KONGU ENGINEERING COLLEGE PERUNDURAI ERODE – 638 060 (Autonomous)

VISION

To be a centre of excellence for development and dissemination of knowledge in Applied Sciences, Technology, Engineering and Management for the Nation and beyond.

MISSION

We are committed to value based Education, Research and Consultancy in Engineering and Management and to bring out technically competent, ethically strong and quality professionals to keep our Nation ahead in the competitive knowledge intensive world.

QUALITY POLICY

We are committed to

- Provide value based quality education for the development of students as competent and responsible citizens.
- Contribute to the nation and beyond through research and development
- Continuously improve our services

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

VISION

To be a centre of excellence for development and dissemination of knowledge in Electronics and Communication Engineering for the Nation and beyond

MISSION

Department of Electronics and Communication Engineering is committed to:

- MS1: To impart industry and research based quality education for developing value based electronics and communication engineers
- MS2: To enrich the academic activities by continual improvement in the teaching learning process
- MS3: To infuse confidence in the minds of students to develop as entrepreneurs
- MS4: To develop expertise for consultancy activities by providing thrust for Industry Institute Interaction
- MS5: To endeavour for constant upgradation of technical expertise for producing competent professionals to cater to the needs of the society and to meet the global challenges

2018 REGULATIONS

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

Graduates of M.E.(VLSI Design) will

- PEO1: Succeed in industry and research by applying knowledge of modeling, design and fabrication techniques of Integrated Circuits
- PEO2: Identify, design and analyze solutions to solve real world problems in VLSI design
- PEO3: Demonstrate soft skills , professional and ethical values and aptitude for life long learning needed for a successful professional career

MAPPING OF MISSION STATEMENTS (MS) WITH PEOS

MS\PEO	PEO1	PEO2	PEO3
MS1	3	3	3
MS2	2	3	2
MS3	3	3	3
MS4	2	3	1
MS5	3	3	3
	1 01:14 0 M.	1	41-1

1 -Slight, 2 -Moderate, 3 -Substantial

	PROGRAM OUTCOMES (POs)							
M.E(VI	M.E(VLSI Design) Graduates will be able to:							
PO1:	Independently carry out research/investigation and development work to solve practical problems							
PO2 :	Write and present a substantial technical report/document							
PO3:	Demonstrate a degree of mastery over the areas of VLSI Systems, IC fabrication, design, testing, verification and prototype development focusing on applications							
PO4 :	Integrate multiple sub-systems to develop System On Chip and optimize its performance							
PO5:	Identify and apply appropriate Electronic Design Automation (EDA) tool to create innovative products/ systems to solve real world problems in VLSI domain							
PO6:	Apply appropriate managerial and technical skills in the domain of VLSI design incorporating safety and sustainability to become a successful Professional / entrepreneur through lifelong learning							

MAPPING OF PEOs WITH POS AND PSOs

PEO\PO	PO1	PO2	PO3	PO4	PO5	PO6
PEO1	3	3	3	3	3	2
PEO2	3	1	3	3	3	2
PEO3	3	1	3	3	3	3
1 – Slight, 2 – Moderate, 3 – Substantial						al

CURRICULUM BREAKDOWN STRUCTURE UNDER REGULATION 2018

Curriculum Breakdown Structure(CBS)	Curriculum Content (% of total number of credits of the program)	Total number of credits			
Program Core(PC)	41.67	450	30		
Program Electives(PE)	25	270	18		
Humanities and Social Sciences and Management Studies(HSMS)	5.56	60	4		
Project(s)/Internships(PR)/Others	27.7	300	20		
Total					

KEC R2018: SCHEDULING OF COURSES – ME (VLSI Design)

Semes ter	Theory/ Theory cum Practical / Practical							Internship & Projects	Online/ VACs	Special Courses	Credi
	1	2	3	4	5	6	7	8	10	11	ts
I	Applied Mathematics for Electronic Engineers HSMS-1 (3-1-0-4)	Digital System For IC Design Pc-1 (3-1-0-4)	Device Modeling Pc-2 (3-0-0-3)	Testing of VLSI Circuits Pc-3 (3-1-0-4)	VLSI Design Techniques PC-4 (3-0-2-4)	HDL for IC Design PC-5 (3-0-2-4)					23
11	Analog IC Design PC-6 (3-0-2-4)	Application Specific Integrated Circuits PC-7 (3-0-2-4)	VLSI Signal Processing PC-8 (3-0-0-3)	Professional Elective I PE-1 (3-0-0-3)	Professional Elective II PE-2 (3-0-0-3)	Professional Elective III PE-3 (3-0-0-3)		Mini Project PR-1 (0-0-4-2)			22
Ш	Professional Elective I PE-4 (3-0-0-3)	Professiona I Elective II PE-5 (3-0-0-3)	Professional Elective III PE-6 (3-0-0-3)					Project work Phase – I PR-2 (0-0-12-6)		Audit Course (2-0-0-0)	15
IV								Project work Phase – II PR-2 (0-0-24-12)			12

Total Credits: 72

KONGU ENGINEERING COLLEGE, PERUNDURAI, ERODE - 638 060 (Autonomous)

M.E. DEGREE IN VLSI DESIGN

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

SEMESTER – I

Course	Course Title	Hours / Week			Cradit	Maximum Marks			CBS
Code	course rule		Т	Р	Creuit	CA	ESE	Total	CDD
	Theory/Theory with Practical								
18AMT13	Applied Mathematics for Electronics Engineers	3	1	0	4	50	50	100	HS
18VLT11	Digital System For IC Design	3	1	0	4	50	50	100	PC
18VLT12	Device Modeling	3	0	0	3	50	50	100	PC
18VLT13	Testing of VLSI Circuits	3	1	0	4	50	50	100	PC
18VLC11	VLSI Design Techniques	3	0	2	4	50	50	100	PC
18VLC12	HDL for IC Design	3	0	2	4	50	50	100	PC
	Total				23				

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

KONGU ENGINEERING COLLEGE, PERUNDURAI, ERODE – 638 060 (Autonomous)

M.E. DEGREE IN VLSI DESIGN

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

SEMESTER – II

Course	Course Title	Hours / Week			Cradit	Maximum Marks			CBS
Code			Т	Р	Crean	CA	ESE	Total	CDS
	Theory/Theory with Practical								
18VLC21	Analog Integrated Circuit Design	3	0	2	4	50	50	100	PC
18VLC22	Application Specific Integrated Circuits	3	0	2	4	50	50	100	PC
18VLT21	VLSI Signal Processing	3	0	0	3	50	50	100	PC
	Elective - I	3	0	0	3	50	50	100	PE
	Elective - II	3	0	0	3	50	50	100	PE
	Elective - III	3	0	0	3	50	50	100	PE
	Practical								
18VLP21	Mini Project	0	0	4	2	100	0	100	PR
	Total				22				

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

KONGU ENGINEERING COLLEGE, PERUNDURAI, ERODE – 638 060 (Autonomous)

M.E. DEGREE IN VLSI DESIGN

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

SEMESTER – III

Course	Course Title	Hours / Week			Cradit	Maximum Marks			CBS
Code			Т	Р	creat	CA	ESE	Total	CDS
	Theory/Theory with Practical								
	Elective - IV	3	0	0	3	50	50	100	PE
	Elective - V	3	0	0	3	50	50	100	PE
	Elective - VI	3	0	0	3	50	50	100	PE
	Practical								
18VLP31	Project Work Phase I	0	0	12	6	50	50	100	PR
	Total		•	•	15				

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

KONGU ENGINEERING COLLEGE, PERUNDURAI, ERODE – 638 060 (Autonomous)

M.E. DEGREE IN VLSI DESIGN

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

SEMESTER - IV

Course	Course Title	Hours / Week			Cradit	Maximum Marks			CBS
Code	Course The		Т	Р	creat	CA	ESE	Total	CDS
	Practical								
18VLP41	Project Work Phase II	0	0	24	12	50	50	100	PR
	Total				12				

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

Total Credits: 72

LIST OF PROFESSIONAL ELECTIVES									
Course	Course Title	Hours/Week			Credit	CDC			
Code	Course The	L	Т	Р	Creat	CDS			
	SEMESTER II								
18COE04	Electromagnetic Interference and Compatibility	3	0	0	3	PE			
18COE09	DSP Processor Architecture and Programming	2	0	2	3	PE			
18VLE01	Computer Aided Design of VLSI Circuits	2	1	0	3	PE			
18VLE02	Design of Semiconductor Memories	3	0	0	3	PE			
18VLE03	Low Power VLSI Design	3	1	0	4	PE			
18VLE04	Reconfigurable Architectures For VLSI	3	0	0	3	PE			
18VLE05	Mixed Signal VLSI Design	3	0	0	3	PE			
18VLE06	Supervised Machine Learning Algorithms	3	0	0	3	PE			
18VLE07	VLSI for Biomedical Applications	3	0	0	3	PE			
18VLE08	VLSI Technology	3	0	0	3	PE			
	SEMESTER III								
18MME13	MEMS Design	3	0	0	3	PE			
18MIE14	Quantum Information and Computing	3	0	0	3	PE			
18VLE09	Hardware Software Co-Design	3	0	0	3	PE			
18VLE10	Intellectual Property Based VLSI Design	3	0	0	3	PE			
18VLE11	Nanoelectronics	3	0	0	3	PE			
18VLE12	Nature Inspired Optimization Techniques	3	0	0	3	PE			
18VLE13	Network on Chip	3	0	0	3	PE			
18VLE14	Genetic Algorithms for VLSI Circuits	3	0	0	3	PE			
18VLE15	RF VLSI Design	3	0	0	3	PE			
18VLE16	VLSI for Wireless Communication	3	0	0	3	PE			

1	9 Δ ΜΤΊ 2 - Δ DDI ΙΕΌ ΜΑΤΊΓΜΑΤΙΟς ΓΟΟ ΕΙ ΓΟΤΒΟΝΊΟς	ENCT	NEED	3		
ן (רנ	mmon to VI SI Design Communication Systems and Embedded Sy	ENGL	NEEK: Branch) (es)		
(0)	minor to vest besign, communeation systems and embedded sy	T	T	D	Cro	dit
		L 2	1	<u> </u>		an
Due1-1-		3	<u> </u>	1	4	<u> </u>
Preamble	This course will demonstrate various analytical skills in applied in mothematical tools such as linear programming, graph and such	hatnem	atics ar	ld use	exten	sive
	mathematical tools such as linear programming, graph and queue	ing the	ory wi	in the	tactic	S OI
Duana aniaitaa	Problem solving and logical tranking applicable in electronics engli	neering	.			
Prerequisites						
UNII – I		~ ·		•		<u> </u>
Vector Spaces:	Definition – Subspaces – Linear dependence and independence –	- Basis	and di	mensi	on - I	Row
space, Column s	pace and Null Space – Rank and nullity.					
						1
UNIT – II						9
Linear Program	nming: Mathematical Formulation of LPP – Basic definitions –	Soluti	ons of	LPP:	Graph	nical
method – Simpl	ex method – Transportation Model – Mathematical Formulation - I	nitial E	Basic Fe	easible	Solut	tion:
North west corr	er rule – Vogel's approximation method – Optimum solution by	MODI	metho	d – A	ssignr	nent
Model – Mather	natical Formulation – Hungarian algorithm.					
						·
UNIT – III						9
Non-Linear Pr	ogramming : Formulation of non–linear programming problem – C	Constra	ined op	otimiz	ation	with
equality constra	ints – Constrained optimization with inequality constraints – Gra	aphical	metho	d of r	10n–li	near
programming pr	oblem involving only two variables.					
UNIT – IV						9
Graph Theory	Introduction of graphs - Isomorphism - Subgraphs - Walks, pa	ths an	d circu	its – (Conne	cted
graphs – Euleria	n Graphs – Hamiltonian Paths and circuits – Digraph – Adjacency r	natrix a	and inci	idence	matri	x of
graphs – Appli	cations: Shortest path algorithms - Dijkstra's algorithm - War	rshall's	algori	thm -	- Tree	es –
Properties of tr	ees - Spanning trees - Applications of trees: Minimal spanning	trees	– Prim	's Al	gorith	m –
Kruskal's algori	thm.					
UNIT – V						9
Queuing Theor	y: Markovian queues – Single and Multi-server Models – Little'	s form	ula – N	Non- N	Marko	vian
Queues – Pollac	zek Khintchine Formula.					
	Lectur	e:45,]	Futoria	ıl:15,	Total	: 60
REFERENCE	S:	mmmmmm				

RE	FERENCES:
1.	Howard Anton, "Elementary Linear Algebra", 10 th Edition, John Wiley & Sons, 2010.
2.	Kanti Swarup, Gupta P.K. and Man Mohan, "Operations Research", S. Chand & Co., 1997.
3.	Bondy J.A. and Murthy, USR, "Graph Theory and Applications", Mc Millan Press Ltd., 1982.

COUH	RSE OUT(COMES:					B	Г Mapped	
On con	mpletion of	the course, the	students will be	e able to			(Hig	ghest Level)	
CO1:	demonstra	ate accurate and	efficient use of	f advanced algel	oraic techniques	8	Understanding (K2)		
CO2:	formulate engineerii	and solve linea	r programming	problems that a	ppear in electro	onics	Evaluating (K5)		
CO3:	3: use non-linear programming concepts in real life situations						Apj	olying (K3)	
CO4:	D4: apply graph theoretic algorithms in design of systems						Apj	olying (K3)	
CO5:	O5:analyze the characteristics of various queuing models						Analyzing (K4)		
							<u>.</u>		
			Mappi	ng of COs with	POs				
CC	Os/POs	PO1	PO2	PO3	PO4	P	D5	PO6	
(CO1	3	3	2	2	,	2	3	
(CO2			1	2		1		
(CO3			3	3		3		
(CO4 3 3			3					
(CO5 2 3 2								
1 - Sli	ght, 2 – Mo	oderate, $3 - S$	ubstantial, BT -	– Bloom's Taxo	nomy				

18VLT11 DIGITAL SYSTEM FOR IC DESIG	IN			
	L	Т	P	Credit
	3	1	0	4
Preamble To design and analyze synchronous, asynchronous digital circ the architectures of PLD	uits and	to intro	oduce .	ASM and
Prerequisites Digital Electronics				
UNIT – I				9
Synchronous Sequential Circuit Design: Analysis of Clocked Synchronous Modeling of CSSN - State table Reduction - Stable Assignment - Complete Iterative Circuits	Sequenti Design	ial Network of CS	vorks SN - I	(CSSN) - Design of
UNIT – II				9
Algorithmic State Machine (ASM): ASM - ASM Chart - Synchronous Sec ASM Charts - State Assignment - ASM Tables - ASM Realization - Asynchronous	uential 1 us Input	Networ s.	k Desi	gn Using
UNIT – III				9
Asynchronous Circuit Design: Analysis of Asynchronous Sequential Circuit (ASC) - I	Flow Ta	ble Re	eduction -
Races in ASC - State Assignment - Problem and the Transition Table - Design	of ASC	C - Stat	ic and	Dynamic
Hazards - Essential Hazards				
UNIT – IV				9
Programming Logic Arrays: PLA minimization - Essential Prime Cube the	orem - F	PLA fol	ding -	Foldable
compatibility matrix - The Compact Algorithm. Practical PLA's - Data Sync	hronizer	s - Des	igning	Vending
Machine Controller - Mixed Operating Mode Asynchronous Circuits				
UNIT – V				9
Programmable Devices: Programmable Logic Devices - Designing a Synchro	nous Sec	quential	Circu	it using a
PAL - Realization State machine using PLD - Complex Programmable Logic D	evices (C	CPLDs)	- FPG	A - Actel
I ect	1re• 45 '	Tutoris	J. 15	Total: 60
REFERENCES.	пс. т з,	1 410116	II. 13 ,	10141.00
1 Givone Donald G "Digital Principles and Design" Tata McGraw-Hill No	w Delhi	2002		
2 Biswas Nrinendra N "Logic Design Theory" Prentice Hall of India New	W Denni Delhi 20	, 2002. 001		
2. Diswas Milpendra N., Logic Design Theory, Trendee Han of India, New 3. Varbrough John M. "Digital Logic Applications and Design" Thomson L.	pening	Singano	ore 20	01
A Roth Charles H "Fundamentals of Logic Design" Thomson Learning Sit	ganore	2005	<i>i</i> , 20	VI.
5 Ming-Bo L in "Digital System Design and Practices: Using Varilag UDI	and FD	2003. ζΛς" Υ	Vilou	Publisher
New York, 2008.		ארט, א	viicy I	uuninen,

COUH	RSE OUTC		BT Mapped							
On con	mpletion of	the course, the	students will be	able to			(Highest Level)			
CO1:	design clo	cked synchrono	us sequential cir	cuits using state	table reduction	and	Applying (K3)			
	assignmen	<u>t</u>								
CO2:	realize the	algorithmic sta	te machine using	g state tables, ch	arts and state as	ssignment	Applying (K3)			
CO3:	analyze the	e asynchronous	sequential circu	it using flow tab	le reduction an	d find the	Analyzing (K4)			
	hazards in circuits									
CO4:	simplify th	ne circuits using	g Programmable	e logic array, ess	ential cube the	orem and	Applying (K3)			
compact algorithm										
CO5:	design the	synchronous	sequential circu	its using Progra	ammable Logi	c Device,	Creating (K6)			
	Programm	able Array Log	ic and CPLD							
			Mappi	ng of COs with	Pos					
CC	Ds/POs	PO1	PO2	PO3	PO4	PO5	PO6			
(CO1			3	3	3				
(CO2			3	3	3				
(CO3			2	3	2				
CO4			3	3	3					
(CO5 1									
1 - Sli	ght, 2 – Mo	derate, 3 – Su	bstantial, BT –	Bloom's Taxono	omy					

18VLT12 DEVICE MODELING (Common to VLSI Design & Applied Electronics branches) L Т Р Credit 3 0 0 3 To model and analyze the performance of solid state devices using mathematical concepts Preamble Prerequisites Solid State Devices UNIT - ISemiconductor Physics and Modeling of Passive Devices: Quantum Mechanical Concepts - Carrier

9

9

9

9

9

Total: 45

Concentration - Transport Equation - Mobility and Resistivity - Carrier diffusion - Carrier Generation and Recombination - Continuity equation - Tunneling and High field effects - Modeling of resistors - Modeling of Capacitors - Modeling of Inductors.

UNIT – II

Diode and Bipolar Device Modeling: Abrupt and linear graded PN junction - Ideal diode current equation - Static, Small signal and Large signal models of PN junction Diode - SPICE model for a Diode -Temperature and Area effects on Diode Model Parameters Transistor Action - Terminal currents - Switching -Static, Small signal and Large signal Eber-Moll models of BJT - Temperature and area effects.

UNIT – III

MOSFET Modeling and Parameter Measurements: MOS Transistor - NMOS - PMOS - MOS Device equations - Threshold Voltage - Second order effects - Temperature Short Channel and Narrow Width Effect - Models for MOSFET.

UNIT – IV

Noise Models and BSIM4 MOSFET Model: Noise Sources in MOSFET - Flicker Noise Modeling - Thermal Noise Modeling - BSIM4 MOSFET Model - Gate Dielectric Model - Enhanced Models for Effective DC and AC Channel Length and width - Threshold Voltage Model-I-V Model.

UNIT - V

Other MOSFET Models: EKV Model - Model Features - Long Channel Drain Current Model - Modeling Second order Effects of Drain Current - Effect of Charge Sharing - Modeling of Charge storage Effects - Nonquasi static Modeling - Noise Models - Temperature Effects - MOS Model 9-MOSAI Model

DEFEDENCES

KEF	EKENCES:
1.	Trond Ytterdal, Yuhua Cheng and Tor A. Fjeldly, "Device Modeling for Analog and RF CMOS Circuit
	Design", John Wiley & Sons Ltd., 2003.
2.	Sze S.M., "Semiconductor Devices - Physics and Technology", 2nd Edition, John Wiley & Sons, New
	York, 2008.
3.	Massobrio Giuseppe and Antognetti Paolo, "Semiconductor Device Modeling with SPICE", 2nd
	Edition, McGraw-Hill Inc., New York, 1998.
4.	Tyagi M.S., "Intorduction to Semiconductor Materials and Devices", John Wiley, New York, 2003.
5.	Ben G. Streetman, "Solid State Circuits", 5 th Edition, Prentice Hall of India, New Delhi, 2005.

COUI	RSE OUTC	COMES:					B	Г Mapped	
On con	mpletion of	the course, the s	tudents will be	able to			(Hig	ghest Level)	
CO1:	realize the	concepts of sen	niconductor phy	vsics			Understanding (K2)		
CO2:	apply mat	hematical concept	ots to model ba	sic semiconduct	or devices		Ap	plying (K3)	
CO3:	analyze th	e secondary effe	cts of semicond	luctor physics us	ing mathematic	cal	Ana	alyzing (K4)	
CO4: analyze the effects of temperature and Area on the performance of semiconductor devices						onductor	Ana	alyzing (K4)	
CO5:	CO5: create models for MOSFETs						Creating (K6)		
			Mappi	ng of COs with	POs				
CC	Os/POs	PO1	PO2	PO3	PO4	PO	5	PO6	
(CO1	3	3	2	2	2			
(CO2			3	3	3			
(CO3			2	3	2			
CO4				2	3	2			
CO5 1									
1 - Sli	ght, 2 – Mo	oderate, 3 – Sul	ostantial, BT –	Bloom's Taxono	omy				

		18VLT13 TESTING OF VLSI CIRCUITS				
		[L	Τ	Р	Credit
			3	1	0	4
Prea	nble	To know the basics of VLSI test concepts, Test generation, DFT	archi	tecture	s, Bui	lt in Self
		Test and fault diagnosis.				
Prere	equisites	Digital Electronics				
UNI	$\Gamma - I$					9
Basi	cs of Testi	ng and Fault Modelling: Introduction to Testing - Faults in digital	circuit	s - Mo	odeling	g of faults
- Lo	gical Fault	Models - Fault detection - Fault location - Fault dominance - L	ogic S	imulat	ion -	Types of
simu	lation - De	lay models - Gate level Event-driven simulation				
	T					
UNI	$\Gamma - II$					9
Test	Generati	on For Combinational And Sequential Circuits: Test generati	on for	comt	oinatio	onal logic
cırcu	its - Testa	ble combinational logic circuit design - Test generation for sequences	uential	circu	its - I	Jesign of
testa	ble sequent	tial circuits.				
TINIT	т тт					0
	1 – 111 an For To	stability: Design for Testability Ad has design Generic seen b	asad d	osian	Class	y y
based	design - 9	System level DET approaches	aseu u	esign ·	- Class	sical scall
Uaser	u ucsigii - k	ystem iever Di T approaches.				
UNI'	T – IV					9
Self-	Test And	Test Algorithms: Built-In Self Test - Test pattern generation for B	IST -	Circul	ar BIS	T - BIST
Arch	itectures -	Testable Memory Design - Test algorithms - Test generation for Em	bedded	I RAM	ls.	
UNI	$\mathbf{T} - \mathbf{V}$					9
Faul	t Diagnosi	is: Logic Level Diagnosis - Diagnosis by UUT reduction - Fault D	Diagno	sis for	Com	oinational
Circu	uits - Self-c	checking design - System Level Diagnosis.				
		Lecture	e:45, T	utoria	al:15,	Total: 60
REF	ERENCE	S:				
1.	Abramovi	ci M., Breuer M.A., and Friedman A.D., "Digital Systems an	d Tes	table	Desig	n", Jaico
	Publishing	g House, 2002.				
2.	Lala P.K.,	"Digital Circuit Testing and Testability", Academic Press, 2002.	••, 1	14		1 1
3.	Bushnell Signal VI	M.L. and Agrawal V.D., "Essentials of Electronic Testing for Di SI Circuita" Kluwer Academia Publishers 2002	igital,	Memo	ory an	a Mixed-
1	Crouch A	Di Circuits, Nuwer Academic Publishers, 2002.	Dronti		11 Inta	rnational
4.	2002	.L., Design rest for Digital IC's and Enforded Cole Systems,	FICIIII	се па	ii ilite	manonai,
	2002.					

COUF	RSE OUTC	OMES:					B	T Mapped	
On coi	mpletion of	the course, the st	tudents will be	able to			(Hi	ghest Level)	
CO1:	distinguish	between differe	nt fault models	and types of sin	nulation		Understanding (K2)		
CO2:	analyze the	e various test ger	neration method	ls for combination	onal and sequen	tial	Ana	alyzing (K4)	
	circuits								
CO3:	identify the	e design for testa	bility technique	es for combination	onal and sequen	tial	Applying (K3)		
	circuits								
CO4: compare the various Built In Self Test architectures							Ana	alyzing (K4)	
CO5:	CO5: review the various fault diagnosis approach for VLSI Systems							Understanding (K2)	
			Mappi	ng of COs with	POs				
CC	Ds/POs	PO1	PO2	PO3	PO4	PO	5	PO6	
(CO1	3	3	2	2	2		3	
(CO2			2	3	2			
(CO3			3	3	3			
(CO4 2 3 2								
(CO5	2		3					
1 – Sli	ght, 2 – Mo	derate, 3 – Sub	stantial, BT –	Bloom's Taxono	omy				

	18VLC11 VLSI DESIGN TECHNIQUES				
		L	Т	Р	Credit
		3	0	2	4
Preamble	To design the various combinational circuits and sequential Techniques	circuit	s using	g VLS	I Design
Prerequisites	Digital Flectronics				
UNIT – I					9
Overview of V	LSI Design Methodologies: VLSI Design Flow - Design Hiera	rchy -	VLSI	Desig	n Styles -
Review of Fab	ication process - CMOS n-well process and SOI process - Lavo	ut Des	ign Ru	les - F	leview of
MOS Transisto	or Theory: Structure, Operation - MOSFET Current - Voltage	Chara	cteristi	cs - 7	Threshold
Voltage - MOS	FET Capacitances.				
UNIT – II					9
MOS Inverter	s Characteristics: Static: Resistive - Load Inverter - Inverters w	ith M	OSFET	`Load	- CMOS
Inverter. Switc	hing: Delay Time definitions - Calculation of delay times -	Inverte	er Desi	ign wi	th Delay
constraints - Po	wer Delay product and Energy delay product.				
UNIT – III					9
Logic Design:	CMOS Static and Complementary logic - CMOS Transmiss	ion G	ates -	Pass 7	Transistor
Circuit - Synch	ronous Dynamic Circuit - Dynamic CMOS Circuit Techniques	- Hig	h perfo	rmanc	e CMOS
Circuits.					
UNIT – IV			~ ~		9
Sequential MC	OS Logic Circuits: Behavior of Bistable Elements - Latch Circuit	t - Flij	oflop C	ircuits	- CMOS
D Latch and Ec	ge triggered Flipflop - Sense Amplifier based Flipflops.				
UNIT – V					9
VLSI Building	g Block Design: Arithmetic Building Block - Adders, Multipli	ers, Sl	nifters,	On ch	ip Clock
generation and	Distribution - Memory Design.				
List of Exercis	es / Experiments :				
1. Layout	Design for basic logic gates				
2. Design	and Analysis of CMOS Inverter				
3. Sequent	ial circuit design-I				
4. Sequent	ial circuit design-II				
5. Design	of Adders				
6. Design	of Multipliers				
7. Design	of Shifters				
8. Design	of Memory Design				
9. Logic d	esign using pass transistor and transmission gates				
10. Multiple	exer				
	Lecture	e:45, P	ractica	al:30, '	Fotal: 75

REF	REFERENCES/ MANUALS/ SOFTWARES:								
1.	Sung-Moka	ng, Yusuf Lebl	ebici and Chuly	voo Kim, "CM	OS Digital Inte	egrated	Circuits	Analysis and	
	Design", 4 th	¹ Edition McGra	w Hill, 2016.						
2.	Jan M. Raba	aey, "Digital Int	egrated Circuits	", Prentice Hall	, 2004.				
3.	Neil H.E. V	Veste and Kami	an Eshraghian,	"Principles of	CMOS VLSI	Design'	[°] , 3 ^{ra} Ed	ition, Pearson	
	Education, ASIA, 2007.								
4.	Pucknell, "I	Basic VLSI Desi	gn", Prentice H	all of India Pub	lication, 1995.				
5.	Micorwind	tool							
6.	Synopsys-C	Sustom Designer	tool						
		COMES					рл		
	KSE UUI	COMES:	students will be	able to			BI (Hig	Mapped	
	\cdot infer the s	steps in different	fabrication met	thodologies			Under	standing (K2)	
				lifodologics					
CO2	: apply des	ign rules and ge	nerate layout				App	olying (K3)	
CO3	: infer the o	characteristics of	f MoS transistor				Under	standing (K2)	
CO4	: analyze C	CMOS inverter v	with delay constr	raints			Ana	lyzing (K4)	
CO5	: design Co	ombinational cir	cuits in differen	t logic styles			Manij	pulation(S2),	
000	1 . 0		· 1.00 / 1	• , 1			App	olying (K3)	
C06	: design Se	equential circuits	in different log	ic styles			Manij Apr	(S2),	
CO7	: design an	d analyze Adde	rs and Multiplie	ers			Manii	oulation(S2).	
			F				Ana	lyzing(K4)	
CO8	: design an	d analyze Shifte	rs and Memory				Manipulation(S2),		
							Ana	lyzing (K4)	
			Mappin	ng of COs with	POs				
C	Os/POs	PO1	PO2	PO3	PO4	P	05	PO6	
	CO1	3	3	2	2	,	2	3	
	CO2			3	3		3		
	CO3	3	3	2	2	,	2	3	
	CO4			2	3	,	2		
	CO5			3	3		3		
	CO6			3	3	,	3		
	CO7			2	3	,	2		
	CO8			2	3	,	2		
1 - S	light, $2 - M$	oderate, 3 – Su	ıbstantial, BT -	- Bloom's Taxo	nomy				

		18VLC12 HDL FOR IC DESIGN				
			L	Т	Р	Credit
			3	0	2	4
Prea	mble	To design and implement digital logic circuits using verilog functionality using Blue Spec	in FP	GA an	id to v	verify the
Prere	equisites	Digital Electronics				
UNI	T – I					9
Intro	oduction to	Verilog: Overview of digital design using Verilog HDL - Hiera	archica	l Mode	eling C	Concepts -
Basi Swit	c Concepts ch level mo	- Gate level Modeling - Dataflow Modeling - Behaviour Mode odeling.	eling -	Tasks	and Fu	unctions -
UNI	T – II					9
Desi	gn using V	erilog: Logic Synthesis using verilog HDL: Verilog HDL Synth	esis - S	Synthe	sis Des	sign Flow
- Ve syntl	erification nesis.	of the gate level net list - Modeling for logic synthesis - E	xample	e of se	quenti	al circuit
TINI	T_III					9
Intr	n – III oduction t	Bluespec System Verilog: Building the design - Multiple m	odules	in a s	ingle i	package -
Mult	iple packaş	ge in single design - Data types – Variables – Assignments - Con	nbinati	onal ci	rcuits.	,
UNI	T – IV					9
Mod	leling usin	g Bluespec System Verilog: Modelling Rules, registers, and Fl	FOs -	Modul	e hier	archy and
inter	faces – Scł	eduling - RWires and Wire types – Polymorphism - Advanced ty	ypes ar	nd patte	ern.	
UNI	T – V					9
Syst	em Design	Using Bluespec System Verilog: Matching - Static elaborati	on - F	or-loop	s/whil	e-loops –
Expi	ressions – V	Vectors - Finite State Machines (FSMs) - Importing existing RTL	into a	BSV c	lesign.	
List	of Exercis	es / Fyneriments •				
1	Modelir	og of Sequential Digital Systems with Test benches				
2	2. State M	achine Design				
3	B. Memory	7 Design				
4	. Design	and implementation of ALU, MAC using FPGA				
5	5. Design	and implementation of different adders using FPGA				
6	6. Design	and implementation of pipelined array multiplier using FPGA				
7	7. Modelir	g Combinational circuits using Bluespec System verilog				
8	3. FIFO de	sign using Bluespec system verilog				
9	Design	on FSM using Bluespec system verilog				
		Lectur	e:45, P	Practic	al:30,	Total: 75
DFL	EDENCE	Q.				
кег 1.	Samir Pal	nitkar, "Verilog HDL: A Guide to Digital Design and Synthes	is", Pe	earson	Educa	tion New
2	Delni, 200	15. 	. 41 '	Tort 1	anal	Longradia
۷.	Features",	2^{nd} Edition, Springer, 2012.	, ine	iest D	encn	Language
3.	https://ocv	v.mit.edu – Massachusetts Institute of Technology Open Courses	vare			

COUE	URSE OUTCOMES: completion of the course, the students will be able to						BT Mapped			
$\frac{\text{On col}}{\text{COl}}$	mpletion of	the course, the	students will be	e able to			(Hig Ant	shest Level)		
C01	appry digi	he digital airavi	t and implant	ent in EDC A	•		Applying (K2)			
CO2:	syntnesis t	ne digital circul	it and impleme	ent in FPGA			Applying (K5)			
CO3:	summarize	e the properties	of blue spec s	ystem verilog			Under	standing (K2)		
CO4:	apply Blue	espec system ve	rilog for syster	n design			Арр	olying (K3)		
CO5:	develop FS	SM based seque	ential systems u	ising Bluespec s	ystem verilog		Арр	olying (K3)		
CO6:	design cor	nbinational and	sequential syst	tem using verilo	g HDL		App	olying (K3),		
								pulation (S2)		
CO7:	implement digital design in FPGA							lyzing (K4),		
								Imitation (S1)		
CO8:	modelling	digital circuit d	lesign using Bl	uespec system v	erilog		Analyzing (K4),			
							Imi	tation (S1)		
			Mappi	ng of COs with	POs					
CC	Ds/POs	PO1	PO2	PO3	PO4	PC	05	PO6		
(CO1			3	3		3			
(CO2			3	3		3			
(CO3	3	3	2	2		2	3		
(CO4			3	3	3	3			
(CO5			3	3	3	3			
CO6 3 3							3			
(CO7	2	2							
(CO8			2	3		2			
1 – Sli	ght, 2 – Mo	derate, 3 – Su	bstantial, BT	– Bloom's Taxo	nomy					

	18VLC21 ANALOG INTEGRATED CIRCUIT DES	IGN			
		L	Т	Р	Credit
		3	0	2	4
Preamble	To focus on the concepts of MOSFETs and design of diffe	rential	ampli	fiers,	feedback
	amplifiers and their stability with practical knowledge.				
Prerequisites	Basic Electronics, Op-Amps fundamentals, Circuits and Network	KS .			
UNIT – I					9
Basic MOS	Device Physics and Single Stage Amplifiers: Basic MOS	Devic	e Phys	sics –	General
Considerations	, MOS I/V Characteristics, Second Order effects, MOS Device me	odels-	Short (Chann	el Effects
and Device M	odels. Single Stage Amplifiers - Basic Concepts, Common Sou	rce St	age, So	ource	Follower,
Common Gate	Stage, Cascode Stage.				
UNIT – II					9
Differential A	mplifiers and Current Mirrors: Differential Amplifiers - Sin	ngle E	nded a	ınd Di	fferential
Operation, Bas	ic Differential Pair, Common-Mode Response, Differential Pair w	ith MC	S load	s, Gilł	bert Cell.
Passive and A	ctive Current Mirrors - Basic Current Mirrors, Cascode Curre	ent Mi	irrors,	Active	e Current
Mirrors.					
UNIT – III					9
Frequency R	esponse of Amplifiers and Noise: Frequency Response	of A	mplifie	ers –	General
Considerations	, Common Source Stage, Source Followers, Common Gate Stage,	, Casco	ode Sta	ige, Di	fferential
Pair. Noise – 7	ypes of Noise, Representation of Noise in circuits, Noise in sing	le stag	ge amp	lifiers,	Noise in
Differential Par	rs.	-	-		
UNIT – IV					9
Feedback an	d Operational Amplifiers: Feedback Amplifiers- General	Const	ideratio	ons,	Feedback
Topologies, E	Effect of Loading. Operational Amplifiers – General Consideration	tions,	One S	tage C)p Amps,
Two Stage Op	Amps, Gain Boosting, Common- Mode Feedback, Input Ra	nge li	mitatio	ons, Sl	ew Rate,
Power Supply 1	Rejection, Noise in Op Amps.				
UNIT – V	Stability and Frequency Compensation				9
General Consid	lerations-Multipole Systems- Phase Margin-Frequency Compensa	ation-C	Comper	nsating	, of Two-
Stage Op Amp	s-Other Compensation Techniques.				
List of Exercis	es / Experiments :				
1. Underst	anding the Datasheet of Op-Amps. Introduction to op-am	ps an	d dise	cussion	1 on its
characte	eristics by simulation and experiment				
2. Comple	te the design of two differential amplifiers, one of which uses emi	tter res	istor (l	R _E) bia	sing, and
one of v	which uses current mirror biasing.		,		-
3. For the	same circuit designed in experiment 2, Predict, measure and record	rd AC	voltage	e gain,	common
mode re	ejection ratio, and input and output impedance characteristics of a d	differe	ntial ar	nplifie	r.

4. For the same circuit designed in experiment 2, Predict, measure and record DC voltages and currents in differential amplifiers which employ two basic types of constant current biasing.

5. For the same circuit designed in experiment 2,
 Observe the impact on common mode voltage gain, Acm, and common mode rejection ratio, CMRR, as a current mirror is substituted for the emitter resistor (R_E) of a simple differential amplifier.

- 6. Determine the frequency response of typical operational amplifiers in both open loop and closed loop opamp configurations using PSPICE.
- 7. Simulation of Op-Amp based applications.

8.	Ana	lysis of frequence	cy response of cu	rrent series and c	current shunt feed	lback top	ologies	
9.	9. Analysis of frequency response of voltage series and voltage shunt feedback topologies.							
					Lect	ure:45, 1	Practica	al:30, Total: 75
REFE	REN	ICES / MANUA	LS / SOFTWA	RES:		,		
1. R	Razav	i B., "Design of	Analog CMOS I	ntegrated Circuit	s", McGraw Hill	Edition,	2002.	
2. P	Paul H	R. Gray, Robert	G. Meyer, "Ar	alysis and Desi	gn of Analog Ir	ntegrated	Circuit	s", 4 th Edition,
V	Viley	, 2001.						
3. J	ohns	D. A. and Martin	n K., "Analog In	tegrated Circuit I	Design", Wiley, 1	997.		
COUF	RSE (OUTCOMES:					В	T Mapped
On cor	mplet	tion of the course	e, the students wi	ll be able to			(Hi	ghest Level)
CO1:	com	prehend the con	cepts of MOS de	evices physics			Unde	rstanding (K2)
CO2:	infe	r the single stage	e amplifiers, diffe	erential amplifie	rs and current mi	rrors	Unde	rstanding (K2)
CO3:	anal	lyze single stage	amplifiers, diffe	rential amplifier			An	alyzing (K4)
CO4:	anal	lyze the different	current mirrors				An	alyzing (K4)
CO5:	appi	reciate the freque	ency compensation	on techniques	1 00 0		Unde	rstanding (K2)
CO6:	exai	mine the freque	ncy response of	amplifiers and	the effects of 1	noise in	Ana	alyzing (K4),
007	amp	olifiers	1. C.				Im	itation (S1)
CO/:	desi	gn feedback am	plifiers				Ana	$1yz_{1ng}$ (K4),
<u> </u>	1.		1. 6. 1 1	1			Man	$\frac{1 \text{ pulation } (S2)}{1 \text{ (VA)}}$
CU8:	desi	gn operational a	mplifter based ar	alog circuits			Ana	ilyzing (K4),
			Ма	nning of COs w	ith DOg		wian	ipulation (S2)
COs/P		PO1		PO3		PO	5	PO6
	1	3	3	2	2	2	5	3
	2	3	3	2	2	2		3
	3	5		2	3	2		5
CO4	4			2	3	2		
CO	5			2	3	2		
CO	6			2	3	2		
CO	7	3	3	2	2	2	3	
CO	8			2	3	2		
1 - Sli	ght, 2	2 – Moderate,	3 – Substantial,	BT - Bloom's Ta	axonomy			

	18VLC22 APPLICATION SPECIFIC INTEGRATED CI	RCUI	TS		
		L	Т	Р	Credit
		3	0	2	4
Preamble	To know the different programmable ASICs, logic cells, I/O cells	s and in	ntercon	nect a	nd to
	learn how synthesis and physical design flow in carried out in an	ASIC	design.	•	
Prerequisites	VLSI Design Techniques				
UNIT – I					9
Introduction	o ASICs, CMOS Logic and ASIC Library Design: Types	of AS	SICs -	Desig	n flow -
Combinational	Logic Cell - Sequential logic cell - Data path logic cell - Transis	tors as	Resist	ors - 7	Transistor
Parasitic Capac	itance- Logical effort.				
UNIT – II					9
Programmable	e ASICs, Programmable ASIC Logic Cells And Programmabl	e ASIO	C I/O (Cells:	Anti fuse
- static RAM -	EPROM and EEPROM technology - Actel ACT - Xilinx LCA -	Altera	FLEX	- Alte	era MAX
DC & AC inpu	s and outputs - Clock & Power inputs - Xilinx I/O blocks.				
UNIT – III					9
Programmable	e ASIC Interconnect: Actel ACT -Xilinx LCA - Xilinx EPLD - A	Altera I	MAX 5	6000 ai	nd 7000 -
Altera MAX90	00 - Altera FLEX.				
UNIT – IV					9
Design and Sy	nthesis: Design systems - Half gate ASIC –Schematic entry - I	Low le	vel des	sign la	nguage -
PLA tools -ED	IF- CFI design representationLogic synthesis – Logic Simulation	on - De	esign a	nd syr	nthesis of
various circuits					
UNIT – V					9
Physical Desig	n: ASIC Partitioning - floor planning- placement and routing – po	wer an	d clock	cing st	rategies -
DRC.					
List of Exercis	es / Experiments:				
1. Design,	simulation and synthesis of logic gates				
2. Design,	simulation and synthesis of Adders				
3. Design,	simulation and synthesis of multipliers				
4. Design,	simulation and synthesis of memory				
5. Design,	simulation and synthesis of Finite state machine				
6. Floor Pl	anning, Routing and Placement procedures				
7. Analysi	s of Circuits - Power Planning, Layout generation, LVS and Ba	ack an	notatio	n, Tot	al power
estimati	on				
	Lecture	e:45, P	ractica	ul:30, '	Fotal: 75
REFERENCE	S / MANUALS / SOFTWARES:				

- 1.
- 2.
- Smith M.J.S., "Application Specific Integrated Circuits", 10th Reprint, Pearson, 2001. Steve Kilts, "Advanced FPGA Design", 1st Edition, Wiley Inter-Science, 2007. Roger Woods, John McAllister, Dr. Ying Yi, Gaye Lightbod, "FPGA-based Implementation of Signal 3. Processing Systems", Wiley, 2008.

COUF	COURSE OUTCOMES:						Г Mapped	
On con	mpletion of the cours	e, the students wi	ill be able to			(Highest Level)		
CO1:	demonstrate ASIC of	lesign flow and c	comprehend the ty	pes of ASIC		Unde	rstanding (K2)	
CO2:	02: realize the issues involved in ASIC design, including design, role of transistor, logical effort and programming technology							
CO3:	analyze the issues i	nvolved in logic	cells, I/O cells an	d interconnect		Ap	plying (K3)	
CO4:	perform simulation ASIC design softwa	and synthesis of and synthesis of	the design using	different progra	mmable	Ap	plying (K3)	
CO5:	analyze the algor routing, power and	rithms used in clock design for A	partitioning, Flo ASIC	oorplanning, pla	cement,	Ар	plying (K3)	
CO6:	perform the partition	ning ,floorplannii	ng and Placemer	t for the ASIC		Apj Man	plying (K3), ipulation (S2)	
CO7:	perform power and	clock routing in A	ASIC			Apj Man	plying (K3), ipulation (S2)	
CO8:	analyze performanc	e metrics of the d	lesign			Analyzing (K4), Manipulation (S2)		
		Ma	pping of COs w	ith POs				
COs/P	POs PO1	PO2	PO3	PO4	PO	5	PO6	
CO	1 3	3	2	2	2		3	
CO2	2 3	3	2	2	2		3	
CO	3		3	3	3			
CO	4		3	3	3			
CO	5		3	3	3			
CO	5		3	3	3			
CO	7		3	3	3			
COS	8		2	3	2			
1 - Sli	ght, 2 – Moderate,	3 – Substantial,	BT - Bloom's Ta	ixonomy				

18VLT21 VLSI SIGNAL PROCESSING

(Common to VLSI Design and Applied Electronics branches)

		3	0	0	3
Preamble	To apply the concepts of VLSI techniques to real time signal pro-	cessing	5		
Prerequisites	Digital Signal Processing				

UNIT – I

Introduction to DSP Systems: Introduction To DSP Systems - Typical DSP algorithms. Iteration Bound data flow graph representations, loop bound and iteration bound, Algorithms For Computing Iteration Bound, Iteration Bound of Multirate Data Flow Graphs. Pipelining and Parallel Processing: Pipelining of FIR digital filters, parallel processing, pipelining and parallel processing for low power.

UNIT – II

Retiming: Definitions and properties retiming techniques; solving systems of inequalities, retiming techniques. Unfolding: Algorithm for unfolding, properties of unfolding, critical path unfolding and retiming applications of unfolding- sample period reduction and parallel processing application.

UNIT – III

Systolic Architecture Design: Design methodology, FIR systolic arrays. Bit Level Arithmetic Architectures: Parallel Multipliers, Bit-Serial Multipliers, Bit-Serial Filter Design and Implementation, Canonic Signed Digit Arithmetic, Distributed Arithmetic.

UNIT – IV

Fast Convolution: Fast convolution – Cook-Toom algorithm, modified Cook-Took algorithm – Wino grad Algorithm, Modified Wino grad Algorithm. Algorithmic Strength Reduction: Algorithmic strength reduction in Filters-Parallel FIR Filters, DCT and Inverse DCT. Pipelined and Parallel Recursive filters Adaptive Filters: Pipelining in first- order IIR filters, Parallel processing of IIR filters, combined pipelining and parallel processing of IIR filters.

UNIT - V

Scaling, Round off Noise: Scaling and Round off Noise- State variable Description of digital filters, Scaling and round off noise computation, Round off noise in pipelined I order IIR filters. Lattice Structure: Introduction, Schur algorithm, Digital basic Lattice Filters, Derivation of One-Multiplier Lattice Filter, Derivation of Normalized Lattice filter. Numerical Strength Reduction: Introduction, Sub expression Elimination, Multiple Constant Multiplication, Sub expression Sharing in Digital Filters, Additive and Multiplicative Number Splitting.

REFERENCES:

Parhi K. Keshab, "VLSI Digital Signal Processing Systems, Design and Implementation", Reprint, 1. John Wiley, Inter Science, New York, 2008. Isamail, Mohammed and Fiez, Terri, "Analog VLSI Signal and Information Processing", McGraw-Hill, 2.

New York, 2007. www.pdf-search-engine.com/vlsi-signal-processing-pdf.html 3.

Total: 45

9

9

9

9

9

L T P Credit

COURSE OUTCOMES:							BT Mapped	
On con	mple	tion of the course	e, the students wi	ll be able to			(Highest Level)	
CO1:	con	npute the iteratio	n bound of a circ	uit			A	oplying (K3)
CO2:	2: perform pipelining and parallel processing in FIR systems to achieve high Applying (K3) speed and low power							
CO3:	im	prove the speed of	of digital system	through transforr	nation technique	s	A	oplying (K3)
CO4:	O4: apply systolic and bit level architectures to improve the efficiency of VLSI Applying (K3) circuits							
CO5:	use	of proper techni	ques for parallel	processing desig	n for scaling and	l roundoff	A	oplying (K3)
	noi	se computation						
			Ma	pping of COs w	ith POs			
COs/P	POs	PO1	PO2	PO3	PO4	PO5		PO6
CO	1			3	3	3		
CO2	2			3	3	3		
CO	3			3	3	3		
CO4	4			3	3	3		
CO	5			3	3	3		
1 - Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy							

18COE04 ELECTROMAGNETIC INTERFERENCE AND COMPATIBILITY

(Common to Communication Systems, VLSI Design, Applied Electronics &

Power Electronics and Drives branches)

					1	
		3	0	0	3	
Preamble	To expose the basics and fundamentals of Electromagnetic Inter-	ference	e and C	Compat	tibility i	in
	Communication System Design and to know the concepts of EMI Coupling Principles, EMI					
	Measurements and Control techniques and the methodologies of H	EMI ba	sed PC	CB desi	gn.	
Prerequisites	Electromagnetic Principles					
LINIT _ I						0

EMI Environment: EMI/EMC concepts and definitions, Sources of EMI, conducted and radiated EMI, Transient EMI, Time domain Vs Frequency domain EMI, Units of measurement parameters, Emission and immunity concepts, ESD.

UNIT – II

EMI Coupling Principles: Conducted, Radiated and Transient Coupling, Common Impedance Ground Coupling, Radiated Common Mode and Ground Loop Coupling, Radiated Differential Mode Coupling, Near Field Cable to Cable Coupling, Power Mains and Power Supply coupling.

UNIT – III

EMI/EMC Standards and Measurements: Civilian standards - FCC, CISPR, I EC, EN, Military standards -MIL STD 461D/462, EMI Test Instruments /Systems, EMI Shielded Chamber, Open Area Test Site, TEM Cell, Sensors/Injectors/Couplers, Test beds for ESD and EFT, Military Test Method and Procedures (462).

UNIT – IV

EMI Control Techniques: EMI Control Techniques : Shielding, Filtering, Grounding, Bonding, Isolation Transformer, Transient Suppressors, Cable Routing, Signal Control, Component Selection and Mounting

UNIT - V

EMC Design of PCBs: PCB Traces Cross Talk, Impedance Control, Power Distribution Decoupling, Zoning, Motherboard Designs and Propagation Delay Performance Models.

REFERENCES:

Ott W. Henry, "Noise Reduction Techniques in Electronic Systems", 2nd Edition, John Wiley & Sons, 1. New York, 2008.

Kodali V.P., "Engineering EMC Principles, Measurements and Technologies", 2nd Edition, IEEE Press, 2. London, 2006.

Keiser Bernhard, "Principles of Electromagnetic Compatibility", 3rd Edition, Artech House, Dedham, 3. 1987.

9

9

9

T P Credit

L

9

Total: 45

COURSE OUTCOMES:							BT Mapped	
On cor	On completion of the course, the students will be able to					(Highest Level)		
CO1:	: estimate the EMI and analyze in time domain and frequency domain Analyzing (K4)							
CO2:	con	npare the various	EMI coupling n	nethods			Evaluating (K5)	
CO3:	con	duct the EMI me	easurement for ci	vilian and milita	ry appliances		Analyzing (K4)	
CO4:	dev	ice the EMI con	trol techniques				Applying (K3)	
CO5:	5: evaluate the PCB'S and motherboards EMI performance and design the EMC Creating (K6)							
	circuits							
			Ma	pping of COs w	ith POs			
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	
CO	1	3	2	2		1		
CO2	2	1	2	3				
COS	3	2	3	2	2	3		
CO4	1	2		3	2			
COS	5			2	1	3	2	
1 - Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy							

18COE09 DSP PROCESSOR ARCHITECTURE AND PROGRAMMING

(Common to Communication Systems, VLSI Design & Embedded Systems)	ystems	branch	nes)	
	L	Т	Р	Credit

		2	0	2	3
Preamble	To design the parameters of filters and implement it in real time l	DSP ha	ardwar	e.	
Prerequisites	Digital Signal Processing				

UNIT – I

Fundamentals of Programmable DSPs: Multiplier and Multiplier accumulator (MAC) – Modified Bus Structures and Memory access in Programmable DSPs – Multiple access memory – Multi-port memory – VLIW architecture- Pipelining – Special Addressing modes in P-DSPs – On chip Peripherals

6

6

6

6

6

Lecture: 30, Practical: 30, Total: 60

UNIT – II

TMS320C54XX: Fundamentals of Programmable DSPs - Architecture of TMS320C54X-54X Buses-Memory organization-Computational Units-Pipeline operation-On-chip peripherals – Address Generation Units- Addressing modes and instruction set- assembly language instructions -Introduction to Code Composer studio

UNIT – III

TMS320C6X: Architecture of TMS320C6X - Computational units-Addressing modes - Memory architecture- pipeline operation- instruction set- assembly language instructions

UNIT – IV

Blackfin Processor(BF537): Architecture of BF537- Computational units - Internal Memory organization- System interrupts - Direct Memory Access- on-chip peripherals-ALU-MAC-DAG Units-Addressing modes-Assembly language instructions- Timers -Interrupts-Serial ports-UART-Simple programs

UNIT – V

Applications Using TMS320C54X/C6X/BF537: Program development - Software Development Tools- The Assembler and the Assembly Source File Filter design- Linker and Memory Allocation -DSP Software Development Steps- Speech Digitization-Encoding and Decoding-Image compression-Restoration-Adaptive Echo cancellation-Modulation

List of Experiments:

- 1. Basic Signal operations using 54x.
- 2. Convolution using c54x and c6713x
- 3. FIR and IIR filter using C6713
- 4. Basic operations and convolution using BF 537
- 5. Speech and Audio application development using BF537

REFERENCES / MANUALS / SOFTWARES:

- 1. Sen M. Kuo, Woon–Seng S. Gan, "Digital Signal Processors: Architecture, Implementation and Applications", 1st Edition, Prentice Hall, 2009.
- 2. Woon-Seng Gan, Sen M. Kuo, "Embedded Signal Processing with the Microsignal Architecture", John

Wiley & Sons Inc. Publications, 2007.

COUH	COURSE OUTCOMES:							BT Mapped		
On con	nple	tion of the course	e, the students w	ill be able to			(H	ighest Level)		
CO1:	infe	r the basic conce	epts of DSP proc	essor			Unde	erstanding (K2)		
CO2:	app	ly programming	g concepts to d	evelop simple a	nd real time ap	plications	A	pplying (K3)		
	pro	grams using c542	x processor							
CO3:	app	ly programming	concepts to deve	elop simple and r	eal time applicat	ions	A	pplying (K3)		
	usir	ng c6x processor								
CO4:	app	ly programming	g concepts to d	evelop simple a	nd real time ap	plications	A	pplying (K3)		
	usir	ng BF 537 pro	ocessor							
CO5:	ana	lyze the perform	ance of DSP pro	cessors like TMS	320C54X/C6X/	BF537	Ar	nalyzing (K4)		
CO6:	den	nonstrate the con	cepts of DSP usi	ing DSP processo	or		Ap	oplying (K3),		
							Mar	nipulation (S2)		
CO7:	desi	ign digital filters	using DSP proc	essors			Ap	oplying (K3),		
							Mar	nipulation (S2)		
CO8:	den	nonstrate speech/	audio applicatio	ns using DSP pro	ocessor		Ap	Applying (K3),		
							Manipulation (S2)			
			Ma	apping of COs w	ith POs					
COs/P	Os	PO1	PO2	PO3	PO4	PO5		PO6		
CO	1	3				2				
CO	2	3				3				
CO	3	3				3				
CO	4	3				3				
CO	5	3	3			3				
CO	5	3				3				
CO	7	3				3				
CO	8	3				3				
1 - Sli	ght,	2 – Moderate,	3 – Substantial,	BT - Bloom's Ta	axonomy					

	18VLE01 COMPUTER AIDED DESIGN OF VLSI CIR	CUIT	S					
		L	Т	Р	Credit			
Preamble	To give an overview of the VLSI physical design and understand CAD algorithms used in VLSI physical design automation field.							
Prerequisites	ASIC Design							
UNIT – I					6			
general purpose	e methods for combinatorial optimization problems		macia	ole pr				
UNIT – II					6			
Partitioning, Placement algo floorplan sizing	Placement and Floorplanning: Placement and Partitioning orithms – Partitioning - Partitioning algorithms - Floorplanning con g – Floorplanning based on Simulated Annealing	– Cir ncepts	cuit re – shap	epresei e func	ntation – tions and			
UNIT – III					6			
Routing and (Compaction: Routing – Types of local routing problems – Area	routin	g - ch	annel	routing –			

R **Routing and Compaction:** Routing – Types of local routing problems – Area routing – channel routing – global routing –algorithms for global routing. Compaction- Layout Compaction –Design rules –problem formulation –algorithms for constraint graph compaction.

UNIT – IV

Logic Simulation: Simulation – Gate-level modeling and simulation –Switch-level modeling and simulation. Introduction to Combinational Logic Synthesis -Binary Decision Diagrams - ROBDD - ROBDD principles, implementation, construction and manipulation.

$\mathbf{UNIT} - \mathbf{V}$

International Edition, 2007.

High Level Synthesis: Hardware models – Internal representation – Allocation assignment and scheduling – Simple scheduling algorithm –Assignment problem –High level transformations.

Lecture: 30, Tutorial: 15, Total: 45

6

RE	FERENCES:
1.	Gerez S.H., "Algorithms for VLSI Design Automation", Reprint, John Wiley & Sons, New York, 2000.
2.	Sherwani N.A., "Algorithms for VLSI Physical Design Automation", 3 rd Edition, Kluwar Academic
	Publishers, Boston, 2002.
3.	Sarafzadeh C.K. Wong, "An Introduction to VLSI Physical Design", Reprint, McGraw Hill

COURSE OUTCOMES:							I	BT Mapped
On completion of the course, the students will be able to							(H	ighest Level)
CO1:	con	nprehend the con	cepts and proper	ties associated w	ith graph theory		Und	erstanding (K2)
CO2:	den	nonstrate the con	cepts of physica	l design process	such as partition	ing, floor	Und	erstanding (K2)
	plai	nning, placement	and routing					
CO3:	app	ly the concepts	of design optimi	ization algorithm	ns and their appl	ication to	A	pplying (K3)
	VL	SI physical desig	n automation					
CO4:	real	ize the concepts	of simulation an	d synthesis in VI	SI design autom	ation	Understanding (K2)	
CO5:	CO5: analyze CAD design problems using algorithmic methods for VLSI physical			Analyzing (K4)				
	des	ign automation						
			Ma	pping of COs w	ith POs			
COs/P	POs	PO1	PO2	PO3	PO4	PO5		PO6
CO	1	3	3	2	2	2		3
CO	2	3	3	2	2	2		3
CO3 3 3 3								
CO4 3 2			3					
CO	CO5 3 2 3 2							
1 - Sli	ght,	2 - Moderate, 3	3 – Substantial,	BT - Bloom's Ta	axonomy			

18VLE02 DESIGN OF SEMICONDUCTOR MEMORIES

L

Т

P Credit

9

9

9

9

(Common to VLSI Design and Embedded Systems branches)

		3	0	0	3
Preamble	To study the architectures for SRAM and DRAM, various r modeling and testing of memories for fault detection and the rad issues for memory.	ion-vo	latile 1 harden	nemor ing pro	ies, fault ocess and
Prerequisites	Solid State Devices				

UNIT – I

Random Access Memory Technologies: SRAM Cell Structures-MOS SRAM Architecture-MOS SRAM Cell and Peripheral Circuit Operation- Bipolar SRAM Technologies-Silicon On Insulator (SOI) Technology-Advanced SRAM Architectures and Technologies-Application Specific SRAMs DRAM Technology Development- CMOS DRAMs- DRAMs Cell Theory and Advanced Cell Structures- BiCMOS, DRAMs-Soft Error Failures in DRAMs- Advanced DRAM Designs and Architecture- Application Specific DRAMs.

UNIT – II

Nonvolatile Memories : Masked Read-Only Memories (ROMs)- High Density ROMs- Programmable Read-Only Memories (PROMs)- Bipolar PROMs- CMOS PROMs- Erasable(UV) Programmable Road-Only Memories (EPROMs)- Floating-Gate PROM Cell- One-Time Programmable (OTP) EPROMS- Electrically Erasable PROMs (EEPROMs)- EEPROM Technology and Architecture- Nonvolatile SRAM- Flash Memories (EPROMs or EEPROM)- Advanced Flash Memory Architecture.

UNIT – III

Memory Fault Modeling And Testing: RAM Fault Modeling, Electrical Testing, Peusdo Random Testing-Megabit DRAM Testing- Nonvolatile Memory Modeling and Testing- IDDQ Fault Modeling and Testing-Application Specific Memory Testing.

UNIT – IV

Semiconductor Memory Reliability: General Reliability Issues- RAM Failure Modes and Mechanism-Nonvolatile Memory Reliability- Reliability Modeling and Failure Rate Prediction- Design for Reliability-Reliability Test Structures- Reliability Screening and Qualification.

UNIT – V

Packaging Technologies: Radiation Effects- Single Event Phenomenon (SEP)- Radiation Hardening Techniques- Radiation Hardening Process and Design Issues- Radiation Hardened Memory Characteristics-Radiation Hardness Assurance and Testing - Radiation Dosimetry-Water Level Radiation Testing and Test Structures. Ferroelectric Random Access Memories (FRAMs)- Gallium Arsenide (GaAs) FRAMs- Analog Memories- Magnetoresistive Random Access Memories (MRAMs)- Experimental Memory Devices. Memory Hybrids and MCMs (2D)-Memory Stacks and MCMs (3D)-Memory MCM Testing and Reliability Issues-Memory Cards- High Density Memory Packaging Future Directions.

REFERENCES:

- 1. Sharma K. Ashok, "Semiconductor Memories: Technology, Testing, and Reliability", Wiley-IEEE Press, New York, 2002.
- 2. Sharma K. Ashok, "Advanced Semiconductor Memories, Architectures, Designs and Applications", Wiley-IEEE Press, New York, 2009.
- 3. Krzysztof Hiewski, Santosh K. Kurinec, "Nanoscale Semiconductor Memories", CRC Press, 2017.

<u>9</u>

Total: 45

COURSE OUTCOMES:							ST Mapped
On com	On completion of the course, the students will be able to						ighest Level)
CO1:	comprehend the mic	ro level operatio	ns of random acc	ess memories		Unde	erstanding (K2)
CO2: a	analyze the need of	non-volatile men	nories and their a	pplications		An	alyzing (K4)
CO3:	design the fault free	memory systems	s by fault modeling	ng techniques		Ev	aluating (K5)
CO4:	analyze and design	the memory a	rchitectures by	considering the	radiation	An	alyzing (K4)
	effects						
CO5: identify the packages for memories				Unde	erstanding (K2)		
		Ma	pping of COs w	ith POs			
COs/PC	Os PO1	PO2	PO3	PO4	PO5		PO6
CO1	3	3	2	2	2		3
CO2			2	3	2		
CO3			1	2	1		
CO4 2 3 2							
CO5 3 3 2 2 3						3	
1 - Slig	ht, 2 – Moderate,	3 – Substantial,	BT - Bloom's Ta	axonomy			

18VLE03 LOW POWER VLSI DESIGN

(Common to VLSI Design and Applied Electronics branches)

L	Т	Р	Credit
3	1	0	4

9

9

9

9

Preamble	To design the combinational and sequential circuits with minimum power consumption and	to
	anlayse the various power optimization methods and techniques to reduce power consumption	on.
Prerequisites	VLSI Design Techniques	
UNIT – I		9

Power dissipation in CMOS: Hierarchy of limits of power – Sources of power consumption – Physics of power dissipation in CMOS FET devices – Basic principle of low power design

UNIT – II

Power Optimization: Logic level power optimization – Circuit level low power design – circuit techniques for reducing power consumption in adders and multipliers.

UNIT – III

Design of Low Power CMOS Circuits: Computer arithmetic techniques for low power system – reducing power consumption in memories – low power clock, Inter connect and layout design – Advanced techniques –Special techniques.

UNIT – IV

Power Estimation: Power Estimation techniques – logic power estimation – Simulation power analysis – Probabilistic power analysis.

UNIT – V

Software Design for Low Power: Sources of Software Power dissipation - Power Estimation - Power Optimization - Automated low power code generation - Codesign for low power.

Lecture:45, Tutorial:15, Total: 60

REFERENCES:

1. Kaushik Roy and Prasad S.C., "Low Power CMOS VLSI Circuit Design", Reprint, Wiley, 2014.

2. Dimitrios Soudris, Chirstian Pignet, Costas Goutis, "Designing CMOS Circuits for Low Power", 4th Edition, Kluwer, Springer, 2010.

3. Kulo J.B. and Lou J.H., "Low Voltage CMOS VLSI Circuits", Wiley, 1999.

COURSE OUTCOMES: BT Mapped								
On completion of the course, the students will be able to (Highest Level)							evel)	
CO1: en	umerate the differ	ent sources of po	ower dissipation i	n CMOS		Understandin	g (K2)	
CO2: an	alyze various pow	ver optimization	technique at circu	it level		Analyzing	(K4)	
CO3: de	sign of low power	r circuits at archi	tecture level			Creating (K6)	
CO4: us	e of simulation an	d probabilistic m	nethod of power a	nalysis		Analyzing	(K4)	
CO5: perform power estimation and optimization at programming level Evaluating (K5)					(K5)			
		Ma	pping of COs w	ith POs				
COs/POs	PO1	PO2	PO3	PO4	PO5	PC)6	
CO1	2	2	1		1	2		
CO2			2	3	2			
CO3				1		3		
CO4 3 2								
CO5 1 2 1								
1 – Slight	. 2 – Moderate.	3 – Substantial,	BT - Bloom's Ta	axonomy				

	18VLE04 RECONFIGURABLE ARCHITECTURES FOR VLSI								
			L	Т	Р	Credit			
			3	0	0	3			
Pre	amble	To comprehend and apply different reconfigurable architectures	in FPO	GA					
Pre	requisites	VLSI Design techniques, VLSI Signal Processing							
UN	IT – I					9			
Dev	vice Archite	cture: General Purpose Computing vs Reconfigurable Comput	ing –	Simple	Progr	ammable			
Log	gic Devices -	- Complex Programmable Logic Devices – FPGAs – Device Arch	itectu	re - Cas	se Stud	lies.			
UN	IT – II					9			
Rec	configurable	e Computing Architectures and Systems: Reconfigurable Proce	essing	Fabric	Archit	ectures –			
RP	F Integration	into Traditional Computing Systems – Reconfigurable Computi	ng Sys	stems –	Case	Studies -			
Rec	configuration	Management.							
	0	¥							
UN	IT – III					9			
Pro	gramming	Reconfigurable Systems: Compute Models - Programming FI	PGA A	Applica	tions i	n HDL -			
Cor	npiling C fo	r Spatial Computing – Operating System Support for Reconfigura	ble Co	omputir	ıg.				
	• •								
UN	IT – IV					9			
Ma	pping Desi	gns to Reconfigurable Platforms: The Design Flow - Tec	hnolo	gy Ma	pping	- FPGA			
Pla	cement - Dat	apath composition - Retiming, Repipelining, and C-slow Retimin	g – Co	onfigura	ation E	Bit stream			
Ger	neration.		-	_					
UN	$\mathbf{IT} - \mathbf{V}$					9			
Ap	plication De	evelopment with FPGAs: Implementing Applications with FPG	As - (Case St	udies	of FPGA			
Ap	plications - S	Signal Processing - Image Processing - Compression - Bioinforma	tics A	pplicati	on.				
					1	Total: 45			
RE	FERENCE	5:							
1.	Scott Hauc	k and Andre Dehon (Eds.), "Reconfigurable Computing – The Th	eory a	nd Prac	ctice of	f FPGA-			
	Based Com	putation", 1 st Edition, Elsevier / Morgan Kaufmann, 2007.							
2.	Maya B. C	Sokhale and Paul S. Graham, "Reconfigurable Computing: Acc	elerat	ing Co	mputa	tion with			
	Field-Progr	cammable Gate Arrays", Springer, 2005.							
3.	Christophe	Bobda, "Introduction to Reconfigurable Computing - Arc	hitect	ures, A	Igorit	hms and			
	Application	ns", 1 st Edition, Springer, 2007.							

COURSE OUTCOMES: BT Mapped							
On completion of the course, the students will be able to (Highest Level)							
CO1: co	omprehend the diff	ferent computing	and models			Und	erstanding (K2)
CO2: di	scuss the different	reconfigurable c	computing archite	ecture and system	ns	Aı	nalyzing (K4)
CO3: pi	ogramming recon	figurable systems	8			Ev	aluating (K5)
CO4: m	apping the design	into different pla	tforms			Ev	aluating (K5)
CO5: analyze and develop reconfigurable applications				C	Creating (K6)		
		Ma	pping of COs w	ith POs			
COs/POs	PO1	PO2	PO3	PO4	PO5		PO6
CO1	3	3	2	2	2		3
CO2			2	3	2		
CO3			1	2	1		
CO4 1 2 1							
CO5	CO5 1						
1 – Slight	, 2 – Moderate,	3 – Substantial,	BT - Bloom's Ta	axonomy			

18VLE05 MIXED SIGNAL VLSI DESIGN

L	Т	Р	Credit
3	0	0	3

9

9

9

Preamble	To build the advanced CMOS VLSI Design with practical	aspec	ct of	mixed	signal	VLSI	
	blocks such as data converters using HDL						
Prerequisites	CMOS Analog IC design, VLSI design						

UNIT – I

Introduction to Active Filters and Switched Capacitor Filters: Switched capacitor filters: Switched capacitor resistors - amplifiers - comparators - sample and hold circuits - Integrator- Biquad

UNIT – II

Continuous Time Filters: Introduction to Gm - C filters - bipolar transconductors - CMOS Transconductors using Triode transistors, active transistors - BiCMOS transconductors - MOSFET C Filters - Tuning Circuitry - Dynamic range performance -Elementary transconductor building block- First and Second order filters

UNIT – III

Digital To Analog and Analog To Digital Converters: Non-idealities in the DAC - Types of DAC's: Current switched, Resistive, Charge redistribution (capacitive), Hybrid, segmented DAC's - Techniques for improving linearity - Analog to Digital Converters: quantization errors - non-idealities - types of ADC's: Flash, two step, pipelined, successive approximation, folding ADC's.

UNIT – IV

Sigma Delta Converters: Over sampled converters - over sampling without noise & with noise implementation imperfections - first order modulator - decimation filters - second order modulator - sigma delta DAC & ADC's

UNIT - V

Analog And Mixed Signal Extensions To HDL: Introduction - Language design objectives - Theory of differential algebraic equations - the 1076.1 Language - Tolerance groups - Conservative systems -Time and the simulation cycle - A/D and D/A Interaction - Quiescent Point - Frequency domain modeling and examples-analog extensions to Verilog: Introduction - data types -Expressions - Signals-Analog behavior – Hierarchical Structures – Mixed signal Interaction

REFERENCES:

1.	David A. Johns and Ken Martin, "Analog Integrated Circuit Design", 2 nd Edition, John Wiley & Sons, 2008.
2.	Rudy van de Plassche, "CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters", 2 nd Edition, Kluwer, 2007.

- 3. Antoniou, "Digital Filters Analysis and Design and Signal Processing Applications", 2nd Edition, Tata McGraw Hill, 2007.
- Phillip Allen and Douglas Holberg "CMOS Analog Circuit Design", Oxford University Press, 2012. 4.

9

9

Total: 45

COURS	COURSE OUTCOMES:							
On completion of the course, the students will be able to (Highest Level)								
CO1: comprehend the concepts of active filters and switched capacitor filters Understanding (K2						erstanding (K2)		
CO2: 0	comprehend the con	cepts of continuo	ous time filters ar	d its performanc	e	Und	erstanding (K2)	
CO3: a	analyze digital to an	alog & analog to	digital converter	`S		Ar	nalyzing (K4)	
CO4: 6	examine sigma delta	converters				Ev	aluating (K5)	
CO5: design analog and mixed signal circuits using HDL Crea					creating (K6)			
		Ma	pping of COs w	ith POs				
COs/PC	Os PO1	PO2	PO3	PO4	PO5		PO6	
CO1	3	3	2	2	2		3	
CO2	3	3	2	2	2		3	
CO3			2	3	2			
CO4 1 2 1								
CO5	CO5 1							
1 – Sligl	ht, 2 – Moderate,	3 – Substantial,	BT - Bloom's Ta	axonomy				

18VLE06 SUPERVISED MACHINE LEARNING ALGORITHMS

(Common to VLSI Design & Embedded Systems branches)

		3	0	0	3	
Preamble	To focus on supervised machine learning algorithms to create sir	nple, i	nterpre	table r	nodels to	
	solve classification and regression problem.					
Prerequisites	Linear Algebra, calculus					

UNIT – I

Discriminative Algorithms: Cost function -LMS Algorithm - The normal Equations-Probability interpretation-locally weighted linear regression-logistic regression-generalized linear models-Application to prediction.

UNIT – II

Generative Algorithms: Generative Models: Gaussian Discriminant Analysis(GDA)-Naïve Bayes- Laplace smoothing-Marginal classifier: Support Vector Machine (SVM) as optimal Margin classifier-Application to Classification.

UNIT – III

Neural Networks: ANN Architecture- Parameter Initialization -Forward Propagation- Activation Functions (Sigmoid,tanh,relu)-Training and Optimization with back propagation-Learning Boolean Functions.

UNIT – IV

Convolutional Neural Networks (CNN) : Convolution kernel-Pooling (Max Pooling, fractional Pooling)-Strides-Fully Connected Layers -Loss functions - MiniBatch Training -Optimization - Application to MNIST image classification.

$\mathbf{UNIT} - \mathbf{V}$

Hyper Parameter Tuning: Regularization: Bias-Variance-Bias-variance Trade off- Initialization of parameters (Xavier)-Cross Validation-Data Augmentation-dropouts-Batch Normalization.

RE	CFERENCES:
1.	Christopher M. Bishop, "Pattern Recognition and Machine Learning", Springer-Verlag New York,
	Reprint, 2010.
2.	Trevor Hastie, "The Elements of Statistical Learning: Data Mining, Inference, and Prediction", 2 nd
	Edition Springer 2009

UCI Machine Learning repository: http://archive.ics.uci.edu/ml/index.php 3.

9

Total · 45

Т

L

Р

Credit

9

9

9

COURSE OUTCOMES: BT Mapped										
On completion of the course, the students will be able to								(Highest Level)		
CO1: analyse and apply discriminative algorithms for classification and regression								Analyzing (K4)		
problems										
CO2: validate a generative model based algorithm for classification and regression							Analyzing (K4)			
problems										
CO3: analyse the designed ANN for a real time application using BPN							Analyzing (K4)			
CO4: develop a CNN model for image analysis							Applying (K3)			
CO5: analyse various error metrics used in supervised learning						Analyzing (K4)				
Mapping of COs with POs										
COs/P	POs	PO1	PO2	PO3	PO4	PO5		PO6		
CO	1			2	3	2				
CO	2			2	3	2				
CO	3			2	3	2				
CO	4		3 3		3					
CO	5			2	3	2				
1 - Sli	ght,	2 – Moderate,	3 – Substantial,	BT - Bloom's Ta	axonomy					

18VLE07 VLSI FOR BIOMEDICAL APPLICATIONS

JNS			
L	Т	Р	Credit
3	0	0	3

Preamble	To comprehend and apply the various low power techniques for Biomedical circuits.	
Prerequisites	Low Power VLSI Design and RF VLSI Design	
UNIT – I		9

Low-Power Analog and Biomedical Circuits: Low power transimpedance amplifiers and photoreceptors-Low power transconductance amplifiers and scaling laws for power in analog circuits- Low-power filters and resonators- Low power current- mode circuits - Ultra-low-power and neuron-inspired analog-to-digital conversion for biomedical system.

UNIT – II

9

Low-Power RF and Energy-Harvesting Circuits for Biomedical Systems: Wireless inductive power links for medical implants - Energy-harvesting RF antenna power links - Low-power RF telemetry in biomedical implants.

UNIT – III

Biomedical Electronic Systems: Ultra-low-power implantable medical electronics- cochlear implants or bionic ears-an ultra low power programmable analog bionic ear processor-low power electrode stimulation-highly miniature electrode –stimulation –Brain machine interfaces for the blind-Brain machine interface for paralysis, speech, and other disorders. Ultra-low-power noninvasive medical electronics -Analog integrated-circuit switched-capacitor model of the heart – the electrocardiogram- A micro power electrocardiogram amplifier -Low-power pulse oximetry - Battery-free tags for body sensor networks -Intra-body galvanic communication networks - Biomolecular sensing.

UNIT – IV

Principles for Ultra-Low-Power Analog and Digital Design: Digital design- Sizing and topologies for robust sub threshold operation-Types of power dissipation-energy efficiency-Optimization of energy efficiency-Varying the power-supply voltage and threshold voltage-gated clocks-Basics of adiabatic computing-adiabatic clocks- Architectures and algorithms for improving energy efficiency. Analog and mixed-signal design -Power consumption in analog and digital systems-low power hand- The optimum point for digitization in mixed-signal system Common themes in low-power analog and digital design-The Shannon limit for energy efficiency-Collective analog or hybrid computation-HSMs: general-purpose mixed-signal systems with feedback-General principles for low-power mixed-signal system design-The evolution of low-power design-Actuators and sensors.

UNIT – V

Bio-Inspired Systems: Neuromorphic electronics- Transmission-line theory- The cochlea: biology, motivations, theory, and RF-cochlea design- A bio-inspired analog vocal tract- Bio-inspired vision architectures Hybrid analog-digital computation in the brain- Spike-based hybrid computers- Energy efficiency in neurobiological systems Cytomorphic electronics: cell-inspired electronics for systems and synthetic biology- Electronic analogies of chemical reactions- Log-domain current-mode models of chemical reactions and protein-protein networks- Analog circuit models of gene-protein dynamics- Logic-like operations in gene-protein circuits- Circuits-and-feedback techniques for systems and synthetic biology-Hybrid analog-digital computation in cells and neurons.

Total: 45

REF	ERENCES:
1.	Rahul Sarpeshkar, "Ultra Low Power Bioelectronics: Fundamentals, Biomedical Applications, and
	Bio-Inspired Systems" 1 st Edition, Cambridge University Press, 2011.
2.	Kris Iniewski, "VLSI Circuit Design for Biomedical Applications", 1st Edition, Artech House
	Publishers, 2008.

9

9

COUR	BT Mapped									
On completion of the course, the students will be able to (Highest Level)										
CO1:	CO1: acquire the concepts of low power amplifier circuits Understanding (K2									
CO2:	comprehend RF CMOS circuits for Biomedical applications Understanding (K2)									
CO3:	COI	rrelate the analog	y of biological c	omponents with	low power circu	its	A	pplying (K3)		
CO4:	04: design analog and mixed signal biomedical circuits Analyzing (K4)									
CO5:	CO5: interpret various bioinspired systems							Understanding (K2)		
	Mapping of COs with POs									
COs/POs PO1		PO1	PO2	PO3	PO4	PO5		PO6		
CO1		3	3	2	2	2		3		
CO2		3	3	2	2	2		3		
CO3				3	3	3				
CO4				2	3	2				
CO5		3	3	2	2	2		3		
1 - Slig	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy									

		18VLE08 VLSI TECHNOLOGY								
			L	Т	Р	Credit				
			3	0	0	3				
Pre	amble	To infer the foundations in MOS and CMOS fabrication process.								
Pre	requisites	Semiconductor Theory								
UN	IT – I					9				
Cr	ystal Grow	th, Wafer Preparation, Epitaxy and Oxidation: Electronic	Grade	e Silico	on, Cz	ochralski				
cry	stal growin	g, Silicon Shaping, processing consideration, Vapor phase Epitax	y, Mo	lecular	Beam	Epitaxy,				
Sili	Silicon on Insulators, Growth Mechanism and kinetics, Thin Oxides, Oxidation Techniques and Systems,									
Ox	ide propert	ies, Redistribution of Dopants at interface, Oxidation of Poly	Silico	n, Oxi	dation	induced				
Det	fects.									
UN	IT – II					9				
Lit	hography	and Relative Plasma Etching: Optical Lithography, Ele	ctron	Lithog	graphy	, X-Ray				
Litl	hography, l	on Lithography, Plasma properties, Feature Size control and A	nisotro	opic Et	ch me	echanism,				
rela	ative Plasma	a Etching techniques and Equipments								
	1									
UN	IT – III					9				
De	position ar	Diffusion: Deposition process, Polysilicon, Silicon Dioxid	de- Si	licon I	Nitride	- plasma				
ass	isted Depos	ition, Models of Diffusion in Solids, Flick's one dimensional D	offusio	on Equ	ation -	- Atomic				
Dit	tusion Mec	hanism – Measurement techniques								
	$\frac{11 - 1V}{1}$		1'	<u>C1</u>	11 •	9				
lon	implemen	tation and Metallization: Range theory- Implant equipment. A	nneali	ng-Sha	llow ji	unction –				
H1g	gn energy 11	nplantation – Metallization Applications- Metallization choices-	Physic	cal vap	or aep	- $ -$				
Pat	terning									
TIN						0				
	$\mathbf{SI} \mathbf{D} \mathbf{r}_{\mathbf{O}} \mathbf{O} \mathbf{S}$	Integration and Dackaging of VISI Devices, NMOS IC	Tooh	nology						
V L Taa	brology	MOS Mamory IC tachnology Binolar IC Tachnology IC	Teen Fabria	ation	P = C	NOS IC				
banking design consideration. VI SI assembly technology – Deskage fabrication technology										
Uan	Danking design consideration – VLSI assembly technology – Package fabrication technology									
BE	FERENCE	т с.				10tal. 43				
1	Sze S M	"VI SI Technology" 2 nd Edition McGraw-Hill New York 2017								
1. 2	Mukheriee	Amar "Introduction to NMOS and CMOS VI SI System Design	ı" Pr∈	ntice F	- Iall In	dia New				
2.	Delhi Dia	itized 2007	. ,		1411 111	uiu, 19099				
	Denn, Dig									

- 3. Plummer D. James, Deal D. Michael and Griffin B. Peter, "Silicon VLSI Technology: Fundamentals Practice and Modeling", Prentice Hall India, New Delhi, 2009. Chen Wai Kai, "VLSI Technology", CRC Press, London, 2003.
- 4.

COURSE OUTCOMES: BT Mapped									
On completion of the course, the students will be able to (Highest Level)							(hest Level)		
CO1: summarize the approach for wafer preparation, Epitaxy and Oxidation Understanding (standing (K2)		
CO2:	distinguis	sh the various me	ethods for litho	graphy and plas	ma etching		Under	standing (K2)	
CO3:	illustrate	the various Dep	osition and diff	usion process			Under	standing (K2)	
CO4:	4: infer the process of ion implantation and metallization Understanding (K2)						standing (K2)		
CO5: realize the various IC technology and Package types Understanding (K2						standing (K2)			
	Mapping of COs with POs								
CC	Os/POs	PO1	PO2	PO3	PO4	F	PO 5	PO6	
(CO1	3	3	2	2		2	3	
(CO2	3	3	2	2		2	3	
CO3		3	3	2	2		2	3	
CO4		3	3	2	2		2	3	
(CO5	3	3	2	2		2	3	
1 - Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy								

10MME12 MEMO DECICN

(Common to Mechatronics, CADCAM, Engineering Design, VLSI Design, Applied Electronics, Power Electronics and Drives & Control and Instrumentation Engineering branches) L T P Credit 3 0 0 3 Preamble: This course equips the students to understand the concepts of Micro mechatronics and apply the knowledge of micro fabrication techniques for various applications. Prerequisites: Sensors and Instrumentation and Bridge course mechanical UNIT - I 9 Materials for MEMS and Scaling Laws: Overview - Microsystems and microelectronics - Working principle of Microsystems - Si as a substrate material - Mechanical properties - Silicon compounds - Silicon oiezo resistors - Gallium arsenide - Quartz-piezoelectric crystals - Polymer - Scaling laws in Miniaturization. UNIT - II 9 Micro Sensors, Micro Actuators: Micro sensors - Micro actuation techniques - Micro actuators - Micromotors - Micro argippers - Micro accelerometer: introduction, types, actuating principles, design rules, modeling and simulation, verification and testing, applications. UNIT - III 9 Mechanics for Microsystem Design: Static bending of thin plates - Mechanical vibration - Thermo nechanics - Thermal stresses - Fracture mechanics - Stress intensity factors, fracture toughness and nterfacial fracture mechanics-Thin film Mechanics-Overview of Finite Element Stress Analysis.
L T P Credit 3 0 0 3 Preamble: This course equips the students to understand the concepts of Micro mechatronics and apply the knowledge of micro fabrication techniques for various applications. Prerequisites: Sensors and Instrumentation and Bridge course mechanical UNIT – I 9 Materials for MEMS and Scaling Laws: Overview - Microsystems and microelectronics - Working principle of Microsystems - Si as a substrate material - Mechanical properties - Silicon compounds - Silicon piezo resistors - Gallium arsenide - Quartz-piezoelectric crystals - Polymer - Scaling laws in Miniaturization. UNIT – II 9 Micro Sensors, Micro Actuators: Micro sensors - Micro actuation techniques - Micro actuators – Micro grippers – Micro accelerometer: introduction, types, actuating principles, design rules, modeling and simulation, verification and testing, applications. UNIT – III 9 Mechanics for Microsystem Design: Static bending of thin plates - Mechanical vibration - Thermo nechanics - Thermal stresses - Fracture mechanics - Stress intensity factors, fracture toughness and nterfacial fracture mechanics-Overview of Finite Element Stress Analysis.
L T P Credit 3 0 0 3 Preamble: This course equips the students to understand the concepts of Micro mechatronics and apply the knowledge of micro fabrication techniques for various applications. Prerequisites: Sensors and Instrumentation and Bridge course mechanical UNIT – I 9 Materials for MEMS and Scaling Laws: Overview - Microsystems and microelectronics - Working principle of Microsystems - Si as a substrate material - Mechanical properties - Silicon compounds - Silicon piezo resistors - Gallium arsenide - Quartz-piezoelectric crystals - Polymer - Scaling laws in Miniaturization. UNIT – II 9 Micro Sensors, Micro Actuators: Micro sensors - Micro actuation techniques - Micro actuators - Micro mechanical, applications. UNIT – II 9 Micro Sensors, Micro Actuators: Micro grippers – Micro accelerometer: introduction, types, actuating principles, design rules, modeling and simulation, verification and testing, applications. 9 UNIT – III 9 Mechanics for Microsystem Design: Static bending of thin plates - Mechanical vibration - Thermo nechanics - Thermal stresses - Fracture mechanics - Stress intensity factors, fracture toughness and nterfacial fracture mechanics-Thin film Mechanics-Overview of Finite Element Stress Analysis.
3 0 0 3 Preamble: This course equips the students to understand the concepts of Micro mechatronics and apply the knowledge of micro fabrication techniques for various applications. Prerequisites: Sensors and Instrumentation and Bridge course mechanical UNIT – I 9 Materials for MEMS and Scaling Laws: Overview - Microsystems and microelectronics - Working principle of Microsystems - Si as a substrate material - Mechanical properties - Silicon compounds - Silicon piezo resistors - Gallium arsenide - Quartz-piezoelectric crystals - Polymer - Scaling laws in Miniaturization. UNIT – II 9 Micro Sensors, Micro Actuators: Micro sensors - Micro actuation techniques - Micro actuators - Micromotors - Microvalves - Micro grippers - Micro accelerometer: introduction, types, actuating principles, design rules, modeling and simulation, verification and testing, applications. UNIT – III 9 Mechanics for Microsystem Design: Static bending of thin plates - Mechanical vibration - Thermo nechanics - Thermal stresses - Fracture mechanics - Stress intensity factors, fracture toughness and nterfacial fracture mechanics-Thin film Mechanics-Overview of Finite Element Stress Analysis.
Preamble: This course equips the students to understand the concepts of Micro mechatronics and apply the knowledge of micro fabrication techniques for various applications. Prerequisites: Sensors and Instrumentation and Bridge course mechanical UNIT - I 9 Materials for MEMS and Scaling Laws: Overview - Microsystems and microelectronics - Working principle of Microsystems - Si as a substrate material - Mechanical properties - Silicon compounds - Silicon piezo resistors - Gallium arsenide - Quartz-piezoelectric crystals - Polymer - Scaling laws in Miniaturization. UNIT - II 9 Micro Sensors, Micro Actuators: Micro sensors - Micro actuation techniques - Micro actuators - Micromotors - Micro actuators - Micro actuators - Micro actuators - Micro actuators - Micro mether: introduction, types, actuating principles, design rules, modeling and simulation, verification and testing, applications. UNIT - III 9 Mechanics for Microsystem Design: Static bending of thin plates - Mechanical vibration - Thermo nechanics - Thermal stresses - Fracture mechanics - Stress intensity factors, fracture toughness and nterfacial fracture mechanics-Thin film Mechanics-Overview of Finite Element Stress Analysis.
knowledge of micro fabrication techniques for various applications. Prerequisites: Sensors and Instrumentation and Bridge course mechanical UNIT - I 9 Materials for MEMS and Scaling Laws: Overview - Microsystems and microelectronics - Working principle of Microsystems - Si as a substrate material - Mechanical properties - Silicon compounds - Silicon piezo resistors - Gallium arsenide - Quartz-piezoelectric crystals - Polymer - Scaling laws in Miniaturization. UNIT - II 9 Micro Sensors, Micro Actuators: Micro sensors - Micro actuation techniques - Micro actuators - Micromotors - Microvalves - Micro grippers - Micro accelerometer: introduction, types, actuating principles, design rules, modeling and simulation, verification and testing, applications. UNIT - III 9 Mechanics for Microsystem Design: Static bending of thin plates - Mechanical vibration - Thermo nechanics - Thermal stresses - Fracture mechanics - Stress intensity factors, fracture toughness and nterfacial fracture mechanics-Thin film Mechanics-Overview of Finite Element Stress Analysis.
Prerequisites: Sensors and Instrumentation and Bridge course mechanical UNIT – I 9 Materials for MEMS and Scaling Laws: Overview - Microsystems and microelectronics - Working principle of Microsystems - Si as a substrate material - Mechanical properties - Silicon compounds - Silicon piezo resistors - Gallium arsenide - Quartz-piezoelectric crystals - Polymer - Scaling laws in Miniaturization. UNIT – II 9 Micro Sensors, Micro Actuators: Micro sensors - Micro actuation techniques - Micro actuators – Micromotors – Microvalves – Micro grippers – Micro accelerometer: introduction, types, actuating principles, design rules, modeling and simulation, verification and testing, applications. 9 VINIT – III 9 Mechanics for Microsystem Design: Static bending of thin plates - Mechanical vibration - Thermo nechanics - Thermal stresses - Fracture mechanics - Stress intensity factors, fracture toughness and nterfacial fracture mechanics-Thin film Mechanics-Overview of Finite Element Stress Analysis.
UNIT – I 9 Materials for MEMS and Scaling Laws: Overview - Microsystems and microelectronics - Working principle of Microsystems - Si as a substrate material - Mechanical properties - Silicon compounds - Silicon piezo resistors - Gallium arsenide - Quartz-piezoelectric crystals - Polymer - Scaling laws in Miniaturization. UNIT – II 9 Micro Sensors, Micro Actuators: Micro sensors - Micro actuation techniques - Micro actuators – Micro modeling and simulation, verification and testing, applications. UNIT – III 9 Mechanics for Microsystem Design: Static bending of thin plates - Mechanical vibration - Thermo nechanics - Thermal stresses - Fracture mechanics - Stress intensity factors, fracture toughness and nterfacial fracture mechanics-Thin film Mechanics-Overview of Finite Element Stress Analysis.
Materials for MEMS and Scaling Laws: Overview - Microsystems and microelectronics - Working principle of Microsystems - Si as a substrate material - Mechanical properties - Silicon compounds - Silicon piezo resistors - Gallium arsenide - Quartz-piezoelectric crystals - Polymer - Scaling laws in Miniaturization. UNIT – II 9 Micro Sensors, Micro Actuators: Micro sensors - Micro actuation techniques - Micro actuators - Micromotors - Microvalves - Micro grippers - Micro accelerometer: introduction, types, actuating principles, design rules, modeling and simulation, verification and testing, applications. 9 Mechanics for Microsystem Design: Static bending of thin plates - Mechanical vibration - Thermo nechanics - Thermal stresses - Fracture mechanics - Stress intensity factors, fracture toughness and nterfacial fracture mechanics-Thin film Mechanics-Overview of Finite Element Stress Analysis.
principle of Microsystems - Si as a substrate material - Mechanical properties - Silicon compounds - Silicon piezo resistors - Gallium arsenide - Quartz-piezoelectric crystals - Polymer - Scaling laws in Miniaturization. UNIT - II 9 Micro Sensors, Micro Actuators: Micro sensors - Micro actuation techniques - Micro actuators - Micromotors - Microvalves - Micro grippers - Micro accelerometer: introduction, types, actuating principles, design rules, modeling and simulation, verification and testing, applications. UNIT - III 9 Mechanics for Microsystem Design: Static bending of thin plates - Mechanical vibration - Thermo nechanics - Thermal stresses - Fracture mechanics - Stress intensity factors, fracture toughness and nterfacial fracture mechanics-Thin film Mechanics-Overview of Finite Element Stress Analysis.
piezo resistors - Gallium arsenide - Quartz-piezoelectric crystals - Polymer - Scaling laws in Miniaturization. UNIT - II 9 Micro Sensors, Micro Actuators: Micro sensors - Micro actuation techniques - Micro actuators - Micromotors - Microvalves - Micro grippers - Micro accelerometer: introduction, types, actuating principles, design rules, modeling and simulation, verification and testing, applications. UNIT - III 9 Mechanics for Microsystem Design: Static bending of thin plates - Mechanical vibration - Thermo nechanics - Thermal stresses - Fracture mechanics - Stress intensity factors, fracture toughness and nterfacial fracture mechanics-Thin film Mechanics-Overview of Finite Element Stress Analysis.
UNIT – II 9 Micro Sensors, Micro Actuators: Micro sensors - Micro actuation techniques - Micro actuators – Micromotors – Microvalves – Micro grippers – Micro accelerometer: introduction, types, actuating principles, design rules, modeling and simulation, verification and testing, applications. UNIT – III 9 Mechanics for Microsystem Design: Static bending of thin plates - Mechanical vibration - Thermo nechanics - Thermal stresses - Fracture mechanics - Stress intensity factors, fracture toughness and nterfacial fracture mechanics-Thin film Mechanics-Overview of Finite Element Stress Analysis.
UNIT – II 9 Micro Sensors, Micro Actuators: Micro sensors - Micro actuation techniques - Micro actuators – Micro actuators - Micro actuators - Micro accelerometer: introduction, types, actuating principles, design rules, modeling and simulation, verification and testing, applications. UNIT – III 9 Mechanics for Microsystem Design: Static bending of thin plates - Mechanical vibration - Thermo nechanics - Thermal stresses - Fracture mechanics - Stress intensity factors, fracture toughness and nterfacial fracture mechanics-Thin film Mechanics-Overview of Finite Element Stress Analysis.
 Micro Sensors, Micro Actuators: Micro sensors - Micro actuation techniques - Micro actuators – Micromotors – Microvalves – Micro grippers – Micro accelerometer: introduction, types, actuating principles, design rules, modeling and simulation, verification and testing, applications. UNIT – III 9 Mechanics for Microsystem Design: Static bending of thin plates - Mechanical vibration - Thermo mechanics - Thermal stresses - Fracture mechanics - Stress intensity factors, fracture toughness and nterfacial fracture mechanics-Thin film Mechanics-Overview of Finite Element Stress Analysis.
Micromotors – Microvalves – Micro grippers – Micro accelerometer: introduction, types, actuating principles, design rules, modeling and simulation, verification and testing, applications. UNIT – III 9 Mechanics for Microsystem Design: Static bending of thin plates - Mechanical vibration - Thermo mechanics - Thermal stresses - Fracture mechanics - Stress intensity factors, fracture toughness and nterfacial fracture mechanics-Thin film Mechanics-Overview of Finite Element Stress Analysis.
principles, design rules, modeling and simulation, verification and testing, applications. UNIT – III Mechanics for Microsystem Design: Static bending of thin plates - Mechanical vibration - Thermo nechanics - Thermal stresses - Fracture mechanics - Stress intensity factors, fracture toughness and nterfacial fracture mechanics-Thin film Mechanics-Overview of Finite Element Stress Analysis.
UNIT – III 9 Mechanics for Microsystem Design: Static bending of thin plates - Mechanical vibration - Thermo nechanics - Thermal stresses - Fracture mechanics - Stress intensity factors, fracture toughness and nterfacial fracture mechanics-Thin film Mechanics-Overview of Finite Element Stress Analysis.
UNIT – III 9 Mechanics for Microsystem Design: Static bending of thin plates - Mechanical vibration - Thermo nechanics - Thermal stresses - Fracture mechanics - Stress intensity factors, fracture toughness and nterfacial fracture mechanics-Thin film Mechanics-Overview of Finite Element Stress Analysis.
Mechanics for Microsystem Design: Static bending of thin plates - Mechanical vibration - Thermo mechanics - Thermal stresses - Fracture mechanics - Stress intensity factors, fracture toughness and nterfacial fracture mechanics-Thin film Mechanics-Overview of Finite Element Stress Analysis.
mechanics - Thermal stresses - Fracture mechanics - Stress intensity factors, fracture toughness and interfacial fracture mechanics-Thin film Mechanics-Overview of Finite Element Stress Analysis.
nterfacial fracture mechanics-Thin film Mechanics-Overview of Finite Element Stress Analysis.
UNIT – IV 9
Fabrication Process and Micromachining: Photolithography - Ion implantation - Diffusion – Oxidation –
CVD - Physical vapor deposition - Deposition by epitaxy - Etching process- Bulk Micro manufacturing -
Surface micro machining – LIGA –SLIGA.
<u>UNIT – V</u> 9
Micro System Design, Packaging and Applications: Design considerations - Process design - Mechanical
design – Mechanical Design using Finite Element Method-Micro system packaging – Die level - Device level
· System level – Packaging techniques - Die preparation - Surface bonding - Wire bonding – Sealing -
Applications of micro system in Automotive industry: Bio medical, Aerospace and Telecommunications –
CAD tools to design a MEMS device.
Total: 45
REFERENCES:
1. Tai-Ran Hsu, "MEMS and Microsystems Design and Manufacture", Tata McGraw-Hill, New Delhi, 2008.
2. Mohamed Gad-el-Hak, "The MEMS Handbook", CRC Press, 2009.
3. Bao M.H., "Micromechanical Transducers: Pressure sensors, accelrometers, and gyroscopes", Elsevier,
New York, 2000.

COURSE OUTCOMES: BT Mapped									
On completion of the course, the students will be able to						(Hig	hest Level)		
CO1: interpret t	he concepts of N	MEMS material	s and scaling la	WS		Remembering (K1)			
CO2: explain th	CO2: explain the principles of micro sensors and actuators						Understanding (K2)		
CO3: apply the	CO3: apply the mechanics for micro system design						lying (K3)		
CO4: design and fabrication of microsystem						Applying (K3)			
CO5: design of microsystem packaging and application					Applying (K3)				
Mapping of COs with POs									
COs/POs	PO1	PO2	PO3	PO4	P	05	PO6		
CO1	3		3	2			2		
CO2	3		3	3			2		
CO3	2		2						
CO4	3		3	3			2		
CO5	3		3	3			2		
1 - Slight, 2 - Most	1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy								

	18MIE14 QUANTUM INFORMATION AND COMPU	TING			
		L	Т	Р	Credit
		3	0	0	3
Preamble	To provide a broad overview of the main ideas of the field of quantum the fundamental elements of quantum circuits, different quantum al error correction.	n comp Igorithr	utation. ns, qua	It also ntum r	describes noise with
Prerequisites	Applied physics, Mathematics				
UNIT – I					9
Introduction to operator - EPR a	Quantum Computation: Linear algebra - Quantum mechanics - and the Bell inequality.	Superc	lense c	oding	- Density
UNIT – II					9
Simulation of qu UNIT – III	antum systems.	quanti	um Fou	rior Tr	9 parts
Quantum search	algorithms.	quant			
UNIT – IV					9
Noise and Erro quantum comput	or Correction: Quantum noise and quantum operations - Quantum e ation.	error-co	rrection	ı - Fau	lt-tolerant
UNIT – V					9
Quantum Infor	mation Theory: Data compression - Entanglement as a physical resour	ce - Qu	antum	cryptog	graphy.
				,	Fotal: 45
REFERENCE	S:				
1. Nielsen M Cambridge	. A. and Chuang I. L., "Quantum Computation and Quantum Informate University Press, 2010.	ion", 1	0 th Ann	iversar	y Edition,

- Scott Aaronson, "Quantum Computing Since Democritus", 1st Edition, Cambridge University Press, 2013.
 Phillip Kaye, Raymond Laflamme, Michele Mosca, "An Introduction to Quantum Computing", 1st Edition, Oxford University Press, Reprint, 2010.

COUH	OURSE OUTCOMES:					BT	BT Mapped		
On con	mpletion of	the course, the	students will be	e able to			(Hig	(Highest Level)	
CO1:	describe th	ne quantum mec	hanics using li	near algebra			Understanding (K2)		
CO2:	2:familiar with qubits and designing of quantum gatesAnalyzing (K4)						yzing (K4)		
CO3:	3: realize the quantum parallelism by using simplest quantum algorithms Applying (K3)								
CO4:	D4:understand real-world quantum information processingUnderstanding (K2)						tanding (K2)		
CO5:	CO5: analyze the information carrying properties of quantum states						Understanding (K2)		
Mapping of COs with POs									
CC	Os/POs	PO1	PO2	PO3	PO4		PO5	PO6	
(CO1	2		2					
CO2		3		3			3		
CO3		3		3				2	
CO4		3		2				2	
CO5 3 2					2				
1 - Sli	ght, $2 - Mc$	oderate, 3 – Su	bstantial, BT -	- Bloom's Taxo	nomy				

		N T			
	18VLEU9 HARDWARE SOFTWARE CO-DESIG	N	1		1
		L	Т	Р	Credit
		3	0	0	3
Preamble	To develop an integrated application development environ	ment	of har	dware	/software
	codesign of embedded system				
Prerequisites	RTOS				
UNIT – I					9
Design Consid	leration: Platform-Based Design – System Modeling – Video C	oding	– Imag	ge Pro	cessing –
Cryptography	- Digital Communication.				
UNIT – II					9
System Level	Design: Abstraction Levels – Algorithm Level Verification – Tr	ansact	ion Le	vel M	odeling –
System Level	Development Tools.				-
-	<u>^</u>				
UNIT – III					9
Embedded P	rocessor Design: Specific Instruction-Set - Data Level Paral	lelism	– In	struction	on Level
Parallelism – 7	Thread Level Parallelism				
UNIT – IV					9
Parallel Com	piler: Vectorization - Simdization - ILP Scheduling - Threadi	ng - (Compile	er Tec	hnique –
Compiler Infra	structures	U	•		
-					
UNIT – V					9
Real-Time O	perating System for PLX: PRRP Scheduler - Memory Manage	ment -	- Com	munic	ation and
Synchronizatio	n Primitives - Multimedia Applications in RTOS for PLX -	- App	lication	n Dev	elopment
Environment.					-
				,	Total: 45
REFERENCE	S:				
1. Sao-jie C	hen, Guang - Huei Lin, Pao -Ann Hsiung and Yu-Hen Hu, "Hard	ware S	Softwaı	e Co-l	Design of
a Multim	edia SOC Platform", Springer, 2009.				J
2. Jorgen S	taunstrup, Wayne Wolf, "Hardware/Software Co-Design: Princi	ples a	und Pra	actice"	, Kluwer
Aadami	a Dyk 1007				

 Academic Pub, 1997.

 3.
 Patrick Schaumont, "A Practical Introduction to Hardware/Software Co design", 3rd Edition, Springer, 2014.

COUH	COURSE OUTCOMES:							BT Mapped	
On coi	mpletion of	the course, the	students will be	e able to			(Highest Level)		
CO1:	acquire kn	owledge about	system level m	odeling and ima	ge and video er	ncoding	Unde	rstanding (K2)	
CO2:	perform al	gorithm level v	erification and	learn system de	evelopment tool	S	Ар	plying (K3)	
CO3:	distinguisl	distinguish between different levels of parallelism Understanding (K2)							
CO4:	infer scheduling and compiler techniques Understanding (K2)								
CO5:	205: interpret the requirements of Real time Operating Systems and develop an integrated application development environment of hardware/software codesign of embedded system								
			Mappi	ng of COs with	POs				
CC	Ds/POs	PO1	PO2	PO3	PO4	PO	5	PO6	
(CO1	3	3	2	2	2		3	
(CO2			3	3	3			
(CO3	3	3	2	2	2		3	
(CO4	3	3	2 2		2		3	
(CO5 1								
1 - Sli	ght, 2 – Mo	oderate, 3 – Su	ubstantial, BT -	– Bloom's Taxo	nomy				

	18VLE10 INTELLECTUAL PROPERTY BASED VLSI	DESI	GN		
		L	Т	Р	Credit
		3	0	0	3
Preamble	To provide an overview of the security problems in modern VLS	I desig	gn for t	he pro	tection of
	VLSI design IPs from FPGA design to standard-cell placement	it, fror	n high	-level	synthesis
	solutions to gate-level netlist place-and-route, and from advar	nced C	CAD to	ols to	physical
	design algorithms.				
Prerequisites	VLSI Design				
UNIT – I					9
VLSI and its	Fabrication: IC manufacturing, CMOS technology, IP based	desig	n,Fabri	cation	process-
Transistors, W	ires and Via, Fabrication Theory reliability				
UNIT – II					9
Combinationa	I Logic Networks: Combinational Logic Functions, Static Co	mplen	nentary	Gates	s, Switch
Logic, Alterna	te Gate circuits, Low power gates, Gates as IP, Combinationa	l netw	ork de	lay, L	ogic and
Interconnect de	esign, Power Optimization, Switch logic network				U
UNIT – III					9
Sequential M	achine: Latch and Flip flop, System design and Clocking, P	erform	ance a	nalysi	s, power
optimization, I	Design validation and testing				· 1
UNIT – IV					9
Subsystem De	esign: Combinational Shifter, Arithmetic Circuits, High Densit	y mer	nory, 1	Image	Sensors,
FPGA,PLA, B	uses and NoC, Data paths, Subsystems as IP.	•		U	
UNIT – V					9
Architecture	Design: HDL, Register-Transfer Design, Pipelining, High Level	Synth	nesis, A	Archite	ecture for
Low power, G	ALS systems, Architecture Testing, IP Components, Design Me	thodo	logies,	Multi	processor
System-on-chi	o Design.		U /		
				I	Total: 45
REFERENCE	S:				
1. Wayne W	olf, "Modern VLSI Design: IP-based Design", 4th Edition, Pearson	n Educ	ation, 2	2009.	
2. Ou gang	and Miodrag Potkoniak "Intellectual Property Protection in	VLSI	Design	ns [.] Th	eory and

 Qu gang and Miodrag Potkonjak, "Intellectual Property Protection in VLSI Designs: Theory and Practice", 1st Edition, Kluwer Academic Publishers, 2003.

COUI	OURSE OUTCOMES:							BT Mapped	
On co	mpletion of	the course, the	students will be	e able to			(Hig	ghest Level)	
CO1:	compreher	nd the manufact	uring process a	nd basic propert	ties of transistor	S	Understanding (K2)		
CO2:	design of c	combinational le	ogic gates and i	networks using v	arious logic sty	les	Applying (K3)		
CO3:	3: design and validation of sequential systems Applying (K3)								
CO4:	4: design of subsystems for various application Analyzing (K4)								
CO5:	5: development of architecture for various application						Evaluating (K5)		
	Mapping of COs with POs								
CC	Ds/POs	PO1	PO2	PO3	PO4	F	PO5	PO6	
(CO1	3	3	2	2		2	3	
(CO2			3	3		3		
CO3				3	3		3		
CO4			2	3		2			
CO5 1 2 1									
1 - Sli	ight, 2 – Mo	derate, 3 – Su	bstantial, BT -	- Bloom's Taxor	nomy				

18VLE11 NANOELECTRONICS

L	Т	Р	Credi
3	0	0	3

Preamble	To provide a foundation for the nano device fabrication and to	apply	in the	field o	of sensors
	technology.				
Prerequisites	Digital Electronics				

UNIT – I Materials for Nanoelectronics: Semiconductors, Crystal lattices: bonding in crystals, Electron energy bands, Semiconductor heterostructures, Lattice-matched and pseudomorphic heterostructures, Inorganic nanowires, Organic semiconductors, Carbon nanomaterials: nanotubes and fullerenes.

UNIT – II

Nanoelectronics and Nanocomputer Architectures: Introduction to Nanocomputers, Nanocomputer Architecture, Quantum DOT cellular Automata (QCA), QCA circuits, Single electron circuits, molecular circuits, Logic switches - Interface engineering - Properties (Self-organization, Size-dependent) -Limitations.

UNIT – III

Spintronics: Introduction, Overview, History & Background, Generation of Spin Polarization Theories of spin Injection, spin relaxation and spin dephasing, Spintronic devices and applications, spin filters, spin diodes, spin transistors.

UNIT – IV

Transport in Nanostrcutures: Time and length scales of the electrons in solids, Statistics of the electrons in solids and nanostructures, Fermi statistics for electrons, the density of states of electrons in nanostructures, Electron transport in nanostructures. Electrons in quantum wells: Single modulation-doped heterojunctions, Numerical analysis of a single heterojunction, Control of charge transfer, Electrons in quantum wires, Electron transport in quantum wires, Electrons in quantum dots.

UNIT – V

Memory Devices And Sensors: Memory devices and sensors – Nano ferroelectrics – Ferroelectric random access memory - Fe-RAM circuit design -ferroelectric thin film properties and integration - calorimetric sensors electrochemical cells - surface and bulk acoustic devices - gas sensitive FETs - resistive semiconductor gas sensors -electronic noses - identification of hazardous solvents and gases - semiconductor sensor array

Total: 45 **REFERENCES:** Karl Goser and Jan Dienstuhl, "Nanoelectronics and Nanosystems: From Transistor to Molecular and 1. Quantum Devices", Springer, 2014. Rainer Waser, "Nano Electronics and Information Technology: Advanced Electronic Materials and 2. Novel Devices", 3rd Edition, Wiley, 2012. Sadamichi Maekawa, "Concepts in Spintronics", Oxford Science Publications, 2006. 3.

9

9

Q

9

COUI	RSE OUTC	OMES:					BT Mapped		
On co	mpletion of	the course, the	students will be	e able to			(Hig	(Highest Level)	
CO1:	describe t	he energy ban	ds of semicon	ducting materia	ls and nanostr	uctures	Under	standing (K2)	
	(Nanowire	, Nanotube, Fu	llerene)	-				-	
CO2:	explain th	e architecture	of nanocomp	uter and logic	for quantum	cellular	Understanding (K2)		
	automata								
CO3:	apply the	concept of spin	n polarization i	n spintronic dev	vices (Filters, I	Diodes,	Applying (K3)		
Transistors)									
CO4:	CO4: distinguish the electron transport in different nanostructures						Understanding (K2)		
CO5: describe the concept of FeRAM, supercapacitor and gas sensor					Understanding (K3)				
			Mappi	ng of COs with	POs				
CC	Os/POs	PO1	PO2	PO3	PO4	PO	D5	PO6	
(CO1	3	3	2	2	2	2	3	
(CO2	3	3	2	2	2	2	3	
(CO3			3	3	3	3		
CO4 3		3	3	2	2	2		3	
(CO5 3 3 2 2				2	2	3		
1 - Sli	ght, 2 - Mo	derate, 3 – Su	bstantial, BT -	- Bloom's Taxor	nomy				

18VLE12 NATURE INSPIRED OPTIMIZATION TECHNIQUES

(Common to VLSI Design, Communication Systems, Embedded Systems,

Computer Science and Engineering & Mechatronics branches)

		3	0	0	3
Preamble	To acquaint and familiarize with different types of optim	ization	tech	niques,	solving
	optimization problems, implementing computational technique	es, abst	ractin	g matl	nematical
	results and proofs etc.				
Prerequisites	Linear algebra and Calculus				
TINITE T					-

UNIT – I

Introduction to Algorithms: Newton's Method – Optimization - Search for Optimality - No-Free-Lunch Theorems - Nature-Inspired Metaheuristics - Brief History of Metaheuristics. **Analysis of Algorithms:** Introduction - Analysis of Optimization Algorithms - Nature-Inspired Algorithms - Parameter Tuning and Parameter Control.

UNIT – II

Simulated Annealing: Annealing and Boltzmann Distribution - Parameters - SA Algorithm - Unconstrained Optimization - Basic Convergence Properties - SA Behavior in Practice - Stochastic Tunneling. **Genetic Algorithms** : Introduction - Genetic Algorithms - Role of Genetic Operators - Choice of Parameters - GA Variants - Schema Theorem - Convergence Analysis

UNIT – III

Particle Swarm Optimization: Swarm Intelligence - PSO Algorithm - Accelerated PSO – Implementation - Convergence Analysis - Binary PSO – Problems. **Cat Swarm Optimization:** Natural Process of the Cat Swarm - Optimization Algorithm – Flowchart - Performance of the CSO Algorithm.

UNIT – IV

TLBO Algorithm: Introduction - Mapping a Classroom into the Teaching-Learning-Based optimization – Flowchart- Problems. **Cuckoo Search:** Cuckoo Life Style - Details of COA – flowchart - Cuckoos' Initial Residence Locations - Cuckoos' Egg Laying Approach - Cuckoos Immigration - Capabilities of COA. **Bat Algorithms:** Echolocation of Bats - Bat Algorithms – Implementation - Binary Bat Algorithms - Variants of the Bat Algorithm - Convergence Analysis.

UNIT – V

Other Algorithms: Ant Algorithms - Bee-Inspired Algorithms - Harmony Search - Hybrid Algorithms.

Total: 45

REFERENCES:

- Xin-She Yang, "Nature-Inspired Optimization Algorithms", 1st Edition, Elsevier, 2014.
 Omid Bozorg-Haddad, "Advanced Optimization by Nature-Inspired Algorithms" Springer Volume 720, 2018.
- 3. Srikanta Patnaik, Xin-She Yang, Kazumi Nakamatsu, "Nature-Inspired Computing and Optimization Theory and Applications", Springer Series, 2017.

9

9

9

9

T P Credit

L

COUI	OURSE OUTCOMES:						BT Mapped		
On co	mpletion of	the course, the	students will be	e able to			(Highest Level)		
CO1:	infer the b	asic concepts of	f optimization t	echniques			Understanding (K2)		
CO2:	identify th	e parameter wh	ich is to be opti	imized for an ap	plication		Ana	Analyzing (K4)	
CO3:	3: analyze and develop mathematical model of different optimization algorithms Analyzing (K4)								
CO4:	D4:select suitable optimization algorithm for a real time applicationApplying (K3)							plying (K3)	
CO5:	5: recommend solutions, analyses, and limitations of models						Analyzing (K4)		
Mapping of COs with POs									
CC	Os/POs	PO1	PO2	PO3	PO4	P	D5 PO6		
(CO1	3	3	2	2	2	2	3	
CO2				2	3	1	2		
CO3				2	3	2			
CO4				3	3	3			
CO5 2 3						2			
1 - Sli	ight, 2 – Mo	oderate, 3 – Su	ıbstantial, BT -	- Bloom's Taxo	nomy				

	18VLE13 NETWORK ON CHIP							
		L	Т	Р	Credit			
		3	0	0	3			
Preamble	To understand the different network architectures and concepts o	f NOC	1 ~•					
Prerequisites	Prerequisites Computer Communication Networks							
UNIT – I	NIT – I 9							
Uses of Interc	onnection Networks: Processor-Memory Interconnect - I/O Inte	rconne	ect - Pa	acket S	Switching			
Fabric - Netwo	ork Basics - Topology - Routing - Flow Control - Router Ar	chitect	ure - 1	Perfor	mance of			
Interconnection	- Case study with a simple interconnection network							
UNIT – II					9			
Topology Bas	ics: Channels and Nodes - Direct and Indirect Networks - Cu	its and	l Bisec	tions	- Paths -			
Symmetry - T	raffic Patterns - Performance - Throughput and Maximum Cha	nnel L	.oad -	Laten	cy - Path			
Diversity - Cas	e Study: Butterfly and Torus Networks.							
UNIT – III					9			
Non-Blocking	Networks: Non-Blocking vs. Non-Interfering Networks - C	Crossba	ar Net	works	- Close			
Networks - Be	ne's Networks - Sorting Networks. Slicing and Dicing: Concen	trators	and D	istribu	tors - Bit			
Slicing - Dimer	nsion Slicing - Channel Slicing - Slicing Multistage Networks.							
UNIT – IV					9			
Routing Basic	s: A Routing Example - Taxonomy of Routing Algorithms	- Th	e Rout	ting R	elation -			
Deterministic F	Routing - Oblivious Routing - Adaptive Routing - Routing Mechan	ics.		-				

UNIT – V

Flow Control Basics: Resources and Allocation Units - Buffer less Flow Control - Circuit Switching -Buffered Flow Control. **Deadlock and Livelock:** Deadlock - Deadlock Avoidance - Adaptive Routing -Deadlock Recovery. Quality of Service.

Total: 4	5
----------	---

REI	FERENCES:
1.	William James Dally and Brian Towles, "Principles and Practices of Interconnection Networks", 1st
	Edition, Morgan Kaufmann Publishers, 2004.
2.	Santanu Kundu and Santanu Chattopadhyay, "Network-on-Chip: The Next Generation of System on-
	Chip Integration", CRC Press, 2014.
3.	Giovanni De Micheli and Luca Benini, "Networks on Chips: Technology and Tools", 1 st Edition,
	Academic Press, 2006.

COUR	COURSE OUTCOMES:							BT Mapped	
On con	mpletion of	(Highest Level)							
CO1:	CO1: summarize the interconnection networks Understanding (K2)								
CO2:	compreher	nd the basics of	network topolo	ogy			Under	rstanding (K2)	
CO3:	classify the	e different types	of networks				Under	rstanding (K2)	
CO4:	illustrate r	outing algorithn	ıs				Ap	plying (K3)	
CO5: explain the basics of flow control, deadlock and livelock							Understanding (K2)		
	Mapping of COs with POs								
CC	Ds/POs	PO1	PO2	PO3	PO4	PC)5	PO6	
(CO1	3	3	2	2	2	,	3	
(CO2	3	3	2	2	2		3	
(CO3	3	3	2	2	2		3	
CO4				3	3	3			
CO5		3	3	2	2	2	,	3	
1 - Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy								

18VLE14 GENETIC ALGORITHMS FOR VLSI CIRCUITS

L T P Credit

9

9

9

9

Total: 45

		3	0	0	3	
Preamble	To perform VLSI design optimization, layout generation and	chip	testing	g using	genetic	
	algorithm for developing efficient computer aided design tools.					
Prerequisites	ASIC Design					
LINIT I					0	

Introduction: GA Technology-Steady State Algorithm-Fitness Scaling-Inversion

UNIT – II

Physical Design of VLSI: GA for VLSI Design, Layout and Test automation-partitioning- automatic placement, routing technology, Mapping for FPGA -Automatic test generation-Partitioning algorithm Taxonomy - Multiway Partitioning.

UNIT – III

Standard Cell and Macro Cell Placement: Hybrid genetic - genetic encoding-local improvement-WDFR-Comparison of GA with other methods-Standard cell placement-GASP algorithm-Macro Cell Placementunified algorithm.

UNIT – IV

Macrocell Routing and FPGA Technology Mapping: Global routing-FPGA technology mapping-circuit generation-test generation in a GA frame work-test generation procedures.

UNIT – V

Power Estimation: Application of GA to Peak power estimation - Standard cell placement-GA for ATGproblem encoding- fitness function-GA vs Conventional algorithm.

REFERENCES:

Pinaki Mazumder, Rudnick E.M., "Genetic Algorithm for VLSI Design, Layout and Test Automation", 1. 1st Impression, Prentice Hall, 2014. 2. Ricardo Sal Zebulum, Macro Aurelio Pacheco, Marley Maria B.R. Vellasco, Marley Maria Bernard

Vellasco, "Evolution Electronics: Automatic Design of Electronic Circuits and Systems Genetic Algorithms", 1st Edition, CRC Press, December 2001.

COURSE OUTCOMES:						BT Mapped		
On con	On completion of the course, the students will be able to						(Hig	hest Level)
CO1:	comprehend the concepts of genetic algorithm							standing (K2)
CO2:	realize t	he concepts of	f physical des	sign process si	uch as partition	oning,	Reme	mbering (K1)
	floorplan	ning, placement	and routing					
CO3:	calculate	power estimation	on in VLSI Lay	out using geneti	c algorithm		App	olying (K3)
CO4:	apply gen	etic algorithm f	or automatic te	st pattern genera	tion in VLSI ci	rcuits	App	olying (K3)
CO5:	analyze (CAD design pro	blems using	genetic algorithr	n for VLSI ph	ysical	Analyzing (K4)	
	design automation							
			Марріі	ng of COs with	POs			
CO	s/POs	PO1	PO2	PO3	PO4	Р	05	PO6
C	201	3	3	2	2		2	3
C	CO2	2	2	1			1	2
CO3				3	3		3	
CO4				3	3		3	
CO5				2	3		2	
1 – Slig	ght, 2 – Mc	oderate, 3 – Su	bstantial, BT -	- Bloom's Taxor	nomy	L		

18VLE15 RF VLSI DESIGN

L	Т	P	Credit
3	0	0	3
· ·	•	• ,	1 4

Preamble	To infer the concepts of CMOS RF circuits and to design RF devices, circuits, and systems
	at microwave regime.
Prerequisites	Analog IC Design

UNIT – I

CMOS Physics, Transceiver Specifications and Architectures: Introduction to MOSFET Physics, Noise: Thermal, shot, flicker, popcorn noise, Two port Noise theory, Noise Figure, THD, IP2, IP3, Sensitivity, SFDR, Phase noise - Specification distribution over a communication link, Homodyne Receiver, Heterodyne Receiver, Image reject, Low IF Receiver Architectures Direct up conversion Transmitter, Two step up conversion Transmitter

UNIT – II

Impedance Matching and Amplifiers: S-parameters with Smith chart, Passive IC components, Impedance matching networks, Common Gate, Common Source Amplifiers, OC Time constants in bandwidth estimation and enhancement, High frequency amplifier design, Power match and Noise match, Single ended and Differential LNAs, Terminated with Resistors and Source Degeneration LNAs.

UNIT – III

Feedback Systems and Power Amplifiers: Stability of feedback systems: Gain and phase margin, Rootlocus techniques, Time and Frequency domain considerations, Compensation, General model – Class A, AB, B, C, D, E and F amplifiers, Power amplifier Linearization Techniques, Efficiency boosting techniques, ACPR metric, Design considerations

UNIT – IV

Mixers and Oscillators: Mixer characteristics, Non-linear based mixers, Quadratic mixers, Multiplier based mixers, Single balanced and double balanced mixers, subsampling mixers, Oscillators describing Functions, Colpitts oscillators Resonators, Tuned Oscillators, Negative resistance oscillators, Phase noise.

$\mathbf{UNIT} - \mathbf{V}$

PLL and Frequency Synthesizers: Linearised Model, Noise properties, Phase detectors, Loop filters and Charge pumps, Integer-N frequency synthesizers, Direct Digital Frequency synthesizers

	Total: 45
REI	FERENCES:
1.	Lee T., "Design of CMOS RF Integrated Circuits", 2 nd Edition, Cambridge, 2004.
2.	Razavi B., "RF Microelectronics", 2 nd Edition, Pearson Education, Reprint 2012.
3.	Jan Crols and Michiel Steyaert, "CMOS Wireless Transceiver Design", Kluwer Academic Publishers, 1997.
4.	Razavi B., "Design of Analog CMOS Integrated Circuits", 2 nd Edition, McGraw Hill, 2001.

9

9

9

9

COURSE OUTCOMES:							BT Mapped	
On con	On completion of the course, the students will be able to							(hest Level)
CO1:	01: differentiate the noises associated with CMOS technology and to comprehend Understanding (K2)							
	the RF rec	eive operation						
CO2:	interpret t	he concept of in	npedance matcl	hing			Under	standing (K2)
CO3:	analyze th	e parameters of	RF amplifier de	esign			Ana	lyzing (K4)
CO4:	design RF	RF mixers and oscillators for IC implementations Applying (K3)						
CO5:	O5: comprehend PLL and synthesizer architectures and their performance Understanding (K2)							
	Mapping of COs with POs							
CC	Os/POs	PO1	PO2	PO3	PO4	Р	05	PO6
(CO1	3	3	2	2		2	3
(CO2	3	3	2	2		2	3
CO3 2 3				3		2		
CO4				3	3		3	
CO5		3	3	2	2		2	3
1 - Sli	ght, 2 – Mo	oderate, 3 – Su	bstantial, BT -	- Bloom's Taxo	nomy			

	18VLE16 VLSI FOR WIRELESS COMMUNICATI	ON								
		L	Т	P	Credit					
		3	0	0	3					
Preamble	To identify the basic wireless communication techniques and	descril	be the	design	of low-					
	noise amplifier (LNAs), mixers, A/D converters, oscillators and a	also to	analyz	es pha	ise noise					
	in frequency synthesizers									
Prerequisites	erequisites VLSI Design Techniques, Communication theory									
UNIT – I					9					
Wireless Com	munication Basics: Wireless Communication Standards- Digit	al cor	nmunic	cation	systems-					
minimum band	width requirement, the Shanon limit. Overview of modulation	schem	es- cla	ssical	channel-					
wireless channe	el description- Path loss- multipath fading.									
UNIT – II					9					
Transceiver A	rchitecture: Noise Figure- Intermediation- Super heterodyne- H	omody	vne rec	eiver-	Software					
Radio- Transce	iver design constraints- baseband subsystem design- RF subsysten	n desig	"n.							
UNIT – III					9					
Low Power D	esign Techniques: Source of power dissipation- estimation of	power	dissip	ation-	reducing					
power dissipat	ion at device and circuit levels- low voltage and low power	opera	tion- r	educin	ng power					
dissipation at ai	chitecture and algorithm levels.									
$\frac{\mathbf{UNII} - \mathbf{IV}}{\mathbf{W}}$		•	1 1	•	<u> </u>					
Wireless Circi	ints: LSI Design of LNA-wideband and narrow band. Active n	nixer-	balanc	ing- q	ualitative					
description of t	ne Gilbert mixer- Conversion Gain. Passive mixer- Switching mix	er. Sar	npling	mixer.						
					0					
$\frac{UNII - V}{Dhama I a alaa d}$	Learne and Engineering Counting of the DLL	D1	Detect	T	9					
Phase Locked	Loops and Frequency Synthesizers: Operation of the PLL-	Phase	Detect	ors- F	requency					
fraguanay synth	mator Design. Frequency synthesizer parameters and rechnique	s- Alla	uyzing	phase	noise m					
Thequency synthesizers.										
1 OTAI: 45										
1 Emad N E	o. prog. and Mohamed I. Elmacry, "Mixed Signal VI SI Wireless Dec	vian (Tirouite	and S	vetome"					
Kindle Edit	tion Kluwer Academic Publishers 2000	ngii - (s anu S	, ysterns					
2 Rosco Leu	ng "VI SI for Wireless Communication" 2 nd Edition Springer 2	011								
3 Thomas H	Lee "The Design of CMOS Radio - Frequency Integrated Circu	ite" 7	nd Edit	ion C	amhridae					
J. Homas II. University	Press 2003	1115,2	Luit	ion, Ca	amonuge					
University	11000, 2000.									

COURS	SE OUTC		BT Mapped						
On com	pletion of	the course, the s	students will be	able to			(Hig	ghest Level)	
CO1: 1	CO1: recall the basic concepts of wireless communication Remembering (K1)								
CO2: s	2: summarize the transceiver architecture for wireless communication Understanding (K2)								
CO3: a	apply the l	ow power desig	n techniques at	different levels	of system desig	n	Ap	plying (K3)	
CO4: 0	04: distinguish the different types of design of mixers for wireless communication Understanding (K2)								
CO5: i	CO5: infer oscillators for PLL and analyse phase noise in frequency synthesizers Analy						lyzing (K4)		
	Mapping of COs with POs								
COs	/POs	PO1	PO2	PO3	PO4	PO	D5	PO6	
CO	01	2	2	1			1	2	
CO	02	3	3	2	2	2		3	
CO3			3	3	3				
CO4		3	3	2	2	2		3	
CO5				2	3	/	2	•	
1 – Sligl	1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy								