

VISION

To be a centre of excellence for development and dissemination of knowledge in Applied Sciences, Technology, Engineering and Management for the Nation and beyond.

MISSION

We are committed to value based Education, Research and Consultancy in Engineering and Management and to bring out technically competent, ethically strong and quality professionals to keep our Nation ahead in the competitive knowledge intensive world.

QUALITY POLICY

We are committed to

- Providing value based quality education for the development of students as competent and responsible citizens.
- Contributing to the nation and beyond through research and development
- Continuously improving our services

DEPARTMENT OF MECHATRONICS ENIGNEERING

VISION

To be a centre of excellence for development and dissemination of knowledge in Mechatronics Engineering for the Nation and beyond.

MISSION

Department of Mechatronics Engineering is committed to:

- MS1: Disseminate knowledge through effective teaching-learning process to develop quality Mechatronics professionals to meet the global challenges
- MS2: Foster continuous learning and research by nurturing innovation and providing state-of-the art facilities
- MS3: Collaborate with industries and R&D organizations to promote training and consultancy services

2020 REGULATIONS

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

Graduates of M.E. MECHATRONICS ENGINEERING will

- PEO1: Design and develop Mechatronics solutions by integrating mechanical engineering, electronic control and robot system concepts
- PEO2: Exhibit research aptitude and life-long learning in the working environment
- PEO3: Solve real world needs using robots and troubleshoot industrial problems

Kongu Engineering College, Perundurai, Erode – 638060, India

MS\PEO	PEO1	PEO2	PEO3
MS1	3	2	3
MS2	3	3	2
MS3	2	2	3

MAPPING OF MISSION STATEMENTS (MS) WITH PEOS

1 – Slight, 2 – Moderate, 3 – Substantial

PROGRAM OUTCOMES (POs)

Engineering Post Graduates will be able to:

- **PO1** Independently carry out research /investigation and development work to solve practical problems
- PO2 Write and present a substantial technical report/document
- **PO3** Identify, formulate and analyze Mechatronics engineering problems and provide solutions using modern engineering and IT tools

PEO\PO	PO1	PO2	PO3
PEO1	3	2	3
PEO2	3	3	3
PEO3	2	2	3

MAPPING OF PEOs WITH POs

1 – Slight, 2 – Moderate, 3 – Substantial

	CURRICULUM BREAKDOWN STRUCTURE										
Summary of Credit Distribution											
Semester Total Curriculum Conter											
	I	II	III	IV	credits	prog	ram)				
FC(MATHS)	55										
PC	67										
PE 3 6 3 6 18 25						25.00					
EC		2	9	9	20	27.	78				
Semester wise Total	22	23	12	15	72	100	.00				
							1				
			Categor	у			Abbreviation				
Lecture hours per	week						L				
Tutorial hours per week							Т				
Practical, Project v week	Р										
Credits							С				

	CATEGORISATION OF COURSES											
		FOUNDATION COURSE	ES (FC)								
S. No.	Course Code	Course Name	L	Т	Ρ	С	Sem	Domain/ Stream*				
1.	20AMT12	Advanced Mathematics	3	1	0	4	1	GE				
	Total Credits to be earned					4						
		PROFESSIONAL CORE	(PC)									
S. No.	Course Code	Course Name	L	т	Ρ	С	Sem	Domain/ Stream				
1.	20MMT11 /20MMT12	Bridge Course Electronics (or) Bridge Course Mechanical	3	1	0	4	1	AE				
2.	20MMT13	Control System Engineering	3	0	0	3	1	AE				
3.	20MMT14	Sensors and IoT	3	0	0	3	1	AE				
4.	20GET11	Introduction to Research	2	1	0	3	1	GE				
5.	20MML11	Control System Engineering Laboratory	0	0	2	1	1	AE				
6.	20MML12	Sensors and IoT Laboratory	0	0	2	1	1	AE				
7.	20MMC21	Fluid power system	3	0	2	4	2	PS				
8.	20MMC22	Robot kinematics and dynamics	3	0	2	4	2	AS				
9.	20MMT21	Embedded systems and control	3	0	0	3	2	AE				
10.	20MMT22	Integrated Automation Controllers	3	0	0	3	2	AE				
11.	20MML21	Embedded systems and PLC laboratory	0	0	2	1	2	AE				
		Total Credits to be earned				30						
		PROFESSIONAL ELECTIV	'E (P	E)								
S. No.	Course Code	Course Name	L	Т	Р	С	Sem	Domain/ Stream				
		SEMESTER I										
1.	20MME01	Computer Numerically Controlled Machines	3	0	0	3	1	AE				
2.	20MME02	Industrial Drives	3	0	0	3	1	AE				
3.	20MME03	Metrology and Computer Aided Inspection	3	0	0	3	1	PD				
		SEMESTER II										
		GROUP 1										
4.	20MME04	MEMS Design	3	0	0	3	2	PD				
5.	20MME05	Virtual Instrumentation	3	0	2	4	2	AE				
6.	20MME06	Factory Automation and CIM	3	0	0	3	2	AE				
		GROUP 2										
7.	20MME07	Process Control Engineering	3	0	0	3	2	AE				
8.	20MME08	Applied Finite Element Method	3	0	0	3	2	PD				
9.	20MME09	Composite materials	3	0	0	3	2	PD				
		SEMESRTER III										
10.	20MME10	Machine Tool Control and Condition Monitoring	3	0	0	3	3	PS				
11.	20MME11	Industrial Data Communication	3	0	0	3	3	AE				
12.	20MME12	Artificial Intelligence and Machine Learning	3	0	0	3	3	AS				
		SEMESTER IV										
		GROUP 1										
13.	20MME13	Machine Vision System	3	0	2	4	4	AE				

Kongu Engineering College, Perundurai, Erode – 638060, India

14.	20MME14	Product Design and Development	3	0	0	3	4	PD
15.	20MME15	Drone technology	3	0	0	3	4	AS
		GROUP 2						
16.	20MME16	Autonomous Mobile robotics	3	0	2	4	4	AS
17.	20MME17	Additive Manufacturing	3	0	0	3	4	PS
18.	20GET13	Innovation and business model development	3	0	0	3	4	GE
		EMPLOYABILITY ENHANCEMENT	COL	IRSE	S (F	C)		
			000		. <u> </u>	0		
S. No.	Course Code	Course Name	L	T	P	C	Sem	Domain/ Stream
S. No. 1.	Course Code 20MMP21	Course Name	L 0	T	P 4	C 2	Sem	Domain/ Stream
S. No. 1. 2.	Course Code 20MMP21 20MMP31	Course Name Innovative Project Project Work Phase I	L 0 0	T 0 0	P 4 18	C 2 9	Sem 2 3	Domain/ Stream NA NA
S. No. 1. 2. 3.	Course Code 20MMP21 20MMP31 20MMP41	Course Name Innovative Project Project Work Phase I Project Work Phase II	L 0 0	T 0 0 0	P 4 18 18	C 2 9 9	Sem 2 3 4	Domain/ Stream NA NA NA

* Domain/Stream Abbreviations: AE- Automation Engineering, , AS – Autonomous Systems, PD – Product Design, PS – Production System, GE – General Engineering

KEC R2020: SCHEDULING OF COURSES – M.E. (MECHATRONICS ENGINEERING)

Semes ter			1	`heory/ Theory cum	Practical / Practica	al			Interns hip & Projects	Online/ VACs	Special Courses	Credita
	1	2	3	4	5	6	7	8	9	10	11	Creats
Ι	20AMT12 Advanced Mathematics (PC-3-1-0-4)	20MMT11/ 20MMT12 Bridge Course Electronics (or) Bridge Course Mechanical (PC-3-1-0-4)	20GET11 Introduction to Research (PC-2-1-0-3)	20MMT13 Control System Engineering (PC-3-0-0-3)	20MMT14 Sensors and IoT (PC-3-0-0-3)	Elective-I (Professional) (PC-3-0-0-3)	20MML11 Sensors and IoT laboratory (PC-0-0-3-1)	20MML12 Control System Engineering Laboratory (PC-0-0-3-1)				22
П	20MMC21 Fluid Power System (PC-3-0-2-4)	20MMC22 Robot kinematics and dynamics (PC-3-0-2-4)	20MMT21 Embedded systems and control (PC-3-0-0-3)	20MMT22 Integrated Automation Controllers (PC-3-0-0-3)	Elective-II (Professional) (PC-3-0-0-3)	Elective-III (Professional) (PC-3-0-0-3)	20MML21 Embedded Systems and PLC Laboratory (PC-0-0-3-1)		20MM P21 Innovat ive Project			23
III	Elective-IV (Professional) (PC-3-0-0-3)								20MM P31 Project Work – Phase I			12
IV	Elective-V (Professional) (PC-3-0-0-3)	Elective-VI (Professional) (PC-3-0-0-3)							20MM P41 Project Work – Phase II			15

Total Credits: 72

MAPPING OF COURSE WITH PROGRAM OUTCOMES

Sem.	Course Code	Course Title	PO1	PO2	PO3
I	20MMT11/ 20MMT12	Bridge Course Electronics (or) Bridge Course Mechanical	✓	~	~
I	20AMT12	Advanced Mathematics for Mechatronics	\checkmark		
I	20GET11	Introduction to Research	✓	~	~
I	20MMT13	Control System Engineering	✓	✓	~
I	20MMT14	Sensors and IoT	✓	\checkmark	✓
I	20MML11	Control System Engineering Laboratory	✓	\checkmark	✓
I	20MML12	Sensors and IoT Laboratory	\checkmark	\checkmark	\checkmark
Ш	20MMC21	Fluid power system	✓	\checkmark	✓
П	20MMC22	Robot kinematics and dynamics	\checkmark	\checkmark	\checkmark
П	20MMT21	Embedded systems and control	✓	\checkmark	✓
Ш	20MMT22	Integrated Automation Controllers	✓	\checkmark	✓
П	20MML21	Embedded systems and PLC laboratory	✓	~	~
I	20MME01	Computer Numerically Controlled Machines	✓	✓	✓
I	20MME02	Industrial Drives	✓	✓	✓
I	20MME03	Metrology and Computer Aided Inspection	✓	✓	✓
II	20MME04	MEMS Design	✓	✓	✓
II	20MME05	Virtual Instrumentation	✓	✓	✓
II	20MME06	Factory Automation and CIM	✓	✓	✓
11	20MME07	Process Control Engineering	✓	✓	✓
11	20MME08	Applied Finite Element Method	✓	✓	✓
11	20MME09	Composite materials	✓	✓	✓
	20MME10	Machine Tool Control and Condition Monitoring	✓	✓	✓
	20MME11	Industrial Data Communication	✓	✓	✓
	20MME12	Artificial Intelligence and Machine Learning	✓	✓	✓
IV	20MME13	Machine Vision System	✓	✓	✓
IV	20MME14	Product Design and Development	✓	✓	✓
IV	20MME15	Drone technology	✓	✓	✓
IV	20MME16	Autonomous Mobile robotics	✓	✓	✓
IV	20MME17	Additive Manufacturing	✓	✓	✓
IV	20GET13	Innovation and Business Model Development	✓	\checkmark	\checkmark

M.E. DEGREE IN MECHATRONICS ENGINEERING

CURRICULUM

(For the candidates admitted from academic year 2020-21 onwards)

SEMESTER – I

Course	Course Title	Но	urs / W	eek	Credit	Max	imum]	Marks	CDS
Code	Course The	L	Т	Р	Crean	CA	ESE	Total	CDS
	Theory								
20AMT12	Advanced Mathematics	3	1	2	4	50	50	100	FC
20GET11	Introduction to Research	2	1	0	3	50	50	100	PC
20MMT11/ 20MMT12	Bridge Course Electronics (or) Bridge Course Mechanical	3	1	0	4	50	50	100	PC
20MMT13	Control System Engineering	3	0	0	3	50	50	100	PC
20MMT14	Sensors and IoT	3	0	0	3	50	50	100	PC
	Professional Elective 1	3	0	0	3	50	50	100	PC
	Practical								
20MML11	Control System Engineering Laboratory	0	0	2	1	100	0	100	PC
20MML12	Sensors and IoT Laboratory	0	0	2	1	100	0	100	PC
	Total				22				

CA – Continuous Assessment, ESE – End Semester Examination, CBS – Curriculum Breakdown Structure

M.E. DEGREE IN MECHATRONICS ENGINEERING

CURRICULUM

(For the candidates admitted from academic year 2020-21 onwards)

SEMESTER – II

Course	Course Title	Но	urs / W	eek	Credit	Max	imum]	Marks	CDC
Code	Course The	L	Т	Р	Crean	CA	ESE	Total	СВЗ
	Theory								
20MMC21	Fluid Power System	3	0	2	4	50	50	100	PC
20MMC22	Robot Kinematics and Dynamics	3	0	2	4	50	50	100	PC
20MMT21	Embedded Systems and Control	3	0	0	3	50	50	100	PC
20MMT22	Integrated Automation Controllers	3	0	0	3	50	50	100	PC
	Professional Elective – II	3	0	0	3	50	50	100	PE
	Professional Elective – III	3	0	0	3	50	50	100	PE
	Practical / Project								
20MML21	Embedded systems and PLC laboratory	0	0	3	1	100	0	100	PC
20MMP21	Innovative Project	0	0	4	2	100	0	100	EC
	Total				23				

CA – Continuous Assessment, ESE – End Semester Examination, CBS – Curriculum Breakdown Structure

M.E. DEGREE IN MECHATRONICS ENGINEERING

CURRICULUM

(For the candidates admitted from academic year 2020-21 onwards)

SEMESTER – III

	Course Title	Hou	ırs / W	eek	Cradit	Max	imum]	mum Marks ESE Total 0 100 50 100	CBS	
	Course fille	L	Т	Р	Crean	CA	ESE	Total	CBS	
	Practical / Project									
	Professional Elective – IV/ Online Course				3	100	0	100	PE	
20MMP31	Internship cum Project work				9	50	50	100	EC	
	Total				12					

CA – Continuous Assessment, ESE – End Semester Examination, CBS – Curriculum Breakdown Structure

M.E. DEGREE IN MECHATRONICS ENGINEERING

CURRICULUM

(For the candidates admitted from academic year 2020-21 onwards)

SEMESTER – IV

Course	Course Title	Но	urs / W	eek	Credit	Max	CBS		
Code	Course The	L	Т	Р		CA	ESE	Total	CBS
	Theory/Theory with Practical								
	Professional Elective V	3	0	0	3	50	50	100	PE
	Professional Elective VI	3	0	0	3	50	50	100	PE
	Practical								
20MMP41	Project work Phase II		0	18	9	50	50	100	EC
	Total				15				

CA – Continuous Assessment, ESE – End Semester Examination, CBS – Curriculum Breakdown Structure

Total Credits: 72

	LIST OF PROFESSIONAL ELECTIVE	S				
Course		Но	urs/W	eek		CDC
Code	Course Title	L	Т	Р	Credit	CBS
	SEMESTER I					
20MME01	Computer Numerically Controlled Machines	3	0	0	3	PE
20MME02	Industrial Drives	3	0	0	3	PE
20MME03	Metrology and Computer Aided Inspection	3	0	0	3	PE
	SEMESTER II					
	GROUP 1					
20MME04	MEMS Design	3	0	0	3	PE
20MME05	Virtual Instrumentation	3	0	2	4	PE
20MME06	Factory Automation and CIM	3	0	0	3	PE
	GROUP 2					
20MME07	Process Control Engineering	3	0	0	3	PE
20MME08	Applied Finite Element Method	3	0	0	3	PE
20MME09	Composite materials	3	0	0	3	PE
	SEMESRTER III					
20MME10	Machine Tool Control and Condition Monitoring	3	0	0	3	PE
20MME11	Industrial Data Communication	3	0	0	3	PE
20MME12	Artificial Intelligence and Machine Learning	3	0	0	3	PE
	SEMESTER IV					
	GROUP 1					
20MME13	Machine Vision System	3	0	2	4	PE
20MME14	Product Design and Development	3	0	0	3	PE
20MME15	Drone technology	3	0	0	3	PE
	GROUP 2					
20MME16	Autonomous Mobile robotics	3	0	2	4	PE
20MME17	Additive Manufacturing	3	0	0	3	PE
20GET13	Innovation and Business Model Development	3	0	0	3	PE

20AMT12 ADVANCED MATHEMATICS

Programme & Branch	M.E. Mechatronics	Sem.	Category	L	т	Р	Credit
Prerequisites	Calculus, Matrices and Laplace Transform	1	FC	3	1	0	4

Pre	This course will help the students to develop knowledge to identify and formulate problems in mechanical engineering using mathematical tools such as probability, calculus of variations and solve ordinary and partial differential equations by employing transform and numerical techniques.						
Uni	t - I	Random Variables and Probability Distributions:	9+3				
Rar fund dist	ndom va ctions – ributions	ariable – Probability mass function – Probability density function – Moments – Moment gene Discrete distributions – Binomial distribution – Poisson distribution – Geometric distribution – Contir s - Uniform distribution – Exponential distribution – Normal distribution.	rating 1uous				
Uni	t - II	Calculus Of Variations:	9+3				
Cor – F bou	Concept of variation and its properties – Euler's equation – Functional dependant on first and higher order derivatives - Functionals dependant on functions of several independent variables – Variational problems with moving boundaries – Isoperimetric problems - Direct methods : Ritz and Kantorovich methods.						
Uni	t - III	Transform Methods: Laplace transform methods:	9+3				
Solu met	ution of t hods: \$	one-dimensional wave equation - Solution of one-dimensional heat equation – Fourier trans Solution of Diffusion equation – Solution of one-dimensional wave equation – Solution of Laplace equ	f orm ation.				
Uni	t - IV	Numerical solution of Ordinary differential equations:	9+3				
Rur mul orth	nge - Ku tistep m logonal	utta methods for system of IVPs – Numerical stability of Runge - Kutta method – Adams - Bash nethod – Shooting method –Solution of BVP : Finite difference method – Collocation method collocation method.	nforth 1 and				
Uni	t - V	Numerical Solution of Partial Differential Equations:	9+3				
Solu of E	Solution of one dimensional wave equation – Solution of diffusion equation – Explicit and implicit methods – Solution of Elliptic equation: Solution of Laplace equation – Solution of Poisson equation.						
REI	FEREN	Total:45, Tutorial:15, Tota	al: 60				
1	Richard India Pv	I Johnson, Miller & Freund's, "Probability and Statistics for Engineers", Seventh Edition, Prentice H vt. Ltd., New Delhi, 2007.	all of				
2	Gupta, A.S., "Calculus of Variations with Applications", Prentice Hall of India Pvt. Ltd., New Delhi, 1997.						

3. Sankara Rao K, "Introduction to Partial Differential Equations", PHI Learning Pvt. Ltd, Third edition, 2011.

Smith, G. D., "Numerical Solutions of Partial Differential Equations: Finite Difference Methods", Clarendon Press, 4. 1985.

Curtis F. Gerald, Patrick O.Wheatley, "Applied Numerical Analysis", Seventh Edition, Pearson Education India, 5. 2009.

ACUDAE OUTAONEA

On co	ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	handle engineering problems involving discrete and continuous random variables.	Applying (K3)
CO2	solve problems involving functional that occur in various branches of engineering disciplines.	Applying (K3)
CO3	apply Laplace and Fourier transforms solve to initial value, initial-boundary value and boundary value problems in Partial Differential Equations.	Applying (K3)
CO4	solve ordinary differential equations using finite difference and finite element methods.	Applying (K3)

M.E. – Mechatronics Engineering, Regulation, Curriculum and Syllabus – R2020

.

DTM

CO5	solve elliptic partial differential equations by using finite difference methods.	Applying (K3)
000		· · · · · · · · · · · · · · · · · · ·

oping of COs with POs an	d PSOs	
PO1	PO2	PO3
1		
1		
3		
3		
3		
	POI PO1 1 1 3 3 3 3 3	Pping of COs with POs and PSOsPO1PO21111333333

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

	ASSESSMENT PATTERN - THEORY						
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	20	70	-	-	-	100
CAT2	10	20	70	-	-	-	100
CAT3	10	20	70	-	-	-	100
ESE	10	20	70	-	-	-	100

20GET11 INTRODUCTION TO RESEARCH

(Common to Engineering and Technology Branches)

Programme & Branch	M.E. Mechatronics	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	1	PC	2	1	0	3

Preamble This course will familiarize the fundamental concepts/techniques adopted in research, problem formulation and patenting. Also will disseminate the process involved in collection, consolidation of published literature and rewriting them in a presentable form using latest tools.

Unit - I Concept of Research

Meaning and Significance of Research: Skills, Habits and Attitudes for Research - Time Management - Status of Research in India. Why, How and What a Research is? - Types and Process of Research - Outcome of Research - Sources of Research Problem - Characteristics of a Good Research Problem - Errors in Selecting a Research Problem - Importance of Keywords - Literature Collection – Analysis - Citation Study - Gap Analysis - Problem Formulation Techniques.

Unit - II Research Methods and Journals

Interdisciplinary Research - Need for Experimental Investigations - Data Collection Methods - Appropriate Choice of Algorithms / Methodologies / Methods - Measurement and Result Analysis - Investigation of Solutions for Research Problem - Interpretation - Research Limitations. Journals in Science/Engineering - Indexing and Impact factor of Journals - Citations - h Index - i10 Index - Journal Policies - How to Read a Published Paper - Ethical issues Related to Publishing - Plagiarism and Self-Plagiarism.

Unit - III Paper Writing and Research Tools

Types of Research Papers - Original Article/Review Paper/Short Communication/Case Study - When and Where to Publish? - Journal Selection Methods. Layout of a Research Paper - Guidelines for Submitting the Research Paper - Review Process - Addressing Reviewer Comments. Use of tools / Techniques for Research - Hands on Training related to Reference Management Software - EndNote, Software for Paper Formatting like LaTeX/MS Office. Introduction to Origin, SPSS, ANOVA etc., Software for detection of Plagiarism.

Unit - IV Effective Technical Thesis Writing/Presentation

How to Write a Report - Language and Style - Format of Project Report - Use of Quotations - Method of Transcription Special Elements: Title Page - Abstract - Table of Contents - Headings and Sub-Headings - Footnotes - Tables and Figures - Appendix - Bibliography etc. - Different Reference Formats. Presentation using PPTs.

Unit - V Nature of Intellectual Property

Patents - Designs - Trade and Copyright. Process of Patenting and Development: Technological research innovation - patenting - development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents.

REFERENCES:

- 1 DePoy, Elizabeth, and Laura N. Gitlin, "Introduction to Research-E-Book: Understanding and Applying Multiple Strategies", Elsevier Health Sciences, 2015.
- 2 Walliman, Nicholas, "Research Methods: The basics", Routledge, 2017.
- 3. Bettig Ronald V., "Copyrighting culture: The political economy of intellectual property", Routledge, 2018.

COURSE OUTCOMES:

On completion of the course, the students will be able to (
CO1	list the various stages in research and categorize the quality of journals.	Analyzing (K4)	
CO2	formulate a research problem from published literature/journal papers	Evaluating (K5)	
CO3	write, present a journal paper/ project report in proper format	Creating (K6)	
CO4	select suitable journal and submit a research paper.	Applying (K3)	
CO5	compile a research report and the presentation	Applying (K3)	

M.E. – Mechatronics Engineering, Regulation, Curriculum and Syllabus – R2020

9

9

9

9

9

Total:45

DT Mannad

Mapping of COs with POs and PSOs				
COs/POs	PO1	PO2	PO3	
CO1	3	2	1	
CO2	3	2	3	
CO3	3	3	1	
CO4	3	2	1	

ASSESSMENT PATTERN

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1-50 marks		30	40	30			100
CAT 2-50 marks		30	40	30			100
CAT 3-50 marks			30	40	30		100
ESE -100 marks		30	40	30			100

20MMT11 BRIDGE COURSE ELECTRONICS

Programme & Branch	M.E. Mechatronics Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	1	PC	3	1	0	4

Preamble This course provides the knowledge on basic working principle and characteristics of electronic devices, electrical drives and special machines.

Unit - I Basic Electronics

Intrinsic and Extrinsic Semiconductors – Junction diode Characteristics and its applications – Special purpose diodes: Zener diode – Tunnel diode – Schottky diode – Varactor diode - LED, Photodiode of PN Junction Diode – Zener Effect – Zener Diode and its Characteristics – Half wave and Full wave Rectifiers – Voltage Regulators.

Unit - II Bipolar Junction Transistor

CE, CB, CC Configurations and Characteristics – Transistor as an amplifier – JFET – MOSFET – UJT – Need for biasing and biasing methods - Single stage transistor amplifier - Cascading amplifiers – Oscillators.

Unit - III Operational Amplifiers and its Applications

Operational amplifier (op-amp) – DC and AC performance Characteristics - Arithmetic operations using op-amp -Applications: Instrumentation amplifier, Sample and Hold circuits, Clippers, Clampers, Peak detectors - Op-amp as comparator - Schmitt trigger - Applications of comparator - Waveform generator: square, sine, triangular waves -Multivibrators - Voltage regulators.

Unit - IV Power Electronics

Operating mechanism, characteristics and applications of power diodes, SCR, Diac, Triac, SCS, GTO, LASCR – two transistor model of SCR Controlled Rectifiers: single phase – three phase Rectifying circuits and filters - Regulated power supply – SMPS – UPS.

Unit - V Electrical Drives and Special Machines

Basic Elements – Types of Electric Drives – Factors influence the choice of electrical drives – Loading conditions and classes of duty. Constructional details and operation of single phase induction motors – Shaded pole induction motor – Linear reluctance motor – Hysteresis Motor – Servo Motors.

REFERENCES:

1	Sedha R.S., "Applied Electronics", S. Chand & Co., Revised Edition, 2008.
2	Sergio Franco, "Design with operational amplifiers and analog integrated circuits", 4 th Edition, McGraw Higher Ed, 2016.
3	Muhamed H. Rashid, "Power Electronics Circuits, Devices and Applications", 4 th Edition, PHI, 2013.
4	Dubey G.K., "Fundamentals of Electrical Drives", 2 nd Edition, Narosa Publishing House, New Delhi, 2015.
5	Janardanan E.G., "Special Electrical Machines", PHL Learning Pvt. Ltd., Delhi, 2014.

COURSE OUTCOMES: On completion of the course, the students will be able to					
CO1	explain the basics of semiconductor devices and its relevant characteristics	Analyzing (K4)			
CO2	identify the characteristics of BJT and OP-AMPs	Evaluating (K5)			
CO3	analyze the performance of OP-AMP and its applications	Creating (K6)			
CO4	infer the power electronic devices	Applying (K3)			
CO5	explain the basics of electrical drives and special machines	Applying (K3)			

M.E. – Mechatronics Engineering, Regulation, Curriculum and Syllabus – R2020

9

9

9

9

9

Lecture:45

Mapping of COs with POs and PSOs							
COs/POs	P01	PO2	PO3				
CO1	2	1	2				
CO2		1	1				
CO3	2	1	2				
CO4		1	1				
CO5	2	1	2				
– Slight, 2 – Moderate, 3 – Substantial, I	BT- Bloom's Taxonomy		1				

ASSESSMENT PATTERN

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1-50 marks	20	30	50				100
CAT 2-50 marks	20	20	60				100
CAT 3-50 marks	20	20	60				100
ESE -100 marks	20	20	60				100

20MMT12 BRIDGE COURSE MECHANICAL

Programme & Branch	M.E. Mechatronics Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	1	PC	3	1	0	4

Preamble	This course provides the knowledge of basic Mechanical Engineering concepts, mechanisms, design machine elements and machine tools characteristics.	ı of
Unit - I	Mechanisms	9
Kinematics Inversions	 a – Links, pairs and mechanisms - 4 Bar mechanism – Crank rocker - Slider crank mechanisms – Determination of Velocity and acceleration of simple mechanisms. 	3 –
Unit - II	Friction	9
Types of Bearings- Close coile	friction – simple contact friction- belt and rope drives - Ratio of tensions- friction in screw and nute pivot, collar, journal bearings and rolling element - Plate and disc clutches –basics of brakes, Spring ed and Leaf spring.	s – s –
Unit - III	Operational Amplifiers and its Applications	9

Unit - III **Operational Amplifiers and its Applications**

Operational amplifier (op-amp) - DC and AC performance Characteristics - Arithmetic operations using op-amp -Applications: Instrumentation amplifier, Sample and Hold circuits, Clippers, Clampers, Peak detectors - Op-amp as comparator - Schmitt trigger - Applications of comparator - Waveform generator: square, sine, triangular waves Multivibrators - Voltage regulators.

Unit - IV **Power Electronics**

Operating mechanism, characteristics and applications of power diodes, SCR, Diac, Triac, SCS, GTO, LASCR - two transistor model of SCR Controlled Rectifiers: single phase - three phase Rectifying circuits and filters - Regulated power supply – SMPS – UPS.

Unit - V **Electrical Drives and Special Machines**

Basic Elements – Types of Electric Drives – Factors influence the choice of electrical drives – Loading conditions and classes of duty. Constructional details and operation of single phase induction motors - Shaded pole induction motor - Linear reluctance motor - Hysteresis Motor - Servo Motors.

REFERENCES:

1	Sedha R.S., "Applied Electronics", S. Chand & Co., Revised Edition, 2008.
2	Sergio Franco, "Design with operational amplifiers and analog integrated circuits", 4 th Edition, McGraw Higher Ed, 2016.
3	Muhamed H. Rashid, "Power Electronics Circuits, Devices and Applications", 4 th Edition, PHI, 2013.
4	Dubey G.K., "Fundamentals of Electrical Drives", 2 nd Edition, Narosa Publishing House, New Delhi, 2015.
5	Janardanan E.G., "Special Electrical Machines", PHL Learning Pvt. Ltd., Delhi, 2014.

COURSE OUTCOMES: On completion of the course, the students will be able to					
CO1	explain the basics of semiconductor devices and its relevant characteristics	Analyzing (K4)			
CO2	identify the characteristics of BJT and OP-AMPs	Evaluating (K5)			
CO3	analyze the performance of OP-AMP and its applications	Creating (K6)			
CO4	infer the power electronic devices	Applying (K3)			
CO5	explain the basics of electrical drives and special machines	Applying (K3)			

M.E. – Mechatronics Engineering, Regulation, Curriculum and Syllabus – R2020

9

9

Lecture:45,

Mapping of COs with POs and PSOs							
COs/POs	PO1	PO2	PO3				
CO1	3	3	1				
CO2	3		2				
CO3	1	3	3				
CO4	1		3				
CO5	1	2	3				
1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy							

ASSESSMENT PATTERN

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1-50 marks	10	10	50	30			100
CAT 2-50 marks	10	10	50	30			100
CAT 3-50 marks	10	30	60				100
ESE -100 marks	10	10	50	30			100

20MMT13 CONTROL SYSTEM ENGINEERING

Programme & Branch	M.E. Mechatronics Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	1	PC	3	1	0	3

Preamble This course imparts knowledge on the components and their representation of control systems, time response, frequency response, stability of the systems and state variable analysis.

UNIT – I System Modeling:

Control System: Terminology and Basic Structure-Feed forward and Feedback control theory– Mathematical modeling: Electrical systems, Mechanical systems, Electro Mechanical systems – Electrical analogous for mechanical systems – Block diagram reduction techniques, Signal flow graph -Mason's gain formula.

UNIT – II Time Response Analysis:

Test signals – Time response of I and II order systems – Time domain specifications – Steady state error – Generalized error series – Concepts of stability – Routh Hurwitz criterion – Root locus.

UNIT – III Frequency Response Analysis:

Frequency domain specifications – Correlation between time and frequency domain specifications – Bode plot, Polar plot – Nyquist stability criterion.

UNIT – IV Compensators Design:

Realization of basic compensators – Cascade compensation in time domain and frequency domain –Design of Lag, Lead and Lag, Lead compensator using root locus - PD, PI,PID control systems

UNIT – V State Space Analysis:

Continuous and discrete time state variable theory – State space formulation – State space representation using physical variables, phase variables and canonical variables - Conversion of state variable models to transfer functions-Conversion of transfer functions to state variable models – Solution of state equations – Controllability - Observability.

REFERENCES:

Lecture:45

9

9

9

9

9

1 0)gata K.,	"Modern	Control	Engineering'	', 5"	Edition,	Pearson	Education/	PHI,	New Delhi,	2015.
-----	-----------	---------	---------	--------------	-------	----------	---------	------------	------	------------	-------

2 Nise Norman S., "Control Systems Engineering", 7th Edition, Wiley Publishers, 2018.

3 Nagrath I.J. and Gopal M., "Control Systems Engineering", 6th Edition, New Age International Publishers, New Delhi, 2018.

COURSE OUTCOMES: On completion of the course, the students will be able to					
CO1	develop the mathematical model of an Electrical, Mechanical and Electro mechanical systems	Applying (K3)			
CO2	interpret the time response analysis of the system	Applying (K3)			
CO3	interpret the frequency response and stability of the system	Applying (K3)			
CO4	demonstrate the compensation techniques for stabilizing the system	Applying (K3)			
CO5	identify continuous and discrete time state variable theory	Applying (K3)			

Мар	oping of COs with POs an	d PSOs	
COs/POs	PO1	PO2	PO3
CO1	3	2	1
CO2	3	2	1
CO3	3	2	1
CO4	3	2	1
CO5	3	2	1
– Slight, 2 – Moderate, 3 – Substantial, E	BT- Bloom's Taxonomy		

ASSESSMENT PATTERN

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1-50 marks	10	15	75				100
CAT 2-50 marks	10	15	75				100
CAT 3-50 marks	10	15	75				100
ESE -100 marks	10	10	80				100

20MMT14 SENSORS AND IoT

Programme & Branch	M.E. Mechatronics Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	1	PC	3	0	0	3

Preamble This course inculcate the basic knowledge about sensors used to measure various physical quantities like resistance, pressure, flow, level, humidity and understanding the fundamentals of IoT and domain specific deployments.

UNIT – I Introduction to Measurement

Units and Standards - Instrument classification - Characteristics of Instruments - Static and dynamic. **Non-electrical Transducers:** Classification of transducers - Temperature Measurement: Filled system thermometer - Bimetallic thermometer - Pressure Transducers: Elastic transducers - Bourdon gauge - Bellows - Diaphragm. Vacuum: McLeod gauge, thermal conductivity gauge - Ionization gauge.

UNIT – II Electrical Transducers

Turbine flow meter, Electromagnetic flow meter - Hot wire anemometer - Ultrasonic Meter - Resistive transducers - Potentiometer - RTD - Thermistor - Thermocouple - Radiation Pyrometer.

UNIT – III Force, Displacement, Magnetic and Digital Sensors

Strain gauges - Force measurement - Inductive transducer - LVDT - RVDT - Capacitive transducer – Piezo-electric transducer – Magnetic Sensor- Types –Magneto resistive – Hall effect – Current sensor - Digital displacement transducers. Digital transducers: Encoders – Fiber optic sensors – Film sensors - Introduction to MEMS and Nano sensors.

UNIT – IV Internet of Things

Introduction- Physical design of IoT – Logical design of IoT- IoT enabling technologies- IoT levels and deployment templates – IoT and M2M – IoT system Management with NETCONF-YANG

UNIT – V IoT Design platform

IoT design methodology – steps – IoT physical devices- arduino and raspberry pi – interfacing and Programming with sensor applications. **Domain specific IoTs:** Home automation- smart cities –environment – energy – retail – Logistics – agriculture – Industry- health and life style.

REFERENCES:

Total:45

9

9

9

9

9

- Patranabis D., "Sensor and Actuators", Second Edition, Prentice Hall of India, 2005.
 Doebelin E.O., "Measurement Systems Applications and Design", 6th Edition, Tata McGraw Hill, New Delhi, 2017.
- Bahga, A. and Madisetti, V. "Internet of Things: A Hands-On Approach" First edition, Orient Blackswan Private Limited, New Delhi, 2015.

COUI On co	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	demonstrate the basic concepts of measurement system and categorize the different type of non-electrical transducers	Understanding (K2)
CO2	correlate the different type of electrical transducers for various applications	Understanding (K2)
CO3	infer the role of sensors in evolving technologies	Understanding (K2)
CO4	demonstrate the basic concepts of Internet of Things and deployment platforms	Understanding (K2)
CO5	develop a sensor based IoT applications and infer the different domain specific IoTs.	Applying (K3)

Mappin	g of COs with POs a	nd PSOs	
COs/POs	PO1	PO2	PO3
CO1	1	2	3
CO2	2	2	3
CO3	2	3	3
CO4	2	2	2
CO5	3	3	3
1 – Slight, 2 – Moderate, 3 – Substantial, BT-E	Bloom's Taxonomy		

ASSESSMENT PATTERN

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1-50 marks	20	80					100
CAT 2-50 marks	20	80					100
CAT 3-50 marks	10	60	40				100
ESE -100 marks	10	60	30				100

Programme & Branch	M.E. Mechatronics Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	NIL	1	PC	0	0	2	1
Preamble	This course provides hands-on training on design, various forms for real time applications.	develo	op and analy	ze the	contro	ol sys	tems in

20MML11 CONTROL SYSTEM ENGINEERING LABORATORY

List of Exercises / Experiments:

1.	Study of classification of systems
2.	Transfer function model using block diagram reduction techniques using MATLAB.
3.	Time response analysis of second order system using MATLAB
4.	Development and analysis of mechanical translational system
5.	Development and analysis of mechanical rotational system
6.	Development and analysis of electrical system using op-amp
7.	Development and analysis of electromechanical system using gears
8.	Stability analysis with root locus using MATLAB
9.	Frequency domain analysis with bode plot using MATLAB
10.	Closed loop analysis of PID controller for position control system
11.	Design of compensators for first order system
12.	Design and implementation of simple controller for real time application
	Total:30

REFERENCES/MANUAL/SOFTWARE:

1. Laboratory Manual

COUI On co	COURSE OUTCOMES: On completion of the course, the students will be able to		
CO1	design, modeling and analysis of systems	Analyzing (K4), Precision (S3)	
CO2	analyze the stability of system	Analyzing (K4), Precision (S3)	
CO3	design and analyze compensators and controller for various application	Analyzing (K4), Precision (S3)	

Mapping of COs with POs				
COs/POs	PO1	PO2	PO3	
CO1	3	2	3	
CO2	3	2	3	
CO3	3	2	3	
1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy				

20MML12 SENSORS AND IoT LABORATORY

Programme & Branch	M.E. Mechatronics Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	NIL	1	PC	0	0	2	1
Preamble This course provides hands-on training on design, develop and analyze the control systems i various forms for real time applications					ems in		

List of Exercises / Experiments:

1.	Measurement of temperature using Thermistor
2.	Measurement of temperature using Thermocouple & RTD.
3.	Measurement of displacement using POT, LVDT & Capacitive transducer.
4.	Measurement of Torque, Strain and Force.
5.	Flow measurement using Orifice meter and Rotameter.
6.	Diaphragm based Pressure measurement.
7.	Capacitive based Level Measurement.
8.	Speed Measurement using Encoder and Optocoupler.
9.	Measurement of magnetic field strength using hall-effect sensor with arduino programming.
10.	Measurement of unknown Resistance using Wheatstone bridge with IoT.
11.	Measurement of unknown Inductance using Maxwell Bridge with IoT.
12.	Measurement of unknown Capacitance using Schering Bridge with IoT.
	Total:30

REFERENCES/MANUAL/SOFTWARE:

1. Laboratory Manual

	COL	JRSE	OUT	CON	IES:
--	-----	------	-----	-----	------

COUI On co	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	analyze the characteristics of temperature , displacement , capacitive and strain gauge sensor and transducers	Understanding (K2), Imitation (S1)
CO2	demonstrate the characteristics of non-electrical and electrical sensors and transducers	Understanding (K2), Imitation (S1)
CO3	experiment with different sensor applications with IoT deployment	Applying (K3), Manipulation (S2)

Mapping of COs with POs					
COs/POs	PO1	PO2	PO3		
CO1	2	2	2		
CO2	2	2	2		
CO3	3	3	3		
1 - Slight, 2 - Moderate, 3	I – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy				

20MMC21 FLUID POWER SYSTEM

Programme & Branch	M.E. Mechatronics Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	NIL	2	PC	3	0	2	4

Preamble This course deals with the design of a system which generate, control and transmission of power using pressurized fluids.

Unit - I Fundamentals and Power Source of Hydraulic System:

Basics, Types and structure of fluid power systems – Pascal's Law and its application –Fluid properties – Losses in pipes, valves and fittings – Advantages and applications of Fluid power systems. Fluid power symbols – Hydraulic pumps: Gear, Vane and Piston pumps, Pump Performance, Characteristics and Selection - Sizing of hydraulic pumps.

Unit - II Control Components of Hydraulic System:

Direction control valves: Three-way valve, Four way valve, Check valve and shuttle valve – Actuation mechanism of DCV – Pressure control valves: Pressure relief, Pressure Reducing, Counter balance, Sequencing and Unloading Valves – Flow control valves and its types – Proportional Valves – Servo valves and its types.

Unit - III Fundamentals of Pneumatic System:

Perfect Gas laws – Compressors: piston, screw and vane compressor – Fluid conditioning Elements: Filter, Regulator and Lubricator unit, Pneumatic silencers, After coolers, Air dryers – Air control valves – Fluid power actuators: Linear and Rotary actuators – types – Cushioning mechanism in cylinders – Sizing of Actuators.

Unit - IV Fluid Power Circuit Design:

Circuit design methods: Cascade method, Step counter method and KV Map method (two / three-cylinder circuits) – Basic pneumatic circuits – Electrical components and electrical controls for Fluid power circuits – Introduction to Fluid logic devices and applications – Accumulator: Types and application circuits – Pressure intensifier circuits – PLC applications in Fluid power circuit.

Unit - V Industrial Circuits and Maintenance:

Industrial circuits: Speed control circuits – Regenerative cylinder circuits – Pump unloading circuit – Double pump circuit – Counter balance valve circuit – Hydraulic cylinder sequencing circuit – Automatic cylinder reciprocating circuit – Cylinder synchronizing circuits – Fail safe circuits - Sealing devices: Types and materials – Installation, Maintenance and trouble shooting of Fluid Power systems.

List of Exercises / Experiments:

1.	Design and testing of speed control circuits (Meter in, Meter out and Bleed off circuits)
2.	Design and testing of Electro-hydraulic circuit with pressure sequence valve
3.	Design and testing of Sequential circuit with pneumatic control (with and without time delay)
4.	Design and testing of Electro Pneumatic sequential circuit with limit switches
5.	Design and testing of Pneumatic circuits with logic controls – AND valve and OR valve
6.	Design and simulation of Sequential fluid power circuits using cascade method
7.	Design and testing of Pneumatic circuit with vacuum cup and rod less cylinder
8.	Design and testing of Hydraulic circuit with Proportional control of Pressure and Flow
9.	Design and testing of sequential circuits using cascade method
10.	Design, testing and simulation of electro pneumatic circuit with timers and counters

Lecture:45, Practical:30, Total:75

REFERENCES:

1. Esposito Anthony, "Fluid Power with Applications", 7th Edition, Pearson Higher Education, New York, 2015.

M.E. – Mechatronics Engineering, Regulation, Curriculum and Syllabus – R2020

9

9

9

9

9

- 2. Jegadeesa T., "Hydraulics and Pneumatics", I.K International Publishing House Pvt. Ltd., New Delhi, 2015.
- 3. Majumdar S.R., "Oil Hydraulic Systems Principles and Maintenance", 2nd Edition, Tata McGraw-Hill, New Delhi, 2012.

COU On co	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	identify fluid power components and their symbols as used in industry and also select suitable pump for hydraulic power pack	Understanding (K2) Imitation (S1)
CO2	choose appropriate control valves for fluid power applications	Applying (K3) Manipulation (S2)
CO3	select pneumatic components and fluid power actuators for low cost automation	Analysing (K4) Precision (S3)
CO4	design and construct a fluid power circuits real time applications	Applying (K3) Manipulation (S2)
CO5	design, construct, test, install, maintain and trouble shoot fluid power circuits for engineering applications	Analysing (K4) Precision (S3)
CO6	Select the appropriate fluid power components and their symbols to design and simulate the industrial circuits	Applying (K3), Precision (S3)
CO7	design, construct and test fluid power circuits with Manual, Mechanical, hydraulic, pneumatic and electrical actuation methods for low cost automation	Applying (K3), Precision (S3)
CO8	develop and simulate fluid power circuits using simulation software for industrial applications	Applying (K3), Precision (S3)

Mapping of COs with POs				
COs/POs	PO1	PO2	PO3	
CO1		2		
CO2	2		1	
CO3	2		1	
CO4		1	3	
CO5	2	2	3	
CO6	2	2	3	
C07	2	2	3	
CO8	2	2	3	
1 – Slight, 2 – Moderate, 3 – S	ubstantial, BT – Bloom's Tax	onomy		

	ASSESSMENT PATTERN - THEORY						
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	60	30	-	-	-	100
CAT2	10	55	35	-	-	-	100
CAT3	10	40	50	-	-	-	100
ESE	15	50	35	-	-	-	100

M.E. – Mechatronics Engineering, Regulation, Curriculum and Syllabus – R2020

20MMC22	ROBOT KINEMATICS AND DYNAMICS

Programme & Branch	M.E. Mechatronics Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Bridge Course Mechanical and Advanced Mechatronics	2	PC	3	0	2	4

Preamble The course on Robotics Engineering is intended to provide a reasonable understanding of robotics and robot anatomy, the mathematics behind kinematics and dynamics of robot. It also involves controlling the robot motion using different control strategies.

Unit - I Introduction

History of robotics – Robot Anatomy – Robot specifications - Work space – Degree of freedom - Joint types - Types of robots – Precision of movements - End effectors – Dexterity - Robot applications.

Unit - II Robot Kinematics

Descriptions: Position, Orientations and translation – Mapping: Changing from frame to frame – Operators: Translations, Rotation and Transformation - Homogeneous Transformation matrices - Forward and Inverse kinematics - Representation of links using Denavit - Hartenberg parameters

Unit - III Velocity and Static Force

Introduction - Linear and angular velocities of a rigid body - Velocity propagation – Derivation of Jacobian matrix for Serial manipulator – Singularities - Static force of serial manipulator.

Unit - IV Robot Dynamics

Acceleration of a rigid body - Inertia of a link - Equations of motion for serial manipulators: Euler Lagrange formulation, Newton Euler formulation — Inverse dynamics of serial manipulator.

Unit - V Robot Control

Point to point and Continuous path motions – Joint trajectory Vs Cartesian trajectory – Trajectory planning – Trajectory following - Disturbance rejection – PD and PID control – Computer torque control - Adaptive control – Feedback linearization control.

List of Exercises / Experiments:

1.	Study the functions of ABB IRB 1410 industrial robot- components, drive system and end effectors.
2.	Virtual reality robot programming for different tasks- Painting, Pick and place and switch off intruder alarm.
3.	Virtual reality robot programming for different tasks- Stacking of blocks and Machining of billets.
4.	Creation of Tool Centre Point (TCP) and Work Object using ABB IRB 1410 industrial robot.
5.	Pick and place operation in teach mode using ABB IRB 1410 industrial robot.
6.	Machine tending operation in teach mode using ABB IRB 1410 industrial robot.
7.	Robot programming exercises - Point-to-point programming.
8.	Robot programming exercises - Continuous path programming.
9.	Robot programming exercises – Path planning in offline mode.
10.	Vision based On-line Inspection and sorting of components using ABB IRB 1410 industrial robot.

Lecture:45, Practical:30, Total:75

REFERENCES:

1.	Groover M.P., Weiss M., Magel R.N., Odrey N.G. and Dulta A., "Industrial Robotics, Technology, Programming and Applications", 2 nd Edition, McGraw-Hill Companies, 2012.
2.	Saeed B. Niku, "Introduction to Robotics: Analysis, Control, Applications", 2 nd Edition, Wiley India Pvt. Ltd., 2012.
3.	Craig John J., "Introduction to Robotics: Mechanics and Control", 4 th Edition, Pearson/Prentice Hall Publication, 2018.

9

9

9

9

9

COU On co	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	interpret the industrial manipulator anatomy and estimate the gripping force of robot end effector	Applying (K3)
CO2	develop the forward and inverse kinematics for serial manipulators	Applying (K3)
CO3	formulate Jacobian matrix for velocity and static force analysis of serial manipulators	Applying (K3)
CO4	formulate dynamic equations for serial manipulators	Applying (K3)
CO5	apply the scheme of trajectory planning and control for manipulator motion control	Applying (K3)
CO6	analyze the industrial robot work cell problems	Analyzing (K4), Manipulation (S2)
CO7	develop robot programming through online /offline mode	Creating (K6), Precision (S3)
CO8	develop an online inspection system using machine vision	Creating (K6), Precision (S3)

Mapping of COs with POs							
COs/POs	PO1	PO2	PO3				
CO1	2	-	3				
CO2	2	-	3				
CO3	2	-	3				
CO4	2	-	3				
CO5	2	-	3				
CO6	2	3	3				
CO7	3	3	3				
CO8	3	3	3				
I – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy							

ASSESSMENT PATTERN - THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	20	50	30				100			
CAT2	20	40	40				100			
CAT3	20	40	40				100			
ESE	20	40	40				100			

20MMT21 EMBEDDED SYSTEM AND CONTROL

Programme & Branch	M.E. Mechatronics Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Bridge Course Mechanical and Advanced Mechatronics	2	PC	3	0	0	3

Preamble Microcontroller has become important building block in digital electronics design. 8051/PIC microcontroller architecture, programming, and interfacing is dealt in detail in this course. Interfacing, assembly language programming and interfacing of 8051/PIC microcontroller and its application in industry are also covered in this course.

Unit - I 8051 Microcontroller

Microcontroller and embedded processors - Overview of the 8051 family - 8051 microcontroller architecture - Memory organization of 8051 - PSW register - Register banks and stack, Input/ Output ports, pins.

Unit - II 8051 Embedded C Programming

Introduction to Embedded C Programming - Timer/Counter - Serial Communications Interrupts - Instruction set -Addressing modes - I/O port Programming - Timer / counter programming - Serial communications Programming -Interrupt Programming.

Unit - III PIC Microcontrollers Architecture

PIC microcontroller overview and features - Harvard architecture - Pipelining – Architecture of PIC18-PinDescription-Memory organization: Program memory-Data Memory -Register Organization.

Unit - IV PIC 18 Features

I/O Ports Timers Counters-Capture/ Compare - PWM- External Hardware Interrupts- USART-ADC-Interfacing to External memory.

Unit - V PIC 18 Embedded C Programming

Addressing Modes - Instruction set-Simple Programs. I/O port programming - Timer/Counter programming - Serial communications Programming - ADC Programming - Application case studies.

Total:45

9

9

9

9

9

REFERENCES:

- 1. Mazidi Muhammad Ali and Mazidi Janice Gillispie, "The 8051 Microcontroller and Embedded Systems", 2nd Edition, Pearson Education, 2013.
- 2. Mazidi Muhammad Ali, Mckinlay Rolin .D., and Causey Danny, "PIC Microcontroller and Embedded Systems using Assembly and C for PIC18", Pearson Education Asia, 2008.
- 3. David Den Haring, Kai Qian, and Li Cao., "Embedded Software Development With C", Springer, 2009.

COURSE OUTCOMES: On completion of the course, the students will be able to	BT Mapped (Highest Level)
CO1 explain the organization of 8051 microcontroller and its progra	mming concepts Understanding (K2)
CO2 interpret the basic architecture and features of PIC18 microco	ntroller Understanding (K2)
CO3 develop Embedded C programming for 89c51 and PIC microc	ontroller Applying (K3)
CO4 experiment with microcontroller hardware for a given industria	application Applying (K3)
CO5 develop microcontroller hardware for industrial applications	Creating (K6)

Mapping of COs with POs							
COs/POs	PO1	PO2	PO3				
CO1	1	1	2				
CO2	1	1	2				
CO3	3	2	2				
CO4	3	2	3				
CO5	3	2	3				
1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy							

ASSESSMENT PATTERN - THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	20	30	50				100		
CAT2	20	20	60				100		
CAT3	10	20	70				100		
ESE	10	30	70				100		

20MMT22 INTEGRATED AUTOMATION CONTROLLERS

Programme & Branch	M.E. Mechatronics Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Sensors and IOT	2	PC	3	0	0	3

Preamble This course is intended for learning the device layer components and Architecture and Operations of programmable logic controller, Fundamentals of Programming and problem solving using logic ladder diagrams. This course is also giving the ideas of Fundamentals Networking of PLC, SCADA architecture and Distributed control system and its case studies.

Unit - I Device Layer Components:

Input Devices- Pushbuttons – Proximity Sensors- Read switch –float switch-pressure switch-temperature switch-limit switch-Encoders – MCB - Output Devices – Relays – Contactors – OLR – DOL Starter - Solenoid valves- relay logic program for simple industrial case studies.

Unit - II Programmable Logic Controller:

Parts of PLC – Principles of operation – PLC sizes – PLC hardware components – I/O modules – Programming devices- different modes of PLC operation-maintenance and troubleshooting procedure.

Unit - III PLC Programming:

Types of PLC programming – Simple instructions – Latching relays - Converting simple relay ladder diagram into PLC ladder diagram-Timer instructions – On Delay, Off Delay and Retentive Timers – Counter instructions – Up Counter, Down Counter and Up Down Counters- Program control instructions – Data manipulating instructions, math instruction – Closed loop control.

Unit - IV Networking of PLC and SCADA:

Networking of PLCs – Data communication — data highway- serial communication- device net –control net – Ethernet IP –Modbus- field bus – Profibus DP - OPC function. Supervisory Control and Data Acquisition – Architecture – Remote terminal units – Master Terminal units – Operator interface – security considerations – alarming- control change screen- status screen-graphics and trending – reports.

Unit - V Distributed Control System and Case Studies:

Evolution – Architectures – Comparison – Local control unit – Process interfacing issues – Communication facilities. Operator interfaces – Low level and high-level operator interfaces – Operator displays – Engineering interfaces – Low level and high-level engineering interfaces – Applications of DCS in – Pulp and paper environment – Petroleum – Refining environment.

Total: 45

BT Mannad

5th

9

9

9

9

9

REFERENCES:

1.	Petruzella Frank D., "Programmable Logic Controllers", 4 th Edition, McGraw-Hill, New York, 2016.
2	Webb John W and Rois Repaid A "Programmable Logic Controllers: Principles and Applications"

- 2. Webb John, W and Reis Ronald A., "Programmable Logic Controllers: Principles and Applications", Edition, Prentice Hall of India, New Delhi, 2011.
- 3. Stuart Boyer A., "SCADA Supervisory Control and Data Acquisition", 4th Edition ISA, USA, 2010.

COURSE OUTCOMES:

On co	ompletion of the course, the students will be able to	(Highest Level)
CO1	infer the device layer components functions and its role in industrial automation system	Understanding (K2)
CO2	explain the PLC architecture, Programming device, installation procedures and trouble shooting	Applying (K3)
CO3	develop PLC program using diverse functions of PLCs for a given application	Applying (K3)
CO4	explain the basic networking protocols for PLC, application development procedures in SCADA and manage data, alarm and storage	Understanding (K2)
CO5	illustrate the architecture of DCS, interfaces and its applications	Understanding (K2)

Mapping of COs with POs							
COs/POs	PO1	PO2	PO3				
CO1	2	2	3				
CO2	2	2	3				
CO3	3	2	3				
CO4	3	2	3				
CO5	2	2	3				
1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy							

ASSESSMENT PATTERN - THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	10	60	30				100			
CAT2	10	50	50				100			
CAT3	20	80					100			
ESE	10	60	40				100			

Programme & Branch	M.E. Mechatronics Engineering	Sem.	Category	L	Т	Р	Credit			
Prerequisites	NIL	2	PC	0	0	2	1			
Preamble	This course provides hands on training on con- programming in real time applications.	cepts o	of Embedded	d prog	Irammi	ng an	d PLC			

20MML21 EMBEDDED SYSTEM AND PLC LABORATORY

List of Exercises / Experiments:

1.	Introduction to Embedded C programming and simulation software
2.	Interfacing of switch, LED and seven segment LED
3.	Interfacing of LCD
4.	Interfacing of high power devices for the given case study
5.	Study on Interfacing sensors, microcontroller with IoT module
6.	Introduction to programming /simulation/communication software for PLC programming
7.	logical testing of I/Os and its interfacing with PLC
8.	Level control using PLC
9.	Linear and sequential actuation of Pneumatic cylinder with Timer and counter functions
10.	Development of HMI for real time parameter monitoring and control

Total:30

REFERENCES/MANUAL/SOFTWARE:

1. Laboratory Manual

COU On co	COURSE OUTCOMES: On completion of the course, the students will be able to				
CO1	build and simulate Embedded C programming for 89C51 microcontroller	Analyzing (K4), Precision (S3)			
CO2	build and simulate PLC programming for discrete and analog I/Os	Analyzing (K4), Precision (S3)			
CO3	develop plant level automation for real process plant control using Microcontroller, PLC and SCADA	Analyzing (K4), Precision (S3)			

Mapping of COs with POs							
COs/POs	PO1	PO2	PO3				
CO1	3	2	3				
CO2	3	2	3				
CO3	3	2	3				
1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy							

	•							
20MME01 COMPUTER NUMERICALLY CONTROLLED MACHINES								

Programme & M.E. Mechatronics Engineering			M.E. Mechatronics Engineering	Sem.	Category	L	Т	Ρ	Credit
Prere	quisi	Jisite Nil		I	PC	3	0	0	3
Prean	ble This course provides the fundamental knowledge and programming concepts of CNC machines.								
UNIT	- 1	Const	ruction Features of CNC Machines						9
Introd drives Arran Retro	Introduction - CNC Machine Building, Drives and Controls: Drive Mechanism, Spindle Drives, Axes drives, Feed drives, Linear Motors and Actuators, Magnetic Levitation. Power transmission elements - Spindle bearing – Arrangement and installation - Guide ways – Configuration and design, friction and anti-friction LM guide ways, Retrofitting.								
UNIT	– II	Contro	ol Systems for CNC Machines and CAD/CAM Integ	gration	:				9
Interfa DNC netwo variou - Varia	acing – Ada orking is inte ant, ge	 Monit aptive of technic rfaces of tenerative 	oring – Diagnostics – Machine data – Sources of err control CNC systems. Concepts of High speed Ma jues, LAN, components - Graphics standards – Da GKS, IGES, DXF, PDES, STEP etc., Process plannir re Approaches.	rors - (achinin ata exe ng, Coi	Compensation g and micro change forma mputer Aided	ns for I mach at, evo proce	Vachin ining. olution ss plar	e acco Netwo - feat nning (uracy – rking - ures of CAPP)
UNIT	– III	CNC P	rogramming:						9
Struct tool n progra aided	ure of ose ra ammir part p	f CNC p adius co ng for C program	rogram, Part Program Terminology Coordinate syste mpensation, tool wear compensation, canned cycles NC turning and machining centre – APT programmin ming - Post processing.	em, G & , sub r ig for v	M codes, cu outines, mirro arious machi	utter ra pring fe nes in	dius co atures, FANU(omper , Manı C - Co	sation, Jal part mputer
UNIT	– IV	Toolin	g System and Management:						9
Toolir syster Turnir mana	ng sys m – N ng an geme	item - I Iodular d Mach nt.	nterchangeable tooling system – Preset, Qualified a fixturing – Quick change tooling system – Automat ining centers – Tool holders – Tool assemblies –	and sei ic hea Tool N	mi-qualified to d changers - Aagazines -	ools – - Toolii ATC I	Coolar ng requ Vechar	nt fed uireme nisms	tooling ents for – Tool
UNIT	– V	Econo	mics of CNC Operations						9
Facto introd requir	ors in ucing emen	fluencin CNC ts.	g selection of CNC machines - Cost of operatio machines - Maintenance features of CNC mach	n of (nines	CNC machine - Preventive	es - F and	'ractica other	al asp mainte	ects of enance
REFE	REN	CES:						Тс	vtal: 45
1. M E	ichael ducati	Fitzpa on, 201	trick N.E., and Arlington W.A., "Machining and C 4.	NC T	echnology", 3	3 rd Edi	tion, N	/Ic Gr	aw Hill
2. Al Co	an O ompai	verby, nies Inc	"CNC Machining Handbook: Building, Programm ., 2011.	ing ar	id Implemen	tation"	, The	McGr	aw-Hill
3. Pe	eter si	nid, "Cl	NC Programming Handbook", 3 rd Edition,. Industrial P	Press Ir	nc., 2018.				
COUF On co	RSE C	OUTCO	MES: ne course, the students will be able to				BT (High	Mapp nest L	ed evel)
CO1	Expla	in the b	asic components and mechanisms of CNC system			l	Jnders	tandin	g (K2)
CO2	Interp	oret the	control system concepts used in CNC machine			ι	Jnders ⁻	tandin	g (K2)
CO3	Form	ulate pa	art programming for turning and milling Process				Арр	lying (K3)
CO4	selec	t prope	r tooling systems and fixtures for holding the work pie	ce			Unders	standir	ig (K2)
CO5	Infer	r the economic concepts of CNC machines Understanding (K2)							

Mapping of COs with POs							
COs/POs	PO1	PO2	PO3				
CO1	2	1	1				
CO2	3	3	1				
CO3	3	2	2				
CO4	3	1	1				
CO5	2	3	3				
1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy							

ASSESSMENT PATTERN - THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	20	80					100		
CAT2	20	65	15				100		
CAT3	20	80					100		
ESE	20	70	10				100		

20MME02 INDUSTRIAL DRIVES

Programme & Branch		M.E. Mechatronics Engineering	Sem.	Category	L	т	Р	Credit	
Prerequisi	te	Nil	I	PC	3	0	0	3	
Preamble	mble This course depicts the working principles of power electronic devices, converters, drives and thei applications.								
UNIT – I	- I Power Electronics Devices: 9								
Concept of Power Electronics – Power Semiconductor Devices - Principle of operation – Steady state and switching characteristics of power diodes, power BJT, power MOSFET, IGBT – Firing circuit for thyristor- Steady state and switching characteristics of SCR – Two transistor model of SCR – DIAC – TRIAC – GTO.									
UNIT – II	AC-DC	and DC-AC Converters:						9	
Principle of single phas inverter –10	phase e semi and 3¢	controlled converter with R and RL load - freewheel converter – three phase semi converter – three pha Voltage source inverters –PWM inverters.	ing Dic ase full	ode- single pl y controlled o	nase fu conver	ull wav ter – Ir	e conv ntrodu	/erter – ction to	
UNIT – III	DC - D	C and AC - AC Converter:						9	
DC Chopper – Control strategies – Principle of operation – Step up and step down chopper – Single phase AC voltage controller – On - off control and phase control – Sequence control of AC voltage controller – 1¢ Step up and step down cycloconverters.									
UNIT – IV	Electri	c Drives:						9	
DC Drives	- Introdu drives –	uction to DC drives – Basic performance equations of Chopper Drives – two quadrant chopper drive – four	of DC r quadra	notor – single ant chopper c	e phas Irive.	e DC d	drives	– three	
UNIT – V	AC Dri	ves						9	
Introductio frequency of power reco	n – Indu control – very cor	uction motor drives – speed control of 3-phase indeset stator voltage and frequency control – stator curren htrol.	uction t contr	motor – state ol – static rot	or volta or resis	age co stance	ontrol - contro	- stator ɔl – slip	
							Тс	otal: 45	

REFERENCES:

- 1. Bimbhra B.S., "Power Electronics", 5th Edition, Kanna Publishers, New Delhi, 2012.
- 2. Singh M.D. and Kanchandhani K.B., "Power Electronics" Tata McGraw Hill Publishing Company, 2007.
- 3. Gobal K. Dubey, "Fundamentals of Electrical Drives", 2nd Edition, Narosal Publishing House, New Delhi, 2001.

COU On co	BT Mapped (Highest Level)	
CO1	explain the operation and switching characteristics of power solid state devices	Understanding (K2)
CO2	describe the working principle of AC – DC and DC – AC converters	Understanding (K2)
CO3	express the construction and working of DC – DC and AC–AC converters	Applying (K3)
CO4	select a suitable power converter for a given DC drive	Understanding (K2)
CO5	choose an appropriate power converter for a given AC drive	Applying (K3)

Mapping of COs with POs							
COs/POs	PO1	PO2	PO3				
CO1	3	1	2				
CO2	3	1	2				
CO3	3	1	2				
CO4	3	1	2				
CO5	3	1	2				

1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy

ASSESSMENT PATTERN - THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	30	40	30				100			
CAT2	25	40	20	15			100			
CAT3	30	30	20	20			100			
ESE	25	35	20	20			100			

20MME03 METROLOGY AND COMPUTER AIDED INSPECTION

Programme & Branch		M.E. Mechatronics Engineering	Sem.	Category	L	Т	Р	Credit	
Prerequ	requisite Sensors and IOT			PC	3	0	0	3	
Preamb	reamble This course make the learner to design and fabricate inspection methods and systems incorporating electronic systems for inspection and quality control in engineering.								
UNIT –	I Linear	and Angular Measurements:						9	
Basic co Intercha electron - Profile	Basic concept – Legal metrology- Precision- Accuracy- Types of errors – Standards of measurement- traceability – Interchange ability and selective assembly, gauge blocks, limit gauges - Gauge design. Comparators: mechanical, electronic, optical and pneumatic - Angular measurement: bevel protractor - Angle gauges - Sine bar – Autocollimator - Profile projectors.								
UNIT –	II Surfac	e Finish and Form Measurement:						9	
Measure instrume Two and Termino - Parkins	ement of so ent – Talys d three wire blogy- Meas son Gear T	urface finish: terminology – Roughness – Waviness urf – Screw thread metrology: errors in thread – Pito e method - Best wire size - Thread gauges - Floating surement of various elements of gear - Tooth thickne ester.	– Eva ch erroi carriag ss - Co	luation of su r – Measurer ge micromete onstant chord	rface fi nent of r. Mea and ba	inish - i variou suremo ase tar	Stylu us ele ent of ngent	s probe ments - gears - method	
UNIT –	III Laser	Metrology:						9	
Charact errors – LASER Roundn	eristics of L - Measurer triangulationess measu	ASER sources, LASER micrometer, LASER interfer ment of position error, straightness and angle of m techniques. In-process and post process gauging, rement using LASER, Flexible inspection systems.	ometer machin Autom	 Constructi le tools, LAS natic gauging 	onal fe SER al , Tool y	atures ignmei wear n	s - Sou nt tele neasu	urces of escope, rement,	
UNIT –	IV Co-Ord	dinate Measuring Machines:						9	
Coordin - Displatenhance	ate Metrolo cement trai ement	ogy, types of CMM, constructional features - Structura nsducers - Probing system – Software - Control sys	al elem tem, te	ents - Drive s mperature fu	system ndame	is -Sup entals a	port s and a	systems ccuracy	
UNIT –	V Image	Processing and Machine Vision System:						9	
Image p techniqu machine	processing: ues, interpr e vision and	Image acquisition and digitization – Windowing – S retation - Grey scale correlation – Template mate d robot, Reverse engineering Applications.	Segmer ching,	ntation - Thre applications	sholdii in Ins	ng - Eo pectior	dge de n, inte	etection erfacing	
REFER	ENCES:						Т	otal: 45	
1. Con Thor	nie Dotson mpson Asia	, Roger Harlow and Richard Thompson, "Fundame a, Singapore, 2003.	ntals c	of Dimension	al Metr	ology"	, 4th	Edition,	
2. Jain	R.K., "Eng	ineering Metrology", 21st Edition, Khanna Publishers	, New I	Delhi, 2018.					
3. Gup	3. Gupta I.C., "A Text Book of Engineering Metrology", 7th Edition, Dhanpat Rai Publications, New Delhi, 2018.								
COURS On com	COURSE OUTCOMES:BT MappedOn completion of the course, the students will be able to(Highest Level)								
CO1 in	fer linear ai	nd angular measurements using various instruments				Unders	standi	ng (K2)	
CO2 de	etermine the	e surface roughness and form features measurement	ts			Арр	lying	(K3)	
CO3 ap	ppraise laser Interferometry and recent advancements in metrology Applying (K3)						(K3)		

CO4 make profile measurements using Coordinate Measuring Machine (CMM)

CO5 apply the principle of image processing and machine vision system techniques

Applying (K3) Applying (K3)

Mapping of COs with POs								
COs/POs	PO1	PO2	PO3					
CO1	3	2	2					
CO2	3	2	2					
CO3	3	2	2					
CO4	3	2	2					
CO5	3	2	2					
1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy								

ASSESSMENT PATTERN - THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	20	60	20				100		
CAT2	20	50	30				100		
CAT3	20	60	20				100		
ESE	20	60	20				100		

20MME04 MEMS DESIGN

Programme & Branch		M.E. Mechatronics Engineering		Category	L	Т	Р	Credit
Prerequis	ite	Sensors and IOT and Bridge course mechanical	I	PC	3	0	0	3
Preamble	le This course equips the students to understand the concepts of Micro mechatronics and apply the knowledge of micro fabrication techniques for various applications.							
UNIT – I	I Materials for MEMS and Scaling Laws 9							
: Overview Mechanica	/ - Micro	systems and microelectronics - Working principle o ties - Silicon compounds - Silicon piezo resistors - G	f Micro allium	systems - S arsenide - Q	i as a uartz-p	substr iezoel	ate m ectric	aterial - crystals

- Polymer - Scaling laws in Miniaturization.

UNIT – II Micro Sensors, Micro Actuators:

Micro sensors - Micro actuation techniques - Micro actuators – Micromotors – Microvalves – Micro grippers – Micro accelerometer: introduction, types, actuating principles, design rules, modeling and simulation, verification and testing, applications.

UNIT – III Mechanics for Microsystem Design:

Static bending of thin plates - Mechanical vibration - Thermo mechanics - Thermal stresses - Fracture mechanics - Stress intensity factors, fracture toughness and interfacial fracture mechanics-Thin film Mechanics-Overview of Finite Element Stress Analysis.

UNIT – IV Fabrication Process and Micromachining:

Photolithography - Ion implantation - Diffusion – Oxidation – CVD - Physical vapor deposition - Deposition by epitaxy - Etching process- Bulk Micro manufacturing - Surface micro machining – LIGA –SLIGA.

UNIT – V Micro System Design, Packaging and Applications:

Design considerations - Process design - Mechanical design – Mechanical Design using Finite Element Method-Micro system packaging – Die level - Device level - System level – Packaging techniques - Die preparation - Surface bonding - Wire bonding – Sealing - Applications of micro system in Automotive industry: Bio medical, Aerospace and Telecommunications – CAD tools to design a MEMS device.

Total: 45

9

9

9

9

REFERENCES:

1. Tai-Ran Hsu, "MEMS and Microsystems Design and Manufacture", Tata McGraw-Hill, New Delhi, 2008.

- 2. Mohamed Gad-el-Hak, "The MEMS Handbook", CRC Press, 2009.
- 3. Bao M.H., "Micromechanical Transducers: Pressure sensors, accelrometers, and gyroscopes", Elsevier, New York, 2000.

COURSE OUTCOMES: On completion of the course, the students will be able to	BT Mapped (Highest Level)
CO1 interpret the concepts of MEMS materials and scaling laws	Remembering (K1)
CO2 explain the principles of micro sensors and actuators	Understanding (K2)
CO3 apply the mechanics for micro system design	Applying (K3)
CO4 design and fabrication of microsystem	Applying (K3)
CO5 design of microsystem packaging and application	Applying (K3)

Mapping of COs with POs								
COs/POs	PO1	PO2	PO3					
CO1	2	2	2					
CO2	2	2	3					
CO3	2	2	3					
CO4	3	2	3					
CO5	3	2	3					
1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy								

ASSESSMENT PATTERN - THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	20	40	30	10			100		
CAT2	20	40	30	10			100		
CAT3	10	40	30	20			100		
ESE	20	30	30	20			100		

20MME05 VIRTUAL INSTRUMENTATION

Programme & Branch		M.E. M	echatro	nics Eı	ngineering	g		Sem.	Category	L	т	Р	Credit	
Prer	equisit	е	Nil						I	PC	3	0	2	4
Prea	eamble This course is designed to impart the principles in programming technique with different instrume interfaces and the basics of data acquisition system introduced in real time.								rument					
UNI	Γ-Ι	Virtual	l Instrur	nentatio	n									9
Histo grap Cont	orical p hical p trols an	erspect rogram d Indica	tives, ad nming in ators – '(vantage data fl G'progra	s, bloc ow, cc amming	k diagram omparison g/ modular	and arch with con programr	nitecture on ventional ming .	of a vir progra	tual instrume amming– Gr	ent, da aphica	ta -flov I user	v tech interf	niques, aces –
UNI	Г — II	VI Soft	tware To	ools:										9
Data prog CAS	Data types – Data flow programming – Editing, Debugging and Running a Virtual Instrument – Graphical programming palettes and tools – Function and Libraries – Structures: FOR Loops, WHILE loops, Shift Registers, CASE structure, Formula nodes, Sequence structures, Timed looped structures.													
UNI	Г — III	VI Prog	grammi	ng Tech	niques	S:								9
Arra and	ys and File I/O	Cluster : High le	rs – Bur level and	idle/Unb I Low lev	undle a /el file l	and Bundle I/O's – Attr	e/Unbund ribute node	le by nam es – Loca	ie – Pl I and g	otting data: g lobal variable	graphs es - Su	and cł b-VI.	narts -	- String
UNI	Γ – ΙV													9
Data – Ins time	Data Acquisition Hardware: Basics of DAQ Hardware and Software – Concepts of Data Acquisition and terminology – Installing Hardware and drivers – Configuring and addressing the hardware – Digital and Analog I/O function – Real time Data Acquisition – USB based DAQ.													
UNI	Γ – V													9
VI a Cont	VI applications: Advantages and Applications: TCP/IP VI's – PXI – Instrument Control – Image acquisition – Motion Control – Signal processing/ analysis – Control design and simulation.													
List	of Exe	rcises /	/ Experi	ments :										
1.	GSD using For loops, while loops with shift registers / feedback nodes													
2.	GSD us	sing Lo	g Local variables, Global variables, Case structures and Sequence structures											

3.	GSD using Timed structures. Formula nodes and Event structures

- 4. GSD using Waveform graph, Waveform chart, XY graph
- 5. GSD using String functions, editing, formatting and parsing string
- 6. GSD using Arrays functions and multi-dimensional arrays
- 7. GSD using Clusters operations: assembling clusters and disassembling clusters

8. GSD real time measurement using Thermistor / Piezo-electric sensor

Lecture:45, Practical:30, Total: 75

REFERENCES:

- 1. Jeffery Travis and Jim Kring, "LabVIEW for Everyone: Graphical programming made easy and Fun", 3rd Edition, Pearson Education, India, 2009.
- 2. Gupta, Joseph and John, "Virtual Instrumentation using LabVIEW", 2nd Edition, Tata McGraw Hill, 2010.
- 3. Rick Bitter, "LabVIEW Advanced Programming Techniques", 2nd Edition, Taylor & Francis Group, 2006.

COURSE OUTCOMES

COURSE OUTCOMES: On completion of the course, the students will be able to	BT Mapped (Highest Level)
CO1 demonstrate the basic concepts about virtual instrumentation	Applying (K3)
CO2 interpret the software tools in virtual instrumentation	Applying (K3)
CO3 develop programming through LabVIEW graphical programming environment	Applying (K3)

M.E. – Mechatronics Engineering, Regulation, Curriculum and Syllabus – R2020

CO4	experiment with data acquisition hardware and LabVIEW software	Applying (K3)
CO5	select the hardware and software concept of data acquisition system for advanced applications	Applying (K3)
CO6	interpret the software tools in virtual instrumentation	Applying (K3), Manipulation (S2)
C07	develop programming through LabVIEW graphical programming environment	Applying (K3), Manipulation (S2)
CO8	perform interface of data acquisition hardware with LabVIEW software	Applying (K3), Manipulation (S2)

Mapping of COs with POs								
COs/POs	PO3							
CO1	2	1	2					
CO2	3	1	3					
CO3	3	1	3					
CO4	3	1	3					
CO5	3	1	3					
CO6	3	1	3					
CO7	3	1	3					
CO8 3 1 3								
1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy								

ASSESSMENT PATTERN - THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	40	40	20				100		
CAT2	10	30	30	30			100		
CAT3	10	30	30	30			100		
ESE	15	25	40	20			100		

20MME06 FACTORY AUTOMATION AND CIM

Prerequisite Nil II PC 3 0 0 3 Preamble This course impart fundamental knowledge about automation in the field of production and assembly lines. Introduction to Automation: 9 UNIT - 1 Introduction to Automation: 9 Principles and strategies - Elements of an automated system – Levels of automation. Material handling systems – Types – Design considerations – AGVs – Types and applications – Vehicle guidance technology - Storage systems – Performance – Methods – Automated storage systems. 9 Types, transfer machines for housing type parts, transfer systems, for shaft production and gear production. Continuous rotary transfer lines - Layout and output. Transfer machines for shaft production and gear production. Continuous rotary transfer lines - Layout and output. Transfer Ines, Automatic Pallet Changer, Modular Fixtures. 9 Production Planning & Control and Computerised Process Planning: 9 Production Planning and Master Production Schedule – Material Requirement Planning -Capacity Planning (CAPP) – Logical steps in Computer Aided Process Planning – Capacity Planning -Control Systems - Shop Floor Control -Inventory Control. Brief on Manufacturing Resource Planning (MRP-I) – Nir Planning (CRP) – Supply Chain Management (SCM) – Simple Problems 9 Group Technology(GT), Part Families – Parts Classification and Coding –Simple Problems in Optiz Coding system – UNIT – V CAQC and Production Planning – Composite part concept – Machine cell design and layout – Quantitative analysis in Cellular Manufacturing –Camposi	Programm Branch	e &	M.E. Mechatronics Engineering	Sem.	Category	L	т	Р	Credit
Preamble This course impart fundamental knowledge about automation in the field of production and assembly lines. UNIT - I Introduction to Automation: 9 Principles and strategies - Elements of an automated system – Levels of automation – Automation in production systems – Automated manufacturing systems – Types – Reasons for automation. Material handling systems – Types – Design considerations – AdVs – Types and applications – Vehicle guidance technology - Storage systems – Performance – Methods – Automated storage systems. 9 UNIT - II Transfer Machines: 9 Types, transfer machines for housing type parts, transfer systems, turning devices, pallets, mechanisms for locating and clamping housing type parts. Transfer machines for shaft production and gear production. Continuous rotary transfer lines - Layout and output. Transfer lines, Automated Process Planning: 9 Process Planning – Computer Aided Process Planning (CAPP) – Logical steps in Computer Aided Process Planning – Gagregate Production Planning and Master Production Schedule – Material Requirement Planning – Capacity Planning -Control Systems -Shop Floor Control -Inventory Control. Brief on Manufacturing Resource Planning (MRP-II) and Enterprise Resource Planning (ERP) – Supply Chain Management (SCM) – Simple Problems 9 Group Technology(GT), Part Families –Parts Classification and Coding –Simple Problems in Opitz Coding system – Production Flow Analysis – Cellular Manufacturing –Composite part concept –Machine cell design and layout – Quantitative analysis in Cellular Manufacturing –Composite part concept –Machine cell design and layout – Quantitative analysis in Cellular Manufacturing –Rank Order Clustering	Prerequisit	te	Nil	I	PC	3	0	0	3
UNIT - 1 Introduction to Automation: 9 Principles and strategies - Elements of an automated system – Levels of automation. Material handling systems – Types – Design considerations – AGVs – Types and applications – Vehicle guidance technology - Storage systems – Performance – Methods – Automated storage systems. 9 UNIT - II Transfer Machines: 9 Types, transfer machines for housing type parts, transfer systems, turning devices, pallets, mechanisms for locating and clamping housing type parts. Transfer machines for shaft production and gear production. Continuous rotary transfer lines - Layout and output. Transfer lines, Automatic Pallet Changer, Modular Fixtures. 9 VINT - III Production Planning & Control and Computerised Process Planning: 9 Process Planning –Computer Aided Process Planning (CAPP) –Logical steps in Computer Aided Process Planning –Capacity Planning –Control Systems –Shop Floor Control - Inventory Control. Brief on Manufacturing Resource Planning (MRP-Ilanning Control Schedule –Material Requirement Planning –Capacity Planning -Control System Shop Floor Control - Inventory Control. Brief on Manufacturing Resource Planning (MRP-Ilan device) – Storage system – Production Flow Analysis –Cellular Manufacturing –Composite part concept –Machine cell design and layou – Quantitative analysis –Cellular Manufacturing –Rank Order Clustering Method –Arranging Machines in a GT cell – Hollier Method –Simple Problems. 9 UNIT – V CAQC and Production Planning: 9 Benefits of CAQC - Computer Aided Inspection - Contact and Non-contact Inspection Methods - Optical and Non-optical types - Comp	Preamble	This co lines.	urse impart fundamental knowledge about	automation ir	n the field of	produ	ction a	ind as	sembly
Principles and strategies - Elements of an automated system – Levels of automation – Automation in production systems – Automated manufacturing systems – Types – Reasons for automation. Material handling systems – Types Design considerations – AGVs – Types and applications – Vehicle guidance technology - Storage systems – Performance – Methods – Automated storage systems. UNIT – II Transfer Machines: 9 Types, transfer machines for housing type parts, transfer systems, turning devices, pallets, mechanisms for locating and clamping housing type parts. Transfer machines for shaft production and gear production. Continuous rotary transfer lines - Layout and output. Transfer Ines, Automatic Pallet Changer, Modular Fixtures. UNIT – III Production Planning & Control and Computerised Process Planning: 9 Process Planning –Computer Aided Process Planning (CAPP) –Logical steps in Computer Aided Process Planning – Capacity Planning -Control Systems – Shop Floor Control -Inventory Control. Brief on Manufacturing Resource Planning (MRP-II) and Enterprise Resource Planning (ERP) –Supply Chain Management (SCM) –Simple Problems 9 Group Technology(GT), Part Families –Parts Classification and Coding –Simple Problems in Opitz Coding system – Uquantitative analysis in Cellular Manufacturing –Composite part concept –Machine cell design and layou – Quantitative analysis in Cellular Manufacturing –Composite part concept –Machine cell design and layou – Quantitative analysis in Cellular Manufacturing –Control Supple Problems in Opitz Coding system – Production Flow Analysis –Cellular Manufacturing –Composite part concept –Machine cell design and	UNIT – I	Introdu	ction to Automation:						9
UNIT - II Transfer Machines: 9 Types, transfer machines for housing type parts, transfer systems, turning devices, pallets, mechanisms for locating and clamping housing type parts. Transfer machines for shaft production and gear production. Continuous rotary transfer lines - Layout and output. Transfer lines, Automatic Pallet Changer, Modular Fixtures. 9 UNIT - III Production Planning & Control and Computerised Process Planning: 9 Process Planning -Computer Aided Process Planning (CAPP) -Logical steps in Computer Aided Process Planning -Capacity Planning -Control Systems -Shop Floor Control -Inventory Control. Brief on Manufacturing Resource Planning (MRP-II) and Enterprise Resource Planning (ERP) –Supply Chain Management (SCM) –Simple Problems 9 Group Technology(GT), Part Families –Parts Classification and Coding –Simple Problems in Opitz Coding system – Production Flow Analysis –Cellular Manufacturing –Composite part concept –Machine cell design and layout – Quantitative analysis in Cellular Manufacturing –Composite part concept –Machine cell design and layout – Quantitative analysis in Cellular Manufacturing –Composite part concept –Machine cell design and layout – Quantitative analysis in Cellular Manufacturing –Control Systems in Opitz Coding system – Production Flow Analysis –Cellular Manufacturing –Control Clustering Method –Arranging Machines in a GT cell – Hollier Method –Simple Problems. 9 UNIT - V CAQC and Production Planning: 9 Benefits of CAQC - Computer Aided Inspection - Contact and Non-contact Inspection Methods - Optical and Non-optical types - Computer Aided Testing - Co-ordinate Measuring Machines (CMM).	Principles a systems – A – Design o Performano	and stra Automat consider ce – Met	tegies - Elements of an automated system ed manufacturing systems – Types – Reason ations – AGVs – Types and applications – nods – Automated storage systems.	-Levels of a ns for automa Vehicle guid	automation – tion. Material lance techno	Auton handli logy -	nation ng syst Storag	in pro tems - je sys	oduction - Types stems
Types, transfer machines for housing type parts, transfer systems, turning devices, pallets, mechanisms for locating and clamping housing type parts. Transfer machines for shaft production and gear production. Continuous rotary transfer lines - Layout and output. Transfer lines, Automatic Pallet Changer, Modular Fixtures. UNIT – III Production Planning & Control and Computerised Process Planning: 9 Process Planning – Computer Aided Process Planning (CAPP) –Logical steps in Computer Aided Process Planning – Aggregate Production Planning and Master Production Schedule –Material Requirement Planning –Capacity Planning -Control Systems -Shop Floor Control -Inventory Control. Briefo Manufacturing Resource Planning (MRP-II) and Enterprise Resource Planning (ERP) –Supply Chain Management (SCM) –Simple Problems 9 UNIT – IV Cellular Manufacturing: 9 Group Technology(GT), Part Families –Parts Classification and Coding –Simple Problems in Opitz Coding system – Production Flow Analysis –Cellular Manufacturing –Composite part concept –Machine cell design and layout – Quantitative analysis in Cellular Manufacturing –Rank Order Clustering Method –Arranging Machines in a GT cell – Hollier Method –Simple Problems. 9 UNIT – V CAQC and Production Planning: 9 Benefits of CAQC - Computer Aided Inspection - Contact and Non-contact Inspection Methods - Optical and Nonoptical types - Computer Aided Testing - Co-ordinate Measuring Machines (CMM). Total: 45 REFERENCES: 1. Groover M.P., "Automation, Production Systems, and Computer-integrated Manufacturing", 4 th Edition, Pearson Education, 2016. <td< td=""><td>UNIT – II</td><td>Transf</td><th>er Machines:</th><th></th><th></th><th></th><th></th><th></th><td>9</td></td<>	UNIT – II	Transf	er Machines:						9
UNIT - III Production Planning & Control and Computerised Process Planning: 9 Process Planning –Computer Aided Process Planning (CAPP) –Logical steps in Computer Aided Process Planning – Aggregate Production Planning and Master Production Schedule –Material Requirement Planning –Capacity Planning -Control Systems -Shop Floor Control -Inventory Control. Brief on Manufacturing Resource Planning (MRP-II) and Enterprise Resource Planning (ERP) –Supply Chain Management (SCM) –Simple Problems 9 UNIT - IV Cellular Manufacturing: 9 Group Technology(GT), Part Families –Parts Classification and Coding –Simple Problems in Opitz Coding system – Production Flow Analysis –Cellular Manufacturing –Composite part concept –Machine cell design and layout – Quantitative analysis in Cellular Manufacturing –Rank Order Clustering Method –Arranging Machines in a GT cell – Hollier Method –Simple Problems. 9 UNIT - V CAQC and Production Planning: 9 Benefits of CAQC - Computer Aided Inspection - Contact and Non-contact Inspection Methods - Optical and Non-optical types - Computer Aided Testing - Co-ordinate Measuring Machines (CMM). 9 REFERENCES: 1. Groover M.P., "Automation, Production Systems, and Computer-integrated Manufacturing", 4 th Edition, Pearson Education, 2016. 2. 2. Groover M.P. and Zimmers E.W., "Computer Aided Design and Manufacturing", Pearson Education, 2011. 3. 3. Nand K. Jha, "Handbook of Flexible Manufacturing Systems", Academic Press, Orlando, 2006. 30	Types, tran and clampi transfer line	sfer ma ng hous es - Layo	chines for housing type parts, transfer syster ing type parts. Transfer machines for shaft ut and output. Transfer lines, Automatic Palle	ms, turning de production a et Changer, N	evices, pallets and gear proc lodular Fixture	s, mec duction es.	hanism . Cont	is for l inuous	locating s rotary
Process Planning –Computer Aided Process Planning (CAPP) –Logical steps in Computer Aided Process Planning – Aggregate Production Planning and Master Production Schedule –Material Requirement Planning –Capacity Planning -Control Systems -Shop Floor Control -Inventory Control. Brief on Manufacturing Resource Planning (MRP-II) and Enterprise Resource Planning (ERP) –Supply Chain Management (SCM) –Simple Problems 9 UNIT - IV Cellular Manufacturing: 9 Group Technology(GT), Part Families –Parts Classification and Coding –Simple Problems in Opitz Coding system – Production Flow Analysis –Cellular Manufacturing –Composite part concept –Machine cell design and layout – Quantitative analysis in Cellular Manufacturing –Rank Order Clustering Method –Arranging Machines in a GT cell – 9 Benefits of CAQC - Computer Aided Inspection - Contact and Non-contact Inspection Methods - Optical and Non-optical types - Computer Aided Testing - Co-ordinate Measuring Machines (CMM). 9 REFERENCES: 1 Groover M.P., "Automation, Production Systems, and Computer-integrated Manufacturing", 4 th Edition, Pearson Education, 2016. 2 Quover M.P. and Zimmers E.W., "Computer Aided Design and Manufacturing", Pearson Education, 2011. 3 Nand K. Jha, "Handbook of Flexible Manufacturing Systems", Academic Press, Orlando, 2006. 3	UNIT – III	Produc	tion Planning & Control and Computerise	d Process Pl	anning:				9
Group Technology(GT), Part Families –Parts Classification and Coding –Simple Problems in Opitz Coding system – Production Flow Analysis –Cellular Manufacturing –Composite part concept –Machine cell design and layout – Quantitative analysis in Cellular Manufacturing –Rank Order Clustering Method –Arranging Machines in a GT cell – Hollier Method –Simple Problems UNIT – V CAQC and Production Planning: 9 Benefits of CAQC - Computer Aided Inspection - Contact and Non-contact Inspection Methods - Optical and Non-optical types - Computer Aided Testing - Co-ordinate Measuring Machines (CMM). Total: 45 REFERENCES: 1. Groover M.P., "Automation, Production Systems, and Computer-integrated Manufacturing", 4 th Edition, Pearson Education, 2016. 2. Groover M.P. and Zimmers E.W., "Computer Aided Design and Manufacturing", Pearson Education, 2011. 3. Nand K. Jha, "Handbook of Flexible Manufacturing Systems", Academic Press, Orlando, 2006.	Aggregate Planning -C II) and Ente	Produc Control S rprise R	ion Planning and Master Production Sch ystems -Shop Floor Control -Inventory Contr esource Planning (ERP) –Supply Chain Man r Manufacturing:	nedule –Mate rol. Brief on M agement (SC	erial Requirer lanufacturing M) –Simple P	ment Resou roblen	Plannir Irce Pla ns	ng –C anning	apacity (MRP-
UNIT - V CAQC and Production Planning: 9 Benefits of CAQC - Computer Aided Inspection - Contact and Non-contact Inspection Methods - Optical and Non-optical types - Computer Aided Testing - Co-ordinate Measuring Machines (CMM). Total: 45 REFERENCES: 1. Groover M.P., "Automation, Production Systems, and Computer-integrated Manufacturing", 4 th Edition, Pearson Education, 2016. 2. Groover M.P. and Zimmers E.W., "Computer Aided Design and Manufacturing", Pearson Education, 2011. 3. Nand K. Jha, "Handbook of Flexible Manufacturing Systems", Academic Press, Orlando, 2006.	Group Tech Production Quantitative Hollier Meth	nology(Flow A analys nod –Sir	GT), Part Families –Parts Classification and nalysis –Cellular Manufacturing –Composit is in Cellular Manufacturing –Rank Order Cl nple Problems	Coding –Sim e part conce ustering Meth	ple Problems pt –Machine od –Arrangin	in Op cell d g Mac	itz Coc esign hines i	ling sy and la n a G	/stem – ayout – T cell –
 Benefits of CAQC - Computer Aided Inspection - Contact and Non-contact Inspection Methods - Optical and Non-optical types - Computer Aided Testing - Co-ordinate Measuring Machines (CMM). Total: 45 REFERENCES: Groover M.P., "Automation, Production Systems, and Computer-integrated Manufacturing", 4th Edition, Pearson Education, 2016. Groover M.P. and Zimmers E.W., "Computer Aided Design and Manufacturing", Pearson Education, 2011. Nand K. Jha, "Handbook of Flexible Manufacturing Systems", Academic Press, Orlando, 2006. 	UNIT – V	CAQC	and Production Planning:						9
Total: 45 REFERENCES: 1. Groover M.P., "Automation, Production Systems, and Computer-integrated Manufacturing", 4 th Edition, Pearson Education, 2016. 2. Groover M.P. and Zimmers E.W., "Computer Aided Design and Manufacturing", Pearson Education, 2011. 3. Nand K. Jha, "Handbook of Flexible Manufacturing Systems", Academic Press, Orlando, 2006.	Benefits of optical type	CAQC s - Com	Computer Aided Inspection - Contact and puter Aided Testing - Co-ordinate Measuring	Non-contact Machines (Cl	Inspection Mo MM).	ethods	- Opti	cal ar	nd Non-
 REFERENCES: Groover M.P., "Automation, Production Systems, and Computer-integrated Manufacturing", 4th Edition, Pearson Education, 2016. Groover M.P. and Zimmers E.W., "Computer Aided Design and Manufacturing", Pearson Education, 2011. Nand K. Jha, "Handbook of Flexible Manufacturing Systems", Academic Press, Orlando, 2006. 	-							Т	otal: 45
 Groover M.P., "Automation, Production Systems, and Computer-integrated Manufacturing", 4th Edition, Pearson Education, 2016. Groover M.P. and Zimmers E.W., "Computer Aided Design and Manufacturing", Pearson Education, 2011. Nand K. Jha, "Handbook of Flexible Manufacturing Systems", Academic Press, Orlando, 2006. 	REFERENCES:								
 Groover M.P. and Zimmers E.W., "Computer Aided Design and Manufacturing", Pearson Education, 2011. Nand K. Jha, "Handbook of Flexible Manufacturing Systems", Academic Press, Orlando, 2006. 	1. Groover M.P., "Automation, Production Systems, and Computer-integrated Manufacturing", 4 th Edition, Pearson Education, 2016.								
3. Nand K. Jha, "Handbook of Flexible Manufacturing Systems", Academic Press, Orlando, 2006.	2. Groover	2. Groover M.P. and Zimmers E.W., "Computer Aided Design and Manufacturing", Pearson Education, 2011.							
	3. Nand K	3. Nand K. Jha, "Handbook of Flexible Manufacturing Systems", Academic Press, Orlando, 2006.							

COU On co	BT Mapped (Highest Level)	
CO1	infer the automation principles, automated manufacturing systems and material handling systems	Understanding (K2)
CO2	demonstrate about the transfer machines for production process	Applying (K3)
CO3	prepare the process plan and classify the parts using different coding methods	Understanding (K2)
CO4	identify the coding systems for different manufacturing parts in a manufacturing industry	Applying (K3)
CO5	Illustrate computer aided quality control techniques and production planning methods in a manufacturing environment	Applying (K3)

Mapping of COs with POs								
COs/POs PO1 PO2 PO3								
CO1 2 1 2								
CO2 3 2 3								
CO3	3	1	2					
CO4	2	2	2					
CO5 3 2 3								
1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy								

ASSESSMENT PATTERN - THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	30	60	10							
CAT2	20	60	20							
CAT3	15	65	20							
ESE	15	65	20							

20MME07 PROCESS CONTROL ENGINEERING

Programme & Branch		M.E. Mechatronics Engineering	Sem.	Category	L	т	Р	Credit
Prerequisit	e	Nil	II	PE	3	0	0	3
Preamble :	reamble This course imparts knowledge on process dynamics and process characteristics. It emphasizes on type of control, tuning of controllers and advanced control systems. This course also includes instrumentation needed for process control and applications of various process control systems.						n types ntation	
UNIT – I	Introdu	action to Process Dynamics						9
Process Co Modeling o Systems - Regulator C	ontrol - f Proce: nteracti)peratio	Automatic Process Control - Need for Automatic sses – First Order Process Systems - level, temper ng and Non-Interacting Systems - Batch and Contin n.	Proce rature nuous	ss Control ir and pressure Process - Se	n Indus - Sec elf Reg	stry - ond O ulation	Mathe rder F - Ser	matical Process vo and
UNIT – II	Contro	I Characteristics and Tuning:						9
Automatic Continuous Tuning: Pro	Controll Contro cess Re	er - Process Characteristics - Control System Par oller Modes - Composite Control Modes. Evaluatio eaction Curve Method - Ziegler-Nichols Method.	amete n Crite	rs - Discontir eria: Perform	nuous ance (Contro Criteria	oller M ı - Co	odes - ntroller
UNIT – III	Contro	I Systems with Multiple Loops:						9
Advanced (Split-Range	Control Contro	Systems - Feed Forward Control - Cascade Control I - Adaptive Control - Inferential Control – Multi Varia	- Ratio	o Control - Se ntrol.	elective	e Cont	rol Sys	stems -
UNIT – IV	Proces	ss Instrumentation:						9
Signal conv - Introductio	erters: on to tra	I/P and P/I converters – Control valves: characteristic nsmitters, two wire and four wire transmitters, Smart	cs, valv and In	re positioner, telligent Trans	selecti smitter	on of c s.	control	valves
UNIT – V	Proces	ss Control Systems:						9
Boiler, Reactor, Mixing Controls, Evaporation, Dryer, Heat Exchanger, Distillation Process.								
Total: 45								
REFERENCES:								
1. Krishna	1. Krishnaswamy K., "Process Control", 2 nd Edition, New Age International Pvt. Ltd. Publishers, New Delhi, 2013.							

2. George Stephanopoulos, "Chemical Process Control-An Introduction to Theory and Practice", 1st Edition, PHI Learning Pvt. Ltd., New Delhi, 2012.

3. Johnson C.D., "Process Control Instrumentation Technology", 8th Edition, Prentice-Hall, New Delhi, 2006.

COU On co	BT Mapped (Highest Level)	
CO1	develop the dynamics of processes using mathematical approach and interpret the characteristics of processes	Applying (K3)
CO2	propose the suitable control modes and examine the tuning of controllers	Analyzing (K4)
CO3	recommend the advanced control system for various process	Applying (K3)
CO4	choose the instrumentation to control the process	Understanding (K2)
CO5	apply suitable control for process control systems	Applying (K3)

Mapping of COs with POs								
COs/POs PO1 PO2 PO3								
CO1 3 2 3								
CO2 3 2 3								
CO3	3	2	3					
CO4	3	2	3					
CO5 3 2 3								
1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy								

ASSESSMENT PATTERN - THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	20	40	40				100			
CAT2	20	40	40				100			
CAT3	20	40	40				100			
ESE	20	40	40				100			

20MME08 APPLIED FINITE ELEMENT METHOD

Programme & Branch		M.E. Mechatronics Engineering	Sem.	Category	L	т	Р	Credit	
Prerequisi	te	Strength of Materials	II	PE	3	0	0	3	
Preamble :	This course gives an introduction to the finite element method which uses different numerical methods for solving a system of governing equations over the domain of a continuous physical system, which is discretized into simple geometric shapes called finite element.								
UNIT – I	Introdu	uction to FEA:						9	
Introductior equations f approach –	n to finit or conti Galerki	te element analysis – Discretization – Matrix algeb nuum – Classical Techniques in FEM. Weighted res in approach for one and two dimensions	ora – G idual n	Bauss elimina nethod – Ritz	ation m metho	nethod od. Pot	– Go ential	verning energy	
UNIT – II	One D	imensional Elasticity Problems:						9	
Introductior Matrices –	n to 2-D Elemen	D Finite element modeling – Plane stress – Plane t Equations – Formulation using Natural Coordinates.	Strain	 Displacem 	nent E	quatior	ns – E	lement	
UNIT – III	Two D	imensional Elasticity Problems:						9	
Introduction Matrices –	n to 2-D Elemen	D Finite element modeling – Plane stress – Plane t Equations – Formulation using Natural Coordinates.	Strain	 Displacem 	nent E	quatior	ns – E	lement	
UNIT – IV	Axisyn	nmetric Elements:						9	
Axisymmet temperature pressures -	Axisymmetric formulation – Element stiffness matrix and force vector – Galerkin approach – Body forces and temperature effects – Stress calculations – Boundary conditions – Applications to cylinders under internal or external pressures – Rotating discs								
UNIT – V Isoparametric Elements for Two Dimensional Continuum:							9		
Four node quadrilateral elements – Shape functions – Element stiffness matrix and force vector – Numerical integration - Stiffness integration – Stress calculations.									
							Тс	otal: 45	

REFERENCES:

- 1. Rao S.S., "The Finite Element Method in Engineering", 5th Edition, Butterworth-Heinemann, 2014.
- 2. Cook R.D., Malkus D.S., Plesha M.E. and Witt R.J., "Concepts and Applications of Finite Element Analysis", 4th Edition, John Wiley & Sons, 2007.
- 3. Reddy J.N., "An Introduction to the Finite Element Method", Tata McGraw Hill, International Edition, 2006.

COURSE OUTCOM On completion of the	BT Mapped (Highest Level)	
CO1 apply the finit	e element concepts used for designing engineering components	Applying (K3)
CO2 derive the el solve for diffe	ement matrix equation for solving one dimensional structural problems and erent applications	Analyzing (K4)
CO3 estimate the different appl	results for a 3D domain using simple two dimensional assumptions for cations	Evaluating (K5)
CO4 solve and and	alyze the engineering problems using axisymmetric assumptions	Analyzing (K4)
CO5 apply the co FEM	ncepts of isoparametric elements and Numerical integration techniques in	Applying (K3)

Mapping of COs with POs								
COs/POs PO1 PO2 PO3								
CO1 3 1 2								
CO2 3 1 2								
CO3	3	1	2					
CO4	3	1	2					
CO5 3 1 2								
1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy								

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	30	30	30			100
CAT2		20	40	40			100
CAT3		20	40	40			100
ESE	15	35	25	25			100

20MME09 COMPOSITE MATERIALS

Programm	ne &	N E. Machetronica Engineering	C	Cotomore		т	_	C no aliá
Branch M.E. Mechatronics Engineering Ser				Category	L	I	Р	Credit
Prerequis	ite	Nil	II	PE	3	0	0	3
Preamble :	This co proced	purse is designed to impart the composite materia ures for various applications.	ls mar	nufacturing p	rocess	and	its eva	aluation
UNIT – I	Basics	of Fibers, Matrices and Composites:						9
Basics of t Carbon, C fibers and	ibers, m eramic, matrices	atrices and composites: Definition – Need – General Aramid and Natural fibers. Matrices – Polymer, Cer . Fiber surface treatments, Fillers and Additives.	Chara amic a	cteristics, Ap Ind Metal Ma	plicatio trices	ons. Fi – Cha	bers - racteri	- Glass, istics of
UNIT – II	Manuf	acturing:						9
Bag moldi - Tube roll casting – \$	ng – Cor ing – Qu Squeeze	npression molding – Pultrusion – Filament winding – ality inspection methods. Processing of metal matrix casting.	Resin compo	film infusion osites (MMC)	- Elast – Diff	ic rese usion t	ervoir i oondin	molding g – Stir
UNIT – III	Perfor	mance:						9
Static med effects – L	chanical ong term	properties – Tensile, Flexural and Compressive -Fa properties, Fracture behavior- CT and SENB- Dama	itigue a ige tole	and impact p erance.	roperti	es – E	nviror	nmental
UNIT – IV	Mecha	nics:						9
Fiber cont Evaluation Young's m a unidirect	ent, den of four iodulus-7 ional lam	sity and void content. Rule of mixture -Volume ar elastic moduli based on strength of materials appr fransverse Young's modulus–Major Poisson's ratio-I nina. Characteristics of Fiber-reinforced lamina–Lamir	nd mas roach a n-plan nates–	ss fractions - and semi-em e shear modu Lamination th	– Dena pirical ulus, L ieory.	sity - mode Iltimate	Void o I-Long e strer	content, jitudinal ngths of
UNIT – V	Desigr	1:						9
Failure Pi design-Bo – Design analysis o	Failure Predictions, Laminate Design Consideration-Design criteria-Design allowable -Design guidelines, Joint design-Bolted and Bonded Joints, Design Examples-Design of a tension member – Design of a compression member - Design of a beam-Design of a torsional member, Application of Finite element method (FEM) for design and analysis of laminated composites.							
							Т	otal: 45
REFEREN	ICES:							
1. Mallick 2008.	Mallick P.K., "Fiber Reinforced Composites: Materials, Manufacturing and Design", 3 rd Edition, Taylor and Francis, 2008.							
2. Mallick 2008.	Mallick P.K., "Fiber Reinforced Composites: Materials, Manufacturing and Design", 3 rd Edition, Taylor and Francis, 2008.							
3. Bhagw Compo	an D. / sites", 4	Agarwal, Lawrence J. Broutman, Chandrashekha th Edition, John Wiley & Sons, New York, October 20 ⁷	r K., 17.	"Analysis an	d Per	formai	nce o	f Fiber

COU On co	BT Mapped (Highest Level)	
CO1	understand the basics of fibers and its characteristics	Understanding (K2)
CO2	develop composite materials using various manufacturing techniques	Understanding (K2)
CO3	assess the various properties of composite materials	Applying (K3)
CO4	model and evaluate the composite materials and its characteristics	Applying (K3)
CO5	create the design patterns for manufacturing of composites	Analyizing (K3)

M.E. – Mechatronics Engineering, Regulation, Curriculum and Syllabus – R2020

	Мар	ping of COs with POs	
COs/POs	PO1	PO2	PO3
CO1	3	1	2
CO2	3	1	2
CO3	3	1	2
CO4	3	1	2
CO5	3	1	2
1 – Slight, 2 – Moderate,	3 – Substantial, BT –	- Bloom's Taxonomy	

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	60	20				100
CAT2	20	40	40				100
CAT3	10	40	30	20			100
ESE	10	40	30	20			100

|--|

Programme & Branch		M.E. Mechatronics Engineering	Sem.	Category	L	т	Р	Credit
Prerequisit	e	Nil		PC	3	0	0	3
Preamble :	This co perspe	ourse impart the knowledge in machine tool control ctive.	l and o	condition mor	nitoring	in a	mecha	itronics
UNIT – I	Overvi	ew of Automatic Control in Machine Tools						9
Open loop block diagra logger-Dire	Open loop and closed loop system in machine tools- process model formulation-transfer function. Control actions- block diagram representation of mechanical pneumatic and electrical systems. Process computer -Peripherals-Data logger-Direct digital control-Supervisory computer control.							
UNIT – II	Adapti	ve Control and PLC						9
Adaptive co milling, gri programmir	ontrol-ty nding ng for to	pes – ACC, ACO, Real time parameter estimation and EDM. Programmable logic controller-Func pol life monitoring and Management	n, App tions-A	lications- ad	aptive in ma	contro achine	tools	urning, -Macro
UNIT – III	Condit	ion Monitoring						9
Introduction – Cost comparison with and without CM – On-load testing and offload testing – Methods and instruments for CM – Temperature sensitive tapes – Pistol thermometers – wear-debris analysis								
UNIT – IV	Vibrati	on, Acoustic Emission and Sound Monitoring						9
Primary & S Machine To	Seconda ol Cono	ary signals, Online and Off -line monitoring. Fundame	entals Emissio	of Vibration, Son, Case Stud	Sound, dies.	Acous	stic En	nission.
UNIT – V	Condit	ion Monitoring, Through Other Techniques						9
Vieual 8 t	mnorof	ura manitaring Laakaga manitaring Lubricant m	onitorir	a condition	monit	oring	of Lui	no and

Visual & temperature monitoring, Leakage monitoring, Lubricant monitoring, condition monitoring of Lube and Hydraulic systems, Thickness monitoring, Image processing techniques in condition monitoring.

Total: 45

REFERENCES:

- 1. Mishra R.C., Pathak K., "Maintenance Engineering and Management", 2nd Edition, Prentice Hall of India Pvt. Ltd., 2016
- 2. Mikell P. Groover, "Automation, Production Systems, and Computer-Integrated Manufacturing" Pearson Education India, 2016
- 3. Robert Bond Randall Vibration-Based Condition Monitoring Industrial, Aerospace and Automotive applications, John Wiley & Sons Ltd., 2011.

COU On co	BT Mapped (Highest Level)	
CO1	summarize the concepts of automatic control in machine tools	Understanding (K2)
CO2	choose the type of adaptive control and PLC for machining operations	Applying (K3)
CO3	explain the concepts of condition monitoring techniques	Understanding (K2)
CO4	select the condition monitoring technique for the machine tool among vibration, acoustic emission and sound analysis	Applying (K3)
CO5	select appropriate condition monitoring technique for machine tool control applications	Applying (K3)

	Мар	ping of COs with PO	S
COs/POs	PO1	PO2	PO3
CO1	3	1	2
CO2	3	2	2
CO3	3	2	3
CO4	3	2	3
CO5	2	3	2
1 – Slight, 2 – Moderate,	3 – Substantial, BT -	- Bloom's Taxonomy	

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	70	10				
CAT2	10	60	20				
CAT3	10	50	40				
ESE	10	60	30				

20MME11 INDUSTRIAL DATA COMMUNICATION

Programme & Branch		M.E. Mechatronics Engineering	Sem.	Category	L	т	Р	Credit
Prerequisit	e	Nil		PC	3	0	0	3
Preamble :	This co of indu	urse enable the graduates to understand the data ne strial automation.	etwork	s, communica	ation p	rotocol	s and	modes
UNIT – I	Introdu	ction to Networks in Industrial Automation:						9
Information basics – OS	flow re SI refere	quirements – Hierarchical communication model – nce model – Industry network – recent network.	networ	k requiremer	nts - D	ata Co	ommur	nication
UNIT – II	Data N	etwork Fundamentals:						9
EIA 232 int interface co CSMA/CD -	erface nverter - TCP/II	standard – EIA 485 interface standard – EIA 422 s – Data link control protocol – Media access protoc P – Bridges – Routers – Gateways –Standard ETHEF	interfa ol: Co RNET	ce standard mmand/respc Configuration	– Curr onse –	ent loo Token	op and passi	1 serial ng and
UNIT – III	HART	and MODBUS Protocol:						9
Introduction Networks– codes – tro	– Evo HART o ublesho	Iution of signal standard – HART communication commands – HART applications – MODBUS protoc oting.	protoc ol stru	col – Commu cture –transn	unication nission	on mo mode	des – s – f	HART
UNIT – IV	Fieldb	us and Profibus:						9
Introduction Interoperab model, Com	Introduction - General Fieldbus architecture, basic requirements of Fieldbus standard, Fieldbus topology, Interoperability and Interchangeability. Profibus : Introduction, Profibus protocol stack, Profibus communication model, Communication objects, System operation and Troubleshooting – Foundation fieldbus versus Profibus.							
UNIT – V AS-interface (AS-i), Devicenet and Industrial Ethernet: AS interface:						9		
Introduction Data link la format, topo	Introduction, Physical layer, Data link layer and Operating characteristics. Devicenet : Introduction, Physical layer, Data link layer and Application layer. Industrial Ethernet : Introduction – core elements of Ethernet, Ethernet frame format, topology overview- Overview of Ethernet versions – 10Base Ethernet and 100Base Ethernet.							
	Total: 45							
REFERENC	REFERENCES:							

1	. Bela G. Liptak and HalitEren, "Instrument Engineers Handbook: Process Software and Digital Networks", Volume 3, 4 th Edition, CRS Press, 2011.
2	Mackay S., Wright E., Reynders D. and Park J., "Practical Industrial Data Networks: Design, Installation and Troubleshooting", Newnes Publication, Elsevier, 2004.
3	Berge J., "Field Buses for Process Control: Engineering, Operation, and Maintenance", ISA Press, 2004.

COURSE OUTCOMES: On completion of the course, the students will be able to	BT Mapped (Highest Level)
CO1 demonstrate the basic network requirements for Industrial automation	Understanding (K2)
CO2 infer the data network fundamentals	Understanding (K2)
CO3 infer the HART and MODBUS Protocol for Networked Industrial Automation	Understanding (K2)
CO4 recommend the FIELDBUS AND PROFIBUS for industrial automation network	Understanding (K2)
CO5 realize the functions of AS-I, Devicenet and Ethernet in industrial network	Apply (K3)

Mapping of COs with POs						
COs/POs	PO1	PO2	PO3			
CO1	2	2	3			
CO2	3	2	3			
CO3	1	2	3			
CO4	1	2	3			
CO5	1	2	3			
1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy						

ASSESSMENT PATTERN - THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	20	80						
CAT2	20	80						
CAT3	10	70	20					
ESE	10	70	20					

Programme & Branch		M.E. Mechatronics Engineering	Sem.	Category	L	Т	Р	Credit	
Prerequisit	e	Nil	III	PC	3	0	0	3	
Preamble :	eamble This course provides basic knowledge about Artificial Intelligence and its applications and different types of machine learning and their implementation for real world problems							nt types	
UNIT – I	- I Intelligent Agents: 9								
Concept of Example, S	Ration earchin	ality, Environments and Structure. Solving Proble g for Solutions, Search Strategies and constraint Sati	ems by isfactio	/ Searching: on Problems	Proble	em-So	lving	Agents,	
UNIT – II	Logica	I Agents:						9	
Knowledge Representa Order Logi	-Based tion, Sy c: Unific	Agents, Wumpus World, Propositional Logic, F Intax and Semantics, Using First-Order Logic and cation and Lifting, Forward and Backward Chaining, F	Propos Knowl Resolu	itional Theo edge Engine tion.	rem. I ering.	First-C Infere)rder nce ir	Logic: ı First-	
UNIT – III	Introdu	uction to Machine Learning:						9	
Machine Le Data Pre-pr	Machine Learning Applications - Types of Machine learning -Supervised Learning: Building good training sets – Data Pre-processing - Decision tree learning. Bayesian Decision Theory: Introduction – Classification.								
UNIT – IV	Artifici	al Neural Networks:						9	
Introduction Unsupervis	Introduction – Representations – Problems – Perceptron – Multilayer network and Back Propagation Algorithm. Unsupervised Learning: K-Means clustering - Hierarchical clustering.								
UNIT – V	Reinfo	rcement Learning:						9	
Single state	e case –	Elements - Model based learning - Temporal differe	nce lea	arning – Gene	eralizat	tion.			

Total: 45

REFERENCES:

1. Stuart Russell and Peter Norvig, "Artificial Intelligence: A Modern Approach", 3rd Edition, Pearson Education, 2016.

2. Ethem Alpaydin, "Introduction to Machine Learning", 3rd Edition, Prentice Hall India, 2015.

3. Sebastian Raschka,"Python Machine Learning", 3rd Edition, Packt Publishing, 2019.

COURSE OUTCOMES: On completion of the course, the students will be able to	BT Mapped (Highest Level)
CO1 Define intelligent agents and apply searching for solving problems	K2
CO2 Apply propositional and first order logic in AI	K3
CO3 Utilize supervised learning methods to solve real world problems	K3
CO4 Design solutions for the given problem using artificial neural networks and unsupervised learning methods	КЗ
CO5 Recognize the need of reinforcement learning in AI applications	K2

Mapping of COs with POs						
COs/POs	PO1	PO2	PO3			
CO1	3	2	2			
CO2	3	3	3			
CO3	3	3	3			
CO4	3	3	3			
CO5	3	2	3			
1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy						

ASSESSMENT PATTERN - THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	20	50	30				100	
CAT2	20	40	40				100	
CAT3	10	40	50				100	
ESE	20	50	30				100	

20MME13 MACHINE VISION SYSTEM

Programme & Branch		8	M.E. Mechatronics Engineering	Sem.	Category	L	т	Р	Credit							
Prere	equisite	es	Virtual Instrumentation IV PE 3 0			0	3									
Prea :	mble	This co and ima	ourse provides the practical knowledge about the va age processing techniques.	rious c	components o	of mac	hine vi	sion s	systems							
UNIT	-1	Proces	sing of Information in the Human Visual System:						9							
Desig a Ma Instal	Design and structure of eye– Adaptation to different light level– Rod and Cone Responses. Introduction to Building Machine Vision Inspection: Specification– Part Presentation– Performance requirement– Information Interfaces– Installation Space– Environment.															
UNIT	UNIT – II Designing a Machine Vision System: 9															
Came Calcu platfo	era typ ulation orm– Pi	es– Fi of resc xel rate	eld view– Resolution: camera sensor resolution, S plution, Resolution for a Line Scan Camera - Choi e– Lens design - digital and smart cameras.	Spatial ce of o	resolution, M camera, Frar	leasure ne gra	ement bber a	of ac Ind ha	curacy, ardware							
UNIT	INIT - III Lighting System: 9															
Dema Part (Came Comp	ands or Color: N era Co puter bu	n mach Aonoch ompute uses.	ine vision lighting – Light and light perception – Ligh promatic light, white light, UV, IR and Polarized light - pr Interface: Analog camera buses – Parallel dig	t sourc - Light gital ca	es for machir filters. amera buses	ne visio – Stai	on – Lig ndard	ght Co PC b	olor and							
UNIT	' – IV	Image	Processing Fundamentals:						9							
Introc Trans Objec Featu	duction sformat ct Reco ures–M	to Dig ions, F ognition orpholo	ital Image Processing - Image sampling and qua Radiometric Calibration, Image Smoothing– Geon and Image Understanding - Feature extraction: Re pgy– Edge extraction– Fitting and Template matching	ntizatio netric gion Fo J.	on - Image e transformatio eatures, Gray	enhanc n– Im / Value	ement age so e Featu	: Gra egme ures,	y Value ntation– Contour							
UNIT	- V	Applic	ations and Case Studies						9							
Diam Comp circui	ieter Ins pletene it– Pin [−]	spectio ss Che Type V	n of Rivets– Tubing Inspection– Machine Vision in eck of automotive control component– Multiple Posit erification– Type and Result Data Management of sp	Manufa tion an ark plu	acturing– Glu d Completen Igs– Robot G	ie Che ess Ch uidanc	ck unc ieck of e.	ler U\ sma	/ Light– II hybrid							
-								Т	otal: 45							
REFE	ERENC	ES:														
1. A	lexande	er Horn	berg, "Handbook of Machine Vision", Wiley-VCH, 20	06.												
2. D	avies E	.K., "M	achine Vision: Theory, Algorithms, Practicalities", 3 rd	Editio	n, Elsevier, 20	005.										
3. M	lilan So	nka, "Ir	mage Processing Analysis and Machine Vision", Vika	is Publ	ishing House	, 2007.										
COU On co	RSE O ompleti	UTCOI on of th	MES: ne course, the students will be able to				BT (Hig	Map	ped Level)							
CO1	interpr	et the f	undamental concepts of vision system				Unc	lersta (K2)	nding							
CO2	choos	e the c	omponents for designing the machine vision system				Unc	e the components for designing the machine vision system Understanding (K2) (K2)								

M.E. – Mechatronics Engineering, Regulation, Curriculum and Syllabus – R2020

CO3 learn about the concept of lighting system and various computer interfaces

CO5 analyze the machine vision system through real time applications

CO4 identify the concept of image processing techniques

Understanding (K2)

Applying (K3)

Analyzing (K4)

Mapping of COs with POs						
COs/POs	PO1	PO2	PO3			
CO1	3	1	2			
CO2	3	1	2			
CO3	3	1	2			
CO4	3	1	2			
CO5	3	1	2			
1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy						

ASSESSMENT PATTERN - THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	20	80					100	
CAT2	20	50	30				100	
CAT3	20	60	20				100	
ESE	20	55	25				100	

20MME14 PRODUCT DESIGN AND DEVELOPMENT

Programme & Branch		M.E. Mechatronics Engineering	Sem.	Category	L	т	Ρ	Credit		
Prerequisites Nil		Nil	IV	PE	3	0	0	3		
Preamble :	This co prototy	ourse provides knowledge on new product planning pe development	, conc	ept developm	nent, ir	dustria	al desi	gn and		
UNIT – I	Development Processes and Organizations:									
Introduction development process flow	Introduction to New Product and Product design- Characteristics of successful product – The challenges in product development -Product development process – adapting generic product development process- Product development process flows –product development organizations.									
UNIT – II	Oppor	tunity Identification and Product Planning:						9		
Types of op Process - F	oportuni our type	ties- Structure of Opportunity Identification – Opport es of product development projects – Steps in Product	unity i t Plan	dentification p ning Identif	proces ying C	s; Proc ustome	duct P er nee	lanning ds.		
UNIT – III	Produ	ct specifications and Concept development:						9		
Product Sp Concept sc	ecificati reening	ons – Target and final specifications. Concept gene – Concept scoring – concept testing.	eration:	Five step m	ethod-	Conce	ept se	lection-		
UNIT – IV	Produ	ct architecture and Industrial Design:						9		
Implications of the architecture – Establishing the architecture – Delayed differentiation – Platform Planning – System level design issues. Industrial Design – Assessing the Need for Industrial Design and its impact - Industrial design process and management – Assessing the quality of Industrial Design.										
UNIT – V	Desigr	n considerations and prototyping:						9		
Design for planning for	enviror r prototy	nment – Design for manufacturing and assembly; pes -Robust design – process flow.	Proto	typing – Prir	nciples	– Te	chnolo	ogies –		
							Тс	otal: 45		
REFEREN	CES:									

1. Eppinger, S.D. and Ulrich, K.T. " Product design and development", 6th edition, McGraw-Hill Higher Education, 2016

2. Devdas Shetty, "Product Design For Engineers", Cengage Learning, 2015.

3. Maddock M. and Uriarte L., "Brand New: Solving the Innovation Paradox - How Great Brands Invent and Launch New Products, Services and Business Models", John Wiley & Sons, Inc., Hoboken, New Jersey, 2011.

4. Roozenburg, N. F., & Eekels, J., "Product design: fundamentals and methods", John Wiley & Sons Inc, 1995.

COURSE OUTCOMES:

COU On co	BT Mapped (Highest Level)	
CO1	infer the basic need for new product design and development process	Understanding (K2)
CO2	identify opportunities and customer needs for new product development	Applying (K3)
CO3	arrive at product specification and develop concepts for new product	Analysing (K4)
CO4	establish the overall product architecture and assess its industrial design	Analyzing (K4)
CO5	assess the design from environmental, manufacturing and assembly perspective and develop prototypes	Analyzing (K4)

Mapping of COs with POs								
COs/POs	PO1	PO2	PO3					
CO1 3 1 2								
CO2 3 1 2								
CO3	3	1	2					
CO4	3	1	2					
CO5	3	1	2					
1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy								

ASSESSMENT PATTERN - THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	10	30	30	30			100	
CAT2	10	30	30	30			100	
CAT3	10	30	30	30			100	
ESE	10	30	30	30			100	

20MME15 DRONE TECHNOLOGY

Programme & Branch		M.E. Mechatronics Engineering	Sem.	Category	L	т	Р	Credit
Prerequisi	tes	Sensors and IOT, Bridge course mechanical and Industrial Robotics	IV	PE	3	0	0	3
Preamble :	This course strives to identify and introduce Drones or UAVs (unmanned aerial vehicles) as piloted I remote control or on board computers through computer vision and artificial intelligence technologies.							
UNIT – I	Introdu	uction to Unmanned Aerial Vehicles (UAV):						9
Overview and background: history of UAVs, classifications of UAVs, lift generation method. Contemporary applications like military, government and civil areas. Operational considerations like liability / legal issues, ethical implications LOS / BLOS.								
UNIT – II	Unmar	nned Aerial System (UAS) components:						9
Platforms - configurations - characteristics – applications. Propulsion: internal combustion engines, turbine engines, electric systems. On-board flight control – Payloads: sensing/surveillance, weaponized UAS and delivery. Communications: command/control, telemetry. Launch/recovery systems - Ground control stations								
UNIT – III	Basic	Concepts of Flight:						9
Aerodynamics: lift, weight, thrust, and drag. Flight performance: climbing vs. gliding flight, range / endurance - Stability and control: flight axes, flight controls, autopilots. Emergency identification and handling - Fixed wing operations: Types of fixed wing drones, make, parts, terminology and operation.								
UNIT – IV	Drone	Equipment Maintenance:						9
Maintenance of drone, flight control box - Maintenance of ground equipment- batteries - Scheduled servicing - Repair of equipment - Fault finding and rectification - Weather and meteorology.								
UNIT – V	JNIT – V Regulatories and Regulations: 9							
Homeland regulatories: FCC, FAA and foreign regulatory. Regulations: FCC compliance, UAS registration, Federal Aircraft Regulations (FARs) - Safety considerations								
	Total: 45							

REFERENCES:

	1.	Paul Fahlstrom, Thomas Gleason, "Introduction to UAV Systems", 4 th edition, John Wiley & Sons, 2012.
	2.	Randal W. Beard and Timothy W. McLain, "Small Unmanned Aircraft: Theory and Practice", Princeton University Press, 2010.
ſ	3.	Jha, "Theory, Design, and Applications of Unmanned Aerial Vehicles", CRC Press, 2016.

COU On co	BT Mapped (Highest Level)	
CO1	acquire the basic knowledge about the development and potential of UAV in professional activities	Applying (K3)
CO2	interpret the features and characteristics of an Unmanned Aerial System	Applying (K3)
CO3	infer the basic concepts and features of flight	Applying (K3)
CO4	realize the drone equipment maintenance and repair	Applying (K3)
CO5	follow the Regulatory measures and regulations	Applying (K3)

Mapping of COs with POs							
COs/POs	PO1	PO2	PO3				
CO1	3	1	3				
CO2 3 1 3							
CO3	3	1	3				
CO4	3	1	3				
CO5	3	1	3				
1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy							

ASSESSMENT PATTERN - THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	20	40	30	10			100	
CAT2	20	40	30	10			100	
CAT3	10	40	30	20			100	
ESE	10	40	30	20			100	

20MME16 AUTONOMOUS MOBILE ROBOTICS

-	•							1
Programme & Branch		M.E. Mechatronics Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisite		Robot Kinematics and Dynamics	IV	PC	3	0	2	4
Preamble :	Ie This course strives to identify and introduce Drones or UAVs (unmanned aerial vehicles) as piloted remote control or on board computers through computer vision and artificial intelligence technologies.							oted by ies.
UNIT – I	Mobile Robot Kinematics:							
Introduction	n - Kiner	natic models and constraints – Manoeuvrability – Wo	rkspac	ce – Motion c	ontrol			
UNIT – II	Locom	otion:						9
Introduction	n – Key i	ssues for locomotion – Legged mobile robots – Whe	eled m	obile robots -	- Aeria	l mobil	le rob	ots
UNIT – III	Percep	tion:						9
Introduction extraction	n - Sen based or	sors for mobile robots – Fundamentals of compu n range data - Image feature extraction – Place recog	ter vis Inition.	ion and ima	ige pro	ocessir	ng —	Feature
UNIT – IV	Localiz	zation:						9
Introduction localization	n – Cha i – Autor	Ilenges of localization – Belief representation – Ma nomous map building.	ap rep	resentation -	- Prob	abilisti	c Map	o-Based
UNIT – V	Planni	ng and Navigation:						9
Introduction Navigation	n – Cor architec	mpetence for Navigation: Planning and Reacting tures.	– Pa	th planning	– Obs	stacle	avoid	ance –
List of Ex	norimo	nte ·						
1 9	Study of	Fire Bird – V robot and its accessories						
2 1	Developi	ment of embedded programming for Buzzer interfacin	na usin	a Fire Bird –	V robo	t		
3.	Develop	ment of embedded programming for Dazzer interfacing	usina F	Fire Bird – V	robot.			
4.	Develop	ment of embedded programming for motion control us	sina Fi	re Bird – V ro	bot.			
5. I	Develop	ment of embedded programming for position control	using F	ire Bird – V r	obot.			
6. I	Developi	ment of embedded programming for velocity control u	ising F	ire Bird – V r	obot.			
7.	Developi	ment of embedded programming for ADC interfacing	using	Fire Bird – V	robot.			
8. I	Developi	ment of embedded programming for path planning us	ing Fir	e Bird – V ro	bot.			
9. 1	Developi	ment of embedded programming for obstacle avoidar	nce usi	ng Fire Bird -	- V rob	ot.		
10. I	Developi	ment of embedded programming for wireless motion	contro	of Fire Bird	√ robot	t using	ZigBe	Эе
	Communication.							

Lecture: 45, Practical: 15, Total: 60

REFERENCES:

- 1. Roland Siegwart, Illah Reza Nourbakhsh and Davide Scaramuzza, "Introduction to Autonomous Mobile Robots", 2nd Edition, MIT Press, Cambridge, 2011.
- 2. Farbed Fahimi, "Autonomous Robots Modeling, Path Planning and Control", Springer, 2009.
- 3. Alonzo Kelly, "Mobile Robotics: Mathematics, Models and Methods", Cambridge University Press, 2013.

COURSE OUTCOMES.

COUF On co	BT Mapped (Highest Level)	
CO1:	develop the kinematic model of mobile robots	Evaluating (K5)
CO2:	interpret the different concepts of locomotion	Applying (K3)
CO3:	select the sensory devices for environmental perception	Applying (K3)
CO4:	identify the techniques for localization	Applying (K3)
CO5:	apply the concepts of planning and navigation	Applying (K3)
CO6:	develop embedded programming for motion control	Applying (K3), Manipulation (S2)

M.E. – Mechatronics Engineering, Regulation, Curriculum and Syllabus – R2020

CO7:	develop embedded programming for planning and navigation	Creating (K6), Precision (S3)		
CO8:	develop embedded programming for wireless control	Creating (K6), Precision (S3)		

Mapping of COs with POs										
COs/POs	PO1	PO2	PO3							
CO1	2		3							
CO2	2		3							
CO3	2		3							
CO4	2		3							
CO5	2		3							
CO6	3	2	3							
C07	3	2	3							
CO8	3	2	3							
1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy										

ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	20	50	30				100						
CAT2	20	40	40				100						
CAT3	20	40	40				100						
ESE	20	40	40				100						

Programme &

20MME17 ADDITIVE MANUFACTURING

Programm Branch	e &	M.E. Mechatronics Engineering	Sem.	Category	L	т	Ρ	Credit				
Prerequisi	e	Nil	IV	PE	3	0	0	3				
Preamble	Ins course provides scientific as well as technological aspects of various additive, and formative rapid manufacturing processes. Variety of applications also be covered ranging from rapid prototyping, rapid manufacturing to mass customization. Introduction to Additive Manufacturing:											
UNIT – I	Introdu	ction to Additive Manufacturing:						9				
Evolution, f for time co Fundament Data forma	undame ompress als of R t - STL f	ental fabrication processes, CAD for RPT, product d ion in product development - Conceptual design P systems – RP process chain - 3D modelling -3D s iles- History of RP systems - Classification of RP sys	esign a - De solid me stems -	and rapid pro tail design, l odeling softw Benefits of R	oduct d Prototy are and RPT.	evelop pe fur d their	ment Idame role in	- Need ntals - RPT -				
UNIT – II Liquid based RP systems:												
Stereo Lith details, Adv Limitations. Applications	ography /antage: Solid s.	 Apparatus (SLA): Principle, Photo polymers, Poss. Solid Ground Curing (SGC): Principle, Process para Creation System (SCS): Principle, Process para 	st proc parame ameter	cesses, Proc ters, Process s, Process	ess pa s detail details	aramete ls, Mac , Mac	ers, M chine o hine o	achine details, details,				
UNIT – III	Solid b	ased RP systems:						9				
Fusion De parameters parameters parameters	oosition , Machii , Proces , Proces	Modeling (FDM): Principle, Raw materials, BAS ne details, Advantages and limitations. Laminated Ol as details, Advantages and limitations. Solid Deposi as details, Machine details, Applications.	S, Wa bject M tion Ma	ter soluble anufacturing anufacturing	suppor (LOM) (SDM)	t syste : Princ : Princ	em, P iple, P iple, P	rocess rocess rocess				
UNIT – IV	Powde	r based RP systems:						9				
Selective L applications Advantages applications	aser Sir 5. 3-Dir 5 and li 5.	ntering (SLS): Principle, Process parameters, Proce nensional Printers (3DP): Principle, Process par mitations. Laser Engineered Net Shaping (LENS):	ess det ameter Princi	ails, Machine s, Process ple, Process	e detai details detail	ls, Adv , Mac s, Adv	antage hine c antage	es and details, es and				
UNIT – V	Rapid	Tooling and Applications of RP:						9				
Direct Rapi Automotive Reverse en	d Toolir industr gineerir	ng, Indirect Rapid Tooling: Soft tooling and Hard to y, and Medical field – Conversion of CT/MRI scan g.	ooling. data ·	Applications Customized	of RP I impla	in Pro nt - Ca	duct d ase st	lesign, udies -				
REFEREN	CES:						Tot	al : 45				
1. Chua.C. 2010.	K., Leo	ng K.F. and Lim C.S., "Rapid prototyping: Principles	and A	pplications", V	World s	scientif	ic, Nev	wjersy,				
2. Pham D	.T. and	Dimov S.S, "Rapid Manufacturing", Springer -Verlag	, Londo	on, 2011.								
3. Amitabh	a Ghos	h, "Rapid Manufacturing a brief Introduction", Affiliate	d East	West Press,	New D	elhi, 2	011.					
								-				
COURSE C	OUTCON ion of th	AES: ne course, the students will be able to				B1 (Hig	「Mapp hest L	oed .evel)				
CO1: apply	CO1: apply the concepts of rapid prototyping in product design and development Applying (K3)											
CO2: Sele	ct the su	itable liquid based rapid prototyping system for a spe	ecific a	oplication		Ар	olying	(K3)				
CO3: selec	t the su	itable solid based rapid prototyping system for a spec	cific ap	plication		Ар	olying	(K3)				
CO4: selec	t the su	itable powder based rapid prototyping system for a s	pecific	application		Ар	olying	(K3)				
CO5: apply	the cor	ncepts of rapid prototyping in product design and dev	elopm	ent		Ap	olying	(K3)				

Mapping of COs with POs											
COs/POs	PO1	PO2	PO3								
CO1	3	2	2								
CO2	3	2	2								
CO3	3	2	2								
CO4	3	2	2								
CO5	3	2	2								
1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy											

ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	40	40	20				100						
CAT2	30	40	30				100						
CAT3	30	45	25				100						
ESE	30	40	30				100						

20GET13 INNOVATION AND BUSINESS MODEL DEVELOPMENT (Common to ALL branches)

							(
Pro Bra	ogramm anch	е&	М.Е. М	echatr	onics	Eng	jineer	ring					Se	em.	Cate	gory	L		т	Ρ	С	redit
Pr	erequisi	te	Nil										1	V	F	Έ	3		0	0	İ	3
Pro	eamble	This c develo	ourse v pments.	will ins _i	pire tl	he s	studer	nts t	to th	hink	inno	ovati	ion	con	cepts	and	ideas	for	bus	iness	m	odel
UN	IIT – I	Innova	ation an	d Desi	gn Th	inkir	ng:															9
Inr co Pre	novation ncerns of ptotype -	and Cr f design · Test. D	reativity- 1. Desigr Design tl	- Type n Think hinking	s of i ing an tools:	nnov nd En Anal	/ation htrepro logies	n – c reneu s – B	chall urshi Brain	enge ip – istorr	es in Desi ming	n inr ign T 1 – N	nova Think <i>I</i> lind	tion king map	- step Stage ping	s in i s:Em	nnova Ipathiz	atior ze –	n ma - Defi	nagen ne – le	ner dea	nt- 7 ate –
UN	IIT – II	User S	Study ar	nd Con	textua	al En	nquiry	y:														9
Ex qu Pro Es	planatory alitative r ocess of tablish ta	/ resear esearch identifyi irget spo	rch – pri h – focu ing cust ecificatio	mary a s group omer n ons	nd seo)s – de eeds -	conda epth i –orga	ary da interv anize	lata - views e nee	– cla: s – a eds ir	issifi inaly nto a	catio sis o a hie	on of of qu erarc	f sec ialita hy –	ond tive esta	ary da data - Iblish	ta – s - surv relativ	ource ey me re imp	s of thoo orta	secc ds – d ance d	ondary observ of the	/ da /ati ne	ata – ions- eds-
UN	IIT – III	Produ	ct Desig	gn:																		9
Te (M tec	chniques VP)- Pro chniques	and to duct pr for user	ools for rototypin r-produc	concep 1g – too 2t intera	t gene ols an iction	eration nd teo	on, co chniq	once ques-	ept e – ov	valu vervie	ation ew o	n – I ofpr	Prod oces	uct sses	archit and	ecture mater	-Mir ials -	imu eva	ım Vi aluati	able I on too	Pro ols	duct and
UN	IIT – IV	Busine	ess Moc	iel Can	ivas (I	BMC	;):															9
Lea mo	an Canva del failur	as and es: Rea	BMC - asons ar	differer nd reme	nce ar edies	nd bu	uilding	g blo	ocks∙	- BN	/IC: F	Patte	erns	— C	esign	– Sti	ategy	— F	Proce	ess–Bi	usi	ness
UN	lit – V	IPR an	d Comr	nercial	izatio	on:																9
Ne Ge Inr	ed for l ographic ovation	Intellect al Indic: Marketir	ual Pro ations, ng	perty- Trade \$	Basic Secret	; con ts an	ncepts nd Ind	s - dustri	Diffe ial D	erent Iesig	t Ty n– F	pes Pater	of nt Li	IPs: cen:	Cop sing -	y Rig Techr	hts, ⁻ nology	Frad Co	lema omme	rks, F ercializ	Pate zati	ents, on –
RE	FEREN	CES:																		То	tal	: 45
1.	Jeanne Universi	Liedtka ty Press	and Ti s, 2011.	m Ogil	vie, "[Desig	gning	for	Gro	wth:	ΑC	Desi	gn T	hink	ing T	ool K	t for	Man	nager	s", Co	olui	mbia
2.	Eppinge 2016	er, S.D.	and Uli	rich, K.	T. "Pr	oduc	ot des	sign	and	dev	elop	mer	nt", 6	oth e	dition	, McG	Graw-I	Hill	Highe	er Edu	rca	ation,
3.	Alexand challeng	er Ost jers", 1 ^s	erwalde st edition	r, "Bus , John '	siness Wiley	s mo and {	odel Sons	gene ; 201	eratio 10	on:	A ł	nanc	dboo	k fo	or vis	ionari	es, g	ame	e ch	anger	s,	and
4.	Rajeev	Surana	"Protect	t Your I	deas",	, Scir	nnova	ation	Con	nsulta	ants	Pvt.	. Ltd	, 1 st	Editio	n, 201	2					
5.	Indian I	nnovato	ors Asso	ociation	, "Pate	ent l	IPR L	_icen	sing) — Т	Геch	nolo	ogy (Com	merci	alizati	on –	Innc	ovatio	n Ma	rke	eting:

Guide Book for Researchers, Innovators", Notion Press, Chennai, 2017

COURSE OUTCOMES: On completion of the course, the students will be able to	BT Mapped (Highest Level)
CO1: understand innovation need and design thinking phases	Understanding (K2)
CO2: identify, screen and analyse ideas for new products based on customer needs	Analysing (K4)

M.E. – Mechatronics Engineering, Regulation, Curriculum and Syllabus – R2020

CO3:	develop and analyse the concepts based on the customer needs and presents the overall architecture of the product	Analysing (K4)
CO4:	predict a structured business model for mvp	Applying (K3)
CO5:	Practice the procedures for protection of their ideas' IPR	Applying (K3)

	Mapping of COs with POs										
COs/POs	PO1	PO2	PO3								
CO1	3		2								
CO2	3		2								
CO3	3		2								
CO4	3		2								
CO5	3		1								
Olivity O. Madaveta . O. Ochestarial . DT. Discovic Tennesson											

1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy

ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	40	40	20				100						
CAT2	30	40	30				100						
CAT3	30	45	25				100						
ESE	30	40	30				100						