory course.

7.15 Audit Course

A candidate may be permitted to register for specific course not listed in his/her programme curriculum and without undergoing the rigors of getting a 'good' grade, as an Audit course, subject to the following conditions.

The candidate can register only one Audit course in a semester starting from second semester subject to a maximum of two courses during the entire programme of study. Such courses shall be indicated as 'Audit' during the time of registration itself. Only courses currently offered for credit to the candidates of other branches can be audited.

A course appearing in the curriculum of a candidate cannot be considered as an audit course. However, if a candidate has already met the Professional Elective and Open Elective credit requirements as stipulated in the curriculum, then, a Professional Elective or an Open Elective course listed in the curriculum and not taken by the candidate for credit can be considered as an audit course.

Candidates registering for an audit course shall meet all the assessment and examination requirements (vide clause 7.3) applicable for a credit candidate of that course. Only if the candidate obtains a performance grade, the course will be listed in the semester Grade Sheet and in the Consolidated Grade Sheet along with the grade SF (Satisfactory). Performance grade will not be shown for the audit course.

Since an audit course has no grade points assigned, it will not be counted for the purpose of GPA and CGPA calculations.

7.16 Mandatory Course

A candidate shall attend and complete the induction training program of duration three weeks at the beginning of the first semester. It is mandatory for all candidates who have joined in various branches of all BE/BTech programmes. The induction training program includes the courses recommended by AICTE. Apart from this induction program, a candidate shall undergo the courses listed by AICTE as mandatory courses during their programme. No credits shall be given for such courses and shall be evaluated through continuous assessment tests only vide clause 7.1 for a maximum of 100 marks each. Since these courses have no grade points assigned, these courses will not be counted for the purpose of GPA and CGPA calculations.

7.17 Yoga and Values for Holistic Development (YVHD) and Universal Human Values (UHV)

Courses such as YVHD and UHV shall be offered to all candidates of all BE/BTech programmes. These courses shall carry a maximum of 100 marks each and shall be evaluated through continuous assessment tests only vide clause 7.1. The candidate(s) can earn 2 credits for UHV and 1 credit for YVHD by successfully completing these courses. Two continuous assessment tests will be conducted and the average marks will be taken for the calculation of grades.

8. **REQUIREMENTS FOR COMPLETION OF A SEMESTER**

- **8.1** A candidate who has fulfilled the following conditions shall be deemed to have satisfied the requirements for completion of a semester and permitted to appear for the examinations of that semester.
 - **8.1.1** Ideally, every candidate is expected to attend all classes and secure 100 % attendance. However, a candidate shall secure not less than 80 % (after rounding off to the nearest integer) of the overall attendance taking into account the total number of working days in a semester.
 - **8.1.2** A candidate who could not satisfy the attendance requirements as per clause 8.1.1 due to medical reasons (hospitalization / accident / specific illness) but has secured not less than 70 % in the current semester may be permitted to appear for the current semester examinations with the approval of the Principal on payment of a condonation fee as may be fixed by the authorities from time to time. The medical certificate needs to be submitted along with the leave application. A candidate can avail this provision only twice during the entire duration of the degree programme.

A candidate who could not satisfy the attendance requirements as per clause 8.1.1 due to his/her entrepreneurships/ start ups activities, but has secured not less than 60 % in the current semester can be permitted to appear for the current semester examinations with the recommendation of review committee and approval from the Principal.

- **8.1.3** In addition to clause 8.1.1 or 8.1.2, a candidate shall secure not less than 60 % attendance in each course.
- **8.1.4** A candidate shall be deemed to have completed the requirements of study of any semester only if he/she has satisfied the attendance requirements (vide clause 8.1.1 to 8.1.3) and has registered for examination by paying the prescribed fee.

- **8.1.5** Candidate's progress is satisfactory.
- **8.1.6** Candidate's conduct is satisfactory and he/she was not involved in any indisciplined activities in the current semester.
- **8.2.** The candidates who do not complete the semester as per clauses from 8.1.1 to 8.1.6 except 8.1.3 shall not be permitted to appear for the examinations at the end of the semester and not be permitted to go to the next semester. They have to repeat the incomplete semester in next academic year.
- **8.3** The candidates who satisfy the clause 8.1.1 or 8.1.2 but do not complete the course as per clause 8.1.3 shall not be permitted to appear for the end semester examination of that course alone. They have to repeat the incomplete course in the subsequent semester when it is offered next.

9. **REQUIREMENTS FOR APPEARING FOR END SEMESTER EXAMINATION**

- **9.1** A candidate shall normally be permitted to appear for end semester examination of the current semester if he/she has satisfied the semester completion requirements as per clause 8, and has registered for examination in all courses of that semester. Registration is mandatory for current semester examinations as well as for arrear examinations failing which the candidate shall not be permitted to move on to the higher semester.
- **9.2** When a candidate is deputed for a National / International Sports event during End Semester examination period, supplementary examination shall be conducted for such a candidate on return after participating in the event within a reasonable period of time. Such appearance shall be considered as first appearance.
- **9.3** A candidate who has already appeared for a course in a semester and passed the examination is not entitled to reappear in the same course for improvement of letter grades / marks.

10. PROVISION FOR WITHDRAWAL FROM EXAMINATIONS

- **10.1** A candidate may, for valid reasons, be granted permission to withdraw from appearing for the examination in any regular course or all regular courses registered in a particular semester. Application for withdrawal is permitted only once during the entire duration of the degree programme.
- **10.2** The withdrawal application shall be valid only if the candidate is otherwise eligible to write the examination (vide clause 9) and has applied to the Principal for permission prior to the last examination of that semester after duly recommended by the Head of the Department.
- **10.3** The withdrawal shall not be considered as an appearance for deciding the eligibility of a candidate for First Class with Distinction/First Class.

- **10.4** If a candidate withdraws a course or courses from writing end semester examinations, he/she shall register the same in the subsequent semester and write the end semester examinations. A final semester candidate who has withdrawn shall be permitted to appear for supplementary examination to be conducted within reasonable time as per clause 14.
- **10.5** The final semester candidate who has withdrawn from appearing for project viva-voce for genuine reasons shall be permitted to appear for supplementary viva-voce examination within reasonable time with proper application to Controller of Examinations and on payment of prescribed fee.

11. PROVISION FOR BREAK OF STUDY

- **11.1** A candidate is normally permitted to avail the authorised break of study under valid reasons (such as accident or hospitalization due to prolonged ill health or any other valid reasons) and to rejoin the programme in a later semester. He/She shall apply in advance to the Principal, through the Head of the Department, stating the reasons therefore, in any case, not later than the last date for registering for that semester examination. A candidate is permitted to avail the authorised break of study only once during the entire period of study for a maximum period of one year. However, in extraordinary situation the candidate may apply for additional break of study not exceeding another one year by paying prescribed fee for the break of study.
- **11.2** The candidates permitted to rejoin the programme after break of study / prevention due to lack of attendance shall be governed by the rules and regulations in force at the time of rejoining.
- **11.3** The candidates rejoining in new Regulations shall apply to the Principal in the prescribed format through Head of the Department at the beginning of the readmitted semester itself for prescribing additional/equivalent courses, if any, from any semester of the regulations in-force, so as to bridge the curriculum in-force and the old curriculum.
- **11.4** The total period of completion of the programme reckoned from the commencement of the semester to which the candidate was admitted shall not exceed the maximum period specified in clause 5 irrespective of the period of break of study in order to qualify for the award of the degree.
- **11.5** If any candidate is prevented for want of required attendance, the period of prevention shall not be considered as authorized break of study.
- **11.6** If a candidate has not reported to the college for a period of two consecutive semesters without any intimation, the name of the candidate shall be deleted permanently from the college enrollment. Such candidates are not entitled to seek readmission under any circumstances.

12. PASSING REQUIREMENTS

- **12.1** A candidate who secures not less than 50 % of total marks (continuous assessment and end semester examination put together) prescribed for the course with a minimum of 45 % of the marks prescribed for the end semester examination in all category of courses vide clause 7.1 except for the courses which are evaluated based on continuous assessment only shall be declared to have successfully passed the course in the examination.
- **12.2** A candidate who secures not less than 50 % in continuous assessment marks prescribed for the courses which are evaluated based on continuous assessment only shall be declared to have successfully passed the course. If a candidate secures less than 50% in the continuous assessment marks, he / she shall have to re-enroll for the same in the subsequent semester and satisfy the attendance requirements.
- **12.3** For a candidate who does not satisfy the clause 12.1, the continuous assessment marks secured by the candidate in the first attempt shall be retained and considered valid for subsequent attempts. However, from the fourth attempt onwards the marks scored in the end semester examinations alone shall be considered, in which case the candidate shall secure minimum 50 % marks in the end semester examinations to satisfy the passing requirements, but the grade awarded shall be only the lowest passing grade irrespective of the marks secured.

13. REVALUATION OF ANSWER SCRIPTS

A candidate shall apply for a photocopy of his / her semester examination answer script within a reasonable time from the declaration of results, on payment of a prescribed fee by submitting the proper application to the Controller of Examinations. The answer script shall be pursued and justified jointly by a faculty member who has handled the course and the course coordinator and recommended for revaluation. Based on the recommendation, the candidate can register for revaluation through proper application to the Controller of Examinations. The Controller of Examinations will arrange for revaluation and the results will be intimated to the candidate concerned. Revaluation is permitted only for Theory courses and Theory cum Practical courses where end semester examination is involved.

14. SUPPLEMENTARY EXAMINATION

If a candidate fails to clear all courses in the final semester after the announcement of final end semester examination results, he/she shall be allowed to take up supplementary examinations to be conducted within a reasonable time for the courses of final semester alone, so that he/she gets a chance to complete the programme.

The candidates who have failed in the courses Professional Skill Training I/II and Comprehensive Test/Viva shall be permitted to take up supplementary examinations.

15. AWARD OF LETTER GRADES

Range of % of Total Marks	Letter Grade	Grade Point
91 to 100	O (Outstanding)	10
81 to 90	A+ (Excellent)	9
71 to 80	A (Very Good)	8
61 to 70	B+ (Good)	7
50 to 60	B (Average)	6
Less than 50	RA (Reappear)	0
Satisfactory	SF	0
Withdrawal	W	-
Absent	AB	-
Shortage of Attendance in a course	SA	-

The Grade Point Average (GPA) is calculated using the formula:

 $GPA = \frac{\sum [(course credits) \times (grade points)] \text{ for all courses in the specific semester}}{\sum \sum (course credits) \times (grade points)] \text{ for all courses in the specific semester}}$

 Σ (course credits) for all courses in the specific semester

The Cumulative Grade Point Average (CGPA) is calculated from first semester (third semester for lateral entry candidates) to final semester using the formula

 $CGPA = \frac{\sum [(course credits) \times (grade points)] \text{ for all courses in all the semesters so far}}{\sum (course credits) \text{ for all courses in all the semesters so far}}$

The GPA and CGPA are computed only for the candidates with a pass in all the courses.

The GPA and CGPA indicate the academic performance of a candidate at the end of a semester and at the end of successive semesters respectively.

A grade sheet for each semester shall be issued containing Grade obtained in each course, GPA and CGPA.

A duplicate copy, if required can be obtained on payment of a prescribed fee and satisfying other procedure requirements.

Withholding of Grades: The grades of a candidate may be withheld if he/she has not cleared his/her dues or if there is a disciplinary case pending against him/her or for any other reason.

16. ELIGIBILITY FOR THE AWARD OF DEGREE

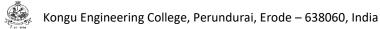
A candidate shall be declared to be eligible for the award of the BE / BTech Degree provided the candidate has

- i. Successfully completed all the courses under the different categories, as specified in the regulations.
- ii. Successfully gained the required number of total credits as specified in the curriculum corresponding to the candidate's programme within the stipulated time (vide clause 5).
- iii. Successfully passed any additional courses prescribed by the respective Board of Studies whenever readmitted under regulations other than R-2020 (vide clause 11.3)
- iv. No disciplinary action pending against him / her.

17. CLASSIFICATION OF THE DEGREE AWARDED

17.1 First Class with Distinction:

- **17.1.1** A candidate who qualifies for the award of the degree (vide clause 16) and who satisfies the following conditions shall be declared to have passed the examination in First class with Distinction:
 - Should have passed the examination in all the courses of all the eight semesters (six semesters for lateral entry candidates) in the **First Appearance** within eight consecutive semesters (six consecutive semesters for lateral entry candidates) excluding the authorized break of study (vide clause 11) after the commencement of his / her study.
 - Withdrawal from examination (vide clause 10) shall not be considered as an appearance.
 - Should have secured a CGPA of not less than 8.50


- **17.1.2** A candidate who joins from other institutions on transfer and who gets readmitted and has to move from one regulations to another regulations and who qualifies for the award of the degree (vide clause 16) and satisfies the following conditions shall be declared to have passed the examination in First class with Distinction:
 - Should have passed the examination in all the courses of all the eight semesters (six semesters for lateral entry candidates) in the **First Appearance** within eight consecutive semesters (six consecutive semesters for lateral entry candidates) excluding the authorized break of study (vide clause 11) after the commencement of his / her study.
 - Submission of equivalent course list approved by the respective Board of studies.
 - Withdrawal from examination (vide clause 10) shall not be considered as an appearance.
 - Should have secured a CGPA of not less than 9.00

17.2 First Class:

A candidate who qualifies for the award of the degree (vide clause 16) and who satisfies the following conditions shall be declared to have passed the examination in First class:

- Should have passed the examination in all the courses of all eight semesters (six semesters for lateral entry candidates) within ten consecutive semesters (eight consecutive semesters for lateral entry candidates) excluding authorized break of study (vide clause 11) after the commencement of his / her study.
- Withdrawal from the examination (vide clause 10) shall not be considered as an appearance.
- Should have secured a CGPA of not less than 7.00

⁽OR)

17.3 Second Class:

All other candidates (not covered in clauses 17.1 and 17.2) who qualify for the award of the degree (vide clause 16) shall be declared to have passed the examination in Second Class.

17.4 A candidate who is absent for end semester examination in a course / project work after having registered for the same shall be considered to have appeared for that examination for the purpose of classification.

17.5 Honours Degree:

A candidate who qualifies for the award of the degree (vide clause 16) and who satisfies the following conditions shall be declared to have earned the BE/BTech degree with Honours (vide clause 16 and clause 4.2.2):

- Should have passed the examination in all the courses of all the eight semesters (six semesters for lateral entry candidates) in the **First Appearance** within eight consecutive semesters (six consecutive semesters for lateral entry candidates) excluding the authorized break of study (vide clause 11) after the commencement of his / her study.
- Withdrawal from examination (vide clause 10) shall not be considered as an appearance.
- Should have secured a CGPA of not less than 8.00

18. MALPRACTICES IN TESTS AND EXAMINATIONS

If a candidate indulges in malpractice in any of the tests or end semester examinations, he/she shall be liable for punitive action as per the examination rules prescribed by the college from time to time.

19. AMENDMENTS

Notwithstanding anything contained in this manual, the Kongu Engineering College through the Academic council of the Kongu Engineering College, reserves the right to modify/amend without notice, the Regulations, Curricula, Syllabi, Scheme of Examinations, procedures, requirements, and rules pertaining to its BE / BTech programme.

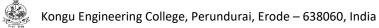
				Su	mmary	of Cred	it Distri	bution		
Category				Sem	ester	Total number of credits	Curriculum Content (% of total number of credits of the program)			
	Т	П	ш	IV	v	VI	VII	VIII		
HS	3	4	3				3		13	7.69
BS	11	5	3						19	11.24
ES	4	9	4	4					21	12.43
PC	4	4	14	14	15	11	4		66	39.05
PE					3		12	3	18	10.65
OE				4	4	3		3	11	8.28
EC					2	6	3	3 7	18	10.65
Semesterwise Total	22	22	24	22	24	20	22	13	169	100.00
				(Categor	у				Abbreviation
Lecture hours pe	er week									L
Tutorial hours pe	er week									Т
Practical, Project	t work, I	nternsh	ip, Profe	ssional	Skill Tra	aining, Ir	ndustrial	Training	g hours per wee	ek P
Credits								С		

		CATEGORISATION OF COUR	SE	S						
HUN	HUMANITIES AND SOCIAL SCIENCE INCLUDING MANAGEMENT (HS)									
S. No.	Course Code	Course Name	L	Т	Ρ	С	Sem			
1.	20EGT11	English Language Skills 1	3	0	0	3	I			
2.		Advanced Communication Skills	3	0	0	3	II			
3.		Yoga and Values for Holistic Development	1	0	1	1	II			
4.		English for Workplace Communication Laboratory	0	0	2	1	111			
5		Universal Human Values	2	0	0	2	111			
6		Engineering Economics and Management	3	0	0	3	VII			
	Т	otal Credits to be earned				13				

	BASIC SCIENCE (BS)									
S. No.	Course Code	Course Name	L	т	Ρ	С	Sem			
1.	20MAC11	Matrices and Differential Equation	3	1*	2*	4	I			
2.	20PHT11	Applied Physics	3	0	0	3	I			
3.	20CYT11	Applied Chemistry	3	0	0	3	I			
4.	20PHL11	Physical Sciences Laboratory	0	0	2	1	I			
5.		Discrete Mathematics and Linear Algebra	3	1	0	4	П			
6.		Open Source Laboratory	0	0	2	1	П			
7.		Probability Theory and Inferential Statistics	3	0	0	3	III			
	Т	otal Credits to be earned				19				

		ENGINEERING SCIENCE (ES	5)				
S. No.	Course Code	Course Name	L	т	Ρ	С	Sem
1.	20ADC11	Basic of Electrical and Electronic Engineering	3	0	2	4	I
2.		Digital Principles and Design	3	0	2	4	П
3.		Engineering Practices Laboratory	0	0	2	1	П
4.		Python Programming	3	0	2	4	П
5		Foundation of Artificial Intelligence and Data Science	3	0	2	4	III
6		Web Technology	3	0	0	3	IV
7		Web Technology Laboratory	0	0	2	1	IV
	Т	otal Credits to be earned				21	

	PROFESSIONAL CORE (PC)										
S. No.	Course Code	Course Name	L	т	Р	С	Sem	Domain/ Stream			
1.	20ADT11	Problem Solving and Programming	3	0	0	3	I	SD			
2.	20ADL11	Problem Solving and Programming Laboratory	0	0	2	1	I	SD			
3.		Data Structures	3	0	0	3	П	SD			
4.		Data Structures Laboratory	0	0	2	1	II	SD			
5.		Design and Analysis of Algorithms	3	0	2	4	111	SD			
6.		Computer Organization	3	0	0	3	Ш	AP			
7.		Database Management System	3	0	0	3		AP			


8.	Data Analysis	2	0	2	3		AI
9.	Database Management System Laboratory	0	0	2	1		SD
10.	Optimization Techniques	3	1	0	4	IV	AI
11.	Object Oriented Programming	2	0	2	3	IV	SD
12.	Operating Systems	3	0	0	3	IV	AP
13.	Applied Machine Learning	3	0	0	3	IV	AI
14.	Applied Machine Learning Laboratory	0	0	2	1	IV	AI
15.	Artificial Intelligence	3	0	0	3	V	AI
16.	Deep Learning	3	0	0	3	V	AI
17.	Data Modeling and Business Intelligence	3	0	2	4	V	AI
18.	Big Data Analytics	3	0	2	4	V	AI
19.	Deep Learning Laboratory	0	0	2	1	V	AI
20.	Artificial Intelligence and Robotics	3	0	0	3	VI	AI
21.	Text and Speech Analytics	2	0	2	3	VI	AI
22.	Regression Analysis	3	1	0	4	VI	AI
23.	Artificial Intelligence and Robotics Laboratory	0	0	2	1	VI	AI
24.	Image and Video Analytics	3	0	2	4	VII	AI
	Total Credits to be earned				66		

		PROFESSIONAL ELECTIV	E (P	E)				
S. No.	Course Code	Course Name	L	т	Ρ	С	Sem	Domain/ Stream
		Elective 1						
1.		Theory of Computation	3	0	0	3	V	SD
2.		Multi-core Architecture	3	0	0	3	V	AI
3.		Design Patterns and Principles	2	0	2	3	V	SD
4.		Computer Networks	3	0	0	3	V	NS
		Elective 2						
5		Wireless and Sensor Networks	3	0	0	3	VII	NS
6.		Cloud Computing	2	0	2	3	VII	NS
7.		Nature Inspired Optimization Techniques	3	0	0	3	VII	AI
8.		Modeling and Simulation	3	0	0	3	VII	AI
		Elective 3						

Engineering College, Perundurai, Erode – 638060, India											
9.	Information Security	3	0	0	3	VII	NS				
10.	Information Retrieval Techniques	3	0	0	3	VII	AI				
11.	Reinforcement Learning	3	0	0	3	VII	AI				
12.	Healthcare Analytics	3	0	0	3	VII	AI				
	Elective 4										
13.	Time Series Analysis and Forecasting	3	0	0	3	VII	AI				
14.	Social Media Analytics	3	0	0	3	VII	AI				
15.	Real Time Analytics	3	0	0	3	VII	AI				
16.	Ethics of Artificial Intelligence	3	0	0	3	VII	AI				
	Elective 5										
17.	Neural Machine Translation	3	0	0	3	VII	AI				
18.	Multivariate Data Analysis	3	0	0	3	VII	AI				
19.	Cognitive Science and Analytics	3	0	0	3	VII	AI				
20.	Graph Theory and its Applications	3	0	0	3	VII	AI				
	Elective 6										
21.	Software Defined Networks	3	0	0	3	VIII	NS				
22.	Software Quality and Testing	3	0	0	3	VIII	SDE				
23.	Software Project Management	3	0	0	3	VIII	SDE				
24.	Cyber Forensics	3	0	0	3	VIII	NS				
	Agile Methodologies for Software Development	3	0	0	3	VIII	SDE				
	otal Credits to be earned				18						
	EMPLOYABILITY ENHANCEMENT	COU	RSE	S (E	C)	•					
S. Course No. Code	Course Name	L	т	Ρ	С	Sem	Domain/ Stream				
	Professional Skills Training 1 / Industrial Training 1	-	-	-	2	V					
	Comprehensive Test and Viva	-	-	-	2	VI					
	Professional Skills Training 2 / Industrial Training 2	-	-	-	2	VI					
4.	Project Work 1	_	-	4	2	VI					
5.	Project Work 2 Phase 1	-	-	6	3	VII					
6.	Internship / Project Work 2 Phase 2	-	-	14	7	VIII					

* AI – Artificial Intelligence, SD-Systems Development, SDE – Software Development and Engineering, NS- Networks and Security, AP-

		EMPLOYABILITY ENHANCEMENT	cou	RSE	S (E	C)		
S. No.	Course Code	Course Name	L	т	Ρ	С	Sem	Domain/ Stream
1.		Professional Skills Training 1 / Industrial Training 1	-	-	-	2	V	
2.		Comprehensive Test and Viva	-	-	-	2	VI	
3.		Professional Skills Training 2 / Industrial Training 2	-	-	-	2	VI	
4.		Project Work 1	-	-	4	2	VI	
5.		Project Work 2 Phase 1	-	-	6	3	VII	
6.		Internship / Project Work 2 Phase 2	-	-	14	7	VIII	
		Total Credits to be earned				18		

MANDATORY COURSES

S. No.	Course Code	Course Name	L	Т	Ρ	С	Sem
1	20MNT11	Induction Training Program	-	-	-	0	Ι
2.		Environmental Science	2	0	0	0	IV

C	OPEN ELECTIVE COURSES OFFERED TO OTHER DEPARTMENTS (OE)									
S. No.	Course Code	Course Name	L	т	Ρ	С	Sem			
1.		Deep Learning for Engineering Applications	3	0	2	4	IV			
2.		Computer Vision	3	0	2	4	V			
3.		Artificial Intelligence for Data Science	3	0	0	3	VI			
4.		Business Analytics	3	0	0	3	VIII			
	Total Credits to be earned									

ADDITIONAL COURSES FOR B.Tech HONORS:

Eligibility norms for registering Honors degree:

• A candidate shall have not less than 8.0 CGPA and no history of arrears till third semester to opt for the honors degree. List of Additional Courses to be registered for BTech Honors:

S. No.	Course Name	Ηοι	urs / V	Credit	
		L	Т	Р	
1	Introduction to IOT	3	0	0	3
2	IOT Architecture and its Protocols	3	0	0	3
3	Cognitive IoT	3	0	0	3
4	Industrial and Medical IOT	3	0	0	3
5	IOT and Machine learning	3	0	0	3
6	Privacy and security in IOT	3	0	0	3
	Total Credits				18

Specialization: Internet of Things

Specialization: Blockchain Technology

S. No.	Course Name	Но	urs / V	Credit	
		L	Т	Р	
1	Introduction to Blockchain	3	0	0	3
2	Cryptography	3	0	0	3
3	Bitcoin Technology	3	0	0	3
4	Blockchain and Cryptocurrency Technologies	3	0	0	3
5	Blockchain application development through smart contracts	3	0	0	3
6	Practical Aspects of Blockchain	3	0	0	3
	Total Credits				18

Kongu Engineering College, Perundurai, Erode – 638060, India

KEC R2020: SCHEDULING OF COURSES – B.Tech(ARTIFICIAL INTELLIGENCE AND DATA SCIENCE) Total Credits: 169

		1	1	1		1		1			
Sem.	Course1	Course2	Course3	Course4	Course5	Course6	Course7	Course8	Course9	Course10	Credits
I	English Language Skills(3-0-0-3)	Matrices and Differential Equations (3- 1*-2*-4)	Applied Physics(3-0-0- 3)	Applied Chemistry(3-0- 0-3)	Problem Solving and Programming(3-0-0-3)	Basics of Electrical and Electronics Engineering (3-0-2-4)	Problem Solving and Programming Laboratory(0- 0-2-1)	Physical Sciences Laboratory I(0- 0-2-1)	Induction Training Program (0-0- 0-0)		22
Ш	Advance Communicatio n Skills(3-0-0- 3)	Discrete Mathematics and Linear Algebra(3-1-0- 4)	Digital Principles and Design (3-0-2- 4)	Data Structures(3-0- 0-3)	Python Programming (3-0-2-4)	Data Structures Laboratory(0- 0-2-1)	Open Source Laboratory(0- 0-2-1)	Engineering Practices Laboratory(0- 0-2-1)	Yoga Values for Holistic Development(1 -0-1-1)		22
ш	Probability Theory And Inferential Statistics (3-0- 0-3)	Foundations of Artificial Intelligence and Data Science(3-0-2- 4)	Design and Analysis of Algorithms(3- 0-2-4)	Computer Organization (3-0-0-3)	Database Management System(3-0-0- 3)	Data Analysis (2-0-2-3)	Database Management System Laboratory(0- 0-2-1)	English for Workplace Communicatio n Laboratory(0- 0-2-1)	Universal Human Values(2-0-0- 2)		24
IV	Optimization Techniques(3- 1-0-4)	Web Technology(3- 0-0-3)	Object Oriented Programming(2-0-2-3)	Operating Systems(3-0-0- 3)	Applied Machine Learning(3-0- 0-3)	Open Elective - I(3-1/0-0/2-4)	Web Technology Laboratory(0- 0-2-1)	Applied Machine Learning Laboratory(0- 0-2-1)	Environmental Science(2-0-0- 0)		22
v	Artificial Intelligence(3- 0-0-3)	Deep Learning(3-0- 0-3)	Data Modeling and Business intelligence (3- 0-2-4)	Big Data Analytics (3- 0-2-4)	Professional Elective -1(3- 0-0-3)	Open Elective - 2(3-1/0-0/2- 4)	Deep Learning Laboratory(0- 0-2-1)	Professional Skills Training 1 (0-0-0-2)			24
VI	Artificial Intelligence and Robotics (3-0-0-3)	Text and Speech Analytics(2-0- 2-3)	Regression Analysis (3-1- 0-4)	Open Elective - 3(2/3-0-0/2- 3)	Artificial Intelligence and Robotics Laboratory(0- 0-2-1)	Comprehensiv e Test / Viva(0-0-0-2)	Professional Skills Training 2/ Industrial Training 2 /(0- 0-0-2)	Project Work 1 (0-0-4-2)			20
VII	Engineering Economics & Management(3 -0-0-3)	Image and Video Analytics(3-0- 2-4)	Professional Elective – 2(3- 0-0-3)	Professional Elective – 3(3- 0-0-3)	Professional Elective – 4(3- 0-0-3)	Professional Elective – 5(3- 0-0-3)	Project Work 2 Phase I(0-0-6- 3)				22
VIII	Professional Elective -6(3- 0-0-3)	Open Elective - 4(2/3-0-0/2- 3)	Internship / Project work 2 Phase 2(0-0- 14-7)								13

MAPPING OF COURSES WITH PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

Sem.	Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
1		English Language Skills						✓			✓	✓	✓	✓		
1		Matrices and Differential Equations	✓	✓	✓	✓	✓									
1		Applied Physics	✓	✓	✓											
1		Applied Chemistry	✓	✓	✓	✓										
1		Problem Solving and Programming	✓	✓	✓		✓								✓	✓
1		Basics of Electrical and Electronics Engineering	✓	✓	✓		✓								✓	✓
1		Problem Solving and Programming Laboratory	✓	✓	✓	✓	✓					✓			✓	✓
1		Physical Sciences Laboratory I				✓										
1		Induction Training Program #														
2		Advance Communication Skills						\checkmark			✓	✓	✓	✓		
2		Discrete Mathematics and Linear Algebra	✓	✓	✓	✓									✓	
2		Digital Principles and Design	✓	✓	✓	✓	✓	\checkmark			✓	✓		✓	✓	✓
2		Data Structures	✓	✓	✓										✓	✓
2		Python Programming	✓	✓	✓	✓	✓								✓	✓
2		Data Structures Laboratory	✓	✓	✓	✓	✓							✓	✓	✓
2		Open Source Laboratory	✓	✓	✓	✓	✓								✓	✓
2		Engineering Practices Laboratory	✓	✓	✓	✓	✓				✓	✓	✓	✓		
2		Yoga Values for Holistic Development						✓		✓	✓			✓		
3		Probability Theory And Inferential Statistics	✓	✓	✓	✓									✓	
3		Foundations of Artificial Intelligence and Data Science	~	✓	~	~	~								~	~
3		Design and Analysis of Algorithms	✓	✓	✓	~	~								✓	✓
3		Computer Organization	✓	✓	✓										~	✓
3		Database Management System	✓	✓	✓						~				✓	✓
3		Data Analysis	✓	✓	✓	~	~								✓	✓
3		Database Management System Laboratory	✓	✓	✓	✓	✓					✓	✓		✓	✓

B.Tech Artificial Intelligence and Data Science - R2020

emKongu Engin Code	eering College, Perundura ່⊂ົວເດ se Tiຄີຍ 8060, India	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO
3	English for Workplace Communication Laboratory									\checkmark	✓			~	
3	Universal Human Values						~		~						
4	Optimization Techniques	✓	✓	✓										✓	✓
4	Web Technology	~	✓	✓	~	✓								✓	✓
4	Object Oriented Programming	~	✓	✓	✓	✓								✓	✓
4	Operating Systems	\checkmark	✓	✓										✓	✓
4	Applied Machine Learning	\checkmark	✓	✓										✓	✓
4	Web Technology Laboratory	\checkmark	✓	✓	✓	✓								✓	√
4	Applied Machine Learning Laboratory	✓	✓	✓	✓	✓								✓	✓
4	Environmental Science	✓	✓	✓				✓							
5	Artificial Intelligence	✓	✓	✓										✓	~
5	Deep Learning	✓	✓	✓										✓	~
5	Data Modeling and Business intelligence	✓	✓	✓	✓	✓								✓	~
5	Big Data Analytics	✓	✓	✓	✓	✓								✓	~
5	Deep Learning Laboratory	✓	✓	✓	✓	✓								✓	~
5	Professional Skills Training 1 / Industrial Training 1 *\$														
6	Artificial Intelligence and Robotics	✓	✓	✓										✓	~
6	Text and Speech Analytics	~	✓	✓	✓	✓								✓	~
6	Regression Analysis	✓	✓	✓										✓	~
6	Artificial Intelligence and Robotics Laboratory	\checkmark	✓	✓	✓	✓								✓	~
6	Comprehensive Test / Viva														
6	Professional Skills Training 2 / Industrial Training 2 @														
6	Project Work 1														
7	Engineering Economics & Management	✓	✓	✓			~	~	~	~	✓	~	~	✓	~
7	Image and Video Analytics	✓	✓	✓	~	✓								✓	~
7	Project Work 2 Phase I														
8	Internship / Project work 2 Phase 2														1

8	S							
25.4		1/	End and the second		e, Perundurai	Enclo C		
5 I M	97	KONGII	FUDDEP	ιήσι Λιιέσα	2 Perlindural	Frode – F	NXXUBU IN	inia
1050	- The second sec	Rongu	LIISIIICUI	ILIS COLLEC	., i ci unuunui	, בוטעכ נ	JUUUUU, II	iuiu

Sem.	Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		Professional Elective Courses														
5		Theory of Computation	✓	✓	✓										✓	✓
5		Multi-core Architecture	✓	✓	✓										✓	✓
5		Design Patterns and Principles	✓	✓	✓	✓	✓								✓	✓
5		Computer Networks	✓	✓	✓	✓									✓	✓
7		Wireless and Sensor Networks	✓	✓	✓	✓									✓	✓
7		Cloud Computing	✓	✓	✓	✓	~								✓	✓
7		Nature Inspired Optimization Techniques	✓	✓	✓										✓	✓
7		Modeling and Simulation	✓	✓	✓										✓	✓
7		Information Security	✓	✓	✓										✓	✓
7		Information Retrieval Techniques	✓	✓	✓										✓	✓
7		Reinforcement Learning	✓	✓	✓	✓									✓	✓
7		Healthcare Analytics	✓	✓	✓										✓	✓
7		Time Series Analysis and Forecasting	✓	✓	✓	✓	~								✓	✓
7		Social Media Analytics	✓	✓	✓										✓	✓
7		Real Time Analytics	✓	✓	✓		~								✓	✓
7		Ethics of Artificial Intelligence	✓	✓	✓			~		~					✓	✓
7		Neural Machine Translation	✓	✓	✓										✓	✓
7		Multivariate Data Analysis	✓	✓	✓										✓	✓
7		Cognitive Science and Analytics	✓	✓	✓										✓	✓
7		Graph Theory and its Applications	✓	✓	✓										✓	✓
8		Software Defined Networks	✓	✓	✓		~								✓	✓
8		Software Quality and Testing	✓	✓	✓										✓	✓
8		Software Project Management	✓	✓	✓										✓	✓
8		Cyber Forensics	✓	✓	✓										✓	✓
8		Agile Methodologies for Software Development	✓	✓	✓						✓	\checkmark	\checkmark		✓	✓

Sem.	Course Code	Course Title	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		Open Elective Courses														ľ
4		Deep Learning for Engineering Applications	~	~	~	~	~									
5		Computer Vision	~	✓	✓	✓	~									
6		Artificial Intelligence for Data Science	~	~	✓											
8		Business Analytics	~	~	~											

Honours Degree										
ют										
Introduction to IOT	✓	~	✓	✓					✓	✓
IOT Architecture and its Protocols	✓	~	✓	✓					✓	✓
Cognitive IoT	✓	~	✓		✓				~	✓
Industrial and Medical IOT	✓	~	✓		✓				~	~
IOT and Machine learning	✓	\checkmark	✓		✓				\checkmark	✓
Privacy and Security in IOT	✓	~	✓						~	✓
BLOCK CHAIN										
Introduction to Blockchain	✓	✓	✓						✓	✓
Cryptography	✓	\checkmark	✓						\checkmark	✓
Bitcoin Technology	✓	\checkmark	✓						\checkmark	✓
Blockchain and Cryptocurrency Technologies	✓	✓	✓						✓	✓
Blockchain application development through smart contracts	~	✓	~						✓	✓
Practical Aspects of Blockchain	✓	\checkmark	✓	✓	✓				✓	✓

	SEMEST	ER – I							
Course		Но	urs / V	Veek	Crodit	Max	imum	Cate	
Code	Course Title	L	Т	Р	Credit	CA	ESE	Total	gory
Theory/Theo	bry with Practical								
20EGT11	English Language Skills	3	0	0	3	50	50	100	HS
20MAC11	Matrices and Differential Equations	3	1*	2*	4	50	50	100	BS
20PHT11	Applied Physics	3	0	0	3	50	50	100	BS
20CYT11	Applied Chemistry	3	0	0	3	50	50	100	BS
20ADT11	Problem Solving and Programming	3	0	0	3	50	50	100	PC
20ADC11	Basics of Electrical and Electronics Engineering	3	0	2	4	50	50	100	ES
Practical / E	mployability Enhancement								
20ADL11	Problem Solving and Programming Laboratory	0	0	2	1	50	50	100	PC
20PHL11	Physical Sciences Laboratory I	0	0	2	1	50	50	100	BS
20MNT11	Student Induction Program #				0	100	0	100	MC
	Total Credits to be earned				22				

B.TECH. ARTIFICIAL INTELLIGENCE AND DATA SCIENCE CURRICULUM – R2020

*# Induction Training Program (including, Indian Constitution and Essence of Indian Knowledge Tradition, etc.) to be conducted at the beginning of the semester for 3 weeks.

	SEME	STER – II							
Course		Но	urs / V	Veek	Ore dit	Max	Cate		
Code	Course Title	L	Т	Р	Credit	CA	ESE	Total	gory
Theory/The	ory with Practical								
20EGT21	Advanced Communication Skills	3	0	0	3	50	50	100	HS
20MAT21	Discrete Mathematics and Linear Algebra	3	1	0	4	50	50	100	BS
20ADC21	Digital Principles and Design	3	0	2	4	50	50	100	ES
20ADT21	Data Structures	3	0	0	3	50	50	100	PC
20ADC22	Python Programming	3	0	2	4	50	50	100	ES
Practical / E	mployability Enhancement								
20ADL21	Data Structures Laboratory	0	0	2	1	50	50	100	PC
20ADL22	Open Source Laboratory	0	0	2	1	50	50	100	BS
20MEL11	Engineering Practices Laboratory	0	0	2	1	50	50	100	ES
20VEC11	Yoga and Values for Holistic Development	1	0	1	1	100	0	100	HS
	Total Credits to be earned				22				

	SEMESTER	2 – III									
Course		Но	urs / V	Veek	Creadit	Max	Maximum Marks				
Code	Course Title	L	Т	Р	Credit	CA	CA ESE Tota		gory		
Theory/The	ory with Practical										
20MAT35	Probability Theory And Inferential Statistics	3	0	0	3	50	50	100	BS		
20ADC31	Foundations of Artificial Intelligence and Data Science	3	0	2	4	50	50	100	ES		
20ADC32	Design and Analysis of Algorithms	3	0	2	4	50	50	100	PC		
20ADT31	Computer Organization	3	0	0	3	50	50	100	PC		
20ADT32	Database Management Systems	3	0	0	3	50	50	100	PC		
20ADC33	Data Analysis	2	0	2	3	50	50	100	PC		
Practical / E	mployability Enhancement										
20ADL31	Database Management Systems Laboratory	0	0	2	1	50	50	100	PC		
20EGL31	English for Workplace Communication Laboratory	0	0	2	1	50	50	100	HS		
20GET31	Universal Human Values	2	0	0	2	100	0	100	HS		
	Total Credits to be earned				24						

B.TECH. ARTIFICIAL INTELLIGENCE AND DATA SCIENCE CURRICULUM – R2020

	SEMEST	ER – IV							
Course	Course Title	Но	urs / V	Veek	Credit	Max	imum	Cate	
Code	Course Title	L	Т	Р	Credit	СА	ESE	Total	gory
Theory/The	ory with Practical								
20ADT41	Optimization Techniques	3	1	0	4	50	50	100	PC
20ADT42	Web Technology	3	0	0	3	50	50	100	ES
20ADC41	Object Oriented Programming	2	0	2	3	50	50	100	PC
20ADT43	Operating Systems	3	0	0	3	50	50	100	PC
20ADT44	Applied Machine Learning	3	0	0	3	50	50	100	PC
	Open Elective - I	3	1/0	0/2	4	50	50	100	OE
Practical / E	Employability Enhancement								
20ADL41	Web Technology Laboratory	0	0	2	1	50	50	100	ES
20ADL42	Applied Machine Learning Laboratory	0	0	2	1	50	50	100	PC
20MNT31	Environmental Science	2	0	0	0	100	0	100	MC
	Total Credits to be earned				22				

	SEMESTE	R – V	,								
Course		Но	urs/V	Veek	Cradit	Max	Maximum Marks				
Code	Course Title	L	т	Р	Credit	CA	ESE	Total	gory		
Theory/Th	eory with Practical										
20ADT51	Artificial Intelligence	3	0	0	3	50	50	100	PC		
20ADT52	Deep Learning	3	0	0	3	50	50	100	PC		
20ADC51	Data Modeling and Business intelligence	3	0	2	4	50	50	100	PC		
20ADC52	Big Data Analytics	3	0	2	4	50	50	100	PC		
	Professional Elective -1	3	0	0	3	50	50	100	PE		
	Open Elective – 2	3	1/0	0/2	4	50	50	100	OE		
	Practical / Employability Enhancement										
20ADL51	Deep Learning Laboratory	0	0	2	1	50	50	100	PC		
20GEL51	Professional Skills Training 1 / Industrial Training 1 *\$				2	100	0	100	EC		
	Total Credits to be earned				24						

B.TECH. ARTIFICIAL INTELLIGENCE AND DATA SCIENCE CURRICULUM – R2020

\$ Professional Skills Training / Industrial Training for a total period of about 80 hr during the period of 4thsem end summer holidays and 5th sem.

	SEMESTE	r – V									
Course	Course Title	Но	urs / V	Veek	Cradit	Max	Maximum Marks				
Code	Course little	L	Т	Ρ	Credit	CA	ESE	Total	gory		
Theory/Th	eory with Practical										
20ADT61	Artificial Intelligence and Robotics	3	0	0	3	50	50	100	PC		
20ADC61	Text and Speech Analytics	2	0	2	3	50	50	100	PC		
20ADT62	Regression Analysis	3	1	0	4	50	50	100	PC		
	Open Elective - 3	2/3	0	0/2	3	50	50	100	OE		
Practical /	Employability Enhancement										
20ADL61	Artificial Intelligence and Robotics Laboratory	0	0	2	1	50	50	100	PC		
20GEP61	Comprehensive Test / Viva				2	100	0	100	EC		
20GEL61	Professional Skills Training 2 / Industrial Training 2 @				2	100	0	100	EC		
20ADP61	Project Work 1	0	0	4	2	100	0	100	EC		
	Total Credits to be earned				20						

@ Professional Skills Training / Industrial Training for a total period of about 80 hr during 5thsem end summer holidays and 6thsem.

	SEMEST	ER – VI	I						
Course		Но	urs/V	Veek	Credit	Max	Maximum Marks		Cate
Code	Course Title	L	Т	Ρ	Credit	CA	ESE	Total	gory
Theory/Th	eory with Practical								
20MBT71	Engineering Economics and Management	3	0	0	3	50	50	100	HS
20ADC71	Image and Video Analytics	3	0	2	4	50	50	100	PC
	Professional Elective – 2	3	0	0	3	50	50	100	PE
	Professional Elective – 3	3	0	0	3	50	50	100	PE
	Professional Elective – 4	3	0	0	3	50	50	100	PE
	Professional Elective – 5	3	0	0	3	50	50	100	PE
	Practical / Employability Enhancement								
20ADP71	Project Work 2 Phase I	0	0	6	3	50	50	100	EC
	Total Credits to be earned				22				

B.TECH. ARTIFICIAL INTELLIGENCE AND DATA SCIENCE CURRICULUM - R2020

	SEMES	STER – VI	11						
Course	Course Title	Veek	Credit	Max	Cate				
Code	Course The	L	Т	Р	Credit	СА	CA ESE Total		gory
Theory/Th	eory with Practical								
	Professional Elective -6	3	0	0	3	50	50	100	PE
	Open Elective – 4	2/3	0	0/2	3	50	50	100	OE
Practical /	Employability Enhancement								
20ADP81	Internship / Project work 2 Phase 2 \$			14	7	50	50	100	EC
	Total Credits to be earned	-	13		-				

\$ Mandatory for all students

S. No.	Course Code	Course Name	L	т	Ρ	С	Sem	Domain/ Stream
	2000	Elective 1					2	
1.	20ADE01	Theory of Computation	3	0	0	3	V	SD
2.	20ADE02	Multi-core Architecture	3	0	0	3	V	AI
3.	20ADE03	Design Patterns and Principles	2	0	2	3	V	SD
4.	20ADE04	Computer Networks	3	0	0	3	V	NS
		Elective 2						
5.	20ADE05	ADE05 Wireless and Sensor Networks 3 0 0 3		3	VII	NS		
6.	20ADE06	Cloud Computing	2	0	2	3	VII	NS
7.	20ADE07	Nature Inspired Optimization Techniques	3	0	0	3	VII	AI
8.	20ADE08	Modeling and Simulation	3	0	0	3	VII	AI
		Elective 3						
9.	20ADE09	Information Security	3	0	0	3	VII	NS
10.	20ADE10	Information Retrieval Techniques	3	0	0	3	VII	AI
11.	20ADE11	Reinforcement Learning	3	0	0	3	VII	AI
12.	20ADE12	Healthcare Analytics	3	0	0	3	VII	AI
		Elective 4						
13.	20ADE13	Time Series Analysis and Forecasting	3	0	0	3	VII	AI
14.	20ADE14	Social Media Analytics	3	0	0	3	VII	AI
15.	20ADE15	Real Time Analytics	3	0	0	3	VII	AI
16.	20ADE16	Ethics of Artificial Intelligence	3	0	0	3	VII	AI
		Elective 5						
17.	20ADE17	Neural Machine Translation	3	0	0	3	VII	AI
18.	20ADE18	Multivariate Data Analysis	3	0	0	3	VII	AI
19.	20ADE19	Cognitive Science and Analytics	3	0	0	3	VII	AI
20.	20ADE20	Graph Theory and its Applications	3	0	0	3	VII	AI
		Elective 6	Elective 6					
21.	20ADE21	Software Defined Networks	e Defined Networks 3 0 0 3 VIII		NS			
22.	20ADE22	Software Quality and Testing	3	0	0	3	VIII	SDE
23.	20ADE23	Software Project Management	3	0	0	3	VIII	SDE
24.	20ADE24	Cyber Forensics	3	0	0	3	VIII	NS
25.	20ADE25	Agile Methodologies for Software Development	3	0	0	3	VIII	SDE
	1	Total Credits to be earned				18		

S. No.	Course Code	Course Name	L	т	Ρ	С	Sem
1	20ADO01	Deep Learning for Engineering Applications	3	0	2	4	IV
2	20ADO02	Computer Vision	3	0	2	4	V
3	20ADO03	Artificial Intelligence for Data Science	3	0	0	3	VI
4	20ADO04	Business Analytics	3	0	0	3	VIII

OPEN ELECTIVE COURSES OFFERED TO OTHER DEPARTMENTS (OE)

(Common to all departments except offering department)

SEMESTER I 20EGT11 ENGLISH LANGUAGE SKILLS

(Common to all Engineering and Technology Branches)

Programme & Branch	All BE/BTech branches	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	1	HS	3	0	0	3

Preamble This course is designed to impart required levels of fluency in using the English Language at A2/B1 Level in the Common European Framework (CEFR).

Listening, Speaking, Reading, Writing and Grammar & Vocabulary. Activity Based Learning -Unit - I Phase – I

Listening - Talking about past experiences - listening to descriptions - Speaking - Exchanging personal information - Talking about cities and transportation - Reading - Life and achievements of a famous personality - Global transport systems - Writing - Childhood experiences - Process Description - Grammar & Vocabulary - Past tense - Expressions of quantity - Indirect questions.

Unit - II	Listening,	Speaking,	Reading,	Writing	and	Grammar	&	Vocabulary.	Activity	Based	Learning	-
01111 - 11	Phase – II											

Listening - Information about hotels and accommodation - Recipes and food items - Speaking - Life style changes and making comparisons - Talking about food - Reading - Habit formation and changing habits - International cuisine - Writing - Personal email - emails about food and recipes - Grammar & Vocabulary - Evaluations and Comparisons with adjectives - Simple past and present perfect tenses.

Listening, Speaking, Reading, Writing and Grammar & Vocabulary. Activity Based Learning -Unit - III Phase – III

Listening - Information about travel - descriptions / conversations about family life - Speaking - Vacations and Holidays -Requests, complaints and offering explanations - Reading - Tourist places and travel experiences - Group behaviour and politeness - Writing - Personal letter about travelling - Writing guidelines and checklists – Grammar & Vocabulary – Future tense – Modals – Two-part verbs.

Unit - IV Listening, Speaking, Reading, Writing and Grammar & Vocabulary. Activity Based Learning -Phase – IV

Listening - Descriptions about festivals - Presentations on technology - Speaking - About technology - festivals, special events and traditions - Reading - Sports, hobbies and past time - About different cultures - Writing - Product Description - Writing web content – Grammar & Vocabulary – Infinitives and Gerunds for uses and purposes – Imperatives for giving suggestions -Relative clauses of time.

Listening, Speaking, Reading, Writing and Grammar & Vocabulary. Activity Based Learning -Unit - V Phase – V

Listening - Talking about changes - Job preferences - Speaking - Comparing different periods or phases in life - Changes that happen - Skills and abilities, Personality Development - Employability Skills - Reading - Reading about life experiences -Emotions and feelings – Job preferences – Jobs and Personality – Writing - Writing about one's past, present and future – Researching job options - Choosing the right job - Grammar & Vocabulary - Time contrasts - Conditional sentences with "if clauses" – Gerunds – short responses.

Lecture: 45, Total: 45

9

9

9

9

9

TEXT BOOK:

1. Jack C. Richards, Jonathan Hull, and Susan Proctor, "Interchange - Student's Book 2", 4th Edition, Cambridge University Press, New York, 2017. for Unit I, II, III, IV and V.

REFERENCES:

2. Pamela Hartmann and Brenda Wegmann, "New Interactions English Language Learning and Assessment Platform (Level Intro - Level IV)", McGraw Hill India, 2020.

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	use language effectively and accurately acquiring vocabulary from real-life context	Applying (K3)
CO2	listen/view and comprehend different spoken discourses / excerpts in different accents	Applying (K3)
CO3	read different genres of texts adopting various reading strategies	Analyzing (K4)
CO4	write cohesively, coherently and flawlessly avoiding grammatical errors, using a wide range of vocabulary, organizing their ideas logically on a topic	Creating (K6)
CO5	speak clearly, confidently, comprehensibly and communicate with others using appropriate communicative strategies	Creating (K6)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						2			2	3	2	2		
CO2									2	3		1		
CO3						1				3	1	1		
CO4										3		1		
CO5									2	3		2		
– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy														

	ASSESSMENT PATTERN - THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1		16	30	37		17	100		
CAT2		17	30	37		16	100		
CAT3		13	33	37		17	100		
ESE		7	21	37		35	100		

20MAC11 - MATRICES AND DIFFERENTIAL EQUATIONS

(Common to All Engineering and Technology Branches)

Programme & Branch	All BE/BTech branches	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	1	BS	3	1*	2 *	4

Preamble	To provide the skills to the students for solving different real time problems by applying matrices and differential equations.

Unit - I	Matrices:	9	
Introduction	- Characteristic equation - Eigen values and Eigen vectors of a real matrix - Properties of Eigen	values and	
Eigen vecto	ors (without proof) - Cayley - Hamilton theorem (Statement and applications only) - Orthogonal	matrices -	

Orthogonal transformation of a symmetric matrix to diagonal form – Quadratic form – Nature of Quadratic forms - Reduction of quadratic form to canonical form by orthogonal transformation.

Unit - II Ordinary Differential Equations:

Introduction – Solutions of First order differential equations: Exact differential equations – Leibnitz's Linear Equation – Bernoulli's equation – Clairaut's equation.

Unit - III Ordinary Differential Equations of Higher Order:

Linear differential equations of second and higher order with constant coefficients - Particular Integrals for the types: $e^{ax} - cosax / sinax - x^n - e^{ax}x^n$, $e^{ax}sinbx$ and $e^{ax}cosbx - x^nsinax$ and $x^ncosax - Differential Equations with variable coefficients: Euler-Cauchy's equation - Legendre's equation.$

Unit - IV Applications of Ordinary Differential Equations:

Method of variation of parameters – Simultaneous first order linear equations with constant coefficients – Applications of differential equations: Simple harmonic motion – Electric circuits (Differential equations and associated conditions need to be given).

Unit - V Laplace Transform & Inverse Laplace Transform:

Laplace Transform: Conditions for existence – Transform of elementary functions – Basic properties – Derivatives and integrals of transforms – Transforms of derivatives and integrals – Transform of unit step function – Transform of periodic functions. Inverse Laplace transform: Inverse Laplace transform of elementary functions – Partial fraction method – Convolution theorem (Statement only) – Solution of linear ODE of second order with constant coefficients.

List of Exercises / Experiments:

1.	Introduction to MATLAB
2.	Computation of eigen values and eigen vectors
3.	Plotting and visualizing single variable functions
4.	Solving first and second order ordinary differential equations
5.	Solution of Simultaneous first order ODEs
6.	Solving second order ODE by variation of parameters
7.	Determining Laplace and inverse Laplace transform of basic functions
8.	Solution of Second order ODE by employing Laplace transforms

*Alternate week

TEXT BOOK:

Lecture: 45, Tutorial and Practical:15, Total:60

 Ravish R. Singh, Mukul Bhatt "Engineering Mathematics", 1st Edition, McGraw Hill Education, New Delhi, 2016. for Unit I, II, III, IV and V.

REFERENCES:

1.	Kreyszig E., "Advanced Engineering Mathematics", 10 th Edition, John Wiley Sons, 2011.
	Kandasamy P., Thilagavathy K. and Gunavathy K., "Engineering Mathematics For First Year B.E/B.Tech", Reprint Edition 2014, S.Chand and Co., New Delhi.
3.	Duraisamy C., Vengataasalam S., Arun Prakash K. and Suresh M., "Engineering Mathematics – I", 2 nd Edition, Pearson India Education, New Delhi, 2020.
4.	MATLAB Manual.

9

9

9

9

	RSE OUTCOMES: Impletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	solve engineering problems which needs matrix computations.	Applying (K3)
CO2	identify the appropriate method for solving first order ordinary differential equations.	Applying (K3)
CO3	solve higher order linear differential equations with constant and variable coefficients.	Applying (K3)
CO4	apply the concept of ordinary differential equations for modeling and finding solutions to engineering problems.	Applying (K3)
CO5	apply Laplace Transform to find solutions of Linear Ordinary Differential Equations	Applying (K3)
CO6	know the basics of MATLAB and computing eigen values and eigen vectors of real matrix by MATLAB.	Understanding (K2), Manipulation (S2)
C07	solve ordinary differential equations with constant and variable coefficients and simultaneous first order ordinary differential equations using MATLAB.	Applying (K3), Manipulation (S2)
CO8	compute Laplace and inverse Laplace Transform of basic functions and solve Second Order ODE by using Laplace Transform with MATLAB.	Applying (K3), Manipulation (S2)

Mapping of COs with POs and PSOs														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	1										
CO2	3	3	2	1										
CO3	3	3	2	1										
CO4	3	3	2											
CO5	3	3	2	1										
CO6					3									
CO7					3									
CO8					3									
1 – Slight, 2 -	- Slight, 2 - Moderate, 3 - Substantial, BT- Bloom's Taxonomy													

ASSESSMENT PATTERN - THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	10	20	70				100	
CAT2	10	20	70				100	
CAT3	10	20	70				100	
ESE	10	20	70				100	

20PHT11 - APPLIED PHYSICS

(Common to All Engineering and Technology Branches)

Programme & Branch	All BE/BTech Branches	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	1	BS	3	0	0	3

Preamble	This course aims to impart the essential concepts of propagation of elastic waves, acoustics, ultrasonics, laser	
	and fiber optics, quantum physics, crystal structure and crystal defects. It also describes the physical phenomena	
	related to the aforementioned concepts and their applications in engineering and provides motivation towards	
	innovations	

Unit - I Propagation of Elastic Waves:

Oscillatory Motion: Introduction to simple harmonic motion - Damping velocity - Damping coefficient - Differential equation of simple harmonic motion - Velocity and acceleration - Restoring force - Vibration of a spring and mass system - Frequency response - Phase response - Resonance - Wave motion: Definition of a plane progressive wave - Attenuation of waves - Differential equation of a plane progressive wave - Phase velocity - Phase and phase difference - Solution of the differential equation of a plane progressive wave.

Unit - II Acoustics and Ultrasonics:

Acoustics: Introduction - Reverberation and reverberation time - Growth and decay of sound - Sabine's formula for reverberation time – Determination of sound absorption coefficient – Design of an auditorium: Factors affecting acoustics of buildings and the remedies. Ultrasonics: Introduction – Properties of ultrasonic waves – Generation of ultrasonic waves: Magnetostrictive generator and Piezoelectric generator - Determination of velocity of ultrasonics in a liquid: Acoustic grating – Industrial application: Non-destructive testing - Other applications of ultrasonic waves (qualitative).

Unit - III Laser and Fiber Optics:

Laser and Applications: Introduction – Interaction of light with matter - Three quantum process: Stimulated absorption, spontaneous emission and stimulated emission - Population inversion - Einstein's coefficients and their relations - Pumping methods - Nd:YAG laser - CO₂ laser - Holography. Fiber Optics and Applications: Introduction - Numerical aperture and acceptance angle - Classification of optical fibers based on refractive index, modes and materials - Fiber optics communication system (qualitative) - Fiber optic sensors: Temperature and displacement sensors.

Unit - IV Quantum Physics:

Introduction - Blackbody radiation - Planck's quantum hypothesis - Compton scattering (qualitative) - de Broglie's hypothesis - Properties of matter waves - Application of Heisenberg uncertainty principle - Schrodinger's time independent and time dependent wave equations - Physical significance of wave function - The free particle - Potential energy step - Infinite potential well (one - dimensional).

Unit - V Crystal Physics:

Introduction - Classification of solids - Space lattice - Crystal structure - Unit cell - Bravais lattice - Single and polycrystalline materials - Lattice planes - Miller indices - Indices of crystal direction - Interplanar spacing in cubic system - Hexagonal close packed crystal structure and c/a ratio - Symmetry -Symmetry elements in cubic crystal - Crystal imperfections: line, surface and volume imperfections - Features of crystal imperfections (qualitative).

TEXT BOOK:

Total: 45

9

9

9

9

9

1. Avadhanulu M.N., Kshirsagar P.G. and Arun Murthy T.V.S., "A Textbook of Engineering Physics",11th Edition, S. Chand & Company Pvt. Ltd., New Delhi, 2019. for Unit I, II, III, IV and V.

- 1. Purnima Khare and Swarup A.,"Engineering Physics: Fundamentals and Modern Applications", 1st Edition, Jones and Bartlett Publishers, Sudbury, Massachusetts, 2009.
- 2. Gaur R.K. and Gupta S.L., "Engineering Physics", 8th Edition, Dhanpat Rai and Sons, New Delhi, 2009.
- 3. Tamilarasan K. and Prabu K., "Engineering Physics I", 3rd Edition, McGraw Hill Education Pvt. Ltd., New Delhi, 2014.

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	make use of the concepts of oscillatory and wave motion to comprehend the phenomena related to the propagation of elastic waves.	Applying (K3)
CO2	apply the concepts of growth and decay of sound energy in a hall to compute Sabine's formula to recognize the requirements of acoustically good buildings, and to describe the production of ultrasonic wave, working of acoustic grating & non-destructive testing using ultrasonic waves.	Applying (K3)
CO3	apply the concepts of stimulated emission to explain the working and the applications of laser in engineering and technology, and to apply the principle of propagation of light through optical fiber to compute acceptance angle and numerical aperture to comprehend the loss in optical fiber, fiber optic communication system and working of fiber optic sensors.	Applying (K3)
CO4	use the concepts of quantum mechanics to describe the behavior of electrons in a metal by solving Schrodinger's wave equation for particle motion in infinite potential well.	Applying (K3)
CO5	utilize the concepts of the seven crystal systems to obtain interplanar spacing in cubic lattice and c/a ratio of HCP crystal structure, and to comprehend symmetry elements, reciprocal lattice and the types of crystal imperfections and their impacts.	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1											
CO2	3	2	1											
CO3	3	2	1											
CO4	3	2	1											
CO5	3	2	1											
1 – Slight, 2 –	- Modera	ate, 3 –	Substa	ntial, BT	- Bloon	n's Taxo	onomy							

		ASSESSMENT	PATTERN - T	HEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	40	40				100
CAT2	20	35	45				100
CAT3	25	35	40				100
ESE	20	40	40				100

20CYT11 - APPLIED CHEMISTRY

(Common to All Engineering and Technology Branches)

Programme & Branch	All BE/BTech Branches	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	1	BS	3	0	0	3

Preamble Applied Chemistry course explores the basic principles and advancements of chemistry in the field of engineering and technology. It aims to impart the fundamentals of chemistry towards innovations in science and technology and also for societal applications.

Unit - I Water Technology:

Introduction - sources of water - impurities in water - types of water - hardness of water- expression of hardness (simple problems) - units of hardness –estimation of hardness of water by EDTA method – determination of alkalinity - disadvantages of using hard water in Industries - boiler troubles - scale and sludge, boiler corrosion, caustic embrittlement, priming and foaming - softening of water: i) Internal treatment process - carbonate and calgon conditioning ii) External treatment method - demineralization process iii) Treatment of water for municipal water supply (Removal of suspended particles and disinfection methods, Break-point of chlorination).

Unit - II Electrochemistry:

Introduction – electrochemical cells - applications of electrochemical series - reference electrode - standard calomel electrode - ion selective electrode - glass electrode - concentration cells - electrode and electrolyte concentration cells (simple problems) -applications- potentiometric titrations - acid-base, redox, precipitation titrations - advantages- conductometric titrations - strong acid vs strong base, weak acid vs strong base, mixture of weak and strong acid vs strong base- advantages of conductometric titrations.

Unit - III Corrosion and its Control:

Introduction – causes and effects of corrosion - types of corrosion - chemical corrosion – Pilling Bed-worth rule electrochemical corrosion –types - galvanic corrosion, concentration cell corrosion – other types of corrosion -stress, intergranular and microbiological corrosion- galvanic series - factors influencing rate of corrosion – corrosion control methods - design and material selection, anodic protection, corrosion inhibitors, protective coatings - i) metallic coatings : hot dipping (tinning and galvanizing) ii) non-metallic coating : anodizing iii) organic coating : paints – constituents and their functions.

Unit - IV Fuels and Combustion:

Introduction – classification of fuels - characteristics of a good fuel - combustion - calorific values – gross and net calorific values - Dulong's formula (simple problems) - Flue gas analysis by Orsat's method - ignition temperature - spontaneous ignition temperature - explosive range - solid fuels - coal and its varieties – proximate and ultimate analysis – significance – metallurgical coke - Otto-Hoffman byproduct method - liquid fuel - refining of petroleum – manufacture of synthetic petrol - hydrogenation of coal - Bergius process - knocking - octane number – cetane number - gaseous fuel - water gas.

Unit - V Polymers:

Introduction – terminology - classification - polymerization - types of polymerization (definition only)- polymerisation techniques- bulk, solution, suspension and emulsion polymerisation - plastics- difference between thermoplastics and thermosetting plastics - compounding of plastics- plastic moulding methods - compression, injection, extrusion and blow moulding methods - industrial polymers: preparation, properties and applications of PVC, PAN, polyurethane, polyesters – biodegradable polymers-classification and applications.

TEXT BOOK:

Lecture: 45, Total: 45

9

9

9

9

9

 Wiley Editorial Board, "Wiley Engineering Chemistry", 2nd Edition, Wiley India Pvt. Ltd, New Delhi, Reprint 2019. for Unit I, II, III, IV and V.

- 1. Palanisamy P.N., Manikandan P., Geetha A.& Manjula Rani K., "Applied Chemistry", 6th Edition, Tata McGraw Hill Education Private Limited, New Delhi, 2019.
- 2. Payal B. Joshi, Shashank Deep, "Engineering Chemistry", Oxford University Press, New Delhi, 2019.
- 3. Palanna O., "Engineering Chemistry", McGraw Hill Education, New Delhi, 2017.

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	apply the suitable water softening methods to avoid boiler troubles.	Applying (K3)
CO2	apply the principle of electrochemistry for various applications.	Applying (K3)
CO3	make use of corrosion control methods to solve corrosion related problems.	Applying (K3)
CO4	illustrate the quality of fuels from its characteristics.	Understanding (K2)
CO5	explain the types of polymers, plastics and fabrication methods.	Understanding (K2)

	Mapping of COs with POs and PSOs														
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	1	1											
CO2	3	2	1	1											
CO3	3	2	1	1											
CO4	3	1													
CO5	3	1													
1 – Slight 2 –	Moder	ato 3_	Substa	ntial R		n'e Tav	onomy								

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	35	40				100
CAT2	25	35	40				100
CAT3	25	35	40				100
ESE	25	35	40				100

20ADT11 - PROBLEM SOLVING AND PROGRAMMING

Programme & Branch	BTech. & Artificial Intelligence and Data Science	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	1	PC	3	0	0	3

Preamble Problem solving skill is the most important skill to be possessed by any student. Most of the time, the emphasis is on learning a programming language rather than on inculcating the problem solving skills. This course is designed for use by freshmen students taking their first course in programming. It deals with the techniques needed to practice computational thinking, the art of using computers to solve problems and the ways the computers can be used to solve problems. This course also focuses on developing programming skills using C language. 9

Unit - I Introduction to Computer and Problem Solving:

Overview of computers : Types, Generations, Characteristics, Basic computer Organization – Programming methodologies – Structured programming Problem solving techniques: Algorithms - Flowcharts - Pseudo codes - Structuring the logic: Sequential, selection and repetitive structure.

Unit - II Introduction to C and Control Statements:

Introduction to C and Control Statements: The life cycle of a C program – features of C - Data - Variables – Declaring, assigning and printing variables - Data Classification : integer, float and character types - constants - operators and expressions – Control Structures : decision making and looping statements – Input and output functions.

Unit - III Arrays and Functions:

Arrays : Declaring and initializing 1D array - Two dimensional arrays – Multidimensional arrays. Functions: Basics, The anatomy of a function – Types of functions based on arguments and return types – Passing 1D and 2D arrays as arguments to functions – Calling function from another function – recursive functions -Variable scope and lifetime - Storage classes.

Unit - IV **Pointers and Strings:**

Pointers: Memory access and pointers, pointer basics, declaring, initializing and dereferencing a pointer, parameter passing mechanisms, operations on pointers. Strings: Basics, declaring and initializing strings – pointers for string manipulation string handling functions : standard and user defined functions - character oriented functions, Two dimensional array of strings

Unit - V User-defined data types:

Structure basics -declaring and defining a structure - attributes of structures - nested structures - arrays as structure members – arrays of structure – Passing structures as arguments to functions - Unions – Bit Fields -Enumerated type.

TEXT BOOK:

1. Sumitabha Das, "Computer Fundamentals and C Programming", 1st Edition, McGraw Hill, 2020. for Unit I, II, III, IV and V.

REFERENCES:

- 1. Yashavant Kanetkar, "Let us C", 16th Edition, BPB Publications, 2020.
- 2. Reema Thareja., "Programming in C ", 2nd Edition, Oxford University Press, New Delhi, 2020.

3. Balagurusamy E., "Programming in ANSI C", 7th Edition, Mc Graw Hill Education, 2017.

9

9

9

9

Lecture: 45, Total:45

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	outline the basics of computers and apply problem solving techniques to express the solution for the given problem	Applying (K3)
CO2	identify the appropriate looping and control statements in C and develop applications using these statements	Applying (K3)
CO3	develop simple C programs using the concepts of arrays and modular programming	Applying (K3)
CO4	recall the basic concepts of pointers and develop C programs using strings and pointers	Applying (K3)
CO5	make use of user defined data types to solve given problems	Applying (K3)

Mapping of COs with POs and PSOs													
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
3	2			2								3	1
3	2	2										3	1
3	2	2										3	1
3	2	2										3	1
3	2	2										3	1
P	3 3 3 3	3 2 3 2 3 2 3 2 3 2	3 2 3 2 3 2 3 2 3 2 3 2 2 2 3 2	3 2 3 2 3 2 3 2 3 2 3 2 3 2 2 2 3 2 2 2	3 2 2 3 2 2 3 2 2 3 2 2	3 2 2 3 2 2 3 2 2 3 2 2	3 2 2 3 2 2 3 2 2 3 2 2 3 2 2	3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2	3 2 2 1 3 2 2 1 1 3 2 2 1 1 3 2 2 1 1	3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2	3 2 2 0 0 3 2 2 0 0 0 3 2 2 0 0 0 3 2 2 0 0 0	3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2	3 2 2 3

e, s u, ıy iigin,

		ASSESSMENT	PATTERN - T	HEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	30	50				100
CAT2	10	30	60				100
CAT3	10	30	60				100
ESE	10	30	60				100

20ADC11 - BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING

Programme & Branch	BTech- Artificial Intelligence and Data Science	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	1	ES	3	0	2	4

Preamble	To provide comprehensive idea about power Systems, AC and DC circuit analysis, working principles and	
	applications of basic machines in electrical engineering.	

Unit - I Introduction to Power Systems:

Fundamentals of electricity:Definition – Symbol and unit of Quantities-Work - Power and Energy -Power Generation – Transmission system – Comparison of Overhead and Underground Systems - Star to Delta and to Star Transformations -House Wiring: Materials and Accessories –Types of wiring – Principles of Earthing.

Unit - II DC Circuits and AC Circuits:

DC Circuits and AC Circuits: Resistance: Resistors in Series and Parallel - Network Reduction - Voltage and Current Division Rule - Ohm's Law- Method of solving a circuit by Kichoff's laws. AC Circuits: Alternating (Sinusoidal) Voltage and Current, R.M.S and Average Value, Power Factor, Form Factor and Peak Factor –Analysis of AC Circuit.

Unit - III Electrical Machines:

DC Machines: Construction, Principle of Operation of DC Motor-Types and Applications. AC Machines: Construction and Working Principle of AC Generator, Single Phase Transformer, Three Phase Induction Motor and Single Phase Induction Motor (Split Phase and Capacitor Start Induction Motor) - Applications.

Unit - IV Basic Electronics:

Theory of PN Junction Diode - Operation of Rectifiers (Half wave, Full wave) and Filters - Zener Diodes - Zener Diode as Voltage Regulator - Transistors: Types - Operation of NPN Transistor - Transistor as an Amplifier - Operation and Characteristics of Thyristor: Silicon Controlled Rectifier – Triac.

Unit - V Fundamentals of Communication Engineering:

Introduction – Communication System - Need for Modulation –Basic principles of Modulation: Amplitude Modulation – Frequency Modulation – Comparison of AM & FM - Communication Systems (Block Diagram approach): Radio Broadcast, TV: Standards, Transmitter and Receiver- Satellite and Optical Fibre Communication

List of Experiments / Exercises:

1.	Verification of Ohm's Law and Kichoff's Law
2.	Measurement of real power, reactive power, power factor and impedance of RC, RL and RLC circuits.
3.	Load test on DC shunt motor
4.	Performance characteristics of single phase Transformer
5.	Load test on single phase induction motor
6.	VI characteristics of PN junction diode.
7.	VI characteristics of Zener diode.
8.	Voltage Regulator using Zener diode.
9.	Voltage regulator using 78XX

10. Study of Mixie, Ceiling Fan and Vacuum Cleaner

TEXT BOOK:

Lecture: 45, Practical: 30, Total: 75

9

g

9

9

9

1. Muthusubramanian R. and Salivahanan S., "Basics of Electrical and Electronics Engineering", 18th Reprint, Tata McGraw Hill, 2014. for Unit I, II, III, IV and V.

- 1. Jegathesan V., Vinoth Kumar K. and Saravanakumar R., "Basic Electrical and Electronics Engineering", 1st Edition, Wiley India, 2011.
- Sukhija M.S. and Nagsarkar T.K., "Basics of Electrical and Electronics Engineering", 1st Edition, Oxford University Press, 2012.
- 3. Laboratory Manual

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	interpret the basic concepts of electrical power systems	Applying (K3)
CO2	analyze the DC and AC circuits	Analyzing (K4)
CO3	interpret the construction and working of different types of electric machines	Applying (K3)
CO4	demonstrate the basic functions of electronic components	Applying (K3)
CO5	apply the basic concepts of Communication Engineering in simple applications.	Applying (K3)
CO6	experiment the electric circuits by applying various theorems	Applying (K3), Manipulation (S2)
CO7	test basic electrical machines like transformer, DC motors and induction motor	Applying (K3), Precision (S3)
CO8	analyze the characteristics of semiconductor devices	Analyzing (K4), Precision (S3)

					Марріі	ng of C	Os with	n POs a	nd PSC	Ds				
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1										2	1
CO2	3	2	1										2	1
CO3	3	2	1										2	1
CO4	3	2	1										2	1
CO5	3	2	1										2	1
CO6	3	2	1		1								2	1
CO7	3	2	1		1								2	1
CO8	3	2	1		1								2	1

		ASSESSMENT	PATTERN - T	HEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	40	40	10			100
CAT2	10	40	40	10			100
CAT3	10	60	30				100
ESE	10	40	40	10			100

20ADL11 - PROBLEM SOLVING AND PROGRAMMING LABORATORY

Programme & Branch	BTech- Artificial Intelligence and Data Science	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	1	PC	0	0	2	1

Preamble	The purpose of the course is to introduce problem solving aspects and inculcate the logical thinking capability to
	solve a given problem. The course will also introduce to students to the field of programming using C language. The students will be able to enhance their analyzing and problem solving skills and use the same for writing
	programs in C.

List of Exercises / Experiments:

Elec	tric Circuits					
1.	Writing algorithms and drawing flowcharts using Raptor Tool for problems involving sequential structures					
2.	. Writing algorithms and drawing flowcharts using Raptor Tool for problems involving selective structures					
3.	Writing algorithms and Drawing flowcharts using Raptor Tool for problems involving repetitive structures					
4.	Programs for demonstrating the use of different types of operators like arithmetic, logical, relational and ternary operators (Sequential structures)					
5.	Programs to Illustrate the different formatting options for input and output					
6.	Programs using decision making statements like 'if', 'else if', 'switch', conditional and unconditional 'goto' (Selective structures)					
7.	Programs for demonstrating repetitive control statements like 'for', 'while' and 'do-while' (Iterative structures)					
8.	Programs for demonstrating one-dimensional and two-dimensional numeric array					
9.	Programs to demonstrate modular programming concepts using functions (Using built-in and user-defined functions)					
10.	Programs to implement various character and string operations with and without built-in library functions.					
11.	Programs to demonstrate the use of pointers					
12.	Programs to illustrate the use of user-defined data types					

Total: 30

REFERENCES /MANUALS/SOFTWARES:

1. Raptor and C Compiler

	COURSE OUTCOMES: On completion of the course, the students will be able to				
CO1	demonstrate the execution of flowchart for the given problem using Raptor	Applying (K3), Precision (S3)			
CO2	demonstrate the application of sequential, selective and repetitive control structures	Applying (K3), Precision (S3)			
CO3	implement solutions to the given problem using derived and user defined data types and functions	Applying (K3), Precision (S3)			

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1	1					1			1	2
CO2	3	2	1	1	1					1			1	2
CO3	3	2	1	1	1					1			1	2
1 – Slight, 2 -	- Modera	ate, 3 –	Substa	ntial, B	T- Bloor	n's Tax	onomy							

20PHL11 - PHYSICAL SCIENCES LABORATORY I

(Common to All Engineering and Technology Branches)

Programme & Branch	All BE/BTech Branches	Sem.	Category	L	т	Р	Credit
Prerequisites	NIL	1	BS	0	0	2	1

	This course aims to impart hands on training in the determination of the physical parameters such as Young's modulus, rigidity modulus, frequency of vibration, velocity of ultrasonic waves, compressibility of water, wavelength of laser, acceptance angle and the numerical aperture of an optical fiber, and to develop the skills in handling different basic instruments and also aims to impart the basic concepts of volumetric, conductometric and pH meter experiments and thereby, to improve the analytical capability.
--	--

List of Exercises / Experiments:

1.	Determination of the Young's modulus of the material of a given beam using uniform bending method.
2.	Determination of the rigidity modulus of the material of a given wire using torsional pendulum.
3.	Determination of frequency of electrically vibrating rod by forming standing waves using Melde's apparatus.
4.	Determination of the velocity of ultrasonic waves in a liquid and the compressibility of a liquid using ultrasonic interferometer.
5.	Determination of (i) the wavelength of a semiconductor laser and (ii) the acceptance angle and the numerical aperture of a given optical fiber.
6.	Estimation of total, temporary and permanent hardness of water by EDTA method.
7.	Estimation of Ca ²⁺ and Mg ²⁺ hardness separately by EDTA method.
8.	Estimation of alkalinity of the given water sample.
9.	Conductometric titration -Mixture of acids.
10.	Estimation of hydrochloric acid using pH meter.
	Total: 30

L	οτα	12	3	υ

l	1.	Tamilarasan K. and Prabu K.,"Physics Laboratory Manual', 1 st Edition, SCM Publishers, Erode, 2020.	ļ
	2.	Palanisamy P.N., Manikandan P., Geetha A. and Manjula Rani K., "Chemistry Laboratory Manual", 1 st Edition,	Ì
		Rajaganapathy Publishers, Erode, 2020.	l

COURSE On compl			se, the s	tudents	will be a	ble to						(BT Map Highest	
	moment	of a bea nd to co	im and to mpute t	o detern he frequ	nine the lency of	rigidity r	nodulus	of a wir	e using t	elasticity the conce he conce	ots of twis	ting	Applying Precisior	
	and to c concepts	compute s of tota s for the	the accord I interna	eptance Il reflect	angle a ion and	nd the i diverge	numerica nce of l	al apertu ight in a	ure of ar air and e	ept of diffra optical fi estimate th f alkalinity	ber using ne amoun	the it of	Applying Precisior	
CO3	demonst	trate the	conduct	ivity me	ter and p	oH mete	r to estir	nate the	amount	of the giv	en solutio		Applying (K3), Precision (S3)	
					Маррі	ng of C	Os with	POs an	d PSOs					
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1				3										
CO2				3										
CO3				3										
1 – Slight	, 2 – Mo	derate, 3	– Subs	tantial, E	3T- Bloo	m's Tax	onomy							

SEMESTER-II 20EGT21 ADVANCED COMMUNICATION SKILLS

(Common to all Engineering and Technology Branches)

Programme & Branch	All BE/BTech branches	Sem.	Category	L	т	Р	Credit
Prerequisites	20EGT11 – English Language Skills	2	HS	3	0	0	3

Preamble This course is designed to impart required levels of fluency in using the English Language at B1Level in the Common European Framework (CEFR).

Unit - I Listening, Speaking, Reading, Writing and Grammar & Vocabulary. Activity Based Learning – Phase –VI

Listening – Job and career related descriptions and conversations – requests of different kinds and the responses – Speaking - Career choices and professional skills – making requests and responding to requests – Reading – Using texts about jobs and careers – about different societies and cultural differences – Writing – Resumes, CVs and job oriented advertisements – business and career related emails – Grammar &Vocabulary – Gerunds and elements of comparison – requests and indirect requests.

Unit - II Listening, Speaking, Reading, Writing and Grammar & Vocabulary. Activity Based Learning – Phase – VII

Listening – Expository and narrative descriptions – information about different cultures, nations and societies. Speaking – Narrating and describing – talking about other countries and other cultures – Reading – Using texts about media and information technology – living abroad and experiencing different cultures – Writing – Blog writing – brochures and tourist pamphlets – Grammar & Vocabulary – The past tense forms - noun phrases and relative clauses.

Unit - III Listening, Speaking, Reading, Writing and Grammar & Vocabulary. Activity Based Learning – Phase – VIII

Listening – Consumerism – product description – complaints and redressal – environmental issues – ecology – saving the planet – **Speaking** – Talking about problems, issues, complaints – solutions and redressal – talking about environmental issues – **Reading** – Using texts on segregating wastes – recycling and reusing – texts on environmental issues – **Writing** – Online reviews, articles and writing web content – **Grammar & Vocabulary** – Phrases and sentences used for describing problems – passives – prepositions and infinitives.

Unit - IV Listening, Speaking, Reading, Writing and Grammar & Vocabulary. Activity Based Learning – Phase – IX

Listening – Education, learning and the choice of courses – various services needed in daily life – selfimprovement for success in life – **Speaking** - Discussions about educational and career oriented issues – talking about everyday services – giving advice and self improvement – **Reading** – Reading about learning strategies and learning styles – using texts about personality development – **Writing** – Writing about hobbies – pastime and individual skills – writing short articles on everyday life and personality development – **Grammar & Vocabulary** – Using of "would" and certain gerund forms – use of modals, verbs, gerunds, negative questions and infinitives.

Unit - V	Listening,	Speaking,	Reading,	Writing	and	Grammar	&	Vocabulary.	Activity	Based	Learning	-
01111 - V	Phase – X											

Listening – Historical narratives – biographies and learning about the future – important life events, milestones and happenings of the past – **Speaking** – Talking about the past, present and the future – talking about important events in life – **Reading** – Texts about new technologies and future science – using texts about social organization, culture and social practices – **Writing** – Biographical sketches – historical events – famous personalities, stages of life and getting along with people – **Grammar & Vocabulary** – Future tense forms – time clauses and certain "if clauses".

Lecture: 45, Total: 45

9

9

9

9

9

TEXT BOOK:

1. Jack C. Richards, Jonathan Hull, and Susan Proctor, "Interchange - Student's Book 3", 4th Edition, Cambridge University Press, New York, 2017. for Unit I, II, III, IV and V.

REFERENCES:

1.	Sanjay Kumar and Pushp Lata, "Communication Skills: A Workbook based on AICTE Syllabus", Oxford University Press,
	2020.

2. Board of Editors, "Skills Annexe: Functional English for Success", Orient BlackSwan, Hyderabad, 2013.

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	use functional grammar for improving communication skills	Applying (K3)
CO2	listen and comprehend different spoken excerpts critically and infer Unspoken and implied meanings.	Applying (K3)
CO3	read different genres of texts, infer implied meanings and critically analyze and evaluate them for ideas as well as for method of presentation.	Analyzing (K4)
CO4	write effectively and persuasively and produce different types of writing such as narration, description, exposition and argument as well as creative, critical, analytical and evaluative writing.	Creating (K6)
CO5	speak effectively, to express opinions clearly, initiate and sustain a discussion and also negotiate using appropriate communicative strategies.	Creating (K6)

					Mappir	ng of C	Os with	n POs a	nd PSC)s				
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						2			1	3	1	1		
CO2									2	3		1		
CO3						1				3	1	1		
CO4										3		2		
CO5									2	3		2		
1 – Slight, 2 –	- Modera	ate, 3 –	Substa	ntial, B	T- Bloor	n's Tax	onomy	-			-		-	

		ASSESSMENT	PATTERN - T	HEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1		13	30	33	-	17	100
CAT2		13	33	37	-	17	100
CAT3		20	30	33	-	17	100
ESE		6	40	36	-	18	100

20MAT21 – DISCRETE MATHEMATICS AND LINEAR ALGEBRA (Common to AI & DS and AI & ML branches)

Programmo Branch	e &	B.TECH. & Artificial Intelligence and Data Science	Sem.	Category	L	т	Р	Credi
Prerequisit	es	Nil	2	BS	3	1	0	4
Preamble	category	ride in depth knowledge in various concepts of linear al y of functions which serves as a foundation for machine algebraic structures in coding theory.						
Unit - I	Mathem	natical Logic						9+3
of argument	s.	tables – Tautologies and contradictions – Theory of Infere Predicates – Statement function – Variables – Quantifier		iverse of disc	ourse -	Theor	y of in	ference
	te calcul	lus – Rules of universal specification and generaliza		Rules of E	xistenti	al spec	cificatio	on and
for Predica	te calcul on.			Rules of E	xistenti	al spec	cificatio	
for Predica generalizati Unit - II Relations: I Definition –	te calcul on. Relation Definition - Propertie	lus – Rules of universal specification and generaliza ns and Functions – Partial ordered relation – Poset – Hasse diagram – Lat	ation – tices –	Properties of	lattices	– Boole		9+3
for Predica generalizati Unit - II Relations: I Definition –	te calcul on. Relation Definition - Propertie Definition	 Rules of universal specification and generalizans ns and Functions Partial ordered relation – Poset – Hasse diagram – Lates 	ation – tices –	Properties of	lattices	– Boole		9+3 gebra –
for Predica generalizati Unit - II Relations: I Definition – Functions: I Unit - III Groups and	te calcul on. Pefinition Propertie Definition Algebra I Subgrou ory – Gro	 Rules of universal specification and generalization ns and Functions Partial ordered relation – Poset – Hasse diagram – Lates. Types of functions – Composition of functions – Inverse 	ation – tices – e functi - Rings	Properties of ons – Recursi andFields (E	lattices ve func Definitio	– Boole tions. ns and	ean al	9+3 gebra – 9+3 pples) –
for Predica generalizati Unit - II Relations: I Definition – Functions: I Unit - III Groups and Coding The	te calcul on. Pefinition Propertie Definition Algebra I Subgrou ory – Gro	 Rules of universal specification and generalization ns and Functions Partial ordered relation – Poset – Hasse diagram – Lates. Types of functions – Composition of functions – Inverse aic Structures ups (Definitions only) – Cosets – Lagrange's theorem – oup codes – Basic notions of error correction – Error material 	ation – tices – e functi - Rings	Properties of ons – Recursi andFields (E	lattices ve func Definitio	– Boole tions. ns and	ean al	9+3 gebra – 9+3 pples) – rems in
for Predica generalizati Unit - II Relations: Definition – Functions: I Unit - III Groups and Coding The coding theo Unit - IV Real vector	te calcul on. Relation Propertie Definition Algebra I Subgrou ory – Gro ry). Vector s spaces	 Rules of universal specification and generalization ns and Functions Partial ordered relation – Poset – Hasse diagram – Lates. Types of functions – Composition of functions – Inverse aic Structures ups (Definitions only) – Cosets – Lagrange's theorem – oup codes – Basic notions of error correction – Error material 	tices – e function – Rings recovery	Properties of ons – Recursi andFields (E in group co	lattices ve func Definitio des (E)	- Boole tions. ns and ccluding	ean al exam theol	9+3 gebra – 9+3 ples) – rems in 9+3
for Predica generalizati Unit - II Relations: Definition – Functions: I Unit - III Groups and Coding The coding theo Unit - IV Real vector	te calcul on. Relation Propertie Definition Algebra I Subgrou ory – Gro ry). Vector s spaces mn space	 Ius – Rules of universal specification and generalizations Partial ordered relation – Poset – Hasse diagram – Lates. Types of functions – Composition of functions – Inverse aic Structures Ups (Definitions only) – Cosets – Lagrange's theorem – oup codes – Basic notions of error correction – Error respaces Subspaces – Linear combinations and Span – Linear 	tices – e function – Rings recovery	Properties of ons – Recursi andFields (E in group co	lattices ve func Definitio des (E)	- Boole tions. ns and ccluding	ean al exam theol	9+3 gebra – 9+3 ples) – rems in 9+3

TEXT BOOK:

- 1. Veerarajan T., "Discrete Mathematics with Graph Theory and Combinatorics", Reprint Edition, Tata McGraw Hill Publishing Company, New Delhi, 2013. for Unit I, II, IV and V.
- 2. Howard Anton, Chris Rorres, "Elementary Linear Algebra", 11thEdition, John Wiley & Sons, 2014. for Unit IV and V.

- 1. Kenneth H. Rosen, "Discrete Mathematics and its applications", 8thEdition, Tata McGraw Hill, 2019
- 2. Gilbert Strang, "Introduction to Linear Algebra", 4th Edition, Wellesley-Cambridge Press, Wellesley, USA, 2016.
- 3. David C. Lay, Steven R. Lay, Judith McDonald, "Linear Algebra and Its Applications", 5thEdition, Pearson Education Limited, England, 2016.

	OUTCOMES: etion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	Applying (K3)	
CO2	understand various types of relations and functions which has applications in cryptography and combinatorial optimization.	Understanding (K2)
CO3	apply the concepts of group structures in coding theory.	Applying (K3)
CO4	illustrate the concept of vector spaces commonly used in intelligent systems.	Understanding (K2)
CO5	apply the concepts of inner product spaces in orthogonalization and decomposition in data reduction.	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1									1	
CO2	3	2	1										2	
CO3	3	2	1	2									2	
CO4	3	2	1										1	
CO5	3	3	3	3									3	
1 – Slight, 2 -	- Moder	ate, 3 –	Substa	ntial, B	T- Bloor	m's Tax	onomy							

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	10	20	70				100							
CAT2	10	20	70				100							
CAT3	10	20	70				100							
ESE	10	20	70				100							

DIGITAL PRINCIPLES AND DESIGN (Common to AI & DS and AI & ML branches)

Programme& Branch	B.TECH. & Artificial Intelligence and Data Science	Sem.	Category	L	т	Р	Credit
Prerequisites	NIL	2	ES	3	0	2	4

Preamble This course enables the students to gain knowledge about the basic principles of number system, Binary Codes, Boolean algebra, digital logic gates and its minimization techniques and to design different combinational and sequential logic circuits.

Unit - I Number Systems and Boolean Algebra:

Number Systems and Boolean Algebra: Number Systems and their conversions - Complements – Signed Binary Numbers – Binary Codes – Binary Logic - Boolean Algebra – Theorems of Boolean Algebra – Boolean functions: Realization of functions using Logic gates.

Unit - II Gate Level Minimization:

Gate Level Minimization: Canonical and Standard Forms of Boolean functions – Minimization of functions using Karnaugh Map up to four variable – Don't–Care Conditions – NAND and NOR Implementation– Minimization of functions using Quine-McCluskey method.

Unit - III Combinational Logic:

Combinational Logic: Half Adder – Full Adder - Half Subtractor – Full Subtractor – Binary Adder - Subtractor – Magnitude Comparator – Decoders – Encoders – Multiplexers – Demultiplexers – Boolean Functions implementation using Multiplexers.

Unit - IV Synchronous Sequential Logic:

Sequential Logic: Introduction – Latches and Flip-flops – Analysis of clocked sequential circuits: State Equations – State Table – State Diagram – State Reduction and Assignment.-Shift Registers-Counters.

Unit - V Asynchronous Sequential Logic and Programmable Logic Devices:

Introduction to Asynchronous Sequential Circuits: Concepts of Analysis Procedure - Race conditions - types.- Programmable Logic devices: PROM - PLA - PAL.

Lecture: 45, Practical: 30, Total: 75

Lecture: 45, Practical:30, Total:75

9

9

9

9

9

List of Exercises / Experiments:

1.	Verification of Boolean theorems using digital logic gates
2.	Design and implementation of combinational circuits using basic gates
3.	Design and implementation of binary adder and subtractor
4.	Design and implementation of multiplexer and de-multiplexer
5.	Design and implementation of encoder and decoder
6.	Truth table verification of flip flops
7.	Design and implementation of shift registers using suitable ICs
8.	Design and implementation of counters

TEXT BOOK:

1. Morris Mano M, "Digital Design", 6th Edition, Pearson Education Pvt. Ltd, New Delhi, 2020. for Unit I, II, III, IV and V.

1.	Anandkumar A, "Fundamentals of Digital Circuits", 4th Edition, Prentice Hall of India, New Delhi, 2016.
2.	Salivahanan S &Arivazhagan S, "Digital Circuits and Design", 5th Edition, Oxford University Press, New Delhi, 2020

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	verify the Boolean Algebra	Applying (K3)
CO2	realization of Boolean Functions	Applying (K3)
CO3	apply Karnaugh map techniques for gate level logic minimization	Applying (K3)
CO4	design adders and subtractors	Applying (K3)
CO5	design multiplexers and demultiplexers	Applying (K3)
CO6	design the combinational circuits	Applying (K3)
C07	design the sequential circuits	Applying (K3)
CO8	realize boolean functions using PLDs	Applying (K3)

				Ν	lappin	g of C	Os wi	th POs	and PS	Os				
COs/POs	P01	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	3	2		2						1	2	2
CO2	3	2	3	2	2	2			2	2		1	3	2
CO3	3	2	3	2	2	2			2	2		1	3	2
CO4	3	2	3	2	2	2			2	2		2	3	2
CO5	3	2	3	2		2						2	3	2
CO6	3	2	3	2		2						2	3	2
CO7	3	2	3	2		2						2	3	2
CO8	3	2	3	2		2						2	3	2
1 - Slight, 2 -	Modera	ate, 3 – S	Substar	itial, BT·	Bloom	's Tax	onomy	/						

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	10	45	45				100							
CAT2	10	45	45				100							
CAT3	10	45	45				100							
ESE	10	45	45				100							

DATA STRUCTURES (Common to AI & DS and AI & ML branches)

Programme & Branch	B.Tech. & Artificial Intelligence and Data Science	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	2	PC	3	0	0	3

Preamble The course focuses on the basic concepts and applications of linear data structures and non linear data structures.

Unit - I List:

Data Structures – Abstract Data Types (ADT)–List ADT and Array Implementation – Linked List – Doubly Linked List – Circular Linked List – Applications of Linked Lists.

Unit - II Stack and Queue:

Stack ADT – Array and Linked List implementation of Stacks – Applications of Stacks – Queue ADT – Array and Linked List implementation of Queue – Circular Queue – Applications of Queue.

Unit - III Trees:

Preliminaries: Implementation of trees – Tree Traversals – Binary trees: Implementation– Expression trees – The Search Tree ADT – Binary Search Trees: Construction – Searching – Insertion – Deletion – Find Min – Find Max – AVL trees: Rotation – Insertion – Deletion.

Unit - IV Graphs:

Definitions – Representation of Graphs – Types of Graph – Depth-first traversal – Breadth-first traversal – Topological Sort – Applications of DFS: Bi-connectivity – Euler circuits – Finding Strongly Connected Components – Applications of BFS: Bipartite graph – Graph Coloring.

Unit - V Searching, Sorting and Hashing:

Searching: Linear search – Binary Search – Sorting: Internal sorting: Bubble sort – Shell sort – Bucket sort – External sorting: Multiway Merge – Polyphase Merge - Hashing: Hash Functions – Separate Chaining – Open Addressing: Linear Probing – Quadratic Probing – Double Hashing – Rehashing – Extendible Hashing.

TEXT BOOK:

1

Weiss M. A., "Data Structures and Algorithm Analysis in C", 2nd Edition, Pearson Education, 2016. for Unit I, II, III, IV and V.

REFERENCE:

1. Thomas H. Cormen, Charles E. Leiserson, Ronald L.Rivest, Clifford Stein, "Introduction to Algorithms", 3rd Edition, Mcgraw Hill, 2009 for Unit IV.

9

9

9

9

9

Lecture: 45, Total: 45

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	solve problems using various implementations of linked list.	Applying (K3)
CO2	make use of ADTs like stack and queue for solving real world problems.	Applying (K3)
CO3	implement the tree structure and its operations.	Applying (K3)
CO4	apply appropriate graph algorithms for computing problems.	Applying (K3)
CO5	demonstrate the concept of sorting, searching and hashing techniques.	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2										3	2
CO2	3	2	2										3	2
CO3	3	2	2										3	2
CO4	3	2	2										3	2
CO5	3	2	2										3	2
1 – Slight, 2 -	- Moder	ate. 3 –	Substa	ntial. B	T- Bloor	n's Tax	onomv							

T - Slight, 2 - Moderate, 3 - Substantial, BT- Bloom's Taxonomy

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	5	20	75				100							
CAT2	10	20	70				100							
CAT3	10	20	70				100							
ESE	10	20	70				100							

PYTHON PROGRAMMING (Common to AI & DS and AI & ML branches)

Programme & Branch	BTech.& Artificial Intelligence and Data Science	Sem.	Category	L	т	Р	Credit
Prerequisites	C Programming	2	ES	3	0	2	4

 Preamble
 To provide practical exposure to basic concepts of Python Programming including object oriented programming, GUI and Web programming

 Unit – I
 Introduction

 9

Basic Concepts: Keywords, identifiers and variables- Data types - type casting – user input – modules – operators – Flow control statements- Strings – Calendars and clocks.

Unit - II Functions and Data types

Functions: Basics –function arguments – modules – Recursion – Special functions. Lists: Creating, traversing and slicing - functions – nested lists. **Tuples**: Creating, initializing and accessing – tuple functions – swapping tuples, unpacking tuples – **Dictionaries**: Basics of Creating, initializing and accessing – dictionary functions and methods-view objects.

Unit - III Object Oriented Programming

Concepts of OOP- OOP concepts for Python – Built in Attributes and methods –polymorphism- operator overloading -Inheritance and Namespace – Method types - Exceptions: Built-in and User defined exceptions.

Unit - IV Strings, Files and Regular Expressions

Strings: Built-in methods for string manipulation – Case studies. Modules and Packages : import statement – creating user defined modules and packages. **Files:** File operations –Reading and Writing a file. **Regular Expressions**: match, search, sub, find all and finite functions - Case studies.

Unit - V User Interface and GUI Programming

User Interface design: Tkinter - Events – Connecting with databases. Web Frameworks: - Web servers - Introduction to web server frameworks (Bottle, Django and Flask)

Lecture: 45, Practical:30, Total:75

9

9

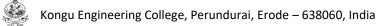
9

9

List of Exercises / Experiments :

1.	Program using user-defined functions with different types of argument passing methods
2.	Demonstrate tuple, list and dictionary operations
3.	Program to illustrate the concept of constructors
4.	Program to implement different types of inheritance
5.	Program to demonstrate the usage of exception handling
6.	Explore string manipulation functions
7.	Find the most frequent words from a given text file and copy the same into another file
8.	Perform validation of inputs using Regular Expressions
9.	Design applications using TKInter
10.	Develop web pages using Web frameworks

TEXT BOOK:


1. Anurag Gupta, G P Biswas. Python Programming, McGraw Hill Education, 1st edition, 2020. for Unit I, II, III, IV and V.

- 1 Bill Lubanovic, —Introducing Python Modern Computing in Simple Packages, 2nd Edition O'Reilly Media, 2019.
- Samuel Dauzon, Aidas Bendoraitis and Arun Ravindran. Django: Web Development with Python: Web Development with Python. Packt Publisher, 1st edition, 2017.

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)			
CO1:	apply basic constructs of Python Programming to solve simple problems	Applying (K3)			
CO2:	write programs using functions and data types	Applying (K3)			
CO3:	get familiar with implementation of object oriented concepts in python	Applying (K3)			
CO4:	Perform string, file and Regular expression operations and process data	Applying (K3)			
CO5:	use TKinter and other web frameworks for addressing solutions for various real life problems	Applying (K3)			
CO6	implement basic concepts of python programming and use it to solve the given problem	Applying (K3), Precision (S3)			
CO7	make use of object oriented concepts to solve real world problems	Applying (K3), Precision (S3)			
CO8	develop applications using GUI and web frameworks	Applying (K3), Precision (S3)			

	Mapping of COs with POs and PSOs														
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	3		3								3	2	
CO2	3	2	2		2								3	3	
CO3	3	2			3								3	3	
CO4	3	2			3								3	3	
CO5	3	2	2		3								3	3	
CO6	3	2	1	2	1								3	2	
CO7	3	2	1	2	1								3	2	
CO8	3	2	1	2	1								3	2	
– Slight, 2 –	Modera	ate, 3 –	Substa	ntial, BT	- Bloon	ı's Taxo	onomy								

	ASSESSMENT PATTERN - THEORY														
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %								
CAT 1	15	30	55				100								
CAT 2	15	30	55				100								
CAT 3	15	30	55				100								
ESE	15	30	55				100								

DATA STRUCTURES LABORATORY (Common to AI & DS and AI & ML branches)

Programme & Branch	B.Tech. &Artificial Intelligence and Data Science	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	2	PC	0	0	2	1

List of Exercises / Experiments:

12.	Total: 30
12.	Implementation of sorting algorithms
11.	Implementation of linear and binary search algorithms
10.	Implementation of graph traversal techniques
9.	Implementation of binary search tree traversals
8.	Reverse a queue using stack
7.	Implementation of circular queue and its operations
6.	Implementation of queue and its operations
5.	Evaluating postfix expression using stack ADT
4.	Infix to postfix conversion using stack ADT
3.	Implementation of stack and its operations
2.	Implementation of doubly linked list and its operations
1.	Implementation of singly linked list and its operations

REFERENCES/MANUAL/SOFTWARE:

1.	Operating System : Windows/Linux
2.	Software : C
3.	Laboratory Manual

	COURSE OUTCOMES: On completion of the course, the students will be able to						
CO1	implement linear and non linear data structures to solve the given problem	Applying (K3), Precision (S3)					
CO2	use a data structure to implement another data structure	Applying (K3), Precision (S3)					
CO3	implement searching and sorting operations for a given problem	Applying (K3), Precision (S3)					

	Mapping of COs with POs and PSOs														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO 2	
CO1	3	2	2	2	2							2	3	2	
CO2	3	2	2	2	2							2	3	2	
CO3	3	2	2	2	2							2	3	2	
1 – Slight, 2 –	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy														

OPEN SOURCE LABORATORY (Common to AI & DS and AI & ML branches)

Programme& Branch	BTech. & Artificial Intelligence and Data Science	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	2	BS	0	0	2	1
Preamble	This course provides knowledge about basic Linux constraints for software development and version control us			pt prog	rammir	ng and	Internet

List of Exercises / Experiments:

1.	Implementation of Linux Commands
2.	Implementation of Shell programming for constructs like loops and patterns
3.	Implementation of Shell programming for string operations
4.	Git Installation and Setup
5.	Experiment on basic Git Commands
6.	Creation of Git local and remote repository
7.	Creation of branches and merging branches
8.	Experiment on merge conflicts and resolution
9.	Working with multiple repositories and configuration files
10.	Experiment on Fetch, Pull, Clone and rebasing on repositories
11.	Working with Patches and Hooks
12.	Experiment on Git graph model and version tracking

REFERENCES/MANUAL/SOFTWARE:

- 2. Software: GitHub Desktop
- 3. Laboratory Manual

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	explore linux commands and apply it for various operations at terminal	Applying (K3), Precision (S3)
CO2	solve the given problem using shell script	Applying (K3), Precision (S3)
CO3	explore the functionality of Git	Applying (K3), Precision (S3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	2	1								3	2
CO2	3	2	1	2	1								3	2
CO3	3	2	1	2	1								3	2
1 – Slight, 2 -	- Slight, 2 - Moderate, 3 - Substantial, BT- Bloom's Taxonomy													

ENGINEERING PRACTICES LABORATORY (Common to all Engineering and Technology Branches)

Programme & Branch	BTech. & Artificial Intelligence and Data Science	Sem.	Category	L	т	Р	Credit
Prerequisites	NIL	2	ES	0	0	2	1

List of Exercises / Experiments:

1.	To prepare square or rectangular shaped MS plates using power tools for cutting, polishing and shaping to the required dimensions.
2.	To carryout drilling, tapping and assembly on the given MS plates.
3.	To carryout thread forming on a GI/PVC pipes and prepare water leak proof water line from overhead tank.
4.	To prepare a wood or plywood box/tray/any innovative models using modern power tools like cutting machine, router, jigsaw, power screw driver etc.
5.	To prepare a leak proof sheet metal tray/box/funnel using modern power tools.
6.	Welding practice using welding simulator.
7.	Project: Preparing innovative articles using wood/sheet metal.
	PART B – ELECTRICAL AND ELECTRONICS ENGINEERING
8.	Safety Aspects of Electrical Engineering, Electrical Symbols, Components Identification, Fuse selection and installation, Circuit Breakers selection
9.	Wiring circuit for fluorescent lamp and stair case wiring
10.	Measurement of earth resistance
11.	Soldering of simple circuits and trouble shooting
12.	Implementation of half wave and full wave rectifier using diodes

REFERENCES/MANUAL/SOFTWARE:

Total:30

1. Engineering Practices Laboratory Manual.

	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	plan the sequence of operations for effective completion of the planned models/innovative articles	Creating (K6), Precision(S3)
CO2	identify and use appropriate modern power tools and complete the exercises/models accurately	Applying (K3), Precision(S3)
CO3	select fuses and Circuit breakers	Understanding (K2), Manipulation(S2)
CO4	perform house wiring and realize the importance of earthing	Applying(K3), Manipulation(S2)
CO5	trouble shoot the electrical and electronic circuits	Applying(K3), Manipulation(S2)

Mapping of COs with POs and PSOs														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	3				3	3	2	3		
CO2	3	2	1	1					3	2	2	3		
CO3	2	1							3	2	2	3		
CO4	3	2	1	1					3	3	2	3		
CO5	3	2	1	1					3	2	2	3		
- Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy														

YOGA AND VALUES FOR HOLISTIC DEVELOPMENT (Common to all Engineering and Technology Branches)

Programme& Branch	B.Tech. & Artificial Intelligence and Data Science	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	2	HS	1	0	1	1

Preamble	ProvidingValueEducationtoimprovetheStudents"character-understanding yogic life and physical hea maintaining youthfulness- Measure and method in five aspects of life	alth-
Unit- I	Physical Health:	2
for youthEmpo Breathing, Eye exercises - B Thuvipathaasva	(SKY) Yoga: Introduction - Education as a means for youth empowerment - Greatness of Education werment. Simplified Physical Exercises: Need and Objectives of Simplified Physical Exercise - Har exercises - Kapalabathi, Makarasana Part I, Makarasana Part II, Body Massage, Acu pressure, Rel enefits.Yogasanas: Pranamasana - HasthaUttanasana - Pada Hasthasana - AswaSanjalana A aSanjalana asana -AstangaNamaskara - Bhujangasana - Atha Muktha Savasana - AswaSanjalana / ana - HasthaUttanasana - Pranamasana - Pranamasana.Pranayama:Naddisuddi-Clearance Practice- Benefits.	nd, Leg, laxation Isana -
Unit- II	LifeForce:	2
Planetary Pos Philosophy Mind.Maintaini - Transformatio	 Diseases: Body Function - Reason for Diseases and Prevention - Natural reasons (Genetic / ir ition,Natural calamities and climatic changes) - Unnatural reasons (Food habits, Thoughts, I of Kaya kalpa: EnrichingBio-Magnetism-Physicalbody-Sexualvitalfluid-Lifeforce-Bio-Mag ingyouthfulness:Postponingold age on of food into seven components - Importance of sexual vital fluid - Measure and method in five aspect luePassion.Kayakalpapractice: AswiniMudra- Ojasbreath-BenefitsofKayaKalpa. 	Deeds). netism-
Unit- III	MentalHealth:	2
ShanthiMeditat	encies: Beta, Apha, Theta and Delta wave- Agna Meditation explanation - benefits. Shanti medion explanation – benefits. Thuriya Meditation: Thuriya Meditation explanation – benefits. Ben	
Unit- IV	Values:	2
Human Value	s: Self control - Self confidence - Honesty Contentment - Humility – Modesty - Tolerance - Adjus jiveness - Purity (Body, Dress, Environment) - Physical purity - Mental purity - Spiritual purity. Social -Service. Patriotism –Equality. Respect for parents and elders- care and protection - Respect for t	Values:
Sacrifice – Forg Non violence -	neManagement.	
Sacrifice – Forg Non violence -		2

Lecture:10, Practical:10, Total:20

TEXT BOOK:

1. ThathuvagnaniVethathiriMaharishi, "YogaforYouthEmpowerment", VethathiriPublications, 2019. for Unit I, II, III, IV and V.

1.	ThathuvagnaniVethathiriMaharishi, "YogaforModernAge", VethathiriPublications, 2019.
2.	That huv a gnaniVe that hir iMaharishi, ``Simplified Physical Exercises'', Ve that hir iPublications, 2019.
3.	NeelamSharma, "HolisticEducationandYoga", ShipraPublications, 2017.
4	Dr.JosephMurphy,"ThePowerofYourSubconsciousMind",PushpakPublication,2019.

COs/PO s	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						3		2	1			1		
CO2						3		2				1		
CO3						3		3				1		
CO4						3		2	1			1		
CO5						3		3				1		

ASSESSMENT PATTERN												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Tot al %					
CAT1	NA											
CAT2	NA											
CAT3			100				100					
ESE	NA											

SEMESTER -III

20MAT35 PROBABILITY THORY AND INFERENTIAL STATISTICS (Common to AI & DS and AI & ML branches)

Programme & Branch	B.TECH. & Artificial Intelligence and Data Science	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	3	BS	3	0	0	3

Preamble To impart knowledge and problem solving capability in probability and statistical concepts necessary for handling real time applications in Artificial intelligence.

Unit - I Probability and Random Variables

Probability – Axioms of probability – Conditional probability – Total probability – Baye's theorem – Random variable – Discrete and Continuous random variables – Probability mass function – Probability density function – Cumulative distribution function – Moments – Moment generating functions.

Unit - II Standard Probability Distributions

Discrete Distributions: Binomial distribution – Poisson distribution – Geometric distribution – Continuous Distributions: Uniform distribution – Exponential distribution – Gaussian distribution.

Unit - III Correlation and Estimation Theory

Correlation and Regression: Covariance – Correlation – Karl Pearson's Coefficient of Correlation – Regression – Lines of Regression – Properties of Regression lines and coefficients.

Estimation Theory: Concept of Estimation – Characteristics of estimators – Unbiasedness – Consistency –Methods for Estimation: Method of Maximum Likelihood Estimation - Method of Moments.

Unit - IV Testing of Hypothesis

Introduction – Critical region and level of significance – Types of Errors – Large sample tests - Z-test for single mean and difference of means – Small sample tests: Student's t-test for testing significance of single mean and difference of means – F-test for comparison of variances – Chi-square test: Test of goodness of fit – Test of independence of attributes.

Unit - V Design of Experiments

Analysis of variance – One way classification: Completely Randomized Design – Two way classification: Randomized Block Design – Three way classification: Latin Square Design.

Lecture: 45, Total: 45

9

9

q

9

9

TEXT BOOK:

1. Jay L. Devore, "Probability and Statistics for Engineering and Sciences", 9thEdition, Cengage Learning USA, 2016. for Unit I, II, III, IV and V.

REFERENCES:

1. Douglas C. Montgomery & George C. Runger, "Applied Statistics and Probability for Engineers ", 7thEdition, John Wiley and Sons, USA, 2020.

 Veerarajan, T, "Probability, Statistics, Random Processes and Queuing Theory", 1st Edition, Tata McGraw-Hill, New Delhi, 2019.

3. Gupta S.C. and Kapoor V.K. "Fundamentals of Mathematical Statistics", 11th Edition, Sultan Chand and Sons, 2002.

	E OUTCOMES: eletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	interpret the concept of random variables.	Applying (K3)
CO2	apply different types of distributions in engineering problems.	Applying (K3)
CO3	utilize the concepts of correlation and point estimation in intelligent systems	Applying (K3)
CO4	apply statistical tests for solving engineering problems involving small and large samples.	Applying (K3)
CO5	apply the concepts of analysis of variance to experimental data.	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1										1	
CO2	3	3	2										2	
CO3	3	3	2	3									2	
CO4	3	3	2	3									3	
CO5	3	3	2	3									3	
CO5 1 – Slight, 2 –	-	-		-	- Bloom	n's Taxo	nomy						3	

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	10	20	70	-	-	-	100						
CAT2	10	20	70	-	-	-	100						
CAT3	10	20	70	-	-	-	100						
ESE	10	20	70	-	-	-	100						

FOUNDATIONS OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

Programme& Branch		BTech. & Artificial Intelligence and Data Science	Sem.	Category	L	т	Р	Credit
Prerequisit	es	Nil	3	PC	3	0	2	4
Preamble		course focuses on the methodology of how to transl tion by using the powerful AI technologies according to				•	olem int	o an effective
Unit - I	The	Al-Based Data Science Workflow and Data Prepara	tion					9
		ata Science Workflow: Overview of Workflow - Key a Preparation: Data Collection - Visual Data Exploration				Scienc	e Work	flow - Project
Unit - II	Data	a Analysis and Model Development						9
Visualization	n. Moo Iodel (anslation of Data into Insight - Multivariate Data Ana del Development: Advantages of mathematical models Generation - Model Ensembles. olution of Al and ML, Prediction using Regression						
Regression	– Reg	achine Learning – Machine Learning vs Classical Pr gression Models – Linear Regression Model and Machi ce cost prediction problem	•	•	-	•		
Unit - IV	Non	-Linear Models and Feature Engineering						9
		ls – Feature Engineering - Insurance cost modeling p /erfitting and Underfitting – Deriving Data to Train the M						
Unit - V	Clas	ssification Problems and Confusion Matrix						9
 Evaluating 	g Clas	assification – Approach followed by Classification Algori ssification Model Accuracy – Classification with Logis nfusion Matrix- Importance of Class wise Accuracy.						
		/ Experiments:						

1.	Installation and exploration of Weka tool
2.	Perform data preprocessing tasks for given dataset
3.	Demonstration of classification using ID3, J48 and Naïve Bayes Algorithm
4.	Demonstrate performing clustering on dataset
5.	Demonstrate performing Linear Regression and Logistic Regression on datasets
6.	Demonstrate performing k-Nearest Neighbors on dataset
7.	Explore Weka Experimenter to find the performance of classification algorithms
8.	Explore Weka knowledge flow for implementing a project

Lecture: 45, Practical:30, Total:75

TEXT BOOK:

- Arthur K. Kordon "Applying Data Science: How to Create Value with Artificial Intelligence". Springer Nature, Switzerland, 1st edition, 2020. for Unit I, II.
 Sujit Bhattacharyya, Subhrajit Bhattacharyya, "Practical Handbook of Machine Learning", Career Launcher Infrastructure
- Sujit Bhattacharyya, Subhrajit Bhattacharyya, "Practical Handbook of Machine Learning", Career Launcher Infrastructure Pvt Ltd and G.K. PublicationsPvt Ltd, 1st edition, 2021. for Unit III, IV and V.

REFERENCES:

1. Avrim Blum, John Hopcroft and Ravindran Kannan. "Foundations of Data Science". Cambridge University Press, 1st edition, England, 2020.

2. Dr. LavikaGoel, "Artificial Intelligence: Concepts and Applications ". Wiley India PvtLtd., 1st edition, India, 2021.

3. Stuart Russell, Peter Norvig. "Artificial Intelligence: A Modern Approach". Pearson, 4th edition, India, 2020

REFERENCES/MANUAL/SOFTWARE:

1.	Operating System : Linux / Windows
2.	Software: Weka / Rapid Miner / Python
3.	Laboratory Manual

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	adapt the data science workflow for finding solution to a given problem	Applying (K3)
CO2	examine data analysis sequence and various modeling methods	Applying (K3)
CO3	use regression models to solve problems	Applying (K3)
CO4	apply feature engineering techniques and estimate model errors	Applying (K3)
CO5	use the metrics and evaluate the performance of machine learning algorithms	Applying (K3)
CO6	exhibit proficiency to build and evaluate models using weka / Rapid Miner tools	Applying (K3), Precision (S3)
CO7	demonstrate various classification model	Applying (K3), Precision (S3)
CO8	demonstrate various clustering and regression model	Applying (K3), Precision (S3)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1									3	1
CO2	3	2	1	1									3	1
CO3	3	2	1	1									3	1
CO4	3	2	1	1									3	1
CO5	3	2	1	1									3	1
CO6	3	2	1	2	1								3	2
C07	3	2	1	2	1								3	2
CO8	3	2	1	2	1								3	2
1 – Slight, 2 –	Modera	ate, 3 –	Substar	ntial, BT	- Bloom	's Taxo	nomy							

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	45	55					100							
CAT2	35	65					100							
CAT3	20	55	25				100							
ESE	20	55	25				100							

DESIGN AND ANALYSIS OF ALGORITHMS (Common to AI & DS and AI & ML branches)

Programme & Branch	B.Tech. & Artificial Intelligence and Data Science	Sem.	Category	L	т	Р	Credit
Prerequisites	Data Structures	3	PC	3	0	2	4

Preamble	This course offers formal introduction to common algorithm design techniques and methods for analyzing the
	performance of algorithms.

Unit - I Introduction

Notion of an Algorithm – Fundamentals of Algorithmic Problem Solving – Important Problem Types – Fundamentals of the Analysis of Algorithm Efficiency – Analysis Framework – Asymptotic Notations and its properties – Mathematical analysis for Recursive and Non-recursive algorithms – Empirical analysis of algorithm – Algorithm visualization.

Unit - II Brute Force & Divide and Conquer

Selection sort- Sequential search and String Matching - closest pair and convex hull problem - Divide and Conquer methodology: Merge sort - Quick sort - Binary search - Binary tree traversals and related properties - Multiplication of large integers and Strassen's Matrix Multiplication - closest pair and convex hull problem.

Unit - III Decrease and Conquer & Transform and Conquer

Insertion sort – Topological Sorting – Fake coin problem – Computing a Median and the Selection Problem – Transform and conquer: Presorting – Balanced search trees – AVL trees – 2-3Trees – Heaps and Heap sort.

Unit - IV Dynamic Programming & Greedy technique

Warshall's and Floyd's algorithm – Optimal Binary Search Trees – Knapsack Problem and Memory functions – Greedy Technique: Prim's algorithm – Kruskal's Algorithm – Dijkstra's Algorithm – Huffman Trees.

Unit - V Backtracking & Branch and Bound

n-Queens problem – Hamiltonian Circuit Problem – Subset Sum Problem – Branch and Bound: Assignment problem – Knapsack Problem – Traveling Salesman Problem – Overview of P, NP and NP-Complete Problems – Randomized algorithms.

List of Exercises:

1.	Find the order of growth of the given problems. Identify the basic operation and count the number of times the basic operation is executed.
2.	Analyze the different sorting algorithms and find out the best algorithm with respect to space and time.
3.	Using Decrease and conquer technique, compute the k th smallest element in the list of 'n' numbers. Also, find the time complexity.
4.	Write the heap sort algorithm to sort 'n' numbers using transform and conquer.
5.	Compare top down and bottom-up approaches of solving the Knapsack problem using Dynamic Programming.
6.	Construct huffman code for the given data. Also perform encoding and decoding (use Greedy technique).
7.	Apply backtracking to solve the given instance of subset sum problem.
8.	Solve the travelling salesman problem of the given graph using branch and bound technique.

TEXT BOOK:

Lecture: 45, Practical:30, Total:75

9

9

9

9

9

1. Anany Levitin, "Introduction to the Design and Analysis of Algorithms", 3rd Edition, Pearson Education, 2012. for Unit I, II, III, IV and V.

REFERENCES:

- 1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, "Introduction to Algorithms", 3rd Edition, Prentice Hall of India, 2009.
- 2. Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, "Data Structures and Algorithms", Reprint Edition, Pearson Education, 2006.

.

Kongu Engineering College, Perundurai, Erode – 638060, India

REFERENCES/MANUAL/SOFTWARE:

1.	Operating System : Windows/Linux
2.	Software : C
3.	Laboratory Manual

	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	analyze the efficiency of algorithms using various frameworks	Analyzing (K4)
CO2	apply brute force and divide-and-conquer techniques to solve various problems and analyze their efficiency.	Analyzing (K4)
CO3	utilize decrease-and-conquer and transform-and-conquer strategies for solving problems	Applying (K3)
CO4	make use of dynamic programming and greedy techniques to solve problems	Applying (K3)
CO5	solve difficult combinatorial problems with backtracking and branch & bound techniques	Applying (K3)
CO6	evaluate the Space and Time efficiency of various algorithms	Analyzing (K4) Precision (S3)
C07	estimate the performance of various algorithm design techniques	Analyzing (K4) Precision (S3)
CO8	use appropriate design strategies for solving a given problem	Applying (K3) Precision (S3)

					Mappi	ng of C	Os with	n POs a	nd PSC)s				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	3	2										3	2
CO2	3	3	2										3	2
CO3	3	2	2										3	2
CO4	3	2	2										3	2
CO5	3	2	2										3	2
CO6	3	2	2	2	2								3	2
CO7	3	2	2	2	2								3	2
CO8	3	2	2	2	2								3	2

1 - Slight, 2 - Moderate, 3 - Substantial, BT- Bloom's Taxonomy

	7ASSESSMENT PATTERN - THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	10	30	40	20			100				
CAT2	10	30	50	10			100				
CAT3	10	30	60				100				
ESE	10	20	50	20			100				

COMPUTER ORGANIZATION (Common to CSE, IT, AI & DS and AI & ML branches)

Programme& Branch	BTech. & Artificial Intelligence and Data Science	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	3	PC	3	0	0	3

Preamble	This course provides knowledge on basics of computer organization, introduces various arithmetic operations
	and discusses the performance issues of processor, memory and I/O units.

Unit - I Basic Structure of Computers and Machine Instructions

Functional Units – Basic Operational Concepts – Number Representation and Arithmetic Operations – Performance – Memory Locations and Addresses – Memory Operations – Instruction and Instruction Sequencing – Addressing Modes – CISC Instruction Sets – RISC and CISC Styles.

Unit - II Arithmetic Unit

Addition and Subtraction of Signed Numbers – Design of Fast Adders – Multiplication of Unsigned Numbers – Multiplication of Signed Numbers – Fast Multiplication – Integer Division – Floating Point Numbers and Operations.

Unit - III Processing Unit

Fundamental Concepts – Instruction Execution – Hardware Components – Instruction Fetch and Execution Steps – Control Signals - Hardwired control – CISC Style Processors. Pipelining : Pipelining – Basic concepts – Pipeline Organization – Pipelining Issues - Data Dependencies – Memory Delay – Branch Delay – Performance Evaluation.

Unit - IV Memory System

Basic Concepts – Semiconductor RAM Memories – Read-Only Memories – Direct Memory Access – Memory Hierarchy – Cache Memories : Mapping Functions – Performance Consideration – Virtual Memory – Secondary Storage : Magnetic Hard Disks.

Unit - V I/O Organization

Accessing I/O Devices – Interrupts – Enabling and Disabling Interrupts – Handling Multiple Devices – Bus Structure – Bus Operation – Arbitration – Interface Circuits – Interconnection Standards : USB.

TEXT BOOK:

 Carl Hamacher, ZvonkoVranesic, SafwatZaky and NaraigManjikian, "Computer Organization and Embedded Systems", 6th Edition, McGraw Hill International Edition, 2012. for Unit I, II, III, IV and V.

REFERENCES:

- Patterson David, A. and Hennessy John L., "Computer Organization and Design: The Hardware / Software Interface", 5th Edition, Harcourt Asia, Morgan Kaufmann, Singapore, 2014.
- Stallings William, "Computer Organization and Architecture: Designing for Performance", 9th Edition, Pearson Education, New Delhi, 2012.

COURSE OUTCOMES:

On co	mpletion of the course, the students will be able to	(Highest Level)
CO1	describe the basic structure, arithmetic and memory operations of a digital computer and determine the addressing modes for the set of instructions.	Applying (K3)
CO2	describe and apply algorithms for performing different arithmetic operations.	Applying (K3)
CO3	make use of the data path in a processor to write the sequence of steps to fetch and execute a given instruction and apply the concepts of pipelining to determine and handle the hazards.	Applying (K3)
CO4	distinguish between different types of memory, and apply the mapping functions between main memory and cache.	Applying (K3)
CO5	demonstrate the need for and types of interrupts in I/O transfer and the role of different types of bus and arbitration in I/O operations.	Applying (K3)

BT Mapped

9

9

9

9

g

Total: 45

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1										3	1
CO2	3	2	1										3	1
CO3	3	2	1										3	1
CO4	3	2	1										3	1
CO5	3	2	1										3	1

		ASSESSMENT	PATTERN - 1	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	60	20				100
CAT2	20	50	30				100
CAT3	20	55	25				100
ESE	20	40	40				100

DATABASE MANAGEMENT SYSTEMS (Common to AI & DS and AI & ML branches)

Programme & Branch	B.Tech. & Artificial Intelligence and Data Science	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	3	PC	3	0	0	3

Preamble The course provides an emphasis on how to organize, maintain and retrieve information from a database management systemmore efficiently and effectively.

Unit - I Data Models

Introduction – Database System Applications – Purpose of database systems – View of data – Database Languages – Relational Databases – Database Architecture – Database Users and administrators – Relational Model – Structure of Relational Databases – Database Schema – Keys – Schema Diagrams – Relational Query Languages – Relational Algebra – Fundamental Relational Operations – Additional Relational Operations.

Unit - II SQL and Database Design

Database Design – ER model – Constraints – ER diagrams – Reduction to Relational Schema – ER design issues – SQL: Basic structure – Operations – Aggregate Functions –Sub queries – Nested Sub queries – modification of the database – Intermediate SQL: Joins – views– Index – Integrity Constraints – SQL data types and schemas – Authorization.

Unit - III Relational Database Design

Features of good relational designs – Functional dependency – Decomposition using functional dependencies – Normal Forms: 1NF, 2NF, 3NF, BCNF, 4NF, 5NF.

Unit - IV Indexing and Hashing

Ordered indices – B tree index files – B+ Tree index files – Multiple key access – Static and Dynamic Hashing – Bitmap indices – Overview of Query Processing.

Unit - V Transactions

Transaction concept – Transaction model – Storage structure – Transaction atomicity and durability – Isolation – Serializability– Concurrency control: Lock-based Protocols – Deadlock Handling.

TEXT BOOK

1. Silberschatz Abraham, Korth Henry F. and Sudarshan S., "Database System Concepts", 7th Edition, McGraw Hill, New York, 2019. for Unit I, II, III, IV and V.

REFERENCES

- ElmasriRamez and NavatheShamkant B., "Fundamental Database Systems", 6th Edition, Pearson Education, New Delhi, 2010.
- Date C.J., Kannan A. and Swamynathan S., "An Introduction to Database Systems", 8th Edition, Pearson Education, New Delhi, 2006.

9

9

9

9

9

Total: 45

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	determine various keys and sketch a suitable schema for a given application.	Applying (K3)
CO2	design an ER model and write SQL queries for a queries for a given scenario.	Applying (K3)
CO3	design relational database using normalization methods for a given application.	Applying (K3)
CO4	apply indexing and hashing techniques in the design of relational database.	Applying (K3)
CO5	apply the concept of concurrency control in transaction processing.	Applying (K3)

Mapping of COs with POs and PSOs														
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	2	2										3	2
CO2	3	2	2						2				3	2
CO3	3	2	2						2				3	2
CO4	3	2	2										3	2
CO5	3	2	2										3	2

	ASSESSMENT PATTERN - THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	10	30	60				100					
CAT2	10	30	60				100					
CAT3	10	30	60				100					
ESE	10	30	60				100					

DATA ANALYSIS (Common to AI & DS and AI & ML branches)

Programme & Branch	B.Tech. & Artificial Intelligence and Data Science	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	3	PC	2	0	2	3

Preamble	This course provides a concise introduction to the fundamental concepts of data analysis using Power	BI
Unit - I	Foundations of Power BI	6
Introducing	Power BI - Importing Data into Power BI Desktop - Data Munging with Power Query	
Unit - II	Data Model and DAX	6
Creating the	e Data Model - Creating Calculations with DAX - Creating Measures with DAX	
Unit - III	Time Intelligence and Reports	6
Incorporatir Power BI P	ng Time Intelligence - Creating Reports with Power BI Desktop - Publishing Reports and Creating Dashbo ortal	oards in the
Unit - IV	Power Pivot, Pivot Tables and Charts	6
Introducing	Power Pivot in Excel - Data Analysis with Pivot Tables and Charts - Creating a Complete Solution	
Unit - V	Advanced Topics	
	Topics in Power Query - Advanced Topics in Power BI Desktop - Advanced Topics in Power BI Data Power BI with Other Applications	Modeling

List of Exercises / Experiments:

1.	Import data into power BI desktop and perform basic operations
2.	Develop data model for the given problem
3.	Create Calculations and measures with DAX
4.	Create and publish Power BI reports
5.	Create Power BI dashboards
6.	Demonstrate basic operations using Power Pivot in Excel
7.	Perform data Analysis with Pivot Tables and Charts
8.	Integrate Power BI with Other Applications
	Lecture: 30; Practical: 30; Total: 60

TEXT BOOK:

4	Dan Clark. "Beginning Microsoft Power BI: A Practical Guide to Self-Service Data Analytics". 3rd edition, Apress, 2020. for
1.	Unit I, II, IV and V.

REFERENCE BOOK:

1. Brett Powell. Microsoft Power BI Cookbook. 1st edition, Packt Publishing, 2017.

REFERENCES/MANUAL/SOFTWARE:

1.	Power BI
2.	Linux / Windows
3.	Lab manual

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	install Power BI and implement the basic operations of Power BI	Applying (K3)
CO2	understand and design data model and DAX applications	Applying (K3)
CO3	interpret the concepts in developing Power BI reports and dashboards	Applying (K3)
CO4	develop applications using Power Pivot, Pivot Tables and Charts	Applying (K3)
CO5	implement advanced operations in Power BI	Applying (K3)
CO6	create data model and implement DAX operations for various applications	Applying (K3) Precision (S3)
CO7	create customized reports and dashboards using Power BI	Applying (K3) Precision (S3)
CO8	integrate Power BI with other Applications	Applying (K3) Precision (S3)

				N	lapping	of COs	s with P	Os and	PSOs					
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	2	1										3	2
CO2	3	2	1										3	2
CO3	3	2	1										3	2
CO4	3	2	1										3	2
CO5	3	2	1										3	2
CO6	3	2	2	2	3								3	3
C07	3	2	2	2	3								3	3
CO8	3	2	2	2	3								3	3

	ASSESSMENT PATTERN - THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	15	25	60				100		
CAT2	15	20	65				100		
CAT3	15	20	65				100		
ESE	10	20	70				100		

DATABASE MANAGEMENT SYSTEMS LABORATORY (Common to AI & DS and AI & ML branches)

Programme& Branch	B.Tech. & Artificial Intelligence and Data Science	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	3	PC	0	0	2	1
Preamble	The course explores the features of database management	t systems	and how to ir	nterface	e with fr	ont en	d tools.

List of Exercises / Experiments:

Demonstrate Data Definition Language and integrity constraints.
Demonstrate Data Manipulation Language, Data Control Language commands and TCL commands.
Execute nested and sub queries in SQL.
Demonstrate Join operations in SQL.
Create Views and index and perform SQL operations in it.
Demonstrate the concept of looping using PL/SQL statements.
Implement Cursors and its operations.
Implement Triggers and its operations.
Develop Procedures and Functions to perform operations in SQL.
Embed SQL queries in high level languages.
Mini project on Application Development using Oracle/ SQL SERVER / MYSQL.
Total: 3

REFERENCES/MANUAL/SOFTWARE:

- 1. Front End: Microsoft Visual Studio 6.0, Microsoft .NET Framework SDK v2.0, Java etc.,
- 2. Back End : ORACLE / SQL SERVER / MYSQL
- 3. Manuals: https://docs.oracle.com/cd/E11882_01/server.112/e41085.pdf
- 4. Laboratory Manual

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	develop PL/SQL commands to create and manipulate databases	Applying (K3), Precision (S3)
CO2	execute queries using concepts of embedded query languages	Applying (K3), Precision (S3)
CO3	solve real world problems using database concepts	Applying (K3), Precision (S3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	2					2	2		3	2
CO2	3	3	2	2	2					2	2		3	2
CO3	3	2	2	2	2					2	2		3	2

20EGL31 - ENGLISH FOR WORKPLACE COMMUNICATION LABORATORY (Common to all Engineering and Technology Branches)

Programme & Branch	All BE/BTech Engineering & Technology branches	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	3	HS	0	0	2	1

Preamble	This course is designed to impart required levels of fluency in using the English Language at B1/B2 level in the CEFR through activities, hands-on training and application.
Unit - I	Listening 6

Techniques for effective listening and note taking; listening to audio scripts, podcasts and TED talks; listening to discourse samples of native speakers and imitating; improving pronunciation; introduction to the basics of phonetics and understanding different accents

Unit - II Reading	
-------------------	--

Speed reading skills; reading to gain knowledge; reading newspaper articles to improve writing; academic journals to enrich vocabulary and word power; reading aloud with proper stress and intonation; reading to draw inferences

Unit – III Soft Skills

Importance of soft skills at workplace - understanding soft skills through case studies - developing positive attitude; goal setting; time management; team work; telephone etiquette; developing professionalism, interpersonal skills and work ethics.

Unit – IV Writing

Introduction to pre-writing, style and mechanics of writing; mind mapping; creating content from an outline; paragraph and resume writing; nuances of academic writing; writing Statement of Purpose (SOP), editing, revising and proof reading for clarity and readability; structural and grammatical accuracy.

Unit – V Speaking

Verbal and non-verbal communication; fluency and spoken English; introducing oneself and others; making presentations on topics using prepared material; mock interviews; dynamics of Group Discussion.

List of Exercises / Experiments:

1.	Mock Interview
2.	Presentation
3.	Reading Aloud
4.	Group Discussion
5.	Soft Skills through Case Studies
6.	Listening Test
	Total:30

TEXT BOOK

1.	Jeff Butterfield, "Soft Skills for Everyone", 1 st Edition, Cengage Learning, New Delhi, 2011.
2.	Bob Dignen, Steve Flinders and Simon Sweeney, "Professional English for Work and Life, English 365, Student"s Book 2", 1 st Edition, Cambridge University Press, New Delhi, 2004.

6

6

6

6

	OUTCOMES: letion of the course, the students will be able to	BT Mapped (Highest Level)
CO1:	acquire effective listening and reading skills	Understanding (K2), Imitation (S1)
CO2:	acquire and demonstrate appropriate professional skills for the workplace	Applying (K3), Naturalization (S5)
CO3:	speak fluently and write meaningfully in English in the given context	Applying (K3), Articulation (S4)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1									2	3			2	
CO2									2	3			2	
CO3									2	3			3	
I – Slight, 2 -	- Moder	ate, 3 –	Substa	antial, B	T- Bloo	m's Ta	xonomy	1						

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	20	30	50											
CAT2	20	30	50											
CAT3	20	30	50											
ESE	10	40	50											

UNIVERSAL HUMAN VALUES (Common to all Engineering and Technology Branches)

Programme & Branch	BTech. & Artificial Intelligence and Data Science	Sem.	Category	L	Т	Р	Credit
Prerequisites	NIL	3	HS	2	0	0	2

Preamble	To make the student to know what they 'really want to be' in their life and profession, understand the meaning of
	happiness and prosperity for a human being. Also to facilitate the students to understanding of harmony at all the
	levels of human living, and live accordingly

Unit - I Introduction

Need and Basic Guidelines of Value Education – Content and Process of Value Education – Self Exploration – purpose of self-Exploration – Content and Process of Self exploration – Natural Acceptance – Realization and Understanding – Basic Human Aspirations – Continuous Happiness and Prosperity – Exploring Happiness and Prosperity – Basic Requirement for Fulfillment of Human Aspirations – Relationships – Physical Facilities – Right Understanding.

Unit - II Harmony in the Self and Body

Human Begin and Body – Understanding Myself as Co–existence of Self ('I') and Body, Needs of the Self and Body, Activities in the Self and Body, Self ('I') as the Conscious Entity, the Body as the Material Entity – Exercise – Body as an Instrument– Harmony in the Self ('I) – Understanding Myself – Harmony with Body.

Unit - III Harmony in the Family and Society

Harmony in the Family – Justice – Feelings (Values) in Human Relationships – Relationship from Family to Society -Identification of Human Goal – Five dimensions of Human Endeavour.

Unit - IV Harmony in Nature and Existence

Order of Nature – Interconnectedness – Understanding the Four order – Innateness – Natural Characteristic – Basic Activity – Conformance – Introduction to Space – Co–existence of units of Space – Limited and unlimited – Active and No–activity – Existence is Co–existence.

Unit - V Implications of the above Holistic Understanding of Harmony on Professional Ethics

Values in different dimensions of Human Living – Definitiveness of Ethical Human Conduct –Implications of Value based Living – Identification of Comprehensive Human Goal – Humanistic Education – Universal Human Order – Competence and Issues in Professional Ethics.

TEXT BOOK:

Lecture: 45; Total: 45

6

6

6

6

6

 Gaur R.R., Sangal R., Bagaria G.P., "A Foundation Course in Human Values and Professional Ethics", 1st Edition, Excell Books Pvt. Ltd., New Delhi, 2016. for Unit I, II, III, IV and V.

REFERENCES:

1. Ivan Illich, "Energy & Equity", The Trinity Press, USA, 1974.

2. Schumacher E.F., "Small is Beautiful: a study of economics as if people mattered", Britain, 1973.

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	understand the significance of value inputs in a classroom, distinguish between values and skills, understand the need, basic guidelines, content and process of value education, explore the meaning of happiness and prosperity and do a correct appraisal of the current scenario in the society.	Understanding (K2)
CO2	distinguish between the Self and the Body, understand the meaning of Harmony in the Self the Co-existence of Self and Body.	Understanding (K2)
CO3	understand the value of harmonious relationship based on trust, respect and other naturally acceptable feelings in human-human relationships and explore their role in ensuring a harmonious society.	Understanding (K2)
CO4	understand the harmony in nature and existence, and work out their mutually fulfilling participation in the nature.	Understanding (K2)
CO5	distinguish between ethical and unethical practices, and start working out the strategy to actualize a harmonious environment wherever they work.	Understanding (K2)

	Mapping of COs with POs and PSOs														
COs/POs	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	
CO1						1		3							
CO2								2							
CO3						1		3							
CO4								2							
CO5								3							
– Slight, 2 –	- Modera	ate, 3 –	Substar	ntial, BT	- Bloom	n's Taxo	nomy								

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	25	75					100							
CAT2	25	75					100							
CAT3	NA													
ESE	NA													

SEMESTER IV OPTIMIZATION TECHNIQUES (Common to AI & DS and AI & ML branches)

Programme & Branch	BTech. & Artificial Intelligence and Data Science	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	4	PC	3	1	0	4

Preamble The course focuses on the basic concepts, various techniques and applications of engineering optimization.

Unit - I Classical Optimization Techniques

Introduction to Optimization– Statement of an Optimization problem – Mathematical formulation– Multi variable optimization with equality constraints – Lagrange multipliers method – Multi variable optimization with inequality constraint – KuhnTucker conditions.

Unit - II	Non-Linear Programming: One-Dimensional Minimization Method

Introduction – Unimodal function – Elimination Methods: Unrestricted search – Exhaustive search– Dichotomous search– Interval halving method– Fibonacci method – Golden section method – Direct root methods: Newton method – Secant method.

Unit - III Non-Linear Programming: Unconstrained Optimization Techniques

Introduction to Unconstrained optimization – Direct Search Methods: Random search methods – Grid search method – Univariate method –Hookes and Jeeve's method – Powell's method – Indirect Search Methods: Steepest descent method – Fletcher-Reeves method – Newton's method.

Unit - IV	Non-Linear Programming: Constrained Optimization Techniques

Introduction – Characteristics of a Constrained Problem – Direct Methods: Random search method – Sequential linear programming – Indirect methods: Transformation techniques – Exterior penalty function method – Interior penalty function method.

Unit - V Advanced Non-Linear Optimization

Genetic Algorithms – Introduction – Working Principle –Genetic operators –Particle swarm optimization – Computational Implementation – Ant colony optimization – Working principle – Neural network based optimization.

TEXT BOOK:

S.S.Rao, Engineering Optimization Theory and Practice,5th Edition, New Age International, 2019. for Unit I, II, III, IV and V.

REFERENCES:

- 1. David Luenberger and Yinyu Ye, Linear and Nonlinear Programming, 4th edition, Springer-Verlag, 2015
- 2. A.Ravindran, K.M.Ragsdell, G.V.Reklaitis, Engineering Optimization: Methods and applications, 2ndEdition, Wiley India Pvt. Ltd., 2006.
- 3. Yang, Xin-She. Optimization Techniques and Applications with Examples. 1st Edition, John Wiley & Sons, United Kingdom: Wiley, 2020.

9 + 3

9 + 3

9 + 3

9 + 3

9+3

Total: 45. Tutorial: 15. Total: 60

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)				
CO1	CO1 solve problems with equality and inequality constraints.					
CO2	solve nonlinear programming problems of functions of single variable.	Applying (K3)				
CO3	use methods of unconstrained optimization to solve non linear problems	Applying (K3)				
CO4	solve nonlinear optimization problems in the presence of inequality and equality constraints.	Applying (K3)				
CO5	apply several modern methods of optimization for solving engineering problems	Applying (K3)				

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1										3	1
CO2	3	2	1										3	1
CO3	3	2	1										3	1
CO4	3	2	1										3	1
CO5	3	2	2										3	2
1 – Slight, 2 –	Modera	ate, 3 –	Substa	ntial, B	Γ- Bloor	n's Taxo	onomy							

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	5	10	85				100						
CAT2	5	10	85				100						
CAT3	5	10	85				100						
ESE	5	20	75				100						

WEB TECHNOLOGY (Common to CSE, AI & DS and AI & ML branches)

Programme& Branch	B.Tech. & Artificial Intelligence and Data Science	Sem.	Category	L	т	Р	Credit
Prerequisites	Object Oriented Programming	4	ES	3	0	0	3

Unit - I	The course also addresses the web application development using React JS UI Design	•
Preamble	This course provides an introduction to HTML, CSS, Bootstrap, Client-Side JS and Server-Side JS Framework	ork.

Introduction – Basic tags – HTML5 Forms Element – Page Structured Elements – Media Tags. Cascading Style Sheet: Types of CSS – Positioning Elements – Backgrounds – Box Model – Dropdown Menus. Responsive Web Design: Introduction – Bootstrap – Grid basics – Nav – Nav Bar – List – Drop down – Tables – Button –Images – Forms-Input – Input Groups.

Unit - II JavaScript

Introduction – Operators – Control Structures: Selection- Repetition- Functions: Function Definition – Scope Rules – Recursion. Array: Declaration – Initialization – Growing Arrays – Passing Arrays to Function. Event Handling. Introduction to REST API-GET-POST-PUT Methods.

Unit - III Server-side JS Framework

Node JS: Introduction – Architecture – Features – Creating Web Servers with HTTP Request – Response – Event Handling – GET and POST Methods – Modules – Connect to NoSQL Database using Node JS – Implementation of CRUD operations.

Unit - IV ReactJS – Part 1

React: Introduction – Installation – create React app - components – state – props - props validation – state vs props – constructor – Component API – Component Life cycle - Forms – controlled and uncontrolled component – Events – conditional rendering.

Unit - V ReactJS - Part 2

List – keys – refs – Fragments - Router – CSS – Animation – Map – Table –Code splitting – hooks – API Integration.

Lecture:45, Total:45

9

9

9

9

TEXT BOOKS:

	Paul Deitel, Harvey M.Deitel and Abbey Deitel, —Internet and World Wide Web - How To Program, 5 th Edition, Prentice Hall, 2011. for Unit I(first half), II.	
2.	Infosys campus connect material shared by infy. for Unit I (Second Half), III.	
3.	https://www.javatpoint.com for Unit IV and V.	

	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	design static web pages using HTML, CSS and Bootstrap.	Applying (K3)
CO2	develop interactive and dynamic web pages using javascript	Applying (K3)
CO3	develop a web application using node JS with database connectivity	Applying (K3)
CO4	apply the features of ReactJS to develop web applications.	Applying (K3)
CO5	demonstrate client-side JS framework to develop web applications	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	1	2								3	2
CO2	3	2	2	1	2								3	2
CO3	3	2	2	1	2								3	2
CO4	3	2	2	1	2								3	2
CO5	3	2	2	1	2								3	2
1 – Slight, 2 -	- Modera	ate, 3 –	Substar	tial, BT	- Bloom	's Taxor	nomy							

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	20	20	60				100						
CAT2	20	20	60				100						
CAT3	10	20	70				100						
ESE	10	30	60				100						

OBJECT ORIENTED PROGRAMMING (Common to CSE, AI & DS and AI & ML branches)

Programme & Branch	B.Tech. & Artificial Intelligence and Data Science	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	4	PC	2	0	2	3

Preamble This course provides a concise introduction to the fundamental concepts of Java programming including inheritance, interfaces, exception handling and threads.

Unit - I Introduction to OOP and Java

Overview of OOP – Object oriented programming paradigms – Features of Object Oriented Programming – Java Buzz words – Evolution of Java – Overview of Java–Data Types, Variables and Arrays – Operators – Control Statements.

Unit - II Classes, objects and Methods

Classes: Class Fundamentals-objects-Assigning Object Reference Variables – Introducing Methods – Constructors – this keyword – Garbage Collection – Stack Class. Overloading Methods – Objects as Parameters – Argument Passing – Returning Objects – Recursion – Access Control-Static – Nested and Inner Classes – Command-Line Arguments – Variable Length Arguments.

Unit - III Inheritance, Packages and Interfaces

Inheritance: Basics – Super keyword -Multilevel Hierarchy–Method Overriding – Dynamic Method Dispatch –Abstract Classes – final with Inheritance - Packages and Interfaces: Packages – Packages and Member Access –Importing Packages – Interfaces.

Unit - IV Exception handling, Multithreading and I/O

Exception Handling basics – Multiple catch Clauses – Nested try Statements – Java's Built-in Exceptions – User defined Exception. Multithreaded Programming: Java Thread Model–Creating a Thread and Multiple Threads – Priorities – Synchronization – Inter Thread Communication- Suspending –Resuming, and Stopping Threads –Multithreading- I/O Basics – Reading and Writing Console I/O – Reading and Writing Files.

Unit - V String handling, Generics and Collections

Generics: Introduction – Example –Parameters – General Form – Generic Methods, Constructors and Interfaces. Strings: Basic String class, methods and String Buffer Class. Collection frameworks: Overview – Collection Classes – Collection Interfaces.

List of Exercises / Experiments:

1.	Write simple Java programs using operators, arrays and control statements.
2.	Develop stack and queue data structures using classes and objects.
3.	Demonstrate the concepts of inheritance & polymorphism.
4.	Develop an application using interfaces by accessing super class constructors and methods.
5.	Develop an employee payroll application using packages.
6.	Implement exception handling and creation of user defined exception.
7.	Implement program to demonstrate multithreading and inter thread communication.
8.	Write a program to perform file operations.
9.	Develop applications to demonstrate the features of generics classes and interfaces.
10.	Implement the concepts of collection frameworks.

TEXT BOOK:

Lecture: 30; Practical: 30; Total: 60

6

6

6

6

6

1. Herbert Schildt, "Java: The Complete Reference", 11th Edition, McGraw Hill Education, New Delhi, 2019 for Unit I, II, III, IV and V.

REFERENCES/MANUAL/SOFTWARE:

1.	Cay S. Horstmann, "Core Java Fundamentals", Volume 1, 11 th Edition, Prentice Hall, 2020.
2.	Linux / Windows
3.	Eclipse IDE / Netbeans IDE
4.	Lab manual

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	interpret the role of object oriented programming, java and its variations	Applying (K3)
CO2	apply the concepts of classes, objects and methods to solve simple problems	Applying (K3)
CO3	develop programs using inheritance, packages and interfaces	Applying (K3)
CO4	make use of exception handling mechanisms and multithreaded model along with i/o packages to solve real world problems	Applying (K3)
CO5	build java applications with string classes, collections and generics concepts	Applying (K3)
CO6	design and develop java programs using object oriented programming concepts	Applying (K3) Precision (S3)
C07	develop simple applications using package, exceptions and multithreading.	Applying (K3) Precision (S3)
CO8	develop a solution for real world problems using i/o, generics and collections.	Applying (K3) Precision (S3)

				N	lapping	of COs	with PO	Os and	PSOs					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1										3	1
CO2	3	2	1										3	1
CO3	3	2	1										3	1
CO4	3	2	1										3	1
CO5	3	2	1										3	1
CO6	3	2	2	2	1								3	2
CO7	3	2	2	2	1								3	2
CO8	3	2	2	2	1								3	2

ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	15	25	60				100					
CAT2	15	20	65				100					
CAT3	15	20	65				100					
ESE	10	20	70				100					

OPERATING SYSTEMS (Common to CSE, AI & DS and AI & ML branches)

Programme & Branch	B.Tech. & Artificial Intelligence and Data Science.	Sem.	Category	L	т	Р	Credit
Prerequisites	NIL	4	PC	3	0	0	3

Preamble	This course provides basic operating system abstractions, system call interface, process, threads, and inter-
	process communication. Various management functions of an operating system will also be explored.

Unit - I Operating Systems Overview

Introduction – Computer System Organization – Computer System Architecture – Operations – Resource Management – Security and Protection – Virtualization – Computing Environments. Operating Systems Structures: Services – User and OS Interface – System Calls – Linkers and Loaders – Operating system Structure – Building and Booting OS.

Unit - II Process Management

Process Concept – Process Scheduling – Operations on Processes – Interprocess Communication – IPC in Shared Memory and Message Passing Systems. CPU Scheduling: Scheduling Criteria – Scheduling Algorithms. Multithreaded Programming: Threads Overview – Multicore Programming – Multithreading Models.

Unit - III Process Synchronization

The Critical Section Problem - Peterson's solution – Hardware support for Synchronization – Mutex Locks – Semaphores – Monitors. Deadlocks: Deadlock Characterization – Methods for handling deadlocks - Deadlock Prevention and Avoidance – Deadlock Detection – Recovery from Deadlock.

Unit - IV Memory Management

Main Memory: Background – Contiguous Memory Allocation – Segmentation – Paging – Swapping. Virtual Memory: Background – Demand Paging – Page Replacement – Case study: Intel 32 Architecture.

Unit - V Storage Management

Mass Storage Structure: Overview – HDD Scheduling. File System: File Concept – Access Methods – Directory Structure – Protection. File System Implementation: File System Structure – File System Operations – Directory Implementation – Allocation Methods - Free Space Management – Case study: Linux System.

TEXT BOOK:

Lecture: 45; Total: 45

9

9

9

9

9

1. Silberschatz, Peter Baer Galvin and Greg Gagne, "Operating System Concepts", 10th Edition, John Wiley & Sons Inc., 2020. for Unit I, II, III, IV and V.

REFERENCES:

	William Stallings, "Operating Systems Internals and Design Principles", 9th Edition, Prentice Hall, 2020.
2.	Andrew S. Tanenbaum, "Modern Operating Systems", 4th Edition, Pearson Education, 2016.

COURSE OUTCOMES: On completion of the course, the students will be able to						
CO1	explain operating system structure, services and system calls and identify appropriate system calls for a given service	Applying (K3)				
CO2	make use of process management strategies for scheduling processes	Applying (K3)				
CO3	apply different methods for process synchronization and deadlock handling	Applying (K3)				
CO4	make use of memory management strategies and apply page replacement policies to address demand paging	Applying (K3)				
CO5	apply various disk scheduling algorithms and elaborate file systems concepts	Applying (K3)				

Mapping of COs with POs and PSOs														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1										3	2
CO2	3	2	1										3	2
CO3	3	2	1										3	2
CO4	3	2	1										3	2
CO5	3	2	1										3	2

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	25	35	40				100							
CAT2	20	20	60				100							
CAT3	20	20	60				100							
ESE	25	25	50				100							

APPLIED MACHINE LEARNING (Common to AI & DS and AI & ML branches)

Programme& Branch	B.Tech. & Artificial Intelligence and Data Science	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	4	PC	3	0	0	3

Preamble The course provides the concepts and algorithms in machine learning and the methods to apply them in real time problems

Unit - I Introduction to Machine Learning and Learning Theory

Need for Machine Learning –Machine Learning in relation to other fields – Types of Machine Learning – Challenges of Machine Learning – Machine Learning Process and Applications – Data – Data Analytics –Descriptive Statistics– Univariate, Bivariate and Multivariate Data – Feature Engineering – Dimensionality Reduction techniques– Learning and its Types – Computation Learning Theory – Concept Learning – Induction Biases – Modeling – Learning Frameworks

Unit - II Similarity based Learning and Regression Analysis

Introduction to Similarity based Learning – Nearest Neighbor Learning – Weighted K-Nearest Neighbor Algorithm – Nearest Centroid Classifier – Locally weighted Regression – Introduction to Regression – Linearity, Correlation and Causation – Linear Regression – Multiple Linear Regression – Polynomial Regression – Logistic Regression – Ridge, Lasso and Elastic net Regression

Unit - III Decision Tree and Rule-based Learning

Decision Tree learning Model – Decision Tree Induction Algorithms – Validating and Pruning of Decision Trees– Sequential Covering Algorithm – First Order Rule Learning – Induction as Inverted Deduction – Inverting Resolution – Analytical Learning – Active Learning

Unit - IV Bayesian Learning, Probabilistic Graphical Models and Support Vector Machines

Probability based Learning – Bayes Theorem – Classification using Bayes Model – Naïve Bayes Algorithm for Continuous Attributes – Other Naïve Bayes Classifiers – Bayesian Belief Network – Markov Chain – Problems Solved with HMM– Introduction to Support Vector Machine – Optimal Hyperplane – Functional and Geometric Margin – Hard Margin – Soft Margin – Kernels and Non-Linear Regression

Unit - V Ensemble Learning, Clustering Algorithms and Reinforcement Learning

Introduction – Parallel Ensemble Models – Incremental Ensemble Models – Sequential Ensemble Models –Introduction to Clustering Approaches – Proximity Measures – Hierarchical Clustering Algorithms –Partitional Clustering Algorithm – Density Based Methods – Grid Based Approach – Probability Model-based Methods – Cluster Evaluation Methods – Overview of Reinforcement Learning – Reinforcement Learning as Machine Learning – Components – Markov Decision Process

TEXT BOOK:

1. S.Sridhar, M.Vijayalakshmi, "Machine Learning", 1st Edition, Oxford University Press, 2021. for Unit I, II, III, IV and V.

9

9

9

9

9

Lecture:45, Total: 45

COURSE On comp			urse, the stud	dents w	vill be able	e to						(BT Map Highest		el)	
CO1	adapt to	basic	concepts of I	machin	e learning	, to unde	erstand	l data an	d conc	ept learning	g		Applying	j (K3))	
CO2	demonst	rate si	milarity base	d learn	ing and v	arious re	gressi	on techni	iques				Applying	J (K3))	
CO3	carry out	decis	ion tree learr	ning an	d rule-bas	ed learn	ing						Applying (K3)			
CO4	CO4 develop Bayesian , probabilistic and support vector machine models													g (K3))	
CO5	reinforcement learning													g (K3)	1	
					Mappin	g of CO	s with	POs and	I PSO	s						
COs/POs	COs/POs PO1 PO2 PO3 PO4 P						P07	PO8	PO9	PO10	P011	PO12	PSO1	PS	SO2	
CO1	3	2	2										3		2	
CO2	3	2	2										3		2	
CO3	3	2	2										3		2	
CO4	3	2	2										3		2	
CO5	3	2	2										3		2	
1 – Slight	, 2 – Moo	lerate	3 – Substar	ntial, BT	- Bloom's	s Taxono	my									
					ASSES	SMENT	PATT	ERN - TH	IEORY	(
	Bloom's gory*	R	ememberin (K1) %	g Un	derstand	ling (K2))%	Applyin (K3) %		nalyzing (%	K4) E	valuatir (K5) %			Total %	
C	AT1		15		3		50							100		
C	AT2		15		35			50							100	
C	AT3		15		35			50							100	
E	SE		10		40	D		50							100	

WEB TECHNOLOGY LABORATORY (Common to CSE, AI & DS and AI & ML branches)

Programme& Branch	B.Tech. & Artificial Intelligence and Data Science	Sem.	Category	L	т	Р	Credit
Prerequisites	Object Oriented Programming	4	ES	0	0	2	1
Preamble	This course provides an introduction for developing web and ReactJS.	applica	tions using htr	ml, CSS	S, Boot	strap, N	lode. js

List of Exercises / Experiments:

1.	Design a web page using HTML tags and host it in github repository
2.	Design an attractive webpage using style sheets
3.	Design a responsive website using Bootstrap
4.	Design a webpage to create simple interactive calculator using Event Handling
5.	Design a web application using HTTP Request and HTTP Response
6.	Develop simple login page by performing event handling using GET and POST method
7.	Design a simple calculator using "Modules" in Node.js
8.	Design a webpage to maintain personal information using CRUD operations in MongoDB
9.	Design a web application using components and forms in React
10.	Design a reactive form to maintain personal information and perform validation using React
11.	Implementation of simple project using ReactJS

Practical:30, Total:30

REFERENCES / MANUAL /SOFTWARE

1. Visual Studio code/ GEdit, No	de JS+NPM, MongoDB
----------------------------------	--------------------

2. ReactJS, Github

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	Develop interactive web pages using HTML, CSS, JavaScript and Bootstrap.	Applying (K3), Precision (S3)
CO2	Develop a web application to maintain information in a database using server-side scripting.	Applying (K3), Precision (S3)
CO3	Apply the concepts of React to design full-fledged web applications.	Applying (K3), Precision (S3)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	3								3	2
CO2	3	2	2	2	3								3	2
CO3	3	2	2	2	3								3	2
– Slight, 2 –	Modera	ite, 3 – 3	Substar	tial, BT-	- Bloom	's Taxor	nomy							

APPLIED MACHINE LEARNING LABORATORY (Common to AI & DS and AI & ML branches)

Programme & Branch	B.Tech. & Artificial Intelligence and Data Science	Sem.	Category	L	Т	Р	Credit
Prerequisites	Python Programming	4	PC	0	0	2	1
Preamble	This course provides hands-on experience in applying n	nachine	learning algor	rithms f	or real	world p	oroblems.

List of Exercises / Experiments:

	-
1.	Create a sample dataset and explore statistical operations using Pandas and visualize the results through plots
2.	Create a sample dataset and apply preprocessing techniques
3.	Perform dimensionality reduction using Principal Component Analysis
4.	Apply Find-S algorithm on sample dataset and find maximally specific hypothesis
5.	Implement K-Nearest Neighbor Algorithm
6.	Implement linear regression and multiple linear regression algorithms
7.	Implement and demonstrate decision tree based ID3 algorithm
8.	Implement and demonstrate the working of Naive Bayesian classifier
9.	Implement and demonstrate Hidden Markov Model
10.	Implement Support Vector Machine
11.	Implement and compare the working of Random Forest classifier with Adaboost model
12.	Implement K-Means clustering algorithm

Practical: 30; Total: 30

REFERENCES/MANUAL/SOFTWARE:

- 1. Laboratory Manual
- 2. Python / MATLAB

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	create dataset and apply preprocessing techniques	Applying (K3), Precision (S3)
CO2	implement supervised learning algorithms with sample dataset	Applying (K3), Precision (S3)
CO3	apply ensemble and clustering methods for sample dataset	Applying (K3), Precision (S3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	1								3	2
CO2	3	2	2	2	1								3	2
CO3	3	2	2	2	1								3	2
1 – Slight, 2 –	- Modera	ate, 3 –	Substar	ntial, BT	- Bloom	ı's Taxo	nomy							

20MNT31 - ENVIRONMENTAL SCIENCE (Common to all Engineering and Technology Branches)

Programme & Branch	All BE/BTech Engineering & Technology branches	Sem.	Category	L	Т	Ρ	Credit
Prerequisites	Nil	4	MC	2	0	0	0

Preamble This course provides an approach to understand the various natural resources, ecosystem, bio-diversity, pollution control & monitoring methods for sustainable life and also to provide knowledge and to create awareness for engineering students on biological sciences. 5

Unit - I **Environmental Studies and Natural Resources**

Introduction to Environmental Science – uses, over-exploitation and conservation of forest, water, mineral, food, energy and land resources-case studies

Unit - II Ecosystem and Biodiversity

Ecosystems: concept and components of an ecosystem -structural and functional features - Functional attributes (Food chain and Food web only). Biodiversity: Introduction – Classification – Bio geographical classification of India- Value of biodiversity – Threats and Conservation of biodiversity - case studies.

Unit - III **Environmental Pollution**

Environmental Pollution: Definition – causes, effects and control measures of: (a) Air pollution - Climate change, global warming, acid rain, ozone layer depletion (b)Water pollution (c) Soil pollution - Role of an individual in prevention of pollution - case studies.

Unit - IV Environmental Monitoring

Sustainability -three pillars of sustainability- factors affecting environmental sustainability-approaches for sustainable development Introduction to EIA - objectives of EIA - environment protection act - air (prevention and control of pollution) act - water (prevention and control of pollution) act.

Unit - V Introduction to Biological Science

Functions of Carbohydrates, lipids, proteins and nucleic acids - Cells and its organelles - plasma membrane, mitochondria and nucleus- Heredity and DNA - organization of DNA in cells - Genes and chromosomes- Cell division -Types of cell division- mitosis & meiosis - Cell cycle and molecules that control cell cycle.

TEXT BOOK:

1. Anubha Kaushik, and Kaushik C.P., "Environmental Science and Engineering", 6th Multicolour Edition, New Age International Pvt. Ltd., New Delhi, 2018.

2. Lodish. H., Berk A., Zipurursky S.L., Matsudaria P., Baltimore D. and Darnell J., "Molecular Cell Biology", 4th Edition, Freeman Press, 2000.

REFERENCES:

- Palanisamy P.N., Manikandan P., Geetha A., Manjula Rani K., Kowshalya V.N., "Environmental Science", Pearson Education, New Delhi, Revised Edition 2019.
- 2. Satyanarayan U., & Chakrapani U., "Textbook of Biochemistry", 1999 Ed. June 2017.

5

5

5

Total: 25

	COURSE OUTCOMES: On completion of the course, the students will be able to	
CO1	illustrate the various natural resources and role of individual for its conservation	Understanding (K2)
CO2	elaborate the features of ecosystem and biodiversity to find the need for conservation.	Understanding (K2)
CO3	manipulate the sources, effects and control methods of various environmental pollution.	Applying (K3)
CO4	make use of the knowledge of EIA and environmental legislation laws towards sustainability	Applying (K3)
CO5	explain the functions of carbohydrates, lipids, proteins, nucleic acids, Cells and its organelles	Understanding (K2)

					Мар	oping o	f COs w PSOs	ith POs	and					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1					3							
CO2	2	1					3							
CO3	3	2	1				3							
CO4	3	2	1				3							
CO5	3	1												
CO5 I – Slight, 2 –	-	1 te, 3 – 5	Substan	tial, BT-	Bloom"	s Taxon	lomy							

		ASSESSMEN	FPATTERN - 1	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	40	35				100
CAT2	25	40	35				100
CAT3	NA						100
ESE	NA						100

*±3% may be varied (CAT 1, 2 – 50 marks)

SEMESTER V ARTIFICIAL INTELLIGENCE (Common to AI & DS and AI & ML branches)

Programme & Branch	B.Tech. & Artificial Intelligence and Data Science	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	5	PC	3	0	0	3

Preamble The course focuses on search methods, game playing, constraint satisfaction, planning and knowledge representation in artificial intelligence.

Unit - I Intelligent Agents

Introduction to AI – Agents and Environments – Concept of rationality – Nature of environments – Structure of agents– Problem Solving agents – search algorithms – uninformed search strategies.

Unit - II Problem Solving

Heuristic search strategies – heuristic functions–Local search and optimization problems – local search in continuous space – search with non- deterministic actions – search in partially observable environments – online search agents and unknown environments.

Unit - III Game Playing and CSP

Game theory – optimal decisions in games – alpha-beta search – monte-carlo tree search – stochastic games – partially observable games–Constraint satisfaction problems – constraint propagation – backtracking search for CSP – local search for CSP – structure of CS.

Unit - IV Logical Agents

Knowledge-based agents – propositional logic – propositional theorem proving – propositional model checking – agents based on propositional logic–First-order logic – syntax and semantics – knowledge representation and engineering – inferences in first-order logic – forward chaining – backward chaining – resolution.

Unit - V Knowledge Representation and Planning

Ontological engineering – categories and objects – events – mental objects and modal logic – reasoning systems for categories – reasoning with default information–Classical planning – algorithms for classical planning – heuristics for planning – hierarchical planning – non-deterministic domains – time, schedule, and resources – analysis.

Theory:45; Total:45

9

9

9

9

9

TEXTBOOK:

Stuart Russell and Peter Norvig, "Artificial Intelligence: A Modern Approach", 3rd Edition, Pearson Education, 2013. for Unit I, II, III, IV and V.

REFERENCE:

1. Khemani D., "A First Course in Artificial Intelligence", 1st Edition, 9th reprint, McGraw Hill Education (India) Private Limited, 2019.

	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1:	paraphrase Artificial Intelligence, intelligent agents, and apply blind search to solve problems.	Applying (K3)
CO2:	demonstrate the effectiveness of heuristics in informed search methods.	Applying (K3)
CO3:	apply game playing in problem solving.	Applying (K3)
CO4:	make use of propositional logic and first order logic in knowledge-based reasoning.	Applying (K3)
CO5:	apply knowledge representation and planning to real world problems.	Applying (K3)

					Mappin	g of CC	Os with	POs an	d PSOs	3				
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	2	2										3	2
CO2	3	2	2										3	2
CO3	3	2	2										3	2
CO4	3	2	2										3	2
CO5	3	2	2										3	2

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

	ASSE	SSMENT PATTE	RN - THEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	20	40	40				100	
CAT2	20	30	50				100	
CAT3	20	30	50				100	
ESE	20	30	50				100	

DEEP LEARNING (Common to AI & DS and AI & ML branches)

Programme& Branch	BTech. & Artificial Intelligence and Machine Learning	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	5	PC	3	0	0	3

Preamble	This course is designed to impart the skills required to build different deep neural network architectu	res.
Linit - I	Noural Notworks:	

Unit - I Neural Networks:

Introduction – Basic Architecture of Neural Networks – Training Neural Network with Backpropagation - Practical Issues in Neural Network Training - Power of Function Composition – Common Neural Architectures – Neural Architectures : Binary Classification Models – Multiclass Models – Matrix Factorization with Autoencoders: Basic Principles – Nonlinear Activations – Deep Autoencoders

Unit - II Training Deep Neural Networks:

Introduction – Backpropagation- Setup and Initialization Issues – Vanishing and Exploding Gradient Problems – Gradient Descent Strategies – Batch Normalization - Practical Tricks for Acceleration and Compression – Bias- Variance Trade-Off – Generalization Issues in Model Tuning and Evaluation – Penalty-based Regularization – Ensemble Methods – Early Stopping – Unsupervised Pretraining – Transfer Learning

Unit - III Radial Basis Function Networks and Boltzmann Machines:

Radial Basis Function : Introduction - Training an RBF Network – Hopfield Network – The Boltzman Machine – Restricted Boltzman Machines

Unit - IV Recurrent Neural Networks

Introduction – Architecture of Recurrent Neural Networks – Challenges of training Recurrent Networks – Echo-State Networks – Long Short-Term Memory (LSTM) – Gated Recurrent Units (GRUs) – Applications of Recurrent Neural Networks

Unit - V Convolution Neural Networks:

Introduction – Basic Structure of Convolutional Network – Training a Convolutional Network - Case Studies of Convolutional Architectures - Applications of Convolutional Networks - Attention Mechanism – Generative Adversarial Networks(GANs)

Theory:45; Total: 45

9

9

9

9

9

TEXT BOOK:

1. Aggarwal, Charu C, Neural networks and deep learning, Springe,r 2018. for Unit I, II, III, IV and V.

REFERENCES:

1.	Ian Goodfellow, YoshuaBengio, and Aaron Courvill, "Deep Learning", MIT Press, USA, 2016
2.	Josh Patterson and Adam Gibson, "Deep Learning – A Practitioner's Approach", First Edition, O'Reilly Series, August 2017.
3.	Indra den Bakker, "Python Deep Learning Cookbook", First Edition, Packt Publishing, October 2017.

Kongu Engineering College, Perundurai, Erode – 638060, India

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)		
CO1	use Artificial Neural Network .concepts to solve real world problems	Applying (K3)		
CO2	solve simple real world problems using deep neural networks.	Applying (K3)		
CO3	use the concepts of RBF and Boltzman machines to solve real world problems	Applying (K3)		
CO4	exemplify the concepts of CNN models and apply it for solving computer vision related problems.	Applying (K3)		
CO5	explicate the concepts of RNN models and apply it for solving Natural Language problems.	Applying (K3)		

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	2	3										2	3
CO2	3	2	3										2	3
CO3	3	2	3										2	3
CO4	3	2	3										2	3
CO5	3	2	3										2	3
– Slight, 2 –	Modera	ate. 3 – 3	Substar	tial. BT	- Bloom	's Taxo	nomv			1	1			1

45

45

45

		ASSESSMENT	PATTERN - T	HEORY	
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %
CAT1	10	45	45		

45

45

45

* ±3% may be varied (CAT 1,2,3 – 50 marks & ESE – 100 marks)

10

10

10

CAT2

CAT3

ESE

Creating (K6) %

Total %

100

100

100

DATA MODELING AND BUSINESS INTELLIGENCE

Programme & Branch	BTech. & Artificial Intelligence and Machine Learning	Sem.	Category	L	т	Р	Credit
Prerequisites	Database management systems	5	PC	3	0	2	4

Preamble This course provides an exposure on loading, transforming and handling of data. Also it provides Knowledge about analyzing, reporting results for better decision making.

Unit - I Data preprocessing

Data objects and attribute types – Statistical descriptions of data – Measuring data similarity and dissimilarity - Major tasks in data preprocessing - Data Cleaning – Data Integration – Data Reduction.

Unit - II Data Models

OLTP, OLAP and Multidimensional Data Modeling: OLTP – OLAP – OLAP Architectures – Data Model – Role of OLAP Tools in BI – OLAP Operations. Multidimensional Data Modeling: Basics of Data Modeling – Types of Data Model – Data Modeling Techniques – Fact Table – Dimension Table – Dimensional Models – Dimensional Modeling Life Cycle

Unit - III ETL Process

ETL data structures- Extraction process – cleaning and confirming – delivering dimension tables – delivering fact tables.

Unit - IV ETL and Reporting Tools

ETL tools:: Airflow – Basic operations on Airflow. Click view – Azure Data factory – Stitch – Case studies and real time applications.

Unit - V Performance Management and Enterprise Reporting

Performance Management and Enterprise Reporting: Measures, Metrics, KPIs and Performance Management: Understanding Measures and Performance – Measurement System – Role of metrics – KPIs – Enterprise Reporting: Reporting Perspectives – Report Standardization and Presentation Practices – Enterprise Reporting Characteristics – Balanced Scorecard – Dashboards – Creating Dashboards – Scorecards vs. Dashboards – Analysis.

Lecture: 45; Practical: 30; Total:75

9

9

9

9

9

TEXT BOOKS:

1. Han Jiawei, and Kamber Micheline, "Data Mining: Concepts and Techniques", 3rd Edition, Morgan Kaufmann Publishers, 2012. (Units I)

2. Prasad R.N. and Seema Acharya, "Fundamentals of Business Analytics", 2ndEdition, Wiley, 2016. (Units II, IV, V)

3. Ralph Kimball, Joe Caserta."The Data Warehouse ETL Toolkit". 2ndedition, Wiley, 2008. (Unit III)

REFERENCES:

1 Ralph Kimball, Margy Ross, Warren Thornthwaite, Joy Mundy, Bob Becker. The Data Warehouse Lifecycle Toolkit, 3rd edition, Wiley, 2008.

List of Exercises / Experiments:

1.	Evaluate and display statistical descriptions of data
2.	Perform data cleaning operations on the given dataset
3.	Implement data reduction operations
4.	Demonstrate data integration methods
5.	Create different types of schema
6.	Experiment ETL process in the chosen dataset using Airflow
7.	Create reports for real life problems
8.	Develop dashboards and score cards for the given problem

REFERENCES/MANUAL/SOFTWARE:

1.	Python	
2.	Any ETL tool like Airflow, clickview, Azure	
3.	Lab manual	

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1:	interpret basic data preprocessing operations	Applying (K3)
CO2:	build various data models and perform OLAP operations	Applying (K3)
CO3:	apply ETL operations on the dataset	Applying (K3)
CO4:	demonstrate various ETL tools	Applying (K3)
CO5:	implement Performance Management and Enterprise Reporting	Applying (K3)
CO6:	experiment various data preprocessing operations	Applying (K3) Precision (S3)
CO7:	use ETL tools for processing the data	Applying (K3) Precision (S3)
CO8:	create reports for various real life BI applications	Applying (K3) Precision (S3)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	2											3	1
CO2	3	2											3	1
CO3	3	2											3	1
CO4	3	2	1										3	3
CO5	3	2	1										3	3
CO6	3	2	2	2	3								3	3
CO7	3	2	2	2	3								3	3
CO8	3	2	2	2	3								3	3
1 – Slight, 2 –	Modera	ate, 3 –	Substar	ntial, BT	- Bloom	ı's Taxo	nomy							

	ASSESSMENT PATTERN - THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT 1	15	30	55				100			
CAT 2	15	30	55				100			
CAT 3	15	30	55				100			
ESE	15	30	55				100			

BIG DATA ANALYTICS (Common to AI & DS and AI & ML branches)

Programme& Branch	B.TECH. & Artificial Intelligence and Data Science	Sem.	Category	L	Т	Р	Credit
Prerequisites	NIL	5	PC	3	0	2	4

Preamble This course focuses on the fundamentals of big data models, processing Frameworks, machine learning models and stream processing using Spark

Unit - I Bigdata and Ingestion

Introduction to Bigdata and Analytics - Four vs of Big Data - Challenges of Traditional System Data Ingestion into Big Data Systems: Introduction to data Ingestion - Tools for data Ingestion - **Apache Sqoop** -Sqoop Processing- Sqoop Import Process - Sqoop Connectors - Importing and Exporting Data from MySQL to HDFS - **Apache Flume** - Components in Flume's Architecture -Configuring Flume Components - Ingest Twitter Data

Unit - II Distributed Processing Framework

Distributed Processing in Map reduce — Distributed Systems - Word Count Example - Map Execution Phases - Map reduce Jobs - Mapreduce Job Work Interaction – Data Types in Hadoop - Output formats in Map Reduce Apache Hive - Hive Architecture - Hive Queries- Hive Metastore - Hive DDL and DML - Table Data Types - Validation of Data - File Format Types - Data Serialization - Hive Table and Avro Schema- Hive Optimization - Dynamic Partitioning in Hive Bucketing - Hive Analytics UDF and UDAF.

Unit - III SPARK RDD

Apache Spark – Introduction - Components of Spark -In-memory Processing - Spark Architecture -Spark Cluster - Spark RDD Introduction -Creating Spark RDD - RDD Operations - transformation- Actions –Caching and Persistence -Storage Levels -Lineage and DAG -Need for DAG -Debugging in Spark -Partitioning in Spark -Scheduling in Spark -Shuffling in Spark -Sort Shuffle -Aggregating Data.

Unit - IV Machine Learning with MLib

Data Analytics using Spark - Spark SQL- Data Analysis Operations- Dataset ETL Process-Machine Learning Supervised Learning -Classification of Linear SVM Linear Regression with Real World Case Studies - Unsupervised Learning K-means clustering -Reinforcement Learning -Semi-supervised - Mlib Pipelines

Unit - V Spark Stream Processing

Apache Kafka – Introduction to Publish subscribe systems-Requirements of Kafka - Kafka architecture-Kafka Internals- Kafka Development- Java/Scala Coding - Kafka Cluster -Kafka Streams - Kafka Connect -Encryption and Authentication using SSL -- Kafka – HDFS- Stream queries- stream processing- stream computing-Frequent item sets-Real Time Analytics platform -Graph analytics with graphx platform

List of Exercises / Experiments:

Installing and Configuring Hadoop for single node and Multinode architecture					
Implement Word count/frequency program using Map reduce					
Perform ingestion of data from relational database to HDFS using Apache Sqoop/Flume					
Installation of HIVE and apply Hive to create, alter, and drop databases, tables, views, functions and indexes					
Implementation of supervised learning application using Spark Mlib					
Implementation of unsupervised learning application using Spark Mlib					
Implement producer consumer application using Kafka					
Apply stream processing using Kafka in spark Environment					

TEXT BOOK:

Lecture: 45, Practical:30, Total:75

9

9

9

9

9

- Raj Kamal, PreetiSaxena, "Big Data Analytics, Introduction to Hadoop, Spark, and Machine-Learning", 1st Edition, McGraw Hill Education, 2019. for Unit I, II, III, IV.
- Neha Narkhede, Gwen shaper and Todd Palino, "Kafka The Definitive Guide-Real-Time Data and stream processing at scale", 1st Edition, Oreilly, 2019. for Unit V.

REFERENCES:

- 1. Seema Acharya, SubhashiniChellappan, "Big Data and Analytics", 2nd Edition,Wiley, 2019.
- 2. DT Editorial Services, "Big Data, Black Book: Covers Hadoop 2, MapReduce, Hive, YARN, Pig, R and Data Visualization", 1st Edition, Dreamtech Press; 2016.

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	apply various tools to extract value from data sources	Applying (K3)
CO2	apply map reduce programming andHive queries to perform data analysis on real world datasets	Applying (K3)
CO3	use Spark and Spark SQL environment for developing applications	Applying (K3)
CO4	apply machine learning modelling on big data in spark	Applying(K3)
CO5	apply stream processing on big data in spark	Applying (K3)
CO6	apply map reduce programming for big data	Applying (K3), Precision (S3)
C07	apply Hive queries to perform data analysis on real world datasets	Applying (K3), Precision (S3)
CO8	apply Machine Learning and stream processing using Kafka and Spark	Applying (K3), Precision (S3)

					Mappi	ng of C	Os with	POs a	nd PSC)s				
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	1									3	2
CO2	3	2	2	1									3	2
CO3	3	2	2	1									3	2
CO4	3	2	2	1									3	2
CO5	3	2	2	1									3	2
CO6	3	2	2	1	2								3	2
CO7	3	2	2	1	2								3	2
CO8	3	2	2	1	2								3	2
1 – Slight, 2 –	Modera	ate, 3 –	Substar	ntial, BT	- Bloom	ı's Taxo	nomy		<u> </u>					

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	20	30	50				100						
CAT2	20	30	50				100						
CAT3	20	30	50				100						
ESE	20	30	50				100						

DEEP LEARNING LABORATORY

Programme& Branch	BTech - Artificial Intelligence and Machine Learning	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	5	PC	0	0	2	1
Preamble	This course provides hands-on experience in applying c problems	leep le	arning algorit	hms fo	r solvi	ng rea	l world

List of Exercises / Experiments:

1.	Create a multi-layer neural network and apply it to MNIST dataset.
2.	Test the performance of multi-layer neural network with various activation and loss functions and tune the performance with hyper parameters
3.	Implement Logistic Regression.
4.	Develop an application for outlier detection using autoencoder
5.	Implement Convolutional neural networks and use them to classify images
6.	Implement a movie recommender system using RBM
7.	Implement Recurrent neural networks to generate new text.
8.	Implement Stock Price prediction application using LSTM
9.	Develop a image captioning application using RNN
10.	Develop a image recognition application using CNN
11.	Develop a hand written character recognition application using CNN
12.	Implement GAN model to simulate realistic images

REFERENCES / MANUAS / SOFTWARE:

1.	Operating System : Windows / Linux
2.	Software : Python

COURSE OUTCOMES:

	E OUTCOMES: pletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1:	apply deep neural network for simple problems.	Applying (K3), Precision (S3)
CO2:	apply CNN for image processing and RNN for text analysis.	Applying (K3), Precision (S3)
CO3	develop a real world application using suitable deep neural networks.	Applying (K3), Precision (S3)

	Mapping of COs with POs and PSOs													
COs/POs	COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO 7 PO8 PO9 PO10 PO11 PO12 PS01 PS02													
CO1	CO1 3 2 3 3 3 2 3													
CO2	3	2	3	3	3								2	3
CO3	3	2	3	3	3								2	3
1 – Slight, 2 –	Modera	te, 3 – S	Substan	tial, BT-	Bloom	s Taxo	nomy							

Total: 30

THEORY OF COMPUTATION (Common to CSE, AI & DS and AI & ML branches)

Programme Branch	e &	B.Tech. & Artificial Intelligence and Data Science	Sem.	Category	L	т	Р	Credit
Prerequisit	es	NIL	5	PE	3	0	0	3
Preamble		ourse helps the learners to know the models of computating ges and their recognizers and to familiarize students with						
Unit - I	Autom	ata and Regular Expressions						9
(NFA) – Ec	quivalenc	al proof – Finite Automata (FA) – Deterministic Finite Au e between NFA and DFA – Finite Automata with Eps nimization of automata.						
Unit - II	Regula	r Expressions and Languages						9
• .		 Equivalence of finite automata and regular expression roperties of regular languages. 	ıs – Prov	ing languages	not to	be reg	ular (F	Pumping
Unit - III	Contex	t Free Grammar and Languages						9
(PDA) – La	nguages	mar (CFG) – Parse trees – Ambiguity in grammars and of pushdown automata – Equivalence of pushdown a own Automata.						
Unit - IV	Contex	t Free Languages and Turing Machines						9
Context Fre	e Langua by TM -	G – Chomsky Normal Form and Greibach Normal Form ages. Turing machines: Basic model – definition and repr - Variants of Turing Machine – TM as Computer of Integ es).	esentatio	n – Instantane	eous De	escriptic	n – La	anguage
Unit - V	Compu	utational complexity theory						9
		ot Recursively Enumerable (RE) – An undecidable proble rrespondence problem – The classes P and NP – Kruskal						

Lecture:45, Total:45

TEXT BOOK:

1. Hopcroft J.E., Motwani R. and Ullman J.D., "Introduction to Automata Theory, Languages and Computations", 3rd Edition, Pearson Education, New Delhi, 2008. for Unit I, II, III, IV and V.

2. Martin J., "Introduction to Languages and the Theory of Computation", 4th Edition, Tata McGraw-Hill, New Delhi, 2010.

3. Linz P., "Introduction to Formal Language and Computation", 4th Edition, Narosa Publishing, 2007.

Kongu Engineering College, Perundurai, Erode – 638060, India

COURSE On comple			se, the s	tudents	will be a	ble to							BT Mapp (Highest L			
CO1	apply in	duction a	and cont	radictior	n method	ds for the	eorem p	roving.					Applying ((K3)		
CO2	design f	inite auto	omata a	nd regula	ar expre	ssion fo	r regular	langua	ges.				Applying (K3)			
	develop and normalize context free grammar for context free languages and demonstrate th recognition of context free languages using push down automata.											the	Applying ((K3)		
CO4	construct Turing Machine to accomplish specific task and argue formally about its correctnes											s.	Applying (K3)			
	make use of Turing machines to distinguish decidable / undecidable problems and compa different classes of problems.										are	e Applying (K3)				
					Марр	oing of (COs wit	h POs a	nd PSO	S						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	3	2	1										3	1		
CO2	3	2	1										3	1		
CO3	3	2	1										3	1		
CO4	3	2	1										3	1		
	3	2	1										3			

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Rememberin g (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	10	30	60				100							
CAT2	10	30	60				100							
CAT3	10	30	60				100							
ESE	10	20	70				100							

MULTICORE ARCHITECTURE (Common to CSE, AI & DS and AI & ML branches)

Programme& Branch	B.TECH. & Artificial Intelligence and Data Science	Sem.	Category	L	Т	Р	Credit
Prerequisites	Computer Organization	5	PE	3	0	0	3

Preamble This course focuses on performance improvement using instruction level, data level, thread level and request level parallelism.

Unit - I Fundamentals of Quantitative Design and Analysis

Classes of Computers – Trends in Technology, Power, Energy and Cost – Dependability – Measuring, Reporting and Summarizing Performance – Quantitative Principles of Computer Design – Classes of Parallelism ILP, DLP, TLP and RLP – Multi Threading – SMT and CMP Architectures – Limitations of Single Core Processors – The Multicore era – Case Studies of Multicore Architectures.

Unit - II Memory Hierarchy Design

Introduction – Basics of Memory Hierarchies – Memory Technology and Optimizations – Ten Advanced Optimizations of Cache Performance – Virtual Memory and Virtual Machines – Design of Memory Hierarchies – Case Studies

Unit - III Data Level Parallelism

Introduction – Vector Architectures – SIMD Instruction Set Extensions for Multimedia – Graphics Processing Units – Detecting and Enhancing Loop Level Parallelism – Comparison of a GPU and a MIMD With Multimedia SIMD – Case Studies

Unit - IV Thread Level Parallelism

Centralized Shared-Memory Architectures – Performance of Symmetric Shared-Memory Multiprocessors – Distributed Shared-Memory and Directory-Based Coherence – Synchronization basics – Models of Memory Consistency introduction – Inter Connection Networks – Buses, Crossbar and Multi-stage interconnection networks – Performance and Energy Efficiency of the Intel i7 920 Multicore – Shared Memory Programming with OpenMP

Unit - V RLP and DLP in Warehouse Scale Computers

Programming Models and Workloads for Warehouse scale Computers – Computer Architecture of Warehouse-Scale Computers – Domain Specific Architectures: Introduction – Guidelines for DSAs – Example Domain: Deep Neural Network – Google's Tensor Processing Unit, an interface Data Center Accelerator

Lecture: 45, Total:45

9

9

9

9

9

TEXT BOOK:

1. John L. Hennessey and David A. Patterson, "Computer Architecture – A Quantitative Approach", 6th Edition, Morgan Kaufmann, Elsevier, 2019. for Unit I, II, III, IV and V.

REFERENCE

1. Richard Y. Kain, "Advanced Computer Architecture: A Systems Design Approach", 1st Edition, Prentice Hall, 2015.

	COURSE OUTCOMES: On completion of the course, the students will be able to			
CO1	interpret the limitations of ILP and the need for multicore architectures	Applying (K3)		
CO2	know the importance of memory hierarchy and benefits of cache memory	Applying (K3)		
CO3	achieve data level parallelism by applying loop level parallelism and understand the architecture of Vector/GPU processor	Applying (K3)		
CO4	explore the cache coherence issues using different memory architectures and different types of inter connection networks	Applying (K3)		
CO5	interpret the architectures of GPUs, warehouse scale computers and choose an appropriate model for a given problem	Applying (K3)		

	Mapping of COs with POs and PSOs													
COs/PO s	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	3	2										3	2
CO2	3	3	2										3	2
CO3	3	2	1										3	2
CO4	3	3	2										3	2
CO5	3	3	2										3	2
1 – Slight	, 2 – Mod	erate, 3	 Subst 	antial, B	T- Blooi	m's Tax	onomy							

	ASSESSMENT PATTERN - THEORY											
Test / Bloom's Category*Remembering (K1) %Understanding (K2) %Applying (K3) %Analyzing (K4) %Evaluating (K5) %Creating (K6) %												
CAT1	20	40	40	20			100					
CAT2	20	40	40				100					
CAT3	20	45	35	20			100					
ESE	20	40	40	30			100					

DESIGN PATTERNS AND PRINCIPLES (Common to AI & DS and AI & ML branches)

Programme Branch	8	BTech. & Artificial Intelligence and Machine Learning	Sem.	Category	L	т	Р	Credit				
Prerequisit	es	Nil	5	PC	2	0	2	3				
Preamble		s course focuses on the principles and patterns to be applied Id problems	d for build	ing reusable s	olution	s in solv	ving the	e real				
Unit - I	it - I Introduction To UML											
		. : Basics and Details : Diagram Types – Class Diagrams – S s - Examples	Sequenc	e Diagram – U	se Cas	es – Ot	oject D	iagrams				
Unit - II	Des	sign Principles					9					
-		D: SOLID Principles: The Single Responsibility Principle -	-		-		ov Sub	stitution				
Unit - III	Cre	ational Design Pattern :						9				
-		 Introduction - Classification of Design Patterns ; Creation Prototype - Singleton 	onal Desi	gn Patterns -	- Facto	ry Meth	nod –	Abstract				
Unit - IV	Stru	uctural Design Pattern						9				
		n of Structural Design Pattern : Adapter – Bridge – Comp ementations	osite – C	ecorator – Fa	içade -	- Flywe	ight –	Proxy –				
Unit - V	Beh	navioral Design Patterns						9				
		ns of Behavioral Patterns: Chain of Responsibility – Comm – Template Method – Visitor – Examples – Implementations		erator – Media	tor – M	lemento	o – Ob	server –				

Lecture: 45, Practical:30, Total:75

List of Exercises / Experiments:

	Write a program to implement the following concepts in java.
1.	a. Method overriding. b. Interface. c. Abstract class.
2.	Write programs to implement SOLID principles
	a. Write a Program to implement Factory pattern.
	b. Write a program to implement abstract factory.
4.	a. Write a Program to implement Singleton pattern.
	b. Write a Program to implement Composite design pattern.
5.	a. Write a program to implement decorator pattern.
	b. Write a Program to implement proxy design pattern.
6.	a. Write a Program to design chain of responsibility pattern.
	b. Write a Program to design mediator pattern
7.	Write a program to implement iterator pattern.
8.	Write a program to implement visitor pattern.
9.	Case Study Draw UML diagrams and implement Railway Reservation System
10	Case Study : Draw UML diagrams and implement Inventory Management System

TEXT BOOK:

1.	Martin, Robert C. UML for Java programmers. Prentice Hall PTR, 2003.(Units I and II)
2.	Vaskaran Sarkar, Java Design Patterns, Apress, 2016 (Units III, IV and V)

Kongu Engineering College, Perundurai, Erode – 638060, India

REFERENCES:

1.	Rohit Joshi, Java Design Patterns: Reusable Solutions to Common Problems, Java Code Geeks, 2021
2.	https://refactoring.guru/design-patterns/

REFERENCES / MANUAS / SOFTWARE:

1.	Operating System : Windows
2.	Software : IBM Rational Suite, Java SDK

Rational R

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	design UML diagrams for a specified problem.	Applying (K3)
CO2	apply design principles for designing the code for a problem	Applying (K3)
CO3	use creational pattern to design the instantiation process	Applying (K3)
CO4	use structural pattern to compose interfaces	Applying (K3)
CO5	apply behavioral patterns to show communication between classes	Applying (K3)
CO6:	select and Implement appropriate SOLID principles for a given problem	Applying (K3) Precision(S3)
CO7:	implement Creational, Structural and Behavioral design patterns for real world problems	Applying (K3) Precision(S3)
CO8	design and implement solutions for real world problems using UML and design patterns	Applying (K3) Precision(S3)

					Mappin	g of C	Os wi	th POs	and PS	Os				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	РО 7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	2	3	2									2	3
CO2	3	2	3	2									2	3
CO3	3	2	3	2									2	3
CO4	3	2	3	2									2	3
CO5	3	2	3	2									2	3
CO6	3	2	3	2	3								2	3
CO7	3	2	3	3	3								2	3
CO8	3	2	3	3	3								2	3
- Slight, 2 -	Modera	te, 3 – S	Substan	tial, BT-	Bloom'	s Taxo	nomy							

	ASSESSMENT PATTERN - THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	10	30	60				100					
CAT2	10	30	60				100					
CAT3	10	30	60				100					
ESE	10	20	70				100					

COMPUTER NETWORKS (Common to CSE, IT, AI & DS and AI & ML branches)

Programme Branch	&	B. Tech. & Artificial Intelligence and Data Science	Sem.	Category	L	т	Р	Credit
Prerequisite	es	Nil	5	PE	3	0	0	3
Preamble		urse deals with the fundamental concepts of computer national on the second sec	etworks.	It presents bo	ottomu	p appro	ach of	fdifferent
Unit - I	Networ	k Models and Physical Layer						9
		ns – Networks – Networks Types. Network Models: TCP/I ing – Line Coding Schemes – Transmission Modes – Tra						
Unit - II	Data Li	ink Layer						9
Framing – H	DLC - P	Layer Addressing – Error Detection and Correction: In oint-to-point protocol. Media Access Control Protocols: R net – Connecting Devices – Virtual LANs.						
Unit - III	Networ	rk Layer						9
		ces- Network layer performance - IPV4 addresses – Inter Vector and Link-state routing – Routing Protocols: RIP a						
Unit - IV	Transp	ort Layer						9
		oort layer protocols: Simple – Stop-and-wait - Go-back-N ata Flow Characteristics -Techniques to improve QoS.	 Select 	ive Repeat - F	Piggyba	cking -	- UDP	– TCP.
Unit - V	Applica	ation Layer						9
WWW - HTT	P- FTP	- Electronic mail – Telnet - SSH, DNS. Network Managem	ont: Intr	aduction SNI				

Lecture: 45, Total: 45

TEXT BOOK:

1. Behrouz A. Forouzan, "Data Communications and Networking", McGraw-Hill, 5th Edition, 2013. for Unit I, II, III, IV and V.

REFERENCES:

1. Kurose James F. and Ross Keith W., "Computer Networking: A Top-Down Approach", 6th Edition, Pearson Education, New Delhi, 2017.

2. Stallings, "Data and Computer Communications", PHI, 10th Edition, New Delhi, 2015.

	COURSE OUTCOMES: On completion of the course, the students will be able to					
CO1	explain the basic fundamentals of networks for data communication and apply the different line coding schemes for digital-to-digital conversion	Applying (K3)				
CO2	demonstrate the knowledge of error detection and correction methods and protocols at data link layer	Applying (K3)				
CO3	interpret the different addressing schemes and apply various routing protocols at network layer	Applying (K3)				
CO4	illustrate the different transport layer protocols and employ suitable flow control and QoS techniques	Applying (K3)				
CO5	generalize the various protocols and their working principles at application layer	Applying (K3)				

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1									3	2
CO2	3	2	1	1									3	2
CO3	3	2	1	1									3	2
CO4	3	2	1	1									3	2
CO5	3	2	1	1									3	2
1 – Slight, 2 –	Modera	ite, 3 – \$	Substan	tial, BT·	Bloom	's Taxor	nomy							

	ASSESSMENT PATTERN - THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	30	50	20				100				
CAT2	20	50	30				100				
CAT3	30	50	20				100				
ESE	20	50	30				100				

SEMESTER VI

ARTIFICIAL INTELLIGENCE AND ROBOTICS (Common to AI & DS and AI & ML branches)

Programme & Branch	BTech. & Artificial Intelligence and Data Science	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	6	PC	3	0	0	3

Preamble This course describes the fundamental concepts of AI in robotics and the major paradigms for achieving it.It also provides the knowledge aboutRobot Kinematics, Dynamics, sensor and vision system.

Unit - I Introduction to Robotics

Types and components of a robot- Classification of robots - Closed loop and open loop control systems. Kinematics systems: Definition of mechanisms and manipulators- Social issues and safety.

Unit - II Autonomy Robot and Hierarchical Paradigm

Overview –Use of Robots – Teleoperation - Areas of AI. Hierarchical Paradigm:Attributes of the Hierarchical Paradigm - Closed World Assumption - Representative Architectures - Advantages and Disadvantages.

Unit - III Reactive Paradigm

Overview - Reflexive behaviors - Coordination and Control of Behaviors - Perception in Behaviors - Schema Theory - Principles and Issues in Transferring Insights to Robots - Attributes of Reactive Paradigm - Subsumption Architecture - Potential Fields Methodologies - Evaluation of Reactive Architectures.

Unit - IV Robot Kinematics and Dynamics

Kinematic Modelling: Translation and rotation representation- Coordinate transformation- DH parameters- Jacobian-Singularity and Statics. Dynamic Modelling: Equations of motion- Euler-Lagrange formulation.

Unit - V Sensors and Vision System

Sensor: Contact and Proximity, Position, Velocity, Force, Tactile. Introduction to Cameras- Camera calibration- Geometry of image formation- Euclidean/Similarity/Affine/Projective transformations- Vision applications in robotics.

TEXT BOOK:

Theory:45,Total: 45

9

9

9

9

9

1. Ronald C. Arkin, Robin R. Murphy, "An Introduction to AI Robotics", 1st edition, MIT Press, USA, 2001 for Unit I, II.

2 Saha S.K., "Introduction to Robotics", 2nd Edition, McGraw-Hill Higher Education, New Delhi, 2014. for Unit III, IV and V.

REFERENCES:

- 1. Niku Saeed B., "Introduction to Robotics: Analysis", PHI Learning, New Delhi, 2011.
- 2. Ghosal A., "Robotics", Oxford, New Delhi, 2006.

Kongu Engineering College, Perundurai, Erode – 638060, India

	COURSE OUTCOMES: On completion of the course, the students will be able to				
CO1	interpret the features of an industrial robots with end effectors	Applying (K3)			
CO2	identify the characteristics of Autonomy Robot and use Hierarchical Paradigm for organizing intelligence in Robots.	Applying (K3)			
CO3	apply reactive paradigm for AI Robots	Applying (K3)			
CO4	perform kinematic and dynamic analyses with simulation	Applying (K3)			
CO5	design sensor and vision system for robots	Applying (K3)			

Mapping of COs with POs and PSOs														
COs/POs	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1										3	1
CO2	3	2	1										3	1
CO3	3	2	1										3	1
CO4	3	2	1										3	1
CO5	3	2	1										3	1

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

	ASSESSMENT PATTERN - THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	25	50	25				100			
CAT2	25	45	30				100			
CAT3	25	45	30				100			
ESE	20	40	40				100			

TEXT AND SPEECH ANALYTICS

Programme & Branch	B.Tech. & Artificial Intelligence and Data Science	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	6	PC	2	0	2	3

Preamble	This course explores text extraction, text data analysis and speech processing and modeling	
Unit - I	Text Extraction	6

Introduction- Rapid automatic keyword extraction: candidate keywords - keyword scores - adjoining keywords - extracted keywords - Benchmark evaluation: precision and recall – efficiency - stoplist generation - Evaluation on new articles

Unit - II Anomaly and Trend Detection

Text visualization techniques: Visualization in text analysis - Tag clouds - authorship and change tracking - Data Exploration and the search for noval patterns - sentiment tracking, visual analytics and FutureLen - scenario discovery - adaptive threshold setting for novelty mining: Introduction - adaptive threshold for anomaly - Experimental study.

Unit - III Text Streams

Events and trends in text streams: Introduction - Text streams - Feature extraction and data reduction - Event detection - Trend detection - Event and trend descriptions - Embedding semantics in LDA topic models: Introduction - vector space modeling - latent semantic analysis - probabilistic latent semantic analysis - Latent Dirichlet allocation - embedding external semantics from Wikipedia - data-driven semantic embedding

Unit - IV Speech processing

Phonetics - Articulatory Phonetics - Phonological Categories - Acoustic Phonetics and Signals - Speech Synthesis - Text Normalization - Phonetic and Acoustic Analysis - Diphone Waveform synthesis – Evaluation - Automatic Speech Recognition - Architecture - Hidden Markov Model to Speech - MFCC vectors - Acoustic Likelihood Computation - Evaluation.

Unit - V Speech modeling

Hidden Markov Models: Markov Processes - HMMs - Evaluation, Optimal State Sequence - Viterbi Search, Baum-Welch Parameter Re-estimation - Implementation issues

List of Exercises / Experiments:

Lecture: 30; Practical: 30 Total: 60

6

6

6

6

1.	Perform stop word removal process from technical abstract dataset.
2.	Apply rapid automatic keyword extraction for news articles and evaluate the performance.
3.	Implement various text visualization techniques.
4.	Perform sentiment analysis on movie review dataset and track the sentiment.
5.	Implement event detection process for short text message.
6.	Apply word embedding into sample text dataset and represent it using vector space model.
7.	Apply word embedding into sample text dataset and represent it using latent semantic analysis.
8.	Apply word embedding into sample text dataset and represent it using latent dirichlet allocation.
9.	Develop HMM based speech recognition system.
10.	Apply Viterbi approach to develop enhanced speech recognition system.

TEXT BOOK:

1.	Michael W. Berry & Jacob Kogan, "Text Mining Applications and Theory", Wiley publications, 2010. for Unit I, II, III.
2.	Jurafsky and Martin, "Speech and Language Processing", Pearson Prentice Hall, Second Edition, 2008. for Unit IV and V.

Kongu Engineering College, Perundurai, Erode – 638060, India

REFERENCES:

- Aggarwal, Charu C., and ChengXiangZhai, eds., "Mining text data", Springer Science & Business Media, 2012. 1. 2. Miner, Gary, et al., "Practical text mining and statistical analysis for non-structured text data applications", Academic Press, 2012. 3.
 - Lawrence RabinerandBiing-Hwang Juang, "Fundamentals of Speech Recognition", Pearson Education,2003

Total: 30

REFERENCES/MANUAL/SOFTWARE:

- 1. ABB Robot Studio Manual
- 2. Fire Bird V Software and Hardware manual
- 3. Laboratory Manual

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	explore various text extraction techniques	Applying (K3)
CO2	apply visualization techniques and perform anomaly & trend detection	Applying (K3)
CO3	perform event operations in Text streams	Applying (K3)
CO4	identify the different linguistic components of natural language	Applying (K3)
CO5	decide on the appropriate modeling technique necessary for a given language and application	Applying (K3)
CO6	work with text extraction process.	Applying (K3), Precision (S3)
C07	detect anomaly, trend and perform sentiment analysis.	Applying (K3), Precision (S3)
CO8	work with speech data analysis.	Applying (K3), Precision (S3)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2										3	2
CO2	3	2	2										3	2
CO3	3	2	2										3	2
CO4	3	2	2										3	2
CO5	3	2	2										3	2
CO6	3	2	2	2	2								3	2
CO7	3	2	2	2	2								3	2
CO8	3	2	2	2	2								3	2
1 – Slight, 2	– Moder	ate, 3 –	Substan	tial, BT-	Bloom'	s Taxono	omy							

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	5	20	75				100							
CAT2	10	20	70				100							
CAT3	10	20	70				100							
ESE	10	20	70				100							

REGRESSION ANALYSIS

Programme & Branch	BTech. & Artificial Intelligence and Data Science	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	6	PC	3	1	0	4

Preamble This course bring together many of the important new ideas in regression analysis and explain them in a statistical framework. Also, emphasize the mathematical methods and their conceptual under pinnings.

Unit - I Fitting a straight by least square

Distributions – Confidence Intervals and t-Test – Elements of matrix algebra. Straight Line: Introduction – Relationship between two variables – linear regression – Analysis of variance – confidence intervals – F-Test - Correlation. Checking the straight line fit: Lack of fit and pure error – Testing homogeneity of pure error – examining residuals – non-normality checks – checks for time effects, Non-sconstant variance.

Unit - II Regression in Matrix Term

Fitting a straight line in matrix term – Singularity – Analysis of variance in matrix – variance of Y using matrix development - nonsingular case. General linear regressing - least square properties – confidence intervals verses regions.

Unit - III Sum of Squares

Polynomial Models – Two alternative forms of extra SS -Sequential sum of squares – problem with polynomial models – partial sum of squares - Two predictor variable example – sum of squares of set of linear functions.

Unit - IV Serial Correlations in residuals and Durbin-Watson test

Serial Correlation in residuals – Durbin-Watson test for serial correlation – Primary test - simplified test – Width of the primary test – mean square successive difference – Examining the runs in the time sequence plot of residuals.

Unit - V Checking fitted models

Hat matrix and various types of residuals – Added variable plot and partial residuals – detection of influential observation – statistical measuring influence. Multiple Regression – Testing general linear hypothesis – Generalize and weighted least square – example of weighted least square – restricted least square – inverse regression – planar regression.

TEXT BOOK:

Lecture: 45, Tutorial: 15, Total: 60

9+3

9+3

9+3

9+3

9+3

 Norman R. Draper, Harry Smith, "Applied Regression Analysis", 3rdedition, John Wiley & Sons, USA, 2014. for Unit I, II, III, IV and V.

REFERENCES:

1.	Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, "An Introduction to Statistical Learning: with Applications in R", 2 nd edition, Springe, Germany, 2021.
2.	Shai Shalev-Shwartz, Shai Ben-David, "Understanding Machine Learning: From Theory to Algorithms", Cambridge University Press, United Kingdom, 2014.

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	illustrate the fitting of straight line by least square	Applying (K3)
CO2	make use of matrix for fitting as straight line	Applying (K3)
CO3	apply sum of square and tests for parameters being zero	Applying (K3)
CO4	illustrate Serial Correlations in residuals and Durbin-Watson test	Applying (K3)
CO5	analysis the model for checking fitness.	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1										3	1
CO2	3	2	1										3	1
CO3	3	2	1										3	1
CO4	3	2	1										3	1
CO5	3	2	1										3	1
– Slight, 2 –	Modera	ate, 3 –	Substar	ntial, BT	- Bloom	's Taxo	nomy							

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	20	60	20				100						
CAT2	20	50	30				100						
CAT3	20	55	25				100						
ESE	20	50	30				100						

ARTIFICIAL INTELLIGENCE AND ROBOTICS LABORATORY

Programme& Branch	BTech. & Artificial Intelligence and Data Science	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	6	PC	0	0	2	1
Preamble	The laboratory course on AI and Robotics is intended to mobile robot for real time applications.	provide	a practical rea	alizatior	n of ind	ustrial r	obotand

List of Exercises / Experiments:

1.	Study the functions of ABB IRB 1410 industrial robot- components, drive system and end effectors.
2.	Virtual reality robot programming for different tasks.
3.	Creation of Tool Centre Point (TCP) and Work Object using ABB IRB 1410 industrial robot.
4.	Robot programming exercises: Point-to-point and Continuous path programming.
5.	Pick and place operation in teach mode using ABB IRB 1410 industrial robot.
6.	Vision based on line Inspection and sorting of components using ABB IRB 1410 industrial robot.
7.	Development of embedded programming for motion control using Fire Bird – V robot.
8.	Development of embedded programming for velocity control using Fire Bird – V robot.
9.	Development of embedded programming for path planning using Fire Bird – V robot.
10.	Development of embedded programming for obstacle avoidance using Fire Bird – V robot.
	Total: 30

REFERENCES/MANUAL/SOFTWARE:

1. ABB Robot Studio Manual

2. Fire Bird – V Software and Hardware manual

3. Laboratory Manual

COURSE OUTCOMES:

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	analyze the industrial robot work cell problems and develop robot programming through ON/OFF line mode	Applying (K3), Precision (S3)
CO2	develop an embedded programming for autonomous mobile robot	Applying (K3), Precision (S3)
CO3	develop an on line inspection system using machine vision techniques	Applying (K3), Precision (S3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	2	1	2	1								3	2
CO2	3	2	1	2	1								3	2
CO3	3	2	1	2	1								3	2
1 – Slight, 2 –	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

SEMESTER VII

ENGINEERING ECONOMICS AND MANAGEMENT

(Common to All Engineering And Technology Branches except Chemical Engineering)

Programme& Branch	BTech. & Artificial Intelligence and Data Science	Sem.	Category	L	т	Р	Credit
Prerequisites	NIL	7	HS	3	0	0	3

Preamble	The aim of the course is to create fundamental knowledge on management by introducing concepts like econo national income, marketing, operations management, accounting principles etc.	omics,					
Unit - I	Micro Economics: 9						
	 Basics Concepts and Principles – Demand and Supply – Law of demand and Supply – Determinants – M Circular Flow of Economic activities and Income. 	/larket					

Unit - II Macro Economics, Business Ownership and Management concepts:

National Income and its measurement techniques. Inflation - Causes of Inflation – Controlling Inflation – Business Cycle. Forms of business – Ownership types. Management concepts: Taylor and Fayol's Principles – Functions of Management - Managerial Skills - Levels of Management - Roles of manager.

Unit - III Marketing Management:

Marketing - Core Concepts of Marketing - Four P's of Marketing - New product development – Intellectual Property rights (IPR), Product Life Cycle - Pricing Strategies and Decisions.

Unit - IV Operations Management:

Operations Management - Resources - Types of Production system - Site selection, Plant Layout, Steps in Production Planning and Control - Inventory - EOQ Determination.

Unit - V Financial Management:

Accounting Principles – Financial Statements and its uses – Depreciation: Straight Line and Diminishing Balance Method – Break Even Analysis – Capital Budgeting: Significance – Traditional and discounted cash flow methods.

TEXT BOOK:

Total:45

9

9

9

9

1. Compiled by Department of Management Studies, Kongu Engineering College, "Economics and Management for Engineers", 1st Edition, McGraw Hill Education, Noida, 2013. for Unit I, II, III, IV and V.

REFERENCES:

1.	Geetika, Piyali Ghosh and Purba Roy Choudhury, "Managerial Economics", 3rd Edition, McGraw-Hill, New Delhi, 2018.
2.	William J. Stevenson, "Operations Management", 14th Edition, McGraw-Hill Education, 2021.
3.	William G. Nickels, James M. McHugh, Susan M. McHugh, "Understanding Business", 12th Edition, McGraw-Hill Education, New York, 2019.

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)					
CO1	CO1 identify market equilibrium and interpret national income calculations and inflation issues						
CO2	choose a suitable business ownership for their enterprise and illustrate managerial functions	Applying (K3)					
CO3	infer marketing management decisions	Understanding (K2)					
CO4	apply appropriate operation management concept in business situations	Applying (K3)					
CO5	interpret financial and accounting statements and evaluate new proposals	Applying (K3)					

	Mapping of COs with POs and PSOs													
COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS												PSO2		
CO1	1	1	2			3		2	2	2	3	2	1	2
CO2		1	2			2	2	2	2	2	3	2	1	2
CO3	1	2	1			2		2	2	2	3	2	2	2
CO4	1	2	1			2		2	2	2	3	2	1	2
CO5	2	2				2		2	2	2	3	2	2	2
1 – Slight, 2 –	Modera	ate, 3 – 3	Substan	tial, BT·	Bloom	's Taxor	nomy							

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	20	40	40				100						
CAT2	20	40	40				100						
CAT3 20		40	40				100						
ESE	20	40	40				100						

IMAGE AND VIDEO ANALYTICS

Programme& Branch	B.Tech. & Artificial Intelligence and Machine Learning	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	7	PC	3	0	2	4

Preamble This course aims to provide a broad view on processing and analyzing images and video.

Unit - I Introduction

Deep Neural Networks – Introduction to Tensor flow – Keras Deep Learning library – OpenCV Libratry - Hand Written Number Recognition with Keras and OpenCV

Unit - II Convolutional Neural Network for Computer Vision

Convolution Neural Network – CNN architectures and drawbacks of DNN- convolution and pooling operations in tensor flow - training and evaluating CNN – model performance optimization – ImageNet – LeNet – AlexNet – VGGNet – GoogleLENet – TesNet.

Unit - III Feature extraction, object detection and segmentation

Feature extraction approach – transfer learning example – multi-task learning – Auto encoders of CNN – difference between object detection and image classification - Traditional, nonCNN approaches to object detection - R-CNN – Regions with CNN features - Fast R-CNN – fast region-based CNN - Faster R-CNN – faster region proposal network-based CNN - Mask R-CNN – Instance segmentation with CNN

Unit - IV Generative Models

Pix2pix - Image-to-Image translation - GAN – code example – feature matching – applications of generative models – neural artistic style transfer – generative adversarial networks – visual dialogue model.

Unit - V Video Classification

Understanding and classifying videos – exploring video classification dataset – splitting videos in to frames – approaches for classifying videos – extending image based approaches to videos: Regressing the human pose- segmenting videos – generating videos.

List of Exercises / Experiments:

1.	Build a CNN model to perform Handwritten Number Recognition using Tesnsorflow	

- 2. Build a CNN model to perform Handwritten Number Recognition using Keras
- 3 Experiment the model performance using the available CNN models.
- 4 Develop a CNN model to perform object detection
- 5 Apply and segmentation procedures and design a model for image classification
- 6 Experiment image to image translation using GAN
- 7 Explore generative adversarial networks and its features on simple data set
- 8 Perform video classification using deep learning techniques.

TEXT BOOK:

Lecture:45, Practical:30, Total:75

9

9

9

9

9

 Mohit Sewak, Md. Rezaul Karim and Pradeep Pujari, "Practical Convolutional Neural Networks, Packt Publishing, 2018. for Unit I, II, III.
 Rajalingappaa Shanmugamani, "Deep Learning for Computer Vision", Packt Publishing, 2018, for Unit IV and V.

REFERENCES/MANUAL/SOFTWARE:

1. D. L. Baggio et al., "Mastering OpenCV with Practical Computer Vision Projects", Packt Publishing, 2012.

2.	Jan Erik Solem, "Programming Computer Vision with Python: Tools and algorithms for analyzing images", O'Reilly Media, 2012.
3.	Windows/Linux
4	Tensorflow/OpenCV
5.	Matlab/Python
6.	Lab Manual

	RE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	make use of the basic concepts of image processing and its libraries	Applying (K3)
CO2	interpret the various CNN models used for image analytics	Applying (K3)
CO3	apply the various levels of segmentation and interpret the results for object detection and feature extraction.	Applying (K3)
CO4	make use of the GAN model to solve the real world problems.	Applying (K3)
CO5	predict the more reliable video analytic solutions for real time problems.	Applying (K3)
CO6	experiment the basic features of Keras and Tensorflow to implement CNN model.	Applying (K3) Precision (S3)
C07	implement image segmentation and GAN to provide more effective solutions.	Applying (K3) Precision (S3)
CO8	develop a real time model for video analytics using deep learning techniques	Applying (K3) Precision (S3)

Mapping of COs with POs and PSOs														
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2		1								3	2
CO2	3	2	2		1								3	2
CO3	3	2	2		1								3	2
CO4	3	2	2		1								3	2
CO5	3	2	2		1								3	2
CO6	3	2	2	1	1								3	2
CO7	3	2	2	1	1								3	2
CO8	3	2	2	1	1								3	2

ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	20	30	50				100					
CAT2	20	30	50				100					
CAT3 20 30		50				100						
ESE	10	40	50				100					

WIRELESS SENSOR NETWORKS (Common to AI & DS and AI & ML branches)

Programme& Branch	B.Tech. & Artificial Intelligence and Data Science	Sem.	Category	L	т	Р	Credit
Prerequisites	Computer Networks	7	PE	3	0	0	3

Preamble This course provides the fundamental concepts of wireless sensor networks and explains functionalities of different layers. It also helps to devise appropriate node and network management strategies and throws light on sensor networks security.

Unit - I Introduction

Introduction-Motivation and Wireless Sensor Nodes: Definitions and Background, Challenges and Constraints - Applications: Structural Health Monitoring, Traffic Control, Health Care, Pipeline Monitoring, Precision Agriculture, Active Volcano, Underground Mining - Node Architecture: The Sensing Subsystem, The Processor Subsystem, Communication Interfaces, Prototypes - Operating Systems: Functional Aspects, Nonfunctional Aspects, Prototypes, Evaluation.

Unit - II Basic Architectural Framework and Medium Access Control

Physical Layer: Basic Components, Source Encoding, Channel Encoding, Modulation, Signal Propagation. Medium Access Control: Overview, Wireless MAC Protocols, Characteristics of MAC Protocols in Sensor Networks, Contention-Free MAC Protocols, Contention-Based MAC Protocols, Hybrid MAC Protocols.

Unit - III Routing Protocols and Power Management

Network Layer: Overview, Routing Metrics, Flooding and Gossiping, Proactive Routing, On-Demand Routing, Hierarchical Routing, Location-Based Routing, QoS-Based Routing Protocols. Power Management: Local Power Management Aspects, Dynamic Power Management, Conceptual Architecture.

Unit - IV Node and Network Management, Localization

Node and Network Management: Time Synchronization: Clocks and the Synchronization Problem, Time Synchronization in Wireless Sensor Networks, Basics of Time Synchronization, Time Synchronization Protocols. Localization: Overview, Ranging Techniques, Range-Based Localization, Range-Free Localization, Event-Driven Localization.

Unit - V Security and Sensor Network Programming

Security: Fundamentals of Network Security, Challenges of Security in Wireless Sensor Networks, Security Attacks in Sensor Networks, Protocols and Mechanisms for Security, IEEE 802.15.4 and ZigBee Security. Sensor Network Programming: Challenges in Sensor Network Programming, Macro programming, Dynamic Reprogramming, Sensor Network Simulators.

Total: 45

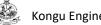
9

9

9

9

9


TEXT BOOK:

1. WaltenegusDargie, Christian Poellabauer, "Fundamentals of Wireless Sensor Networks: Theory and Practice", 1st Edition, John Wiley & Sons, 2011. for Unit I, II, III, IV and V.

REFERENCES:

1. Mohammad S. Obaidat, SudipMisra, "Principles of Wireless Sensor Networks", 1st Edition, Cambridge University Press, London, 2014.

'2. Feng Zhao, Leonidas Guibas, "Wireless Sensor Networks", 1st Edition, Elsevier, 2004.

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	apply the basic concepts of wireless sensor networks in real life applications	Applying (K3)
CO2	illustrate the basic architectural framework using physical and MAC layer protocols	Applying (K3)
CO3	utilize various network layer protocols for inter and intra communication patterns	Applying (K3)
CO4	apply different synchronization and localization algorithms for managing node and network level functions	Applying (K3)
CO5	develop software and hardware components required for a sensor network application	Applying (K3)

	Mapping of COs with POs and PSOs														
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	1	1									3	2	
CO2	3	2	1	1									3	2	
CO3	3	2	1	1									3	2	
CO4	3	2	1	1									3	2	
CO5	3	2	1	1									3	2	
1 – Slight, 2 –	Modera	ite, 3 – \$	Substan	tial, BT·	- Bloom	's Taxor	nomy								

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	30	50	20				100							
CAT2	30	50	20				100							
CAT3	30	30	40				100							
ESE	25	35	40				100							

CLOUD COMPUTING (Common to AI & DS and AI & ML branches)

Programme & Branch	B.TECH. & Artificial Intelligence and Data Science	Sem.	Category	L	т	Р	Credit	
Prerequisites	Operating Systems	7	PE	2	0	2	3	

Preamble This course provides cloud computing evolution and its services, along with design and development. It also focuses on key challenges and issues in cloud computing.

Unit - I Distributed System Models

Scalable computing – Network Based Systems – System Models – Software Environment for Distributed and Cloud computing – Performance – Security – Energy Efficiency.

Unit - II Virtualization

Implementation levels of Virtualization – Virtualization Structures – Tools and Mechanisms – CPU, Memory, I/O devices Virtualization – Virtual Clusters and Resource Management – Virtualization for Data-Center Automation.

Unit - III Cloud Platform Architecture over Virtualized Data Centers

Cloud computing Service models – Data-Center Design and Interconnection Networks – Architectural Design of Compute and Storage Clouds – Public Cloud Platforms: Google App Engine – AWS – Azure – Inter-cloud Resource Management – Cloud Security – Trust Management.

Unit - IV Cloud Programming and Software Environments

Cloud and Grid Platforms – Parallel and Distributed Programming Paradigms – Programming Support : Google App Engine – Amazon AWS – Microsoft Azure – Cloud Frameworks: Eucalyptus – Nimbus – OpenNebula – Sector – Sphere – OpenStack – Manjrasoft Aneka Cloud and Appliances.

Unit - V Ubiquitous Clouds and the Internet of Things

Cloud Trends in supporting Ubiquitous Computing – Performance of Distributed Systems and the Cloud – Enabling technologies for the Internet of Things – Innovative Applications of the Internet of Things – Online Social and Professional Networking.

List of Exercises / Experiments:

1.	Find procedure to run the virtual machine of different configuration. Check how many virtual machines can be utilized at particular time in host machine. (Virtual Box or VM Ware or Hyper-V)
2.	Install a C compiler in the virtual machine and execute a sample program.
3.	Show the virtual machine migration from one node to another.
4.	Develop a web application to provide Storage as a Service that offers a simple interface which allows users to manage file systems quickly and easily.
5.	Explore public cloud services like Amazon, Google and Azure.
6.	Configure laaS architecture for installing guest operating system using OpenNebula.
7.	Configure laaS architecture in Nimbus for installing multiple operating systems in same host machine by sharing different core in the same processor.
8.	Implement PaaS-Mobile sensor based IoT application hosted via PaaS environment

TEXT BOOK:

Lecture:30, Practical:30, Total:60

6

6

6

6

6

1. Kai Hwang, Geoffrey C Fox & Jack G Dongarra, "Distributed and Cloud Computing, From Parallel Processing to the Internet of Things", 1st Edition, (Reprint) Morgan Kauffmann, 2017. for Unit I, II, III, IV and V.

REFERENCES/MANUAL/SOFTWARE:

1. VMware, Google App Engine

2. C/Python/Java

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	explain the concepts, characteristics and benefits of Distributed System Models and apply the same for internet computing	Applying (K3)
CO2	describe the importance of virtualization along with their technologies and apply in virtual resource management	Applying (K3)
CO3	use and examine different cloud computing services	Applying (K3)
CO4	analyze the components of Cloud Programming and Software Environments	Applying (K3)
CO5	develop strategies for Ubiquitous Clouds and the Internet of Things	Applying (K3)
CO6	demonstrate the use of cloud computing in various applications	Applying (K3), Precision (S3)
C07	apply different cloud programming model for the real world problems	Applying (K3), Precision (S3)
CO8	develop and deploy cloud architecture and model	Applying (K3), Precision (S3)

					Маррі	ng of C	Os with	POs a	nd PSO	s				
COs/POs	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1										3	1
CO2	3	2	1										3	1
CO3	3	2	1										3	1
CO4	3	2	1										3	1
CO5	3	2	1										3	1
CO6	3	2	1	1	1								3	2
CO7	3	2	1	1	1								3	2
CO8	3	2	1	1	1								3	2
– Slight, 2 –	Modera	ite, 3 – S	Substan	tial, BT	- Bloom	's Taxor	nomy							

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	10	60	30				100							
CAT2	10	60	30				100							
CAT3	10	60	30				100							
ESE	10	50	40				100							

NATURE INSPIRED OPTIMIZATION TECHNIQUES (Common to AI & DS and AI & ML branches)

Programme& Branch	B.Tech. & Artificial Intelligence and Data Science	Sem.	Category	L	Т	Р	Credit
Prerequisites	NIL	7	PE	3	0	0	3

Preamble This course provides an introduction to nature inspired techniques and applications.

Unit - I Introduction

Philosophy of Natural Computing - Three Branches: A Brief Overview - Conceptualization -Individuals- Entities and agents -Parallelism and Distributivity - Interactivity – Adaptation - Feedback-Self-Organization-Complexity- Emergence and Reductionism-Bottom-up Vs Top-Down - Determination- Chaos and Fractals.

Unit - II Computing Inspired By Nature

Evolutionary Computing- Hill Climbing and Simulated Annealing- Evolutionary biology - Darwin's Dangerous Idea- Genetics Principles- Standard Evolutionary Algorithm - Genetic Algorithms - Selection-Crossover- Mutation- Neurocomputing- Artificial neurons - network architectures- learning approaches - Hebbian learning- Single layer perceptron- Multi-layer perceptron - Self organization maps- discrete Hopfield network.

Unit - III Swarm Intelligence

Introduction - Ant Colonies- Ant Foraging Behavior- Ant Colony Optimization- Simple ACO and scope of ACO algorithms- Ant Clustering Algorithm (ACA)- Swarm Robotics- Foraging for food- Social Adaptation of Knowledge - Particle Swarm Optimization (PSO) - Scope of PSO- social systems to particle swarm.

Unit - IV Immuno Computing

Introduction- Immune System - Physiology and main components- Pattern Recognition and Binding -adaptive immune response-Self/Non-self discrimination- Immune Network Theory- Danger Theory- artificial immune systems- Evaluating Interaction -Immune Algorithms- Bone Marrow Models - Negative selection algorithms- Clonal selection and affinity maturation- Artificial Immune Networks.

Unit - V Computing With New Natural Materials

DNA Computing - Basic concepts - DNA Molecule - Filtering models- Adleman's experiment - Test tube programming language-Formal models - Universal DNA Computers - Scope of DNA Computing - From Classical to DNA Computing - Quantum computing- Introduction- basic concepts from quantum theory- principles from quantum mechanics.

TEXT BOOK:

Lecture:45, Total: 45

9

9

9

9

9

 Leandro Nunes de Castro, "Fundamentals of Natural Computing, Basic Concepts, Algorithms and Applications", Chapman & Hall/ CRC, Taylor and Francis Group, 1st Edition, 2007. for Unit I, II, III, IV and V.

2. Floreano D. and Mattiussi C., "Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies", MIT Press, Cambridge, 1st Edition, 2008.

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	apply fundamental concepts in Nature Inspired Systems to solve computational problems.	Applying (K3)
CO2	manipulate the evolutionary and neuro Computing techniques inspired by nature.	Applying (K3)
CO3	implement collective intelligence of biological systems to computing.	Applying (K3)
CO4	develop immune systems behavior to computing and optimization.	Applying (K3)
CO5	make use of the characteristics of DNA computing and Quantum Computing.	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1										2	3
CO2	3	2	1										2	3
CO3	3	2	1										2	3
CO4	3	2	1										2	3
CO5	3	2	1										2	3
1 – Slight, 2 –	Modera	ate, 3 – S	Substan	itial, BT·	- Bloom	's Taxor	nomy							

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	20	45	35				100							
CAT2	20	30	50				100							
CAT3	20	30	50				100							
ESE	10	40	50				100							

MODELING AND SIMULATION (Common to AI & DS and AI & ML branches)

Programme Branch	e&	B.Tech. & Artificial Intelligence and Data Science	Sem.	Category	L	т	Р	Credit
Prerequisit	es	Nil	7	PE	3	0	0	3
Preamble	This co problem	ourse focuses on applications of computer simulation a	nd mo	delling to real	world	simple	and	complex
Unit - I	Modeli	ng Process						9
		leling – Steps of modeling – System Dynamics: Unconst e and Motion: Modeling Falling and Skydiving	rained (Growth and De	ecay - (Constra	ined G	Growth –
Unit - II	System	Dynamics Models						9
		eling of Competition – Predator – Prey Model – Modeling nzymatic Reactions	the spr	ead of SARS	– SIR	Model-	SAR	Model –
Unit - III	Data D	riven Models						9
Functions – Random Wa		al Models – Simulating with Randomness: Simulations	– Rano	lom numbers	from v	arious	distrib	utions –
Unit - IV	Cellula	r Automation						9
		g of Fire – Periodic Boundary Conditions – Movement of ent Processing – Parallel Algorithms	Ants –	Formulating a	a Mode	lHigł	n Perfo	ormance
Unit - V	Matrix	Models						9
	•	ion Studies – Population Matrices and High-Performand Markov Chains- Problems from Psychology to Genetics	e Com	puting -Time	after Ti	me – A	\ge-St	ructured

Lecture:45, Total:45

TEXT BOOK:

 Angela B. Shiflet, George W. Shiflet, "Introduction to Computational Science: Modelling and Simulation for the Sciences", 2nd Edition, Princeton University Press, 2014. for Unit I, II, III, IV and V.

COURSE (On comple			e, the s	tudents	will be a	able to							BT Map (Highest	•
CO1	model	system	dynamic	s with a	nd with	out cons	traints						Applying	g (K3)
CO2	constru	ct mode	ls for sy	stems w	ith inter	actions							Applying	g (K3)
CO3	make u	se of rar	ndomne	ss and c	data for	modellir	ıg						Applying	g (K3)
CO4		ellular a allel alg		on for m	odelling	natural	process	es and	explain	concurrer	t process	sing	Applying	g (K3)
CO5	apply m	atrix the	ory in p	roblem	solving								Applying	g (K3)
					Мар	ping of	COs wi	th POs	and PS	Os				
COs/POs	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1										3	1
CO2	3	2	1										3	1
CO3	3	2	1										3	1
CO4	3	2	1										3	1
CO5	3	2	1										3	1

	ASSESSMENT PATTERN - THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	30	45	25				100					
CAT2	10	45	45				100					
CAT3	25	45	30				100					
ESE	20	40	40				100					

INFORMATION SECURITY

Programme& Branch	BTech – Artificial Intelligence and Data Science	Sem.	Category	L	Т	Р	Credit
Prerequisites	Computer Networks	7	PE	3	0	0	3

Preamble This course focuses on wide spectrum of topics from legal and ethical issue, risk management, and implementation in the context of information security.

Unit - I Information Security and The Need for Security

The history of Information Security – CNSS Security model-Components of an Information System – Security in the system life cycle – Security professionals and the organization – Communities of interest – Information Security: Threat and Attacks – Compromises to intellectual property – Deviations in Quality of Service-Espionage – Force of nature – Human Error – Information Extortion – Sabotage-Software attacks – Technical hardware failures – Technical software failures

Unit - II Issues in Information Security and Planning for Security

Law and ethics in information Security – Relevant U.S. Laws-International laws and legal bodies – Ethics and Information security – Codes of ethics of professional organizations – Key U.S. Federal agencies – Planning for Security: Information security policy, standards, and practices – The Information security blueprint – Security education, training, and awareness program

Unit - III Risk Management

Risk Identification: Planning and organizing the process – Identifying, inventorying and categorizing assets- Classifying and prioritizing threats – Specifying asset vulnerabilities; Risk assessment : Planning and organizing risk assessment- Determining the loss frequency – Calculating risk – Assessing risk acceptability – The FAIR approach to risk assessment – Risk control-Quantitative versus qualitative risk management practices-Recommended risk control practices

Unit - IV Security Technology

Access Control: Access control mechanisms – Biometrics – Access control architecture models – Firewalls: Firewall processing modes – Firewall architecture – Selecting the right firewalls – Configuring and managing firewalls – Content filters – Protecting remote connections – Intrusion detection and prevention systems –Honeypots, Honeynets, and padded cell systems – Scanning and analysis tools.

Unit - V Implementing Information Security and Security & Personnel

Information security project management – Technical aspects of implementation-Nontechnical aspect of implementation-Information security certification and accreditation-Credentials for information security professionals-Employment policies and practices-Security considerations for temporary employees, consultants, and other workers-Internal control strategies – Privacy and the security of personnel data.

Lecture:45, Total:45

9

9

9

9

9

TEXT BOOK:

1. Michael E. Whitman and Herbert J. Mattord, "Principles of Information Security", 6th Edition, Cengage Learning, India, 2018. for Unit I, II, III, IV and V.

REFERENCES:

1. Charles P. Pfleeger and Shari Lawrence Pfleeger, "Security in Computing", 5th Edition, Prentice Hall, 2018.

2 Micki Krause, Harold F. Tipton, "Handbook of Information Security Management", Vol. 6, 6th Edition, CRC Press, 2012.

	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1:	explore the basic concepts in information security and determine the type of attacks in a security breach	Applying (K3)
CO2:	identify the legal, ethical, professional issues in information security and apply security policies, standards and practices	Applying (K3)
CO3:	identify the risks involved in information security and carry out risk assessment	Applying (K3)
CO4:	utilize security technologies for protecting information	Applying (K3)
CO5:	make use of various aspects of implementing information security and, paraphrase the issues and concerns related to staffing the information security	Applying (K3)

					Маррі	ng of C	Os with	POs a	nd PSO	s				
COs/POs	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	2	1										2	1
CO2	3	2	1										2	1
CO3	3	2	1										2	1
CO4	3	2	1										2	1
CO5	3	2	1										2	1

	ASSESSMENT PATTERN - THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	20	60	20				100					
CAT2	20	60	20				100					
CAT3	20	60	20				100					
ESE	20	60	20				100					

INFORMATION RETRIEVAL TECHNIQUES

Programme& Branch	B.Tech. & Artificial Intelligence and Data Science	Sem.	Category	L	т	Р	Credit
Prerequisites	Applied Machine Learning	7	PC	3	0	0	3

Preamble This course discusses the basics of information retrieval, search engine operations and multimedia information retrieval techniques.

Unit - I Introduction

Information Retrieval - The IR Problem - The users task - Information versus data retrieval - The IR System - Software architecture of IR system - Retrieval and ranking processes - The web - Web changed search - Practical issues on the web - How people search - Search interfaces today - Visualization in Search Interfaces

Unit - II Modeling and Retrieval Evaluation

Basic IR Models – Boolean Model – TF-IDF (Term Frequency/Inverse Document Frequency) Weighting – Vector Model – Probabilistic Model – Latent Semantic Indexing Model – Neural Network Model – Retrieval Evaluation – Retrieval Metrics – Precision and Recall – Reference Collection – User-based Evaluation

Unit - III Text Operations, Indexing and Searching

Text Properties - Document Preprocessing - Text Compression – Text Classification – Characterization of Text Classification – Unsupervised Algorithms – Supervised Algorithms – Decision Tree – K-NN Classifier – SVM Classifier – Feature Selection or Dimensionality Reduction – Evaluation Metrics – Accuracy and Error – Indexing and Searching – Inverted Indexes – Sequential Searching – Multidimensional Indexing.

Unit - IV Web Retrieval and Web Crawling

The Web – Search Engine Architectures – Cluster Based Architecture – Distributed Architectures – Search Engine Ranking – User Interaction –Browsing – Web Crawling – Applications of a Web Crawler – Taxonomy – Architecture and Implementation – Scheduling Algorithms – Evaluation.

Unit - V Multimedia Information Retrieval

Content-based image retrieval – Audio and music retrieval – Retrieving and browsing video – Fusion models – Segmentation – Compression and MPEG standards –Case study: Digital Library

TEXT BOOK:

1. Ricardo Baeza-Yate, Berthier Ribeiro-Neto, "Modern Information Retrieval", 2nd Edition, Pearson Education Asia, 2011 for

Unit I, II, III, IV and V.

REFERENCE:

1. Chowdhury G.G., "Introduction to Modern Information Retrieval", 2nd Edition, Neal-Schuman Publishers, 2003.

9

9

9

9

9

Lecture:45:Total: 45

Kongu Engineering College, Perundurai, Erode – 638060, India

	E OUTCOMES: pletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	describe the basic concepts of information retrieval	Applying (K3)
CO2	apply the various modeling techniques	Applying (K3)
CO3	discuss the concepts of text operations, indexing and searching	Applying (K3)
CO4	learn about web information retrieval and web crawling	Applying (K3)
CO5	explore audio, music and video information retrieval techniques	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1										3	1
CO2	3	2	1										3	1
CO3	3	2	1										3	1
CO4	3	2	1										3	1
CO5	3	2	1										3	1
- Slight, 2 -	- Modei	rate, 3 -	- Substa	ntial, B	T- Bloo	m's Ta	xonomy	/						
					ASS	ESSM	ENT PA	ATTER	N - THI	EORY				

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	15	35	50				100
CAT2	15	35	50				100
CAT3	15	35	50				100
ESE	10	40	50				100

REINFORCEMENT LEARNING (Common to AI & DS and AI & ML branches)

Programme& Branch	B.Tech. & Artificial Intelligence and Data Science	Sem.	Category	L	Т	Р	Credit
Prerequisites	NIL	7	PE	3	0	0	3

Preamble This course deals with modeling, analysis tools and techniques for problems of dynamic decision making under uncertainty. It also deals with convergence and accuracy of such algorithms.

Unit - I Introduction and Basics of RL

Reinforcement Learning- Examples- Elements of Reinforcement Learning- Limitations and Scope- An Extended Example: Tic-Tac-Toe- History of Reinforcement Learning.

Unit - II Tabular Solution Methods

Multi-arm Bandits - An n-Armed Bandit Problem- Action-Value Methods- Incremental Implementation- Tracking a Nonstationary Problem- Optimistic Initial Values- Upper-Confidence-Bound Action Selection- Gradient Bandit- Associative Search.

Unit - III Finite Markov Decision Processes

The Agent–Environment Interface- Goals and Rewards- Returns- Unified Notation for Episodic and Continuing Tasks- The Markov Property- Markov Decision Processes- Value Functions- Optimal Value Functions- Optimality and Approximation.

Unit - IV Dynamic Programming and Monte Carlo Methods

Dynamic Programming - Policy Evaluation- Policy Improvement- Policy Iteration- Value Iteration- Generalized Policy Iteration. Monte Carlo Methods: Monte Carlo Prediction- Monte Carlo Estimation of Action Values- Monte Carlo Control- Monte Carlo Control without Exploring Starts.

Unit - V Temporal-Difference Learning

TD Prediction- Advantages of TD Prediction Methods- Optimality of TD(0) -Sarsa: On-Policy TD Control- Q-Learning: Off-Policy TD Control- Games, After states, and Other Special Cases

Lecture: 45, Total: 45

9

9

9

9

9

TEXT BOOK:

Richard S. Sutton and Andrew G. Barto, "Reinforcement Learning: An Introduction", 2nd Edition, MIT Press, London, 2018. for Unit I, II, III, IV and V.

REFERENCES:

1 Phill winder, "Reinforcement Learning: Industrial applications of intelligent agents", 1st Edition, O'Reilly Media, 2020.

COURSE C			se, the s	students	will be a	ble to								lapped st Level)
CO1 illustrate RL tasks and the core principles behind the RL								Applying (K3)						
CO2 apply tabular methods to solve classical control problems								Applying (K3)						
CO3 utilize Markov decision process in optimization of complex problems							Applying (K3)							
CO4 solve problems using dynamic programming and Monte-Carlo methods							Applying (K3)							
CO5 outline temporal-difference learning and Q-learning							Applying (K3)							
					Ма	apping o	of COs v	vith POs	s and PS	SOs				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	2	1	1									3	2
CO2	3	2	1	1									2	2
CO3	3	2	1	1									2	2
CO4	3	2	1	1									3	2
CO5	3	2	1	1									2	2

	ASSESSMENT PATTERN - THEORY						
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	40	40				100
CAT2	20	50	30				100
CAT3	20	40	40				100
ESE	30	40	30				100

HEALTH CARE ANALYTICS

Programme & Branch	B.Tech. & Artificial Intelligence & Data Science	Sem.	Category	L	Т	Р	Credit
Prerequisites	Deep learning	7	PE	3	0	0	3

Unit - I	Introduction to healthcare analysis	9		
	analytics through machine learning and deep learning algorithms			
Preamble	ble This course enables the students to learn and understand health data formats, frameworks and apply hea			

Overview - History of Healthcare Analysis Parameters on medical care systems- Health care policy- Standardized code sets – Data Formats – Machine Learning Foundations: Tree Like reasoning, Probabilistic reasoning and Bayes Theorem, Weighted sum approach.

Unit - II Analytics on machine learnin

Machine Learning Pipeline – Pre-processing –Visualization – Feature Selection – Training model parameter – Evaluation model : Sensitivity, Specificity, PPV, NPV, FPR, Accuracy, ROC, Precision Recall Curves, Valued target variables –Python: Variables and types, Data Structures and containers, Pandas Data Frame :Operations – Scikit –Learn : Pre-processing, Feature Selection.

Unit – III Health care management

IOT- Smart Sensors – Migration of Healthcare Relational database to NoSQL Cloud Database – Decision Support System – Matrix block Cipher System – Semantic Framework Analysis – Histogram bin Shifting and Rc6 Encryption – Clinical Prediction Models – Visual Analytics for Healthcare.

Unit – IV Healthcare and deep learning

Introduction on Deep Learning – DFF network CNN- RNN for Sequences – Biomedical Image and Signal Analysis – Natural Language Processing and Data Mining for Clinical Data – Mobile Imaging and Analytics – Clinical Decision Support System.

Unit – V Case studies

Predicting Mortality for cardiology Practice – Smart Ambulance System using IOT – Hospital Acquired Conditions (HAC) program-Healthcare and Emerging Technologies – ECG Data Analysis.

TEXT BOOK

1.

Chandan K.Reddy, Charu C. Aggarwal, "Health Care data Analysis", First edition, CRC, 2015. for Unit I, II, III, IV and V.

REFERENCE BOOKS

1.	Vikas Kumar, "Health Care Analysis Made Simple", Packt Publishing, 2018.
2.	Nilanjan Dey, Amira Ashour , Simon James Fong, Chintan Bhatl, "Health Care Data Analysis and management, First Edition, Academic Press, 2018.
3.	Hui Jang, Eva K.Lee, "HealthCare Analysis : From Data to Knowledge to Healthcare Improvement", First Edition, Wiley, 2016.
4.	Kulkarni , Siarry, Singh ,Abraham, Zhang, Zomaya , Baki, "Big Data Analytics in HealthCare", Springer, 2020.

9

9

9

9

Lecture:45;Total:45

	COURSE OUTCOMES: On completion of the course, the students will be able to					
CO1	use machine learning and deep learning algorithms for health data analysis	Applying (K3)				
CO2	apply the data management techniques for healthcare data	Applying (K3)				
CO3	evaluate the need of healthcare data analysis in e-healthcare, telemedicine and other critical care applications	Applying (K3)				
CO4	apply health data analytics for real time applications	Applying (K3)				
CO5	discuss about case studies in health data analysis	Applying (K3)				

				Ν	Mappin	g of C	Os with	POs ar	nd PSOs	6				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2										3	2
CO2	3	2	2										3	2
CO3	3	2	2										3	2
CO4	3	2	2										3	2
CO5	3	2	2										3	2

		ASSESSM	ENT PATTER	N - THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	30	50				100
CAT2	20	30	50				100
CAT3	20	30	50				100
ESE	10	40	50				100

TIME SERIES ANALYSIS AND FORECASTING (Common to AI & DS and AI & ML branches)

Programme & Branch	BTech. & Artificial Intelligence and Data Science	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	7	PE	2	0	2	3

Unit - I Exploratory analysis	6
Preamble The course familiarizes students with various forecasting approaches and new statistica and evaluating time-series data.	methods for analyzing

Graphical displays – Numerical description of Time Series Data – Use of Data transformations and Adjustments –General Approach to Time Series Modeling and Forecasting – Evaluating and Monitoring Forecasting Model Performance.

Unit - II Smoothing methods

First-Order Exponential Smoothing – Modeling Time Series data – Second-Order Exponential Smoothing – Higher- Order Exponential Smoothing – Forecasting – Exponential Smoothing for Seasonal Data – Exponential Smoothing of Biosurveillance data – Exponential Smoothers and ARIMA models.

Unit - III ARIMA models

Linear Models for Stationary Time Series – Finite Order Moving Average Processes – Finite Order Autoregressive Processes – Mixed Autoregressive-Moving Average Processes – Nonstationary Processes – Time Series Model building – Forecasting ARIMA Processes – Seasonal Processes – ARIMA Modeling of Biosurveillance data.

Unit - IV Transfer Functions and Intervention Models

Transfer Function Models – Transfer Function-Noise Models – Cross Validation Function – Model Specification – Forecasting with Transfer Function-Noise Models – Intervention Analysis.

Unit - V Other Forecasting Methods

Multivariate Time Series Models and Forecasting – State Space Models – Arch and Garch models – Direct Forecasting of Percentiles – Combining Forecasts to improve Prediction Performance – Aggregation and Disaggregation of Forecasts – Neural Networks and Forecasting – Spectral Analysis – Bayesian Methods in Forecasting.

List of Exercises / Experiments:

1.	Visualization of Stationary and Non-stationary time series data.
2.	Implement Moving Average Time Series Model and Differencing.
3.	Implement Exponential smoothing technique (Single, double and triple).
4.	Implement Auto-Regressive Model for Stationary Time Series.
5.	Implement Auto-Regressive Integrated Moving Average for Non-Stationary Time Series.
6.	Apply Univariate Models to forecast data
7.	Implement Transfer Functions and Autoregressive Distributed Lag Modeling.
8.	Apply Spectral density function to forecast data.

Lecture: 30, Practical:30, Total:60

6

6

6

6

TEXT BOOK:

 Douglas C. Montgomery, Cheryl L. Jennings, Murat Kulahci, "Introduction to Time Series Analysis and Forecasting", 2nd Edition, Wiley, 2016. for Unit I, II, III, IV and V.

REFERENCE:

1. George E. P. Box, Gwilym M. Jenkins, Gregory C. Reinsel, Greta M. Ljung, "Time Series Analysis: Forecasting and Control", 5th Edition, Wiley, 2016.

REFERENCES/MANUAL/SOFTWARE:

1.	Python
2.	Laboratory Manual

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	understand the necessity of forecasting and apply in a given situation	Applying (K3)
CO2	apply smoothing methods in time series data	Applying (K3)
CO3	perform Stationary and Non-Stationary time series analysis	Applying (K3)
CO4	make use of variance transformation techniques for time series analysis and forecasting	Applying (K3)
CO5	understand and apply frequency-domain time series analysis	Applying (K3)
CO6	implement models for stationary and non-stationary time series analysis	Applying (K3), Precision (S3)
C07	make use of various smoothing methods for time series data analysis	Applying (K3), Precision (S3)
CO8	implement models for frequency-domain time series analysis	Applying (K3), Precision (S3)

					Mappin	g of CC)s with	POs a	nd PSO	S				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2										3	2
CO2	3	2	2										3	2
CO3	3	2	2										3	2
CO4	3	2	2										3	2
CO5	3	2	2										3	2
CO6	3	2	2	2	2								3	2
C07	3	2	2	2	2								3	2
CO8	3	2	2	2	2								3	2

Substantial, B1- Bloom's Taxonomy Silgni, Z

		ASSESSMENT	PATTERN - T	HEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	50	40				100
CAT2	10	40	50				100
CAT3	10	40	50				100
ESE	10	40	50				100

SOCIAL MEDIA ANALYTICS (Common to AI & DS and AI & ML branches)

Programme & Branch	B.TECH. & Artificial Intelligence and Data Science	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	7	PE	3	0	0	3

Unit - I Foundations of social media analytics

Creating value with Social media analytics – Understanding social media: Core characteristics – Understanding Social media analytics: Emergence – layers – types – social media analytics value creation cycle – challenges – social media analytics industry.

Unit - II Analytics Business Alignment and social media network analytics

Analytics Business Alignment : Digital analytics maturity model – Role of CIO and its management – Formulation of strategy. Social media network analytics: Social network terms – network structures – network topologies – types of networks – network strategies - Network analysis tools.

Unit - III Text and Social media actions analytics

Text Analytics : Types of social media text – deployment models – purpose – social media text analytics for Business Intelligence – text analytics value creation cycle – common terms – issues – Case studies. **Social media actions analytics:** Common social media actions - actions analytics tools -

Unit - IV Search Engine, location and hyperlink analytics

Search Engine analytics: types of search engines - working - analytics – developing search engine optimization strategy and implementing – search engine data analytics - Location analytics: Sources of location data – data collection – location metrics – tools. Social media hyperlink analytics: types – hyperlink analytics – tools.

Unit - V Mobile and multimedia analytics

Mobile analytics: types of apps- development perspective – classifying apps by their purpose – characteristics of mobile apps – tools. **Multimedia analytics:** Types – image analytics tools - video analytics. Social media legal, privacy and security issues.

TEXT BOOK:

Lecture:45;Total:45

9

9

9

9

9

Gohar F. Khan. Creating Value With Social Media Analytics. 1st edition, Create space, 2018. for Unit I, II, III, IV and V.

REFERENCES:

Marshall Sponder. Social Media Analytics: Effective Tools for Building, Interpreting, and Using Metrics. 1st edition, McGrawHill, 2011.

	E OUTCOMES: pletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1:	get familiar with basic foundations of social media analytics	Understanding (K2)
CO2:	recall concepts Analytics Business Alignment and social media network analytics	Understanding (K2)
CO3:	implement techniques for Text and Social media actions analytics	Applying (K3)
CO4:	demonstrate different methods for Search Engine, location and hyperlink analytics	Applying (K3)
CO5:	use Mobile and multimedia analytics for various real life social media applications	Applying (K3)

					Mappir	ng of CC	Os with	POs an	d PSOs	5				
COs/POs	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	3	3										3	2
CO2	3	3	2										3	2
CO3	3	2	3										3	3
CO4	3	2	3										3	3
CO5	3	2	2										3	3

		ASSESSMEN	T PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1	15	30	55				100
CAT 2	15	30	55				100
CAT 3	15	30	55				100
ESE	15	30	55				100

REAL TIME ANALYTICS (Common to AI & DS and AI & ML branches)

Programme & Branch	B.TECH. & Artificial Intelligence and Data Science	Sem.	Category	L	т	Р	Credit
Prerequisites	NIL	7	PE	3	0	0	3

Preamble This course provides a comprehensive knowledge about data analysis technologies to build an effective real-time analytics platform.

Unit - I Streaming Data and analytics

Introduction to Streaming Data: Sources – Why Streaming Data is Different – Infrastructures and Algorithms. Streaming Analytics Architecture: Real-Time Architecture Components – Feature of Real-Time Architecture – Languages for Real-Time programming – A Real-Time Architecture Checklist.

Unit - II Processing and Storing Streaming Data

Processing Streaming Data: Distributed Streaming Data Processing – Processing Data with Storm: Components, Configuring of a Storm Cluster – Distributed Clusters – Local Clusters – Storm Topologies. Storing Streaming Data : Consistent Hashing – No SQL Storage Systems – Other Storage Technologies – Choosing a Technology – Warehousing.

Unit - III Visualization and Aggregation

Visualization: Visualizing Data – Mobile Streaming Applications – Exact Aggregation and Delivery: Timed Counting and Summation – Multi – Resolution Time-Series Aggregation – Stochastic Optimization

Unit - IV Statistical Approximation of Streaming Data and Sketching

Statistical Approximation of Streaming Data: Sampling from a streaming Population – Biased Streaming Sampling. Sketching : Registers and Hash Functions – Working with Sets – The Bloom Filter – Distinct Value Sketches – The Count-Min Sketch – Other Applications

Unit - V Real-Time Models, Monitoring and Forecasting

Real-Time Models and Monitoring: Simple Time-Series Models – Linear Models – Logistic Regression – Neural Network Models – Forecasting: Exponential Smoothing Methods – Regression Methods - Neural Network Methods. Monitoring: Outlier Detection - Change Detection

Lecture: 45, Total: 45

9

9

9

9

9

TEXT BOOK:

 Ellis, Byron. "Real-time analytics: Techniques to analyze and visualize streaming data", John Wiley & Sons, 1st Edition, 2014 for Unit I, II, III, IV and V.

REFERENCE:

. Goetz, P. Taylor, and Brian O'Neill, "Storm blueprints: patterns for distributed real-time computation", Packt Publishing Ltd, 1st Edition, 2014.

	RE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	describe the concepts of streaming data and analyze various architectures for streaming data	Applying (K3)
CO2	make use of processing and storage techniques to build real time analytics applications	Applying (K3)
CO3	apply visualization and aggregation techniques for real time analytics	Applying (K3)
CO4	employ statistical approximation and sketching techniques for solving the real world problems	Applying (K3)
CO5	develop models and use it for forecasting and monitoring to solve real time problems	Applying (K3)

					Mappin	g of CC	s with	POs an	d PSOs					
COs/POs	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	2	2										3	2
CO2	3	2	1		2								3	1
CO3	3	2	1										3	1
CO4	3	2	1										3	1
CO5	3	2	1		2								3	1
1 – Slight, 2 –	Moderat	te, 3 – S	ubstant	tial, BT-	Bloom's	Taxono	omy							

		ASSESSMEN	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %								
CAT1	10	20	30	40			100								
CAT2	15	35	50				100								
CAT3	20	40	40				100								
ESE	20	20	40	20			100								

ETHICS OF AI

Programme & Branch	BTech. & Artificial Intelligence and Data Science	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	7	PE	3	0	0	3

Preamble This course locates ethical analysis of artificial intelligence. It also interrogates artificial intelligence within the context of related modes of technological innovation, including machine learning, Big Data, and robotics.

Unit - I Introduction

The Artificial Intelligence of the Ethics of Artificial Intelligence - The Ethics of the Ethics of AI - Ethical Issues in Our Relationship with Artificial Entities.

Unit - II Frameworks and Modes

AI Governance by Human Rights - The Incompatible Incentives of Private-Sector AI - Normative Modes: Codes and Standards -The Role of Professional Norms in the Governance of Artificial Intelligence

Unit - III Concepts and Issues

Moral Framework of Justice in Artificial Intelligence - Accountability in Computer Systems – Transparency - Responsibility and Artificial Intelligence - The Concept of Handoff as a Model for Ethical Analysis.

Unit - IV Perspectives and Approaches

Perspectives on Ethics of AI - Social Failure Modes in Technology and the Ethics of AI - Social Failure Modes in Technology and the Ethics of AI - Integrating Ethical Values and Economic Value.

Unit - V Cases and Applications

Ethics of Artificial Intelligence in Transport - The Case for Ethical AI in the Military - The Ethics of AI in Biomedical Research, Patient Care, and Public Health - Ethics of AI in Law - Ethical AI in Criminal Law

Lecture: 45, Total: 45

9

9

9

9

9

TEXT BOOK:

1. Markus D. Dubber, Frank Pasquale, and Sunit Das, "Ethics of AI", 1st edition, Oxford University Press, USA, 2020. for Unit I, II, III, IV and V.

REFERENCES:

1. S. Matthew Liao, "Ethics of Artificial Intelligence", 1st edition, Oxford University Press, USA, 2020.

2. Mark Coeckelbergh, "AI Ethics", 1st edition, MIT Press, USA, 2020.

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	describe the Ethics of artificial intelligence in relation to cognitive fields of ethical inquiry	Applying (K3)
CO2	articulates the AI ethics, in the context of different normative evaluation and governance frameworks.	Applying (K3)
CO3	tackles central concepts and issues that may serve as points of departure for reflecting on the ethical dimensions and challenges of artificial intelligence	Applying (K3)
CO4	illustrates various perspectives and approaches of AI Ethics	Applying (K3)
CO5	demonstrate the ethics of artificial intelligence in various cases and its applications	Applying (K3)

Mapping of COs with POs and PSOs													
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
3	2	1			3		3					3	1
3	2	1			3		3					3	1
3	2	1			3		3					3	1
3	2	1			3		3					3	1
3	2	1			3		3					3	1
	3 3 3 3	3 2 3 2 3 2 3 2 3 2 3 2	3 2 1 3 2 1 3 2 1 3 2 1 3 2 1	PO1 PO2 PO3 PO4 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1	PO1 PO2 PO3 PO4 PO5 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1	PO1 PO2 PO3 PO4 PO5 PO6 3 2 1 3 3 3 2 1 3 3 2 1 3 3 2 1 3 3 2 1 3 3 2 1 3 3 2 1 3	PO1 PO2 PO3 PO4 PO5 PO6 PO7 3 2 1 3 3 3 <	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 3 2 1 3 3 3 3 3 2 1 3 3 3 3 2 1 3 3 3 3 2 1 3 3 3 3 2 1 3 3 3 3 2 1 3 3 3 3 2 1 3 3 3	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 3 2 1 3 3 3 3 3 3 2 1 3 3 3 3 3 3 2 1 3 3 3 3 3 3 2 1 3 3 3 3 3 3 2 1 3 3 3 3 3 3 2 1 3 3 3 3 3	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 3 2 1 3 3 3 3 3 3 3 3 2 1 3 3 3 3 1 1 3 2 1 3 3 3 1 <td< td=""><td>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 3 2 1 3 3 3 3 1 1 3 2 1 3 3 3 1 1 1 3 2 1 3 3 3 1 1 1 3 2 1 3 3 3 1 1 1 3 2 1 3 3 3 1 1 1 3 2 1 3 3 3 1 1 1 3 2 1 3 3 3 1</td></td<> <td>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 3 2 1 3 3 3 1 1 PO10 PO11 PO12 3 2 1 3 3 3 1 1 PO10 PO11 PO12 3 2 1 3 3 3 1 1 I</td> <td>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 3 2 1 3 <t< td=""></t<></td>	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 3 2 1 3 3 3 3 1 1 3 2 1 3 3 3 1 1 1 3 2 1 3 3 3 1 1 1 3 2 1 3 3 3 1 1 1 3 2 1 3 3 3 1 1 1 3 2 1 3 3 3 1 1 1 3 2 1 3 3 3 1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 3 2 1 3 3 3 1 1 PO10 PO11 PO12 3 2 1 3 3 3 1 1 PO10 PO11 PO12 3 2 1 3 3 3 1 1 I	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 3 2 1 3 <t< td=""></t<>

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

		ASSESSMENT	PATTERN - T	HEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	65	15				100
CAT2	20	65	15				100
CAT3	20	65	15				100
ESE	20	60	20				100

NEURAL MACHINE TRANSLATION

Programme & Branch	BTech. & Artificial Intelligence and Data Science	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	7	PE	3	0	0	3

Preamble	This course provides knowledge on basics of computer organization, introduces various arithmetic operations and	
	discusses the performance issues of processor, memory and I/O units.	

Unit – I Introduction

Regular Expressions – Words - Corpora - Text Normalization - Minimum Edit Distance. N-gram Language Models: N-Grams -Evaluating Language Models - Generalization and Zeros – Smoothing - Kneser-Ney Smoothing - The Web and Stupid Backoff -Advanced: Perplexity's Relation to Entropy

Unit – II Classification

Naive Bayes Classifiers - Training the Naive Bayes Classifier - Worked example - Optimizing for Sentiment Analysis - Naive Bayes for other text classification tasks - Naive Bayes as a Language Model - Evaluation: Precision, Recall, F-measure - Test sets and Cross-validation - Statistical Significance Testing

Unit - III Regression

Classification: the sigmoid - Learning in Logistic Regression - The cross-entropy loss function - Gradient Descent – Regularization - Multinomial logistic regression - Interpreting models - Advanced: Deriving the Gradient Equation.

Unit - IV Vector Semantics and Embeddings

Lexical Semantics - Vector Semantics - Words and Vectors - Cosine for measuring similarity - TF-IDF: Weighing terms in the vector - Applications of the tf-idf vector model - Optional: Pointwise Mutual Information (PMI) - Word2vec - Visualizing Embeddings - Semantic properties of embeddings - Bias and Embeddings - Evaluating Vector Models

Unit - V Models and Speech Tagging

Units - The XOR problem - Feed-Forward Neural Networks - Training Neural Nets - Neural Language Models. Parts of Speech Tagging: English Word Classes - The Penn Treebank Part-of-Speech Tagset - Part-of-Speech Tagging - HMM Part-of-Speech Tagging - Maximum Entropy Markov Models – Bidirectionality - Part-of-Speech Tagging for Morphological Rich Languages,

TEXT BOOK:

Lecture: 45, Total: 45

9

9

9

9

9

 Daniel Jurafsky, and James H. Martin "Speech and Language Processing An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition", 2nd Edition, Pearson Education India;, 2013. for Unit I, II, III, IV and V.

REFERENCES:

1.	Philipp Koehn, "Neural Machine Translation", 1 st edition, Cambridge University Press, United Kingdom, 2020.
2.	Cyril Goutte, Nicola Cancedda, Marc Dymetman, George Foster, Masao Utiyama, "Learning Machine Translation", MIT Press, United States, 2009

	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	describe the regular expression and n-gram models	Applying (K3)
CO2	make use of Classification to solve the problem	Applying (K3)
CO3	make use of Regression to solve the problem	Applying (K3)
CO4	create Vector Semantics by learning representations of the meaning of words	Applying (K3)
CO5	apply the Neural language models to the simple task of language modeling:	Applying (K3)

					Mappi	ng of C	Os with	n POs a	nd PSO	s				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	2	1										3	1
CO2	3	2	1										3	1
CO3	3	2	1										3	1
CO4	3	2	1										3	1
CO5	3	2	1										3	1
– Slight, 2 -	- Modera	ate, 3 –	Substar	ntial, BT	- Bloom	's Taxoi	nomy							

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	20	60	20				100							
CAT2	20	50	30				100							
CAT3	20	55	25				100							
ESE	20	40	40				100							

MULTI VARIATE DATA ANALYSIS

Programme & Branch	B.Tech. & Artificial Intelligence & Machine Learning	Sem.	Category	L	т	Р	Credit	
Prerequisites	Multivariate Data Analysis	7	PE	3	0	0	3	

Preamble This course enables the students to learn various multivariate data analysis

Unit - I Introduction to Multivariate Methods

Multivariate Analysis - Basic Concepts – Managing the Multivariate model – Classification of multivariate techniques – Types of multivariate techniques for multivariate analyses and interpretation – Approach to multivariate modeling

Unit - II Preparing for Multivariate Analysis

Introduction – Examination of the Data : Univariate – Bivariate – Multivariate – Missing Data : Impact – Missing Data Analysis – Process for identifying missing data and remedies – Outliers: Contexts for defining outliers – impact – classifying outliers – detecting and handling outliers – example – Testing the assumptions of multivariate Analysis – Data transformations – Illustrating of testing the assumptions

Unit – III Interdependence Techniques

Exploratory Factor Analysis : Introduction- Examples – Factor analysis decision process – Stages – Illustration -Cluster Analysis : Introduction to cluster analysis – working - Cluster analysis decision process : Stages - Illustration

Unit – IV Dependence Technique

Introduction to Multiple Regression Analysis – Simple and Multiple Regression – Decision process for multiple regression analysis – Stages – Illustration

Unit – V MANOVA

Introduction to MANOVA – Illustration – Decision process for MANOVA – Stages : Objectives – Issues – Assumptions of ANOVA and MANOVA – Estimation of MANOVA model and Assessing overall Fit – Interpretation of MANOVA results - Validation

TEXT BOOK:

Lecture: 45, Total: 45

9

9

9

9

9

1. Joesph F. Hair Jr., William C. Black, Barry J. Babin, Rolph E.Anderson "Multivariate Data Analysis", Annabel Ainscow, Eigth Edition (2019). for Unit I, II, III, IV and V.

REFERENCES:

1. Spencer, N. H. Essentials of multivariate data analysis. CRC press, (2013).

COURSE On comple				the st	tudent	s will b	e able	e to						BT Mapped (Highest Level)		
CO1	perfori	n mult	ivariat	e mod	leling k	oy clas	sifying	g and	Interp	reting m	nultivaria	ate data		Applying (K3)		
	examine multivariate data for missing data and outliers to perform multiva analysis												e	Applying (K3)		
CO3	assess the interdependence using factor and cluster analysis													Applying (K3)		
	•	e the sion a	•		ce re	lations	ship t	etwee	en va	riables	using	multipl	e	Applying (K3)		
				0						re indep using M			Applying (K3)			
						М	appin	g of C	Os w	ith POs	and PS	SOs				
COs/POs	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2		
CO1	3	2	2										3	2		
CO2	3	2	2										3	2		
CO3	3	2	2										3	2		
001	3	2	2										3	2		
CO4																

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	40	40	20											
CAT2	20	30	50											
CAT3	30	30	40											
ESE	20	30	50											

COGNITIVE SCIENCE AND ANALYTICS

Programme & Branch	B.TECH. & Artificial Intelligence and Data Science	Sem.	Category	L	Т	Р	Credit
Prerequisites	Data analytics	7	PE	3	0	0	3

	To impart knowledge on cognitive science and various analytical methods	Preamble
	Introduction to Cognitive Science	Unit – I
	dation of Cognitive Computing - Design Principles for Cognitive Systems: Components of a Cognitive System - Bringing Data into the Cognitive System - Machine Learning - Hypotheses -Generation and Scoring alization Services.	the Corpus
	Natural Language Processing, Big Data and Cognitive Computing	Unit - II
Analytical Dat	anguage Processing in Support of a Cognitive System - The Relationship Between Big Data and Cognitive With Human-Generated Data - Defining Big Data - The Architectural Foundation for Big Data - Asses - Hadoop - Data in Motion and Streaming Data - Integration of Big Data with Traditional Data.	Dealing wit Warehouse
	vith Human-Generated Data - Defining Big Data - The Architectural Foundation for Big Data - A	Dealing wit
Analytical Dat	with Human-Generated Data - Defining Big Data - The Architectural Foundation for Big Data - A ses - Hadoop - Data in Motion and Streaming Data - Integration of Big Data with Traditional Data.	Dealing wit Warehouse Unit - III Representir
Analytical Dat	with Human-Generated Data - Defining Big Data - The Architectural Foundation for Big Data - A ses - Hadoop - Data in Motion and Streaming Data - Integration of Big Data with Traditional Data. Taxonomies and Ontologies, Cloud and Distributed Computing ting Knowledge in Taxonomies and Ontologies - Applying Advanced Analytics to Cognitive Computing	Dealing wit Warehouse Unit - III Representir
Analytical Dat	with Human-Generated Data - Defining Big Data - The Architectural Foundation for Big Data - A ses - Hadoop - Data in Motion and Streaming Data - Integration of Big Data with Traditional Data. Taxonomies and Ontologies, Cloud and Distributed Computing ting Knowledge in Taxonomies and Ontologies - Applying Advanced Analytics to Cognitive Computing d Distributed Computing in Cognitive Computing.	Dealing wit Warehouse Unit - III Representir Cloud and I Unit - IV The Busine

Building a Cognitive Healthcare Application - Emerging Cognitive Computing Areas - Future Applications for Cognitive Computing.

Lecture: 45, Total: 45

TEXT BOOK:

1. Judith S. Hurwitz, Marcia Kaufman, Adrian Bowles. Cognitive Computing and Big Data Analytics. 1st edition, Wiley, 2015. for Unit I, II, III, IV and V.

Kongu Engineering College, Perundurai, Erode – 638060, India

	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1:	describe the basic concepts of cognitive science	Understanding (K2)
CO2:	interpret the principles of Natural Language Processing and Big Data with Cognitive Computing	Understanding (K2)
CO3:	exploreTaxonomies and Ontologies and Cloud and Distributed Computing in cognitive environment	Understanding (K2)
CO4:	implement Watson for Cognitive system and develop applications	Applying (K3)
CO5:	demonstrate case studies of applying cognitive computing for various real life problems	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3										3	2
CO2	3	3	2										3	2
CO3	3	2	3										3	3
CO4	3	2	3										3	3
CO5	3	2	2										3	3
I – Slight, 2 –	Modera	ate, 3 – 3	Substan	itial, BT·	- Bloom	's Taxor	nomy							

	ASSESSMENT PATTERN - THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT 1	40	60					100					
CAT 2	40	45	15				100					
CAT 3	40	45	15				100					
ESE	40	45	15				100					

GRAPH THEORY AND ITS APPLICATIONS (Common to AI & DS and AI & ML branches)

Programme& Branch	B.Tech. & Artificial Intelligence and Data Science	Sem.	Category	L	Т	Р	Credit
Prerequisites	NIL	7	PE	3	0	0	3

Preamble	To develop rigorous logical thinking and analytical skills by graph theoretic concepts which helps for solving real tim
	engineering problems in networks, computer architecture, compiling techniques, model checking, artificia intelligence, software engineering, expert systems, software/hardware correctness problem.
Unit - I	Graphs:
	n – Definition – Types of graphs – Degree of vertex – Walk, path and cycle – Isomorphism – Connected graph n graph – Euler graph – Digraph – Representations of graphs: Adjacency matrix – Incidence matrix.
Unit - II	Trees:
	n – Properties of trees – Pendant vertices in a tree – Distances and centers in a tree – Rooted and binary trees ree – Construction of spanning tree: BFS algorithm – DFS algorithm – Tree traversal.
Unit - III	Graph Coloring:
	ring – Chromatic number – Chromatic partitioning – Independent sets – Chromatic polynomial – Matching – Covering problem (statement only) – Simple applications.
Unit - IV	Basic Algorithms:
	aths – Shortest path algorithms: Dijkstra's algorithm – Warshall's algorithm – Minimum Spanning tree – Minima ree algorithms: Prim's algorithm – Krushkal's algorithm – Optimal assignment – Kuhn and Munkres algorithm

Unit - V Network Flows and Applications:

Flows and cuts in networks - Max-flow Min-cut Theorem – Algorithms: Flow Augmenting Path – Ford-Fulkerson Algorithm for Maximum Flow – Edmonds and Karp algorithm.

Lecture:45, Total:45

9

TEXT BOOK:

1. NarsinghDeo, "Graph Theory with Applications to Engineering and Computer Science", Prentice Hall, New Delhi, 2010. for Unit I, II, III, IV and V.

REFERENCES:

- 1. Douglas B.West, "Graph Theory", 2nd Edition, Prentice Hall, New Delhi, 2017.
- 2. Jonathan L. Gross & Jay Yellen, "Graph Theory and its Applications", 2nd Edition, CRC Press, New York, 2006.

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	explain the types of graphs and illustrate isomorphism on graphs.	Understanding (K2)
CO2	use the concepts and properties of different types of trees in data structures.	Applying (K3)
CO3	estimate the chromatic partition, chromatic polynomial and matching of a given graph.	Applying (K3)
CO4	apply various graph theoretic algorithms to communication and network problems.	Applying (K3)
CO5	identify the maximal flow in network by means of algorithms.	Applying (K3)

					Маррі	ng of C	Os with	POs a	nd PSO	s				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1										3	2
CO2	3	1											3	2
CO3	3	1											3	2
CO4	3	2	1										3	2
CO5	3	2	1										3	2
1 – Slight 2 –	Moders	ato 3_0	Substan	tial RT.	Bloom	's Tavor	omv							

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

		ASSESSMENT	PATTERN - T	HEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	50	40				100
CAT2	10	30	60				100
CAT3	10	30	60				100
ESE	10	30	60				100

SEMESTER VIII

SOFTWARE DEFINED NETWORKS (Common to AI & DS and AI & ML branches))

Programme& Branch	B.Tech. & Artificial Intelligence and Data Science	Sem.	Category	L	Т	Р	Credit
Prerequisites	Computer Networks	8	PE	3	0	0	3

Preamble This course provides an insight on programmability protocols, interfaces, controllers and its applications in various environments like data centers and service provider networks.

Unit - I Introduction to SDN

Introduction: Basic packet switching terminology – The modern data center – Traditional switch architecture – Autonomous and dynamic forwarding table. Evolution of switches and control planes – Cost – Data center innovation – Data center needs. The Genesis of SDN: The evolution of networking technology – Forerunners of SDN – Getting started with mininet and experimenting with mininet.

Unit - II SDN and OpenFlow

Fundamental characteristics of SDN – SDN operation – SDN devices – SDN controllers – Alternate SDN methods. The OpenFlow specification: OpenFlow overview – OpenFlow 1.0 and OpenFlow basics - OpenFlow 1.1 Additions - OpenFlow 1.2 Additions - OpenFlow 1.3 Additions – OpenFlow Limitations. NetApp Development: Simple forwarding in OpenDayLight controller.

Unit - III SDN Interfaces

Alternative definitions of SDN: Potential drawbacks of open SDN – SDN via APIs- SDN via hypervisor based overlays – SDN via opening up the device – Network Functions virtualization – Alternatives overlap and ranking. SDN open source: Open source licensing issues – OpenFlow source code – Switch implementation – Controller implementations – Orchestration and Network virtualization – Simulation, Testing and Tools – OpenStack – Applying SDN open source

Unit - IV SDN in the Data center

Data center definition – Data center demands – Tunneling technologies for the data center – Path technologies in the data center – SDN and shortest path complexity – Ethernet fabrics in the data center – SDN use cases in the data center – Open SDN versus Overlays in the data center – Real-world data center implementation.

Unit - V SDN environments and applications

SDN in other environment – Wide area networks – Service provider and carrier networks – Campus networks – Hospitality networks – Mobile networks – In-Line network functions – Optical networks. SDN Applications: Reactive versus Proactive applications – A simple reactive Java application – Creating network virtualization tunnels – offloading flows in the data center – Access control for the campus – Traffic engineering for the service providers –NetApp Development: A simple Firewall.

Lecture:45, Total:45

9

9

9

9

9

TEXT BOOK:

 Paul Goransson and Chuck Black, "Software Defined Networks: A Comprehensive Approach", 1st Edition, Morgan Kaufmann, 2014.

REFERENCES:

1.	SiamakAzodolmolky, "Software Defined Networking with OpenFlow", Packet Publishing, 1 st Edition, 2013.						
2.	Thomas D. Nadeau and Ken Gray, "SDN: Software Defined Networks", O'Reilly Media, 1 st Edition, 2013.						
	COURSE OUTCOMES: On completion of the course, the students will be able to						
CO1	apply the programmability in the network using software defined network	Applying (K3)					
CO2	model a networking task using OpenFlow protocol	Applying (K3)					
CO3	demonstrate the networking application using software defined network interfaces and open source tools	Applying (K3)					
CO4	employ the software defined network architecture in the data centers	Applying (K3)					
CO5	design and develop various applications of SDN	Applying (K3)					

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1		1								3	1
CO2	3	2	1		1								3	1
CO3	3	2	1										3	1
CO4	3	2	1										3	1
CO5	3	2	1		1								3	1
1 – Slight, 2 –	Modera	ite, 3 – 3	Substan	tial, BT·	- Bloom	's Taxor	nomy							

		ASSESSMENT	PATTERN - T	HEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	30	60				100
CAT2	15	25	60				100
CAT3	15	25	60				100
ESE	10	30	60				100

SOFTWARE QUALITY AND TESTING (Common to AI & DS and AI & ML branches)

Programme& Branch	B.Tech. & Artificial Intelligence and Data Science	Sem.	Category	L	Т	Р	Credit
Prerequisites	Software Engineering		PE	3	0	0	3

Preamble This course focuses on the implementation of appropriate functionality that satisfies the requirements/needs of its targeted client/users for the intended software system, product, or service correctly and efficiently.

Unit - I Software Quality Assurance and Review Techniques

Defining Quality – Importance of Quality –Quality Control Vs Quality assurance –Quality assurance at each phase of SDLC -Need for SQA group in an Organization. Structured walkthroughs –Inspections –Various roles and responsibilities involved in Inspections –Making review successful.

Unit - II Software Measurement and Metrics

Product quality – Models for software product Quality – Process Quality Aspects. Measurement and Metrics: Introduction – Measurement during software life cycle context –Defect metrics – Metrics for software maintenance– Requirements related metrics – Measurements and process improvement – Measurement principles.

Unit - III Basics of Testing

Introduction – Definition– Testing Approaches – Essentials – features and principles of software Testing. Testing Environment: Assessing Capabilities – Staff Competency and User Satisfaction – Creating an environment supportive of software testing – Building the software testing process: Testing Guidelines.

Unit - IV Software Testing process

Overview of Software Testing Process – Organizing for testing: Workbench – Input – Procedure. Developing the test plan:Workbench – Input – Procedure.Verification testing: Workbench – Input – Procedure. Validation testing :Workbench – Input – Procedure.

Unit - V Analyzing and reporting

Analyzing and reporting test results: Workbench – Input – Procedure. Testing software system security – Testing client/server systems – Testing web-based systems – Using Agile Methods to Improve Software Testing.

Lecture:45, Total:45

9

9

9

9

9

TEXT BOOK:

1. Nina S. Godbole, "Software Quality Assurance Principles and Practice", 2ndEdition, Narosa Publishing House, 2017 for Unit I, II, III, IV and V.

2. Perry William, "Effective Methods for Software Testing", 3rd Edition, Wiley, India, 2013 (Units 3,4,5)

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	apply quality assurance steps at each phase of SDLC and conduct reviews and inspections	Applying (K3)
CO2	apply the concepts, metrics, and models in software quality assurance	Applying (K3)
CO3	apply the step by step activities and set up environment for software testing	Applying (K3)
CO4	develop procedures and workbenches for various testing process	Applying (K3)
CO5	apply testing for client server, web based and software security systems and identify the agile methods for improving the testing process	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	2	1										3	1
CO2	3	2	1										3	1
CO3	3	2	1										3	1
CO4	3	2	1										3	1
CO5	3	2	1										3	1
1 – Slight, 2 –	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	30	50	20				100							
CAT2	20	50	30				100							
CAT3	20	50	30				100							
ESE	25	30	45				100							

SOFTWARE PROJECT MANAGEMENT (Common to AI & DS and AI & ML branches)

Programme& Branch	B.Tech.& Artificial Intelligence and Data Science	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	8	PE	3	0	0	3

Preamble This course provides an insight into detailed project management activities including project evaluation, planning, estimation, monitoring and control activities especially for software projects.

Unit - I Introduction to Software Project Management

Introduction - Importance – Types of project – Activities – Plans, methods and methodologies – Ways of Categorizing software projects – Stakeholders – Setting objectives – Business case – Project success and failure - Management and management control – Traditional vs. Modern project management practices. Project Evaluation: Introduction – A business case – Project Portfolio Management – Evaluation of Individual Projects – Cost Benefit Evaluation Techniques – Risk Evaluation – Programme management – Managing the allocation of resources within programme – Strategic programme management – Creating a programme – Aids – Reservations – Benefits.

Unit - II Project Planning

Introduction – Select project - Identify project scope and objectives, project infrastructure – Analyse project characteristics – Identify project products and activities – Estimate effort for activity – Identify activity risks - Allocate Resources – Review plan – Execute plan. Software Effort Estimation : Introduction – Estimates – Problems with over and under estimates – Basis – Techniques – Bottom-up Estimating – Top down approach and parametric models – Expert Judgement – Estimating by analogy – Albrecht FP – FP Mark II - COSMIC FFP – COCOMO II.

Unit - III Activity Planning

Objectives – Project Schedule – Projects and Activities – Sequencing and Scheduling Activities –Network Planning Models – Formulation –Time dimension - Forward Pass – Backward Pass – Identifying the critical path - Activity Float – Shortening Project Duration – Identifying critical activities – Activity on Arrow Networks. Risk Management: Risk – Categories of Risk – Framework – Risk Identification – Risk Assessment – Risk Planning – Risk management – Applying PERT Technique – Monte Carlo Simulation – Critical chain concepts.

Unit - IV Monitoring and Control

Creating Framework – Collecting The Data – Review - Visualizing Progress – Cost Monitoring – Earned Value Analysis – Prioritizing Monitoring – Getting Project Back To Target – Change Control. Managing Contracts: Introduction – Types of Contract – Stages In Contract Placement – Typical Terms of A Contract – Contract Management – Acceptance.

Unit - V Managing People

Introduction – Understanding Behaviour – Organizational Behaviour: A Background – Selecting The Right Person For The Job – Instruction in the best methods – Motivation – The Oldham–Hackman Job Characteristics Model – Stress –Health and Safety. Working in Teams: Introduction – Becoming A Team –Decision Making– Organizational & Team Structures – Coordination Dependencies – Dispersed and virtual teams – Communication Generes – Communication Plans – Leadership.

Lecture:45, Total:45

TEXT BOOKS:

1. Bob Hughes, Mike Cotterell and Rajib Mall, "Software Project Management", 6th Edition, Tata McGraw Hill, New Delhi, 2017. for Unit I, II, III, IV and V.

2. Pankaj Jalote, "Software Project Management in Practice", 8th Edition, Pearson, 2002.

3. Watts S. Humphrey, "PSP: A self-improvement process for software engineers", 1stEdition, Addison-Wesley, 2005.

9

9

9

9

9

Kongu Engineering College, Perundurai, Erode – 638060, India

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	make use of process of software project management and apply evaluation technique to choose best project.	Applying (K3)
CO2	prepare the project plan and calculate the efforts required.	Applying (K3)
CO3	plan, schedule and sequence the activities and determine the risks.	Applying (K3)
CO4	develop visualization charts to monitor the progress of projects and to control the risks involved.	Applying (K3)
CO5	apply the methods of managing people and organising teams while developing a software project.	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	CO1 3 2 1 3 3											3	1	
CO2	CO2 3 2 1										3	1		
CO3	3	2	1										3	1
CO4	3	2	1										3	1
CO5	CO5 3 2 1 3 3											1		
1 – Slight, 2 –	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	20	35	45				100							
CAT2	20	45	35				100							
CAT3	20	35	45				100							
ESE	10	45	45				100							

CYBER FORENSICS (Common to AI & DS and AI & ML branches)

Programme& Branch	B.Tech. & Artificial Intelligence and Data Science	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	8	PE	3	0	0	3

Preamble This course imparts fundamental principles and techniques for digital forensics investigation and security management.

Unit - I Computer Forensics and Investigations

Understanding computer forensics - Preparing Computer investigations – Taking a systematic approach –Assessing the case – Planning Investigation – Securing evidence– Procedures for Corporate High-Tech investigations – Conducting an Investigation – Completing the case.

Unit - II Data Acquisition

Understanding storage formats for digital evidence – Determining the best acquisition method - Contingency planning for image acquisitions – Using Acquisition tools: Windows XP Write-protection with USB Devices – Validating Data Acquisitions: Windows Validation Methods – Performing RAID Data Acquisitions – Using Remote Network Acquisition tools – Using other Forensics Acquisition tools.

Unit - III Processing Crime and Incident Scenes

Identifying Digital Evidence – Collecting Evidence in Private Sector Incident Scenes –Processing Law Enforcement Crime Scenes – Preparing for a Search –Securing a Computer Incident or Crime Scene –Seizing Digital Evidence at the Scene –Storing Digital Evidence – Storing – Storing Digital Evidence – Storing Digital Evidence – Storing Digital Evidence – Storing Digital – Storing – Stori

Unit - IV Computer Forensics Tools, Analysis and Validation

Evaluating Computer Forensics Tool Needs –Computer Forensics Software Tools – Computer Forensics Hardware Tools – Validating and Testing Forensic Software – Computer Forensics Analysis and Validation: Determining Data Collection and Analysis –Validating Forensic Data –Addressing Data-Hiding Techniques –Performing Remote Acquisitions.

Unit - V Recovering Graphics Files, Email Investigations

Recognizing a Graphics File– Understanding Data Compression – Locating And Recovering Graphic Files- Identifying Unknown File Formats– Understanding Copyright Issues –Investigating Email Crimes And Violations- Understanding Email Servers– Using Specialized Email Forensics Tools.

Lecture:45, Total:45

9

9

9

9

9

TEXT BOOK:

1. Nelson Bill, Phillips Amelia and Steuart Christopher, "Guide to Computer Forensics and Investigations", 3rd Edition, Cengage Learning, 2017. for Unit I, II, III, IV and V.

Kongu Engineering College, Perundurai, Erode – 638060, India

	RSE OUTCOMES: Impletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	apply systematic approach for digital forensic investigation	Applying (K3)
CO2	carry out acquisition of data using various tools	Applying (K3)
CO3	determine the seizure of digital evidence in a crime scene	Applying (K3)
CO4	make use of forensic tools in forensic examination	Applying (K3)
CO5	carry out investigationusing E-mail and graphic files	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01											PSO2			
CO1	CO1 3 2 1 3 3											3	1	
CO2	3	2	1										3	1
CO3	3	2	1										3	1
CO4	3	2	1										3	1
CO5	3	3	1										3	1
1 – Slight, 2 –	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

ASSESSMENT PATTERN - THEORY Test / Bloom's Remembering Understanding Analyzing Evaluating Applying Creating Total (K5) % Category* (K1) % (K2) % (K3) % (K4) % (K6) % % CAT1 35 50 100 15 CAT2 35 50 15 100 CAT3 15 35 50 100 ESE 10 40 50 100

AGILE METHODOLOGIES FOR SOFTWARE DEVELOPMENT (Common to AI & DS and AI & ML branches)

Pogramme& Branch	B.Tech. & Artificial Intelligence and Data Science	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	8	PE	3	0	0	3

Preamble This course introduces agile methodologies such as Scrum, Extreme Programming (XP), Lean, and Kanban.

Unit - I Agile Principles:

Understanding the Agile Values – Silver Bullet Methodology – Agile to the Rescue – A fractured perspective - Agile Manifesto and Purpose behind each practice – Agile Elephant – Where to start with a new Methodology – 12 principles of Agile Software – The Customer is always Right – Delivering the project – Communicating and Working Together – Project Execution – Constantly improving the project and the team – Agile Project.

Unit - II Scrum and Self-Organizing Teams:

Basic pattern for a Scrum Project – Rules of Scrum – Command-and-Control Team – Self-Organizing Teams - Scrum Values – Daily Scrum – Sprints, Planning and Retrospectives.

Unit - III Scrum Planning and Collective Commitment:

User stories – Conditions of Satisfaction – Story Points and Velocity – Burndown Charts – Planning and Running a Sprint – GASP – Scrum Values Revisited – Practices Do Work Without the Values – Company Culture Compatible with Scrum Values.

Unit - IV XP and Incremental Design:

Primary Practices of XP – The XP values help the team change their mindset – An effective mindset starts with the XP values – Understanding the XP principles – Feedback Loops – Code and Design – Make Code and Design Decisions at the Last Responsible Moments – Incremental Design and the Holistic XP.

Unit - V Lean, Kanban and Agile Coach:

Lean Thinking – Commitment, Options Thinking and Set Based Development – Create Heroes and Magical Thinking – Eliminate Waste – Value Stream Map – Deliver As Fast As Possible – WIP Area Chart – Pull Systems – The Principles of Kanban – Improving Your Process with Kanban – Measure and Manage Flow – Little's Law – Emergent Behavior with Kanban – The Agile Coach – Shuhari - The Principles of Coaching.

Lecture:45; Total 45

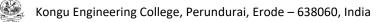
9

g

9

9

9


TEXT BOOK:

1. Andrew Stellman and Jennifer Greene, "Learning Agile: Understanding Scrum, XP, Lean and Kanban", First Edition, O'Reilly Media Inc, 2015. for Unit I, II, III, IV and V.

REFERENCES

1. Eric Brechner, "Agile Project Management with Kanban", First Edition, Microsoft Press, 2015.

2. Robert C. Martin, "Agile Software Development: Principles, Patterns, and Practices", Pearson Prentice Hall, 2011.

	RSE OUTCOMES: Impletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	outline the purpose of agile's core principles and apply for project development	Applying (K3)
CO2	utilize the scrum's emphasis on project management and self-organization	Applying (K3)
CO3	experiment with practices like user stories, story points, project velocity and visualization tools	Applying (K3)
CO4	model applications using XP practices and incremental design	Applying (K3)
CO5	make use of Lean thinking to empower a team, eliminate waste, and deliver software fast and learn how Kanban's practices help deliver great software by managing flow	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1 3 2 1 1 1 1 3 2													2	
CO2	3	2	1						1	1	1		3	2
CO3	3	2	1						1	1	1		3	2
CO4	3	2	1						1	1	1		2	2
CO5	3	2	1						1	1	1		3	2
1 – Slight, 2 –	- Slight, 2 - Moderate, 3 - Substantial, BT- Bloom's Taxonomy													

		ASSESSMENT	PATTERN - T	HEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1-50 marks	30	40	30				100
CAT 2-50 marks	10	50	40				100
CAT 3-50 marks	25	45	30				100
ESE -100 marks	20	40	40				100

OPEN ELECTIVE DEEP LEARNING FOR ENGINEERING APPLICATIONS

Programme& Branch	BE/BTech All branches except Al&ML and Al&DS	Sem.	Category	L	Т	Р	Credit
Prerequisites	Python Programming	4	OE	3	0	2	4

Preamble This course is designed to impart the skills required to build deep neural network architectures for various applications.

Unit - I Neural Networks

Introduction – Basic Architecture of Neural Networks – Training Neural Network with Backpropagation - Practical Issues in Neural Network Training - Power of Function Composition – Common Neural Architectures – Neural Architectures : Binary Classification Models – Multiclass Models

Unit - II Training Deep Neural Networks

Introduction – Backpropagation- Setup and Initialization Issues – Vanishing and Exploding Gradient Problems – Gradient Descent Strategies – Batch Normalization - Bias- Variance Trade-Off – Generalization Issues in Model Tuning and Evaluation

Unit - III Convolution Neural Networks

Introduction – Basic Structure of Convolutional Network – Training a Convolutional Network - Case Studies of Convolutional Architectures - Applications of Convolutional Networks

Unit - IV Python Frameworks for Deep Learning

Introduction to TensorFlow- working with keras – steps in deep Learning Models-load data-preprocess data-define the modelcompile the Model-fit the Model-Evaluate the Model-Prediction-Multilayer Perceptron-CNN in Tensor Flow-CNN in Keras

Unit - V Case Studies

Image classifier for MNIST data - CIFAR data - Malaria Diseases detection - Heart disease detection - Leaf disease detection – Covid Identification

List of Exercises / Experiments:

1.	Study the methods in Tensorflow / Keras / OpenCV library
2.	Create a multi-layer neural network and apply it to MNIST dataset.
3.	Create a Multi-layer neural network to perform binary classification
4.	Test the performance of multi-layer neural network with various activation and loss functions and tune the performance with hyper parameters
5.	Develop a hand written character recognition application using CNN
6.	Implement CNN for malaria disease detection
7.	Implement CNN for heart disease detection
8.	Develop a CNN model for Covid detection

TEXT BOOK:

1. 2.

	Charu C. Aggarwal, "Neural networks and deep learning", Springer, 2018. for Unit I, II, III.
<u>}</u> .	Navin Kumar Manaswi, "Deep Learning with Applications using Python", Apress, 2018. for Unit IV and V.

REFERENCES:

1.	Ian Goodfellow, YoshuaBengio, and Aaron Courvill, "Deep Learning", MIT Press, USA, 2016.
2.	Josh Patterson and Adam Gibson, "Deep Learning – A Practitioner's Approach", First Edition, O'Reilly Series, August 2017.
3.	Indra den Bakker, "Python Deep Learning Cookbook", First Edition, Packt Publishing, October 2017.

Lecture:45, Practical:30, Total:75

9

9

9

9

9

REFERENCES/MANUAL/SOFTWARE:

1. Operating System : Linux / Windows
2. Software: Python / Keras / Tensorflow / OpenCV
3. Laboratory Manual

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	use Artificial Neural Network .concepts to solve real world problems	Applying (K3)
CO2	solve simple real world problems using deep neural networks.	Applying (K3)
CO3	exemplify the concepts of CNN models and apply it for solving problems.	Applying (K3)
CO4	use python frameworks for implementing CNN	Applying (K3)
CO5	demonstrate the application of deep learning for real world problems	Applying (K3)
CO6	perform classifications using Multi-neural Networks	Applying (K3) Precision (S3)
C07	demonstrate the performance of Multi-neural Networks on different parameters	Applying (K3) Precision (S3)
CO8	implement CNN models related to various applications	Applying (K3) Precision (S3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2											
CO2	3	2	2											
CO3	3	2	2											
CO4	3	2	2											
CO5	3	2	2											
CO6	3	2	2	2	2									
C07	3	2	2	2	2									
CO8	3	2	2	2	2									
1 – Slight, 2 –	- Modera	ate, 3 –	Substar	ntial, BT	- Bloom	's Taxo	nomy							

		ASSESSMEN	T PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	30	50				100
CAT2	20	30	50				100
CAT3	20	30	50				100
ESE	20	30	50				100

COMPUTER VISION

Programme& Branch	BE/BTech All branches except Al&ML and Al&DS	Sem.	Category	L	Т	Р	Credit
Prerequisites	Python Programming	5	OE	3	0	2	4

Preamble	This course aims to provide a broad view on analysis and processing of images and video	
Unit - I	Introduction to computer vision	9
Rotations -	vision – Geometric Primitives and transformations: Primitives – 2D Transformations – 3D Transform 3D to 2D Projections – Lens distortions - Photometric image formation: Lighting – Reflectance and shar al camera : Sampling and aliasing – Color - Compression	
Unit - II	Image Processing	9
•	ators : – pixel transforms – color transforms – compositing and matting – histogram equalization lir iltering – examples of linear filtering – Band pass and steerable filters – Non linear filtering - Marphology Feature detection and matching	near filtering
driven anin	patches: feature detectors – feature descriptors – feature matching – feature tracking – Application: nation – Edges: Edge detection – edge linking – Application: Edge editing and enhancement – Lines ion – Hough transforms – Vanishing points.	
driven anin approximat	nation - Edges: Edge detection - edge linking - Application: Edge editing and enhancement - Lines	
driven anin approximat Unit - IV Active cont splitting – r	nation – Edges: Edge detection – edge linking – Application: Edge editing and enhancement – Lines ion – Hough transforms – Vanishing points.	Successive

Structure from motion: Triangulation – Two-frame structure from motion – factorization – bundle adjustment – constrained structure and motion. Dense motion estimation: Translational alignment – parametric motion – spline-based motion – optical flow – layered motion. Image stitching: motion models – global alignment – compositing.

List of Exercises / Experiments:

	•
1.	Perform edge editing and edge enhancement using edge detection mechanism.
2.	Experiment the line detection technique using mathematical approach
3	Implement a snake-based contour tracker
4	Implement the intelligent scissors (live-wire) interactive segmentation algorithm
5	Implement the region segmentation algorithm using K Means and mean shift
6	Develop a motion pictures using bundle adjuster
7	Create optical flow of motion from the continuous image frames
8	Experiment the video denoising technique in your own motion clips

Lecture:45, Practical:30, Total:75

TEXT BOOK:

1.	Richard Szeliski. "(Computer Vision: Al	gorithms and Applicatio	ns". Springer. 2010.	for Unit I, II, III, IV and V.

REFERENCES:

1.	D. L. Baggio et al., "Mastering OpenCV with Practical Computer Vision Projects", Packt Publishing, 2012.
2.	Jan Erik Solem, "Programming Computer Vision with Python: Tools and algorithms for analyzing images", O'Reilly Media, 2012.
3.	Rajalingappaa Shanmugamani, "Deep Learning for Computer Vision", Packt Publishing, 2018.

REFERENCES/MANUAL/SOFTWARE:

- 1. Operating System : Linux / Windows
- 2. Software: Python / Keras / Tensorflow / OpenCV
- 3. Laboratory Manual

	RE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)		
CO1	use geometric primitives to perform transformations.	Applying (K3)		
CO2	apply linear and non linear filters and perform image processing	Applying (K3)		
CO3	use various techniques in feature detection and matching with images	Applying (K3)		
CO4	apply the various levels of segmentation and interpret the results at various levels	Applying (K3)		
CO5	apply the motion techniques in video analytics to understand various transformations.	Applying (K3)		
CO6	experiment the basic feature detection and matching techniques	Applying (K3) Precision (S3)		
C07	implement image segmentation using the respective models	Applying (K3) Precision (S3)		
CO8	create videos using image motion techniques	Applying (K3) Precision (S3)		

					Маррі	ing of C	Os wit	h POs a	and PS	Os				
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	2	2											
CO2	3	2	2											
CO3	3	2	2											
CO4	3	2	2											
CO5	3	2	2											
CO6	3	2	2	2	3									
C07	3	2	2	2	3									
CO8	3	2	2	2	3									
– Slight, 2 -	- Moder	ate, 3 -	Substa	ntial, B	T- Bloor	n's Tax	onomy							

	ASSESSMENT PATTERN - THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	20	30	50				100				
CAT2	20	30	50				100				
CAT3	20	30	50				100				
ESE	10	40	50				100				

ARTIFICIAL INTELLIGENCE FOR DATA SCIENCE

Programme& Branch	BE/BTech All branches except Al&ML and Al&DS	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	6	OE	3	0	0	3

Preamble The course focuses on the methodology of how to translate a data driven business problem into an effective solution by using the powerful AI technologies according to the Data Science paradigm.

Unit - I The AI-Based Data Science Workflow and Data Preparation:

The AI-Based Data Science Workflow: Overview of Workflow - Key Steps of AI-Based Data Science Workflow - Project Organization. Data Preparation: Data Collection - Visual Data Exploration - Data Preprocessing.

Unit - II Data Analysis and Model Development:

Data Analysis: Translation of Data into Insight - Multivariate Data Analysis - Variable Selection - Feature Extraction - Data Visualization. Model Development: Advantages of mathematical models - Key features of a good model - Fighting Overfitting the Data - Model Generation

Unit - III Revolution of AI and ML, Prediction using Regression

Introduction to Machine Learning – Machine Learning vs Classical Programming – The ability to predict – Introduction to Regression – Regression Models – Linear Regression Model and Machine Learning – Evaluating Model Quality using different metrics

Unit - IV Non-Linear Models and Feature Engineering

Non-Linear Models – Feature Engineering - Insurance cost modeling problem – Reasons for Model Errors – Rectification of Model Errors – Overfitting and Underfitting – Deriving Data to Train the Model – Train/Test Split

Unit - V Classification Problems and Confusion Matrix

Introduction to Classification – Approach followed by Classification Algorithms – A Visual Representation of Logistic Regression – Evaluating Classification Model Accuracy – Classification with Logistic Regression –Confusion Matrix.

Lecture:45; Total: 45

9

9

9

9

9

TEXT BOOK:

		Arthur K. Kordon "Applying Data Science: How to Create Value with Artificial Intelligence". Springer Nature, Switzerland, 1st edition, 2020. for Unit I, II.	
1	0		

 Sujit Bhattacharyya, Subhrajit Bhattacharyya, "Practical Handbook of Machine Learning", Career Launcher Infrastructure Pvt Ltd and G.K. PublicationsPvt Ltd, First Edition, 2021. for Unit III, IV and V.

REFERENCES:

1. Avrim Blum, John Hopcroft and Ravindran Kannan. "Foundations of Data Science". Cambridge University Press, 1st edition, England, 2020.

2. Dr. LavikaGoel, "Artificial Intelligence: Concepts and Applications ". Wiley India PvtLtd., 1st edition, India, 2021.

Kongu Engineering College, Perundurai, Erode – 638060, India

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	adapt the data science workflow for finding solution to a given problem	Applying (K3)
CO2	perform data analysis and apply modeling techniques for a given problem	Applying (K3)
CO3	use regression models to solve problems	Applying (K3)
CO4	apply feature engineering techniques and estimate model errors	Applying (K3)
CO5	use the metrics and evaluate the performance of machine learning algorithms	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2											
CO2	3	2	2											
CO3	3	2	2											
CO4	3	2	2											
CO5	3	2	2											
1 – Slight, 2 –	Modera	ate, 3 –	Substar	ntial, BT	- Bloom	's Taxo	nomy							

	ASSESSMENT PATTERN - THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	5	60	35				100			
CAT2	10	20	70				100			
CAT3	10	20	70				100			
ESE	10	20	70				100			

BUSINESS ANALYTICS

Programme& Branch	BE/BTech All branches except Al&ML and Al&DS	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	8	OE	3	0	0	3

Preamble To impart knowledge on various analytical methods for achieving Business Intelligence

Unit – I Foundations of Business Analytics

Definition - Impacts and Challenges - Analytic Foundations - Descriptive, Predictive, and Prescriptive Analytics - Model Assumptions – Modern Business Analytics – Data for Business Analytics – Models in Business Analytics - Problem solving with analytics

Unit - II Competitive advantage, Statistical Qualification and Diagnostics

Developing competitive advantage: Identifying gaps – assessing business needs. Statistical Qualifications - Statistical Diagnostics - Statistical Review.

Unit - III Building blocks for Supporting analytics and Sampling

Data Collection – Methodology for Anecdotal sampling – Design of Samples- Design of Experiments – Data Software – Data Management. Sampling and Estimation: Statistical Sampling - Sampling Methods- Estimating Population parameters.

Unit - IV Data Visualization and Descriptive Statistics

Data Visualization: Tools and Software - Creating Charts in Microsoft Excel - Excel Data Visualization Tools - **Descriptive Statistics :** Metrics and Data Classification - Frequency Distributions - Cross-Tabulations - Descriptive Statistical Measures - Populations and Samples- Measures of Location - Using Measures of Location in Business Decisions - Measures of Dispersion - Excel Descriptive Statistics Tool.

Unit - V Statistical Inference and Regression models

Statistical Inference: Hypothesis Testing - Hypothesis-Testing Procedure- One-Sample Hypothesis Tests. **Trend lines and Regression Analysis:** Modeling Relationships and Trends in Data Simple Linear Regression - Finding the Best-Fitting Regression Line - Using Regression Models for Prediction

TEXT BOOKS:

Lecture: 45, Total: 45

9

9

9

9

9

1. James R. Evans. Business Analytics, 3rd edition, Pearson, 2020. for Unit I, IV and V.

2 Randy Bartlett. A Practitioner's Guide To Business Analytics, 1st edition, McGrawHill, 2013. for Unit II, III.

REFERENCES:

1. U Dinesh Kumar. Business Analytics: The Science of Data - Driven Decision Making, 1st edition, Wiley, 2017.

Kongu Engineering College, Perundurai, Erode – 638060, India

	E OUTCOMES: oletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1:	select the type of analytics needed for solving a problem	Applying (K3)
CO2:	assess the need and perform diagnostics for a business problem	Applying (K3)
CO3:	use the building blocks while performing analytics and apply sampling techniques	Applying (K3)
CO4:	use tools and methods for data Visualization and summarize data using descriptive Statistics	Applying (K3)
CO5:	interpret and making inference on results and use regression models for prediction	Applying (K3)

Mapping of COs with POs and PSOs														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2											
CO2	3	2	2											
CO3	3	2	2											
CO4	3	2	2											
CO5	3	2	2											
1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy														

		ASSESSMEN	IT PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1	20	45	35				100
CAT 2	20	45	35				100
CAT 3	20	45	35				100
ESE	20	45	35				100

HONOURS IN IOT

INTRODUCTION TO IOT

Programme & Branch	BTech. & Artificial Intelligence and Data Science	Sem.	Category	L	т	Р	Credit
Prerequisites	NIL			3	0	0	3

Preamble This course provides insights about the basics of networking, network security, precursor technologies of IoT and the emergence of IoT. It gives an overview of various connectivity technologies prevalent in the field. It also focuses on various challenges of IoT and real-time IoT case studies.

Unit - I Basics of Networking and Security

Basics of Networking: Introduction - Network Types - Layered Network Models – Addressing - TCP/IP Transport layer. Basics of Network Security: Introduction – Security - Network Confidentiality – Cryptography - Message Integrity and Authenticity - Key Management - Internet Security – Firewall.

Unit - II Predecessors and Emergence of IoT

Predecessors of IoT: Introduction - Wireless Sensor Networks - Machine-to-Machine Communications - Cyber Physical Systems. Emergence of IoT: Introduction - Evolution of IoT - Enabling IoT and the Complex Interdependence of Technologies - IoT Networking Components - Addressing Strategies in IoT. IoT Sensing: Introduction – Sensors - Sensor Characteristics - Sensorial Deviations - Sensing Types - Sensing Considerations

Unit - III IoT Actuators and Topologies:

IoT Actuators: Actuator Types - Actuator Characteristics. IoT Processing Topologies and Types: Data Format - Importance of Processing in IoT - Processing Topologies - IoT Device Design and Selection Considerations - Processing Offloading. IoT Connectivity Technologies

Unit - IV Cloud Computing and Fog Computing

Cloud Computing: Introduction – Virtualization - Cloud Models - Service-Level Agreement in Cloud Computing - Cloud Implementation - Sensor-Cloud: Sensors-as-a-Service. Fog Computing and Its Applications: Introduction - View of a Fog Computing Architecture - Fog Computing in IoT - Selected Applications of Fog Computing.

Unit - V IoT Paradigms and Case Studies

Paradigms, Challenges, and the Future: Evolution of New IoT Paradigms - Challenges Associated with IoT - Emerging Pillars of IoT. IoT case studies: Agricultural IoT - Vehicular IoT - Healthcare IoT

TEXT BOOK:

1.

Sudip Misra, Anandarup Mukherjee, Arijit Roy. "Introduction to IoT". Cambridge University Press, 1st edition, United Kingdom, 2021.

REFERENCES:

1		Cuno Pfister. "Getting Started with the Internet of Things: Connecting Sensors and Microcontrollers to the Cloud". Make Community, LLC, 1st edition, United States, 2011.	
2	2.	Vlasios Tsiatsis, Stamatis Karnouskos, Jan Holler, David Boyle, Catherine Mulligan. "The Internet of Things - Technologies and Applications for a New Age of Intelligence". Academic Press, 2nd Edition, United States, 2018.	

9

9

9

9

9

Lecture:45, Total: 45

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	recall the networking fundamentals and its security concepts	Understanding (K2)
CO2	emphasize the importance of IoT fundamentals and IoT sensors	Understanding (K2)
CO3	explain the IoT Actuators and IoT Processing Topologies	Understanding (K2)
CO4	investigate the Cloud computing and Fog computing technologies	Applying (K3)
CO5	examine the IoT Paradigms, Challenges and Case Studies	Applying (K3)

					Маррі	ng of C	Os with	POs a	nd PSO	S				
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	2	1	1									3	1
CO2	3	2	1	1									3	1
CO3	3	2	1	1									3	1
CO4	3	2	1	1									3	1
CO5	3	2	1	1									3	1
1 – Slight, 2 –	- Modera	ate, 3 –	Substar	ntial, BT	- Bloom	's Taxo	nomy							

		ASSESSMEN	T PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	45	55					100
CAT2	35	65					100
CAT3	20	55	25				100
ESE	20	55	25				100

IOT ARCHITECTURE AND ITS PROTOCOLS

Programme & Branch	BTech. & Artificial Intelligence and Data Science	Sem.	Category	L	т	Р	Credit
Prerequisites	Introduction to IOT			3	0	0	3

Preamble This course provides a high-level overview of IoT, IoT architecture and IoT applications. Further it discusses about DNA of IoT, Protocols for IoT and IoT communication technologies

Unit - I Introduction

Introduction: Genesis of IoT - IoT and Digitization - IoT Impact - Convergence of IT and OT - IoT Challenges. IoT Network Architecture and Design: Drivers Behind New Network Architectures - Comparing IoT Architectures - A Simplified IoT Architecture - The Core IoT Functional Stack - IoT Data Management and Compute Stack.

Unit - II IoT Applications and Four Pillars

Ubiquitous IoT Applications: A Panoramic View of IoT Applications - Important Vertical IoT Applications. Four Pillars of IoT: The Horizontal, Verticals, and Four Pillars - M2M: The Internet of Devices - RFID: The Internet of Objects - WSN: The Internet of Transducers - SCADA: The Internet of Controllers.

Unit - III DNA and Middleware of IoT

The DNA of IoT: DCM: Device, Connect, and Manage - Device: Things That Talk - Connect: Via Pervasive Networks - Manage: To Create New Business Value. Middleware and IoT: An Overview of Middleware - Communication Middleware for IoT - LBS and Surveillance Middleware

Unit - IV Protocol standards for IoT and WoT

Protocol Standardization for IoT: Web of Things versus Internet of Things - IoT Protocol Standardization Efforts - Unified Data Standards. Architecture Standardization for WoT: Platform Middleware for WoT - Unified Multitier WoT Architecture - WoT Portals and Business Intelligence - Challenges of IoT Information Security

Unit - V IoT Communication Technologies

IoT Communication Technologies: Introduction - Infrastructure Protocols - Discovery Protocols - Data Protocols - Identification Protocols - Device Management - Semantic Protocols. IoT Interoperability: Introduction – Standards – Frameworks.

TEXT BOOKS:

1.	David Hanes, Gonzalo Salgueiro,, Robert Barton, Jerome Henry. "IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things". Cisco Press, 1st Edition, USA, 2017. (Unit-1)
2.	Honbo Zhou, "The Internet of Things in the Cloud: A Middleware Perspective", CRC Press, 1st edition, New York, 2013. (Unit-2,3,4)

 Sudip Misra, Anandarup Mukherjee, Arijit Roy. "Introduction to IoT". Cambridge University Press, 1st edition, United Kingdom, 2021.(Unit-5)

REFERENCES:

1		Cuno Pfister. "Getting Started with the Internet of Things: Connecting Sensors and Microcontrollers to the Cloud". Make Community, LLC, 1st edition, United States, 2011.
2	•	Vlasios Tsiatsis, Stamatis Karnouskos, Jan Holler, David Boyle, Catherine Mulligan. "The Internet of Things - Technologies and Applications for a New Age of Intelligence". Academic Press, 2nd Edition, United States, 2018.

9

9

9

9

9

Lecture:45, Total: 45

Kongu Engineering College, Perundurai, Erode – 638060, India

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	explains the IoT Network Architecture and Design	Understanding (K2)
CO2	interpret the Pillars of IoT and IoT applications	Understanding (K2)
CO3	describe the technological aspects of the DCM layers of the IoT value chain and IoT middleware	Understanding (K2)
CO4	examine the possibility of creating a unified IoT middleware architecture based on existing protocol standard	Understanding (K2)
CO5	determine the requirements associated with IoT communication protocols in real-world solutions	Applying (K3)

					Mappi	ng of C	Os with	n POs a	nd PSC)s				
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	2	1	1									3	1
CO2	3	2	1	1									3	1
CO3	3	2	1	1									3	1
CO4	3	2	1	1									3	1
CO5	3	2	1	1									3	1
1 – Slight, 2 -	- Moder	ate, 3 –	Substa	ntial, BT	- Bloom	ı's Taxo	nomy							

		ASSESSMEN	T PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	45	55					100
CAT2	35	65					100
CAT3	20	55	25				100
ESE	20	55	25				100

COGNITIVE IOT

Programme & Branch	BTech. & Artificial Intelligence and Data Science	Sem.	Category	L	т	Р	Credit
Prerequisites				3	0	0	3

Preamble	To impart the knowledge of cognitive Internet of Things in various domains
Unit – I	Introduction
	to Cognitive Device - Cognitive Devices as Human Assistants - Cognitive Things in an Organization - Reuse zation -Intelligent Observations – Organization of Knowledge and Problem-Solving
Unit - II	Architecture and Interfaces
	Training, Maintenance, Security and Infrastructure - Machine-to-Machine Interfaces - Man-to-Machine Interfaces Human Communications.
Unit - III	Cognitive IoT Paradigm
	the Cognitive IoT Paradigm - Demystifying the Cognitive Computing Paradigm – Basics of Cloud computing - The oT: The Platforms, Technologies, and their Use cases - Delineating the Key Capabilities of Cognitive Cloud ants.
Unit - IV	
Machine Le	earning (ML) Algorithms for enabling the Cognitive Internet of Things (CIoT) - Unsupervised and Semi-Supervised earning Algorithms for Cognitive IoT Systems - Deep Learning Algorithms for Cognitive IoTSolutions - Compute Technologies and Tools for Vision-based Cognitive IoT Systems.
Unit - V	
	auage Processing (NLP) Methods for Cognitive IoT Systems - Design of a Secure Infrastructure for Cognitive IoT

Natural Language Processing (NLP) Methods for Cognitive IoT Systems - Design of a Secure Infrastructure for Cognitive IoT platforms and Applications - Revolutionizing Manufacturing using Cognitive IoT Technologies - Edge AI – Consumer, Social and Industry Use Cases

TEXT BOOKS:

Lecture:45, Total: 45

2. Pethuru Raj, Anupama C. Raman, Harihara Subramanian. Cognitive Internet Enabling Technologies, Platforms, and Use Cases. Auerbach Publications, 1 st edition, 2022 (Units III, IV, V)	of	Things

REFERENCES:

1 ArshdeepBahga and Vijay Madisetti, Cloud Computing: A Hands-on Approach, 1st edition, CreateSpace Independent Publishing Platform, 2013.

 Alessandro Bassi, Martin Bauer, Martin Fiedler, Thorsten Kramp, Rob van Kranenburg, Sebastian Lange and Stefan Meissner, Enabling things to talk –Designing IoT solutions with the IoT Architecture Reference Model, 1st edition ,Springer Open, 2016.

Kongu Engineering College, Perundurai, Erode – 638060, India

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1:	gain insights of cognitive devices and their applications	Understanding (K2)
CO2:	understand different types of interfaces and organizations in cognitive things	Understanding (K2)
CO3:	develop knowledge on significance of Cognitive IoT	Understanding (K2)
CO4:	implement different computational intelligent techniques for Cognitive IoT	Applying (K3)
CO5:	design cognitive IoT architectures using advanced methods	Understanding (K2)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	3	3		3								3	2
CO2	3	3	2		2								3	2
CO3	3	2	3		3								3	3
CO4	3	2	3		3								3	3
CO5	3	2	2		3								3	3
	3	2	2	ntial BT	3	i's Taxo	nomy						-	

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT 1	40	45	15				100						
CAT 2	40	45	15				100						
CAT 3	40	45	15				100						
ESE	40	45	15				100						

INDUSTRIAL AND MEDICAL IOT

Programme & Branch	BTech. & Artificial Intelligence and Data Science	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil			3	0	0	3

Preamble	This course deals with introduction to Industrial and medical IoT and how IoMT is used to for remote healthcare
Unit - I	Industrial IoT 9
	to IoT- key technologies- I-IoT- IoT Analytics and AI- Industrial process - CIM pyramid architecture -devices and IoT data Flow
Unit - II	Industrial Data Flow 9

Unit - II Industrial Data Flow

I-IoT dataflow-Industrial protocols-Supervisory control and Data Acquisition-Discovering OPC-Understanding I-IoT Edge-Implementing I-IoT dataflow-OPC UA Simulation server-

Unit - III Implementing I-IoT

Developing Industrial I-IoT and Architecture-Implementing custom Industrial IoT Platform -Implementing a cloud Industrial IoT solution with AWS

Unit - IV Internet of Medical things

Introduction-IoMT- IoMT Medical Devices- Remote Patient monitoring- privacy of IoT -based health records - remote Health Care: wearable smart devices - Communication technologies

Unit - V **IoMT** Applications

Smart Assistance for Elderly Individuals -Parkinson's Disease handling using IoMT- Machine Learning with IoMT

TEXT BOOK:

Lecture:45, Total: 45

9

9

9

1. Giacomo Veneri, Antonio Capsso, "Hands-On Industrial Internet of Things: Create a powerful Industrial IoT infrastructure using Industry 4.0, Packt Publishing Ltd, 1st edition, 2018 2. D.Jude Hemanth, J.Anitha, George A. Tsihrintzis "Internet of Medical things- remote healthcare systems and applications", Springer, 1st edition, 2021.

REFERENCES:

1.

Ismail Butun, "Industrial IoT Challenges, Design Principles, Applications, and Security", Springer Publications, 1st edition, 2020.

Kongu Engineering College, Perundurai, Erode – 638060, India

	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)				
CO1	understand the basic concepts of Industrial IoT	Understanding (K2)				
CO2	explain the principles of Industrial Data Flow	Understanding (K2)				
CO3	explore different aspects of implementing I-IoT	Understanding (K2)				
CO4	implement the concepts of Internet of Medical things	Applying(K3)				
CO5	demonstrate various IoMT Applications	Applying (K3)				

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2		2								3	2
CO2	3	2	2		2								3	2
CO3	3	2	2		2								3	2
CO4	3	2	2		3								3	2
CO5	3	2	2		3								3	2
1 – Sliaht. 2 -	- Moder	ate 3-	Substa	ntial BT	- Bloom	i's Taxo	nomv							

– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy 1

ASSESSMENT PATTERN - THEORY

		ACCECCINE					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50	50					100
CAT2	20	50	30				100
CAT3	20	50	30				100
ESE	20	50	30				100

IOT AND MACHINE LEARNING

Programme & Branch	BTech. & Artificial Intelligence and Data Science	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil			3	0	0	3

Preamble	To impart knowledge on various mechanisms of integrating IoT devices and Machine Learning algorithms									
Unit – I	Introduction	9								
	Al and data science in IoT - Data Access and Distributed Processing for IoT :txt, csv,xlsx,json,HDF5,SQL, e Computing on IoT Devices - Distributed Machine Learning - Machine Learning Accelerator - Machine L nization.									
Unit - II	Machine Learning for IoT	9								
Prediction u	sing linear regression - Logistic regression for classification - Ensemble learning - Improving machine learnin									
Prediction u	sing linear regression - Logistic regression for classification - Ensemble learning - Improving machine learnin Deep Learning for IoT	g model 9								
Unit - III Introduction		9								
Unit - III Introduction	Deep Learning for IoT to Deep learning - Multilayered perceptrons for regression and classification - Convolutional neural networks	9 5 -								
Unit - III Introduction Recurrent no Unit - IV Deterministi	Deep Learning for IoT to Deep learning - Multilayered perceptrons for regression and classification - Convolutional neural networks eural networks – Autoencoders	9								

Generative Models for IoT - Distributed AI for IoT - AI for the Industrial IoT - Processing different types of data - Computing in the cloud

TEXT BOOKS:

1. Hantao Huang, Hao Yu. Compact and Fast Machine Learning Accelerator for IoT Devices. Springer, 1st edition, 2019.

2. Amita Kapoor. Hands-On Artificial Intelligence for IoT. Packt Publishing, 1st edition, 2019.

REFERENCES:

1

Shrirang Ambaji Kulkarni, Varadaraj P.Gurupur, Steven L.Fernandes. Introduction to IoT with machine learning and image processing using Raspberry pi. CRC Press, 1st edition, 2020.

Lecture:45, Total: 45

Kongu Engineering College, Perundurai, Erode – 638060, India

	SE OUTCOMES: apletion of the course, the students will be able to	BT Mapped (Highest Level)				
CO1:	describe the basic concepts of IoT and Machine learning	Understanding (K2)				
CO2:	implement machine learning algorithms for IoT applications	Applying (K3)				
CO3:	describe various Deep Learning algorithms for IoT	Understanding (K2)				
CO4:	apply Genetic Algorithms for IoT Optimization	Applying (K3)				
CO5:	understand advanced models for IoT	Understanding (K2)				

Mapping of COs with POs and PSOs														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	3	3		3								3	2
CO2	3	3	2		2								3	2
CO3	3	2	3		3								3	3
CO4	3	2	3		3								3	3
CO5	3	2	2		3								3	3

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT 1	40	50	10				100							
CAT 2	40	45	15				100							
CAT 3	40	50	10				100							
ESE	40	45	15				100							

PRIVACY AND SECURITY IN IOT

Programme & Branch	BTech. & Artificial Intelligence and Data Science	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil			3	0	0	3

Preamble This syllabus explores issues of privacy and security with regard to the IoT environments, as well as technical solutions to help address them.

Unit - I Attacks and Protection Mechanisms in IoT Devices

Introduction-physical attacks in IoT Devices-Profiling Attacks-Real World Attacks-count measures- Remote Attestation- Types of Remote Attestation-remote Attestation-Human Aspects of IoT Security and privacy

Unit - II Defence Mechanisms Against Attacks

Introduction - Data Exfiltration- Types-Attack Mechanisms, and Defence Technique- Types of Data Exfiltration-Data Exfiltration Attack Techniques-Data Exfiltration Threats-Counter Data Exfiltration-Mechanisms to Defend Against Physical Data Exfiltration-Threat Scenario-Scenario Execution and Analysis-Discussion

Unit - III Protocol for UAV Remote Identification

Introduction- Drone Security - Drone Security in UTM-Security Attacks on Drones -Security Attacks from Drones-Drone Safety-Drone Detection and Classification-Interdiction Technologies-UAV Remote Identification-Authentication Protocol for Remote Identification-Secure Communication Protocol-Security Analysis- Formal Verification

Unit - IV Cyber-Security IoT Infrastructure

Cyber-Attacks on IoT Infrastructure – Eavesdropping - Solutions-Network Activity Analysis Solutions-Active Reconnaissance-Solutions-Volumetric Attack -Solutions - Masquerading Attack -Solutions- Access Attack – Solutions-Active Crypto Attack -Solutions - Data Exfiltration- Solutions-Blocking Attack- Solutions-Sleep Deprivation Attack - Solutions Trigger Action Attack-Solutions- Network Behavioral Model of IoTs -Enforcing MUD Profile to Network

Unit - V Security and privacy - Case studies

Securing Contemporary eHealth Architectures- Techniques and Methods: Introduction -

eHealth- Fog or Edge Computing for eHealth- Cloud Computing for eHealth -Applications of IoT in eHealth- eHealth Threat Landscape-eHealth Threat Model- eHealth IoT Vulnerabilities and Threats-Real-world Attacks-Counter measures. Security and Privacy of Smart Homes- Issues and Solutions :Smart Homes' Security and Privacy-Smart Home Technologies-Privacy Techniques and Mechanisms

TEXT BOOK:

Lecture:45, Total: 45

9

g

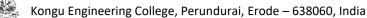
9

9

9

1. Ali Ismail Awad, Jemal Abawajy, "Security and Privacy in the Internet of Things -Architectures, Techniques, and Applications", Wiley-IEEE Press, 1st edition ,2018.

2. Fei Hu, Security and Privacy in Internet of Things (IoTs): Models, Algorithms, and Implementations, CRC Press; 1st edition, 2016.


REFERENCES:

1. Zaigham Mahmood, Security, Privacy and Trust in the IoT Environment", Springer ,1st edition2019.

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	describe Attacks and Protection Mechanisms in IoT Devices	Understanding (K2)
CO2	explain Defence Mechanisms Against Attacks	Understanding (K2)
CO3	summarize Protocol for UAV Remote Identification	Understanding (K2)
CO4	design Cyber-Security IoT Infrastructure	Understanding (K2)
CO5	implement Security and privacy mechanisms	Applying (K3)

					Mappi	ng of C	Os with	POs a	nd PSO)s				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2										3	2
CO2	3	2	2										3	2
CO3	3	2	2										3	2
CO4	3	2	2										3	2
CO5	3	2	2										3	2
1 – Slight, 2 –	Modera	ate, 3 –	Substar	ntial, BT	- Bloom	i's Taxo	nomy							

		ASSESSMENT	PATTERN - T	HEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50	50					100
CAT2	50	50					100
CAT3	20	50	30				100
ESE	20	50	30				100

HONOURS IN BLOCKCHAIN

INTRODUCTION TO BLOCKCHAIN

Programme & Branch	BTech. & Artificial Intelligence and Data Science	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Nil			3	0	0	3

Preamble This course provides technical fundamentals of Blockchain, and hands on development aspects of Blockchain applications

Unit - I Introduction

Overviw of blockchain – Centralized vs Decentralized Systems – Layers of Blockchain – Importance – Blockchain Uses and Use Cases – Laying the Blockchain Foundation .

Unit - II Working of Blockchain

Game Theory – Prisoner"s Dilemma – Byzantine Generals" Problem – The Blockchain – Merkle Trees – Properties of Blockchain Solutions – Blockchain Transactions – Distributed consensus mechanisms – Blockchain applications – Scaling blockchain.

Unit - III Bitcoin and Altcoins

History of Bitcoin – bitcoin is volatile – key and address- transactions – blocks – bitcoin network : types of nodes – Network discovery wallets – Altcoins: Introducing Altcoins – alternative currency – acquiring cryptocurrency.

Unit - IV Ethereum and Introduction to Hyperledger

Bitcoin to Ethereum – Ethereum Blockchain – Ethereum Smart Contracts – Ethereum Virtual Machine and Code Execution – Ethereum Ecosystem – Swarm – Whisper – DApp – Development components – Hyperledger: Introduction – Projects. Fabric – Sawtooth lake – Iroha – Blockchain explorer – Fabric chaintool – Fabric SDK Py-Corda

Unit - V Blockchain Application Development

Decentralized Applications – Blockchain Application Development – Interacting with Bitcoin Blockchain – Sending Transactions – Creating a Smart Contract – Executing Smart Contract Functions – Public vs. Private Blockchains – Decentralized Application Architecture – Building an Ethereum DApp.

TEXT BOOK:

Lecture:45, Total:45

9

9

9

9

9

- 1. Bikramaditya Singhal, Gautam Dhameja, Priyansu Sekhar Panda, "Beginning Blockchain: A Beginner"s Guide to Building Blockchain Solutions", APress, 1st Edition, 2018. (Units 1,2,4,5)
- 2. Brenn Hill, Samanyu Chopra, Paul Valencourt, "Blockchain Quick Reference: A guide to exploring decentralized blockchain application development", Packt publishing, 1st Edition, 2018.(Unit 3)

REFERENCES:

1. Elad Elrom,"The Blockchain Developer: A Practical Guide for Designing, Implementing, Publishing, Testing, and Securing Distributed Blockchain-based Projects", Apress, 2019

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	explore the history, background, and theoretical aspects of blockchain and apply in real case scenarios	Applying (K3)
CO2	demonstrate core components and working of blockchain	Applying (K3)
CO3	outline Bitcoin"s technical concepts and apply it for real case scenarios	Applying (K3)
CO4	adapt Ethereum blockchain for different use cases	Applying (K3)
CO5	demonstrate the end-to-end development of a decentralized application	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1										2	3
CO2	3	2	1										2	3
CO3	3	2	1										2	3
CO4	3	2	1										2	3
CO5	3	2	1										2	3

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

		ASSESSMENT	PATTERN - T	HEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	30	50				100
CAT2	20	30	50				100
CAT3	20	30	50				100
ESE	10	40	50				100

CRYPTOGRAPY

Programme & Branch	BTech. & Artificial Intelligence and Data Science	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil			3	0	0	3

Preamble This course describes cryptographic algorithms deployed for offering confidentiality, integrity, authentication and non repudiation.

Unit - I Introduction

Computer Security Concepts – The OSI Security Architecture – Security Attacks – services and mechanisms – Model for Network Security – Classical encryption techniques: symmetric cipher model – substitution techniques – transportation techniques - steganography

Unit - II Block ciphers and Data Encryption standard

Block cipher Structure – data encryption standard – the strength of DES - DES Example – block cipher design principles – Finite fields: Groups – rings – fields - Advanced encryption standard – Block cipher operation.

Unit - III Asymmetric cipher

Public key cryptography and RSA – Other Public key cryptosystems – Diffie-Hellman Key Exchange – Elgamal Cryptographic System – Elliptic Curve Arithmetic – Elliptic Curve Cryptography

Unit - IV Cryptographic Data Integrity Algorithms

Cryptographic hash functions – Message authentication codes: Message Authentication Requirements – Message Authentication Functions – Requirements for Message Authentication Codes – Security of MACs – MACs Based on Hash Functions: HMAC – Digital signatures: Elgamal Digital Signature Scheme – Schnorr Digital Signature Scheme – NIST Digital Signature Algorithm – Elliptic Curve Digital Signature Algorithm.

Unit - V Network and Internet Security

Network access control and cloud security – Transport level security – Wireless network security – Electronic mail security – IP security – Intruder – Firewalls

Lecture:45, Total:45

9

9

9

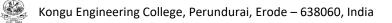
9


9

TEXT BOOK:

1. William Stallings, "Cryptography and Network Security", 7th Edition, Pearson Education, 2017. (Unit 1-5)

REFERENCES:


1. Christof Paar and Jan Pelzl, "Understanding Cryptography: A Textbook for Students and Practitioners", Springer, 2009

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	interpret the basic security architecture and classical symmetric key techniques in cryptography	Applying (K3)
CO2	apply various block ciphers and data encryption standars to solve the problems	Applying (K3)
CO3	make use of various public key cryptography techniques for solving real time problems	Applying (K3)
CO4	explore hashing and digital signature techniques	Applying (K3)
CO5	determine the appropriate security protocols and standards for the given application	Applying (K3)

					Маррі	ng of C	Os with	n POs a	nd PSO	s				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1										2	3
CO2	3	2	1										2	3
CO3	3	2	1										2	3
CO4	3	2	1										2	3
CO5	3	2	1										2	3
1 – Slight, 2 –	Modera	ate, 3 –	Substan	itial, BT	- Bloom	's Taxoi	nomy							

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	20	30	50				100						
CAT2	20	30	50				100						
CAT3	20	30	50				100						
ESE	10	40	50				100						

BITCOIN TECHNOLOGY

Programme & Branch	BTech. & Artificial Intelligence and Data Science	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil			3	0	0	3

Preamble The course focuses on the basics of Bitcoin technology and various technologies involved. Unit - I Introduction: 9

Introduction to Bitcoin and How Bitcoin works: Transactions, Blocks, Mining and the Blockchain – Bitcoin Transactions – Constructing a Transaction – Bitcoin Mining – Mining transactions in Blocks – Bitcoin Core: The Reference Implementation – Bitcoin Development Environment – Compiling Bitcoin Core from the Source Code – Running a Bitcoin Core Node – Bitcoin Core API.

Unit - II Keys, Addresses, Wallets and Transactions:

Keys, Addresses: Introduction – Bitcoin Addresses – Implementing Keys and Addresses in Python – Advanced Keys and Addresses - Wallets: Wallet Technology Overview – Wallet Technology Details - Transactions: Transactions in Detail – Transaction Outputs and Inputs – Transaction Scripts and Script Language – Digital Signatures (ECDSA) – Bitcoin Addresses, Balances and other Abstractions.

Unit - III Advanced Transactions and Bitcoin Network:

Advanced Transactions and Scripting: Multisignature – Pay-to-Script-Hash(P2SH) – Data Recording Output (RETURN) – Timelocks –Scripts with Flow Control - The Bitcoin Network: Peer-to-Peer Network Architecture – Nodes Types and Roles – The Extended Bitcoin and Relay Networks – Network Discovery – Full Nodes – Exchanging "Inventory" – SPV Nodes – Bloom Filters – How SPV Nodes Use Bloom Filters – SPV Nodes and Privacy.

Unit - IV Blockchain and Consensus:

The Blockchain: Structure of a Block – Block Header and Identifiers – The Genesis Block – Linking Blocks in the Blockchain – Merkle Trees - Merkle Trees and SPV – Bitcoin's Test Blockchains - Mining and Consensus: Decentralized Consensus – Independent Verification of Transactions – Mining Nodes – Aggregating Transactions into Blocks – Constructing the Block Header and validating the Block - Assembling and Selecting Chains of Blocks – Mining and the Hashing Race – Consensus Attacks – Changing the Rules.

Unit - V Applications:

Bitcoin Security: Security principles – User Security Best Practices – Blockchain Applications: Building Blocks(Primitives) – Applications from Building Blocks – Colored Coins – Counterparty – Payment Channels and State Channels – Routed Payment Channels (Lightning Network).

TEXT BOOK:

Lecture:45, Total: 45

9

9

9

9

1. Andreas M. Antonopoulos, "Mastering Bitcoin Programming the Open Blockchain", Second Edition, O'Reilly Media, Inc., 2017. (Units I to V)

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	understand the Bitcoin basics and use it for creating transactions.	Applying (K3)
CO2	apply the concepts of Keys, Addresses and Wallet for security applications.	Applying (K3)
CO3	develop scripts to provide security in a Bitcoin network.	Applying (K3)
CO4	explore and apply Blockchain technology and Consensus .	Applying (K3)
CO5	apply Blockchain to provide security for real time applications.	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1										3	1
CO2	3	2	1										3	1
CO3	3	2	1										3	1
CO4	3	2	1										3	1
CO5	3	2	1										3	1
CO5	-	2	1 Substan		Bloom								3	1

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	15	35	50				100						
CAT2	15	35	50				100						
CAT3	15	35	50				100						
ESE	10	40	50				100						

BLOCKCHAIN AND CRYPTOCURRENCY TECHNOLOGIES

Programme & Branch	BTech. & Artificial Intelligence and Data Science	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil			3	0	0	3

Preamble To understand blockchain concepts, working functionality and its main application cryptocurrency. which is new global money for the Internet age.

Unit - I Introduction

Distributed Database - Two General Problem - Byzantine General problem and Fault Tolerance - Hadoop Distributed File System - Distributed Hash Table - ASIC resistance - Turing Complete - Hash function - Digital Signature - ECDSA, Memory Hard Algorithm - Zero Knowledge Proof

Unit - II Blockchain

Blockchain Network - Mining Mechanism - Distributed Consensus - Merkle Patricia Tree - Gas Limit - Transactions and Fee -Anonymity – Reward - Chain Policy - Life of Blockchain application - Soft & Hard Fork - Private and Public blockchain

Unit - III Distributed Consensus

Nakamoto consensus - Proof of Work - Proof of Stake - Proof of Burn - Difficulty Level - Sybil Attack - Energy utilization and alternate-Real time Case Study - Play with Go-ethereum

Unit - IV Cryptocurrency

History - Distributed Ledger - Bitcoin protocols - Mining strategy and rewards - Ethereum – Construction – DAO - Smart Contract – GHOST – Vulnerability – Attacks – Sidechain–Namecoin – Real time Case Study - Smart Contract Construction

Unit - V Cryptocurrency Regulation

Stakeholders - Roots of Bitcoin - Legal Aspects - Cryptocurrency Exchange - Black Market and Global Economy - Hashcash implementation - Toy application using Blockchain - Mining puzzles

TEXT BOOK:

Lecture:45, Total: 45

9

9

9

9

9

1. Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller and Steven Goldfeder, Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction, Princeton University Press (July 19, 2016)

COURSE On comple			S: course, the s	studen	ts will	be abl	e to							BT Ma (Highest			
CO1	To kno	ow ab	out distribute	ed data	abase									Applyin	g (K3)		
CO2	То ехр	olore b	olockchain c	oncep	t									Applyin	g (K3)		
CO3	To und	dersta	ind the conc	epts o	f conse	ensus							Applying (K3)				
CO4	To lea	rn the	basics of cr	yptocu	urrency	у							Applying (K3)				
CO5	To util	ize cr	yptocurrency	techr	nologie	es in re	al tim	e scena	rios					Applyin	g (K3)		
					r	Марріі	ng of	COs wi	th PO	s and PSC)s						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO	1	PSO2		
CO1	3	2	1										3		1		
CO2	3	2	1										3		1		
CO3	3	2	1										3		1		
CO4	3	2	1										3		1		
CO5	3	2	1										3		1		
1 – Slight,	2 – N	lodera	ate, 3 – Subs	tantia	I, BT- I	Bloom	's Tax	onomy									
						ASSE	SSME	NT PAT	TERN	I - THEOR	Y						
Test / B Categ		s R	ememberin (K1) %	gU		tandin :) %	g	Applyin (K3) %		nalyzing (%	K4) E	valuatin (K5) %					Total %
CA	Г1		15		3	5		50							100		
CA	Г2		15		3	5		50							100		
CA	ГЗ		15		3	5		50							100		

50

* ±3% may be varied (CAT 1,2,3 – 50 marks & ESE – 100 marks)

40

10

ESE

100

BLOCKCHAIN APPLICATION DEVELOPMENT THROUGH SMART CONTRACTS

Programme & Branch	BTech. & Artificial Intelligence and Data Science	Sem.	Category	L	т	Р	Credit
Prerequisites	Introduction to Blockchain			3	0	0	3

Preamble This course enables the students to develop the applications through smart contracts

Unit - I Introduction to Ethereum Blockchain

History of Blockchain-Characteristic of a Blockchain: Decentralized Networks-Consensus Protocols-Transaction Processing-Transaction Finality. **Ethereum Fundamentals**: Ether and Gas-Accounts-Contracts-Blocks and Transactions. **Decentralized Applications:** Tokens- Supply Chain -Permanent Records -Evaluating Blockchain for Application

Unit - II Smart contract development

Ethereum Clients-Installing MetaMask-Installing Node.js-Installing the Truffle Suite- First Smart Contract Development. **Deploying and Interacting with Contracts:** Contract Compilation and Deployment-Setting Up the UI-Deploying to Ganache-Deploying to Goerli with Parity-Deploying to Rinkeby with Infura.

Unit – III Application Development

The Fundraiser Application-Application Overview - Initializing Fundraisers - Editing the Beneficiary-Making Donations-Withdrawing Funds- Fallback Functions. **FundraiserFactory :** Migrating FundraiserFactory -Creating Fundraisers - Viewing Available Fundraisers-Setting Up the UI

Unit – IV Interacting Smart Contracts through Web

Web3: Frontend-Web3-Blockchain- Web3 Methods. Connecting the UI to Our Contracts: React -Truffle. Larger DApp : Starting with React Truffle Box-React and Material UI-Fundraiser UI

Unit – V Securing Smart Contracts

Smart Contract Security- Types of Smart Contract Vulnerabilities: Unprotected Function - Transaction Ordering Dependence -Integer Overflow and Underflow – Reentrancy- Block Gas Limit - Timestamp Dependence. **Contract for an External Audit preparation:** External Auditing - Auditing Companies -Solidified

TEXT BOOK

Lecture:45, Total:45

9

9

9

9

9

1. Solorio, K., Kanna, R., & Hoover, D. H. Hands-on Smart Contract Development with Solidity and Ethereum: From Fundamentals to Deployment. O'Reilly Media, 2019. Unit -1,2,3,4,5

REFERENCE BOOK

1. Zand, M., Wu, X. B., & Morris, M. A. Hands-On Smart Contract Development with Hyperledger Fabric V2. O'Reilly Media, 2021.

	RSE OUTCOMES: Impletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	explore smart contract fundamentals, ethereum protocol, solidity programming language, ethereum virtual machine.	Applying (K3)
CO2	develop smart contract using solidity and Interacting with Contracts	Applying (K3)
CO3	deploy and test the smart contracts using Truffle framework tools	Applying (K3)
CO4	make use of web3 to connect the smart contract to an application	Applying (K3)
CO5	demonstrate smart contract security with free online resourse for smart contract security auditing	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	2	1										2	3
CO2	3	2	1										2	3
CO3	3	2	1										2	3
CO4	3	2	1										2	3
CO5	3	2	1										2	3
1 – Slight, 2 –	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	20	30	50				100						
CAT2	20	30	50				100						
CAT3	20	30	50				100						
ESE	10	40	50				100						

PRACTICAL ASPECTS OF BLOCKCHAIN

Programme & Branch	BTech. & Artificial Intelligence and Data Science	Sem.	Category	L	т	Р	Credi t
Prerequisites	Introduction to Blockchain			3	0	0	3

Preamble	This course intended the students to study the basics of Blockchain technology. During this course learner will explore various aspects of Blockchain technology like application in various domains.						
Unit - I	Blockchain Basics and Nodes						
	n to Cryptoeconomics and blockchain- Overloading Cryptocurrencies- Blockchain P2P Network. Blockchain Blockchain Node- Bitcoin Core API	Node:					
Unit - II	Creating Blockchain, Bitcoin Wallets and Transactions	9					

Unit – III Ethereum Wallets, NEO Blockchain and Smart Contracts

Ganache Simulated Full-Node Client- IntelliJ IDEA Plugin for Solidity- Truffle Suite- Compile with Remix- Private Ethereum Blockchain with Geth- Connect the Mist Ethereum Wallet to Private Network- MetaMask. **NEO Blockchain and Smart Contracts** : NEO's High-Level Blockchain Architecture- Setting Up Local Environment- Create a Local NEO Private Testnet- Publish a Smart Contract on a Private Testnet

Unit – IV Hyperledger

Hyperledger Overview- Hyperledger Fabric- Installing Hyperledger Fabric and Composer- Hyperledger Composer- "Hello, World" with Playground- Deploying on a Local Hyperledger Fabric Network- Running "hello-network" Network- Error Troubleshooting

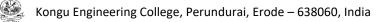
Unit – V Build Dapps with Angular

Dapp-Angular- Smart Contract transfer -Link with the Ethereum Network- MetaMask connection-Test Dapp Functionality

Lecture:45, Total: 45

9

9


9

TEXT BOOK

1. Elrom, E. (2019). The Blockchain Developer: A Practical Guide for Designing. Implementing, Publishing, Testing, and Securing Distributed Blockchain-based Projects. Unit -1,2,3,4,5

REFERENCE BOOK

1. Krishnan, S., Balas, V. E., Golden, J., Robinson, Y. H., Balaji, S., & Kumar, R. (Eds.). (2020). Handbook of research on blockchain technology. Academic Press.

COURSE OUTCOMES: On completion of the course, the students will be able to					
CO1	make use of the structure and mechanism of blockchain to address the basic security.	Applying (K3)			
CO2	deploy Blockchain and create a Bitcoin Wallets and Transactions.	Applying (K3)			
CO3	create Ethereum Wallets, NEO Blockchain and publish a Smart Contract on a Private Testnet	Applying (K3)			
CO4	solve the business network issues using Hyperledger Composer.	Applying (K3)			
CO5	build Dapps with Angular and link with the Ethereum Network	Applying (K3)			

Mapping of COs with POs and PSOs														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	2	2								2	3
CO2	3	2	1	2	2								2	3
CO3	3	2	1	2	2								2	3
CO4	3	2	1	2	2								2	3
CO5	3	2	1	2	2								2	3
1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy														

ASSESSMENT PATTERN - THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %					
CAT1	20	30	50								
CAT2	20	30	50								
CAT3	20	30	50								
ESE	10	40	50								

Total

100