VISION

To be a centre of excellence for development and dissemination of knowledge in Applied Sciences, Technology, Engineering and Management for the Nation and beyond.

MISSION

We are committed to value based Education, Research and Consultancy in Engineering and Management and to bring out technically competent, ethically strong and quality professionals to keep our Nation ahead in the competitive knowledge intensive world.

QUALITY POLICY

We are committed to

- Provide value based quality education for developing the student as a competent and responsible citizen.
- Contribute to the nation and beyond through the state of-the-art technology.
- Continuously improve our services.

DEPARTMENT OF EEE

VISION

To be a centre of excellence for development and dissemination of knowledge in Electrical and Electronics Engineering to benefit the society in the National and global level.

MISSION

Department of Electrical and Electronics Engineering is committed to:

- MS1: Develop innovative, competent, ethical and quality engineers to contribute for technical advancements to meet societal needs.
- MS2: Provide state-of-the-art facilities for continual improvement in teaching-learning process and research activities.
- MS3: Enrich the knowledge and skill of the students to cater to the industrial needs and motivate them to become entrepreneurs.

2018 REGULATIONS

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

Post Graduates of Power Electronics and Drives will

- PEO1: Utilize fundamental knowledge of power electronics and drives to succeed in professional and research career.
- PEO2: Design, simulate, analyze and develop power electronic and electrical drive based products which are reliable, cost effective and safe.
- PEO3: Apply the power electronic applications to electrical system and thereby improve the performance parameters using conventional and advanced control techniques.

MAPPING OF MISSION STATEMENTS (MS) WITH PEOS

MS\PEO	PEO1	PEO2	PEO3
MS1	2	3	3
MS2	2	3	3
MS3	3	3	3

1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy

	PROGRAM OUTCOMES (POs)								
Post G	Post Graduates of Power Electronics and Drives will have								
PO1	An ability to independently carry out research /investigation and development work to solve practical problems								
PO2	An ability to write and present a substantial technical report/document								
PO3	An ability to demonstrate a degree of mastery over the area of Power Electronics and Drives.								

MAPPING OF PEOs WITH POs

PEO\PO	PO1	PO2	PO3
PEO1	3	2	3
PEO2	3	2	3
PEO3	3	3	3

1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy

CURRICULUM BREAKDOWN STRUCTURE UNDER REGULATION 2018

Curriculum Breakdown Structure(CBS)	Curriculum Content (% of total number of credits of the program)	Total number of contact hours	Total number of credits
Program Core(PC)	41.66	510	30
Program Electives(PE)	25.00	270	18
Humanities and Social Sciences and Management Studies(HSMS)	5.55	60	4
Project(s)/Internships(PR)/Others	27.77	600	20
	Total		72

KEC R2018: SCHEDULING OF COURSES – ME (POWER ELECTRONICS AND DRIVES)

Semes			Theory/ Theory	cum Practical / Pr	actical		Internship & Projects	Special Courses	Credits
ter	1	2	3	4	5	6	7	8	
1	18AMT14 - Advanced Mathematics for Electrical Engineers (HS-3-1-0-4)	18PET11 - System Theory (PC-3-1-0-4)	18PET12 - Modeling and Analysis of Electrical Machines (PC-3-1-0-4)	18PEC11- A.C. Converters (PC-3-0-2-4)	18PEC12 - Power Semiconductor Devices and D.C. Converters (PC-3-0-2-4)	18AET13 - Computational Intelligence Techniques (PC-3-0-0-3)	-	-	23
11	18PEC21 - Solid State DC Drives (PC-3-0-2-4)	18PEC22 - Solid State AC Drives (PC-3-0-2-4)	18PET21- Power Electronics for Renewable Energy Systems (PC-3-0-0-3)	Elective-I (Professional) (PE-3-0-0-3)	Elective-II (Professional) (PE-3-0-0-3)	Elective-III (Professional) (PE-3-0-0-3)	18PEP21- Mini Project (PR-0-0-4-2)	-	22
	Elective-IV (Professional) (PE-3-0-0-3)	Elective-V (Professional) (PE-3-0-0-3)	Elective-VI (Professional) (PE-3-0-0-3)	-	-	-	18PEP31- Project work - Phase I (PR-0-0-12-6)	-	15
IV	-	-	-	-	-	-	18PEP41- Project work - Phase II (PR-0-0-24-12)	-	12

Total Credits: 72

M.E. DEGREE IN POWER ELECTRONICS AND DRIVES

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

Course	Course Title	Hours / Week			Credit	Maximum Marks			CBS
Code		L	Т	Р	create	CA	ESE	Total	CBS
	Theory/Theory with Practical								
18AMT14	Advanced Mathematics for Electrical Engineers	3	1	0	4	50	50	100	HS
18PET11	System Theory	3	1	0	4	50	50	100	PC
18PET12	Modeling and Analysis of Electrical Machines	3	1	0	4	50	50	100	PC
18PEC11	A.C. Converters	3	0	2	4	50	50	100	PC
18PEC12	Power Semiconductor Devices and D.C. Converters	3	0	2	4	50	50	100	PC
18AET13	Computational Intelligence Techniques	3	0	0	3	50	50	100	PC
	Total	<u> </u>	·	·	23				

SEMESTER – I

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

M.E. DEGREE IN POWER ELECTRONICS AND DRIVES

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

Course	Course Title		lours Weel		Credit	Maximum Marks			CBS
Code		L	Т	Р	Cicuit	CA	ESE	Total	CDO
	Theory/Theory with Practical								
18PEC21	Solid State DC Drives	3	0	2	4	50	50	100	PC
18PEC22	Solid State AC Drives	3	0	2	4	50	50	100	PC
18PET21	Power Electronics for Renewable Energy Systems	3	0	0	3	50	50	100	PC
	Elective - I	3	0	0	3	50	50	100	PE
	Elective - II	3	0	0	3	50	50	100	PE
	Elective - III	3	0	0	3	50	50	100	PE
	Practical								
18PEP21	Mini Project	0	0	4	2	100	0	100	PR
	Total	1		1	22				

SEMESTER – II

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

M.E. DEGREE IN POWER ELECTRONICS AND DRIVES

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

Course	Course Title	Hours / Week			Credit	Maximum Marks			CBS
Code	Course Thie	L	Т	Р	crean	CA	ESE	Total	CDS
	Theory/Theory with Practical								
	Elective - IV	3	0	0	3	50	50	100	PE
	Elective - V	3	0	0	3	50	50	100	PE
	Elective - VI	3	0	0	3	50	50	100	PE
	Practical								
18PEP31	Project Work Phase I	0	0	12	6	50	50	100	PR
	Total	•	•	•	15				

SEMESTER – III

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

M.E. DEGREE IN POWER ELECTRONICS AND DRIVES

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

SEMESTER – IV

Course Code	Course Title	Hours / Week			Credit	Maximum Marks			CBS
		L	Т	Р	Cleun	CA	ESE	Total	CDS
	Practical								
18PEP41	Project Work Phase II	0	0	24	12	50	50	100	PR
	Total	•	•	•	12				

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

Total Credits: 72

	LIST OF PROFESSIONAL ELECTIV	ES							
Course	Correct T'41a	Ho	urs/W	/eek	C l'4	CDC			
Code	Course Title	L	Т	Р	Credit	CBS			
SEMESTER II									
18COE04	Electromagnetic Interference and Compatibility	3	0	0	3	PE			
18AEE01	Data Communication Networks	3	0	0	3	PE			
18AEE03	Programmable Logic Controllers	3	0	0	3	PE			
18AEE06	Programmable Digital Signal Processors	2	0	2	3	PE			
18PEE01	PWM Techniques and its Applications	3	0	0	3	PE			
18PEE02	Optimal Control Theory	3	1	0	4	PE			
18PEE03	Switched Mode Power Converters	3	0	0	3	PE			
18PEE04	Computer Aided Design of Electrical Machines	3	1	0	4	PE			
18PEE05	Microcontroller Applications in Power Electronics	3	0	0	3	PE			
18PEE06	Power Quality Engineering	3	0	0	3	PE			
18PEE07	Smart Grid	3	0	0	3	PE			
18PEE08	Special Electrical Machines and Control	3	0	0	3	PE			
	SEMESTER III								
18MTE13	MEMS Design	3	0	0	3	PE			
18CIE15	Virtual Instrumentation for Industrial Applications	3	0	0	3	PE			
18AEE07	Energy Conservation, Management and Auditing	3	0	0	3	PE			
18AEE08	Project Management	3	0	0	3	PE			
18AEE10	SCADA and DCS	3	0	0	3	PE			
18PEE09	Modern Power System Protection	3	0	0	3	PE			
18PEE10	Computer Aided Simulation and Design of Power Electronic Systems	3	0	0	3	PE			
18PEE11	Embedded System and Applications	3	0	0	3	PE			
18PEE12	Hybrid Electric Vehicle Systems	3	0	0	3	PE			
18PEE13	Energy Storage Systems	3	0	0	3	PE			
18PEE14	Power Electronic Applications in Power Systems	3	0	0	3	PE			
18PEE15	Industrial Drives	3	0	0	3	PE			

1	L	8AMT14 ADVANCED MATHEMATICS FOR ELECTRICAL ENGIN	EEF	RS	
		(Common to Applied Electronics & Power Electronics and Drives Branche	es)		
			Т	Р	Credit
		3	1	0	4
Prear	nble	This course will help the students to identify, formulate and solve pro-	oble	ms in	electrical
		engineering using mathematical tools from a variety of mathematical are			
		theory, calculus of variations, queuing theory and linear programming	,		0
Prere	quisites	Calculus and Probability			
UNI		······································			9
		trix Theory: Matrix factorizations – LU decomposition – The Cholesky d	leco	mposi	tion – QR
		Least squares method - Generalized inverses - Singular value decom		-	-
		irculant matrices.	1		1
UNI	$\Gamma - II$				9
Calc	ulus of Va	ariations: Concept of variation – Euler equation – Variational problems w	ith f	ixed b	oundaries
		problems involving several unknown functions – Functional involving fir			
		unctional involving several independent variables – Isoperimetric problem			
		- Kantorowich method.			
TINTE	г ттт				
UNI	1 – 111				9
		ocess: Definition – Classification of Stochastic Processes – Markov	Ch	ain -	-
Stoc	hastic Pr				Transition
Stock Proba	h astic Pr e ability Ma	ocess: Definition – Classification of Stochastic Processes – Markov atrices – Chapman Kolmogorov Equations - Classification of States - s – Poisson Process - Birth and Death Processes.			Transition
Stock Proba	h astic Pr e ability Ma	atrices - Chapman Kolmogorov Equations - Classification of States -			Transition
Stock Proba Mark	h astic Pr e ability Ma	atrices - Chapman Kolmogorov Equations - Classification of States -			Transition
Stocl Proba Mark	hastic Preability Ma ability Ma cov Chains F – IV	atrices - Chapman Kolmogorov Equations - Classification of States -	- Co	ontinu	Transition ous Time 9
Stock Proba Mark UNI Queu	hastic Preability Ma cov Chains Γ – IV uing Mod	atrices – Chapman Kolmogorov Equations - Classification of States - s – Poisson Process - Birth and Death Processes.	- Co	ontinu	Transition ous Time 9
Stock Proba Mark UNI Queu	hastic Preability Ma cov Chains Γ – IV uing Mod	atrices – Chapman Kolmogorov Equations - Classification of States - s – Poisson Process - Birth and Death Processes.	- Co	ontinu	Transition ous Time 9
Stocl Proba Mark UNI Queu Interf	hastic Preability Ma cov Chains Γ – IV uing Mod	atrices – Chapman Kolmogorov Equations - Classification of States - s – Poisson Process - Birth and Death Processes.	- Co	ontinu	Transition ous Time 9
Stocl Proba Mark UNI' Queu Interf	hastic Preability Ma ability Ma cov Chains $\Gamma - IV$ hing Mod ference Ma $\Gamma - V$	atrices – Chapman Kolmogorov Equations - Classification of States - s – Poisson Process - Birth and Death Processes. lels: Markovian queues – Single and Multi-server Models – Little's f odel - Non- Markovian Queues – Pollaczek Khintchine Formula.	– Co	ontinu ula –	Transition ous Time 9 Machine 9
Stocl Proba Mark UNI Queu Interf UNI	hasticPropagationabilityMainscovChains $\Gamma - IV$ ImgImgModferenceMains $\Gamma - V$ ararProgram	atrices – Chapman Kolmogorov Equations - Classification of States - s – Poisson Process - Birth and Death Processes.	– Co	ontinu ula –	Transition ous Time 9 Machine 9
Stocl Proba Mark UNI Queu Interf UNI	hasticPropagationabilityMainscovChains $\Gamma - IV$ ImgImgModferenceMains $\Gamma - V$ ararProgram	Atrices – Chapman Kolmogorov Equations - Classification of States - s – Poisson Process - Birth and Death Processes. Lels: Markovian queues – Single and Multi-server Models – Little's for odel - Non- Markovian Queues – Pollaczek Khintchine Formula. mming: Formulation – Graphical solution – Simplex method – Big M m	- Co	ontinu ula – od - T	Transition ous Time 9 Machine 9 `wo phase
Stocl Proba Mark UNI' Queu Intern UNI' Line meth	hasticPropagationabilityMainscovChains $\Gamma - IV$ ImgImgModferenceMains $\Gamma - V$ ararProgram	Atrices – Chapman Kolmogorov Equations - Classification of States - s – Poisson Process - Birth and Death Processes. Lels: Markovian queues – Single and Multi-server Models – Little's f odel - Non- Markovian Queues – Pollaczek Khintchine Formula. mming: Formulation – Graphical solution – Simplex method – Big M m portation and Assignment Problems. Lecture:45, Tu	- Co	ontinu ula – od - T	Transition ous Time 9 Machine 9 `wo phase
Stocl Proba Mark UNI Queu Interf UNI Line meth REF	hasticProproductabilityMains $r - IV$ $r - IV$ lingModferenceMains $r - V$ $r - V$ arProgrameod $- TransERENCE$	Atrices – Chapman Kolmogorov Equations - Classification of States - s – Poisson Process - Birth and Death Processes. Lels: Markovian queues – Single and Multi-server Models – Little's for odel - Non- Markovian Queues – Pollaczek Khintchine Formula. umming: Formulation – Graphical solution – Simplex method – Big M m portation and Assignment Problems. Lecture:45, Tu	– Co form neth	ontinu uula – od - T al:15,	Transition ous Time 9 Machine 9 `wo phase Total: 60
Stocl Proba Mark UNI' Queu Interf UNI' Line meth REF 1.	hastic Probability Ma ability Ma cov Chains $\Gamma - IV$ hing Mod ference Ma ference Ma $\Gamma - V$ ar Progra od –Trans ERENCE Richard B	Atrices – Chapman Kolmogorov Equations - Classification of States - s – Poisson Process - Birth and Death Processes. Lels: Markovian queues – Single and Multi-server Models – Little's f odel - Non- Markovian Queues – Pollaczek Khintchine Formula. mming: Formulation – Graphical solution – Simplex method – Big M m portation and Assignment Problems. Lecture:45, Tu	– Co form neth tori : Hill,	ontinu ula – od - T al:15, 2011.	Transition ous Time 9 Machine 9 `wo phase Total: 60
Stocl Proba Mark UNI Queu Interf UNI Line meth REF 1. 2.	hastic Pro- ability Ma cov Chains $\Gamma - IV$ hing Mod ference Ma $\Gamma - V$ ar Progra od –Trans ERENCE Richard B Gupta A.S Delhi, 201	atrices – Chapman Kolmogorov Equations - Classification of States - a – Poisson Process - Birth and Death Processes. lels: Markovian queues – Single and Multi-server Models – Little's fodel - Non- Markovian Queues – Pollaczek Khintchine Formula. mming: Formulation – Graphical solution – Simplex method – Big M mortation and Assignment Problems. Lecture:45, Tu S: ronson, "Matrix Operations", 2 nd Edition, Schaum's Outline Series, McGraw 1 S., "Calculus of Variations with Applications", 12 th Edition, Prentice Hall of 5.	– Co form neth toria Hill, India	ontinu oula – od - T al:15, 2011. a Pvt.	Transition ous Time 9 Machine 9 `wo phase Total: 60 Ltd., New
Stocl Proba Mark UNI Queu Inter UNI Line meth REF 1. 2.	hastic Pro ability Ma cov Chains $\Gamma - IV$ hing Mod ference Ma ference Ma $\Gamma - V$ ar Progra od –Trans ERENCE Richard B Gupta A.S Delhi, 201 Roy D. Ya	atrices – Chapman Kolmogorov Equations - Classification of States - s – Poisson Process - Birth and Death Processes. lels: Markovian queues – Single and Multi-server Models – Little's fodel - Non- Markovian Queues – Pollaczek Khintchine Formula. mming: Formulation – Graphical solution – Simplex method – Big M m portation and Assignment Problems. Lecture:45, Tu S: ronson, "Matrix Operations", 2 nd Edition, Schaum's Outline Series, McGraw 1 S., "Calculus of Variations with Applications", 12 th Edition, Prentice Hall of 5. ates and David J. Goodman, "Probability and Stochastic Processes – A friend	– Co form neth toria Hill, India	ontinu oula – od - T al:15, 2011. a Pvt.	Transition ous Time 9 Machine 9 `wo phase Total: 60 Ltd., New
Stocl Proba Mark UNI Queu Interf UNI Line meth REF 1. 2. 3.	hastic Pro- ability Ma cov Chains $\Gamma - IV$ hing Mod ference Mod ference Mod $\Gamma - V$ ar Progra od – Trans ERENCE Richard B Gupta A.S Delhi, 201 Roy D. Y Electrical	atrices – Chapman Kolmogorov Equations - Classification of States - a – Poisson Process - Birth and Death Processes. lels: Markovian queues – Single and Multi-server Models – Little's fodel - Non- Markovian Queues – Pollaczek Khintchine Formula. mming: Formulation – Graphical solution – Simplex method – Big M mortation and Assignment Problems. Lecture:45, Tu S: ronson, "Matrix Operations", 2 nd Edition, Schaum's Outline Series, McGraw 1 S., "Calculus of Variations with Applications", 12 th Edition, Prentice Hall of 5.	– Co form neth toria Hill, India	ontinu ula – od - T al:15, 2011. a Pvt. Introd	Transition ous Time 9 Machine 9 `wo phase Total: 60 Ltd., New luction for

COUI	COURSE OUTCOMES: BT Mapped									
On co	mpletion of	the course, the students will l	be able to	(Highest Level)						
CO1:	apply ma	trix computations in signal pro	ocessing	Applying (K3)						
CO2:	solve vari	iational problems that occur in	electrical engineering discipline	Evaluating (K5)						
CO3:	use discrete time Markov chains to model computer systems Applying (K3)									
CO4:		the basic characteristic feature nalyzing queuing models	ures of a queuing system and acquire	Applying (K3)						
CO5:	develop a	fundamental understanding o	f linear programming models	Evaluating (K5)						
	•									
		Марр	ing of COs with POs							
CC	Os/POs	PO1	PO2	PO3						
(CO1	2								
(CO2	2								
(CO3	1								
(CO4	1								
(CO5	2								
1 - Sli	ght, $2 - Mc$	oderate, 3 – Substantial, BT	' - Bloom's Taxonomy							

	18PET11 SYSTEM THEORY (Common to Power Electronics and Drives & Applied Electronics B	ranc	thes)			
		L	T	Р	Cred	it
		3	1	0	4	
Preamble	The aim of the subject is to give an adequate exposure to Z-Plan analysis and State Feedback Control	ne,	State 3	Space,	Stabil	ity
Prerequisites	Control Systems					
UNIT – I						9
signals - Time domain represe	Digital Control System: Elements of Digital control system - Class domain models for discrete time systems. Sampling and reconstruction ntation of sampling theorem - Nyquist rate, Aliasing. Mathematical rate aspects of choice of sampling rate.	on c	of sign	als - F	requen	icy
UNIT – II						9
and z plane - D	sis of Discrete-Time Control Systems: Review of Z transform - Relatification representation of discrete time system - Pulse transitial PID controllers - Zeigler - Nichols tuning method.					
						
UNIT – III						9
State Space And model to discr	nalysis and its Solution: Review of state space representation - Convete state model - State diagram - Solution of discrete time state restems - State transition matrix - Controllability and Observability	nod	el: aut	onom	ous, no	ate on-
State Space And model to discr autonomous sy systems.	ete state model - State diagram - Solution of discrete time state r	nod	el: aut	onom	ous, no	ate on- ete
State Space And model to discr autonomous sy systems. UNIT – IV State Feedbac	ete state model - State diagram - Solution of discrete time state r	nod - N	el: aut Iulti v	onomo ariable	ous, no e discre	ate on- ete 9 s -
State Space An model to discr autonomous sy systems. UNIT – IV State Feedbac Steady state err filter.	ete state model - State diagram - Solution of discrete time state r stems - State transition matrix - Controllability and Observability k Control: Design of state feedback controller - Design of reduced a	nod - N	el: aut Iulti v	onomo ariable	ous, no e discre	ate on- ete 9 s - n''s
State Space An model to discr autonomous sy systems. UNIT – IV State Feedbac Steady state err filter. UNIT – V Stability Anal analysis - Asyr	ete state model - State diagram - Solution of discrete time state r stems - State transition matrix - Controllability and Observability k Control: Design of state feedback controller - Design of reduced a or in state space - PI feedback - Digital compensator design - Digital fi ysis: BIBO stability - Effect of sampling rate on stability - Jury's st nptotic stability - Liapunov Stability Analysis of discrete time systen t, Indirect method - Construction of Liapunov energy function.	nod - N and lter tabil	el: aut Iulti v full oi proper lity tes Linear	onome ariable rder of ties - 1 t - Ro and N	ous, no e discre oserver Kalmar oot Loc fon-line	ate on- ete 9 s - 1''s 9 cus ear
State Space An model to discr autonomous sy systems. UNIT – IV State Feedbac Steady state err filter. UNIT – V Stability Anal analysis - Asyr systems - Direc	ete state model - State diagram - Solution of discrete time state r stems - State transition matrix - Controllability and Observability k Control: Design of state feedback controller - Design of reduced a or in state space - PI feedback - Digital compensator design - Digital fi ysis: BIBO stability - Effect of sampling rate on stability - Jury's st nptotic stability - Liapunov Stability Analysis of discrete time systen t, Indirect method - Construction of Liapunov energy function. Lecture: 4	nod - N and lter tabil	el: aut Iulti v full oi proper lity tes Linear	onome ariable rder of ties - 1 t - Ro and N	ous, no e discre oserver Kalmar oot Loc fon-line	ate on- ete 9 s - 1''s 9 cus ear
State Space An model to discr autonomous sy systems. UNIT – IV State Feedbac Steady state err filter. UNIT – V Stability Anal analysis - Asyr systems - Direc REFERENCE	ete state model - State diagram - Solution of discrete time state r stems - State transition matrix - Controllability and Observability k Control: Design of state feedback controller - Design of reduced a or in state space - PI feedback - Digital compensator design - Digital fi ysis: BIBO stability - Effect of sampling rate on stability - Jury's st nptotic stability - Liapunov Stability Analysis of discrete time systen t, Indirect method - Construction of Liapunov energy function. Lecture: 4	mod - M and lter tabil ns: l	el: aut fulti v full on proper lity tes Linear	onome ariable der ob ties - 1 t - Re and N l: 15,	ous, no e discre oserver Kalmar oot Loc fon-line Total:	ate on- ete 9 s - n''s 9 cus ear 60
State Space An model to discr model to discr autonomous sy systems. UNIT – IV State Feedbac Steady state err filter. UNIT – V Stability Anal analysis - Asyr systems - Direct REFERENCE 1. Gopal M. 2012. 2. Kuo B.C.,	ete state model - State diagram - Solution of discrete time state r stems - State transition matrix - Controllability and Observability k Control: Design of state feedback controller - Design of reduced a or in state space - PI feedback - Digital compensator design - Digital fi ysis: BIBO stability - Effect of sampling rate on stability - Jury's st nptotic stability - Liapunov Stability Analysis of discrete time systen t, Indirect method - Construction of Liapunov energy function. Lecture: 4 S:	nod - M and lter tabil ns: l 5, T fcG	el: aut fulti v full or proper lity tes Linear	onome ariable der ob ties - 1 t - Re and N l: 15,	ous, no e discre oserver Kalmar oot Loc fon-line Total:	ate on- ete 9 s - n''s 9 cus ear 60

COU	RSE OUTC	COMES:		BT Mapped		
On co	mpletion of	the course, the students will be a	able to	(Highest Level)		
CO1:	explain the	e basic concepts in digital contro	l system	Understanding (K2)		
CO2:	analyze th	e discrete time control system by	Applying (K3)			
CO3:	-	ne mathematical model of linear nctions and state-space models	g Understanding (K2)			
CO4:	analyze tr systems	ansient and steady-state behav	viors of linear discrete-time contro	Applying (K3)		
CO5:	design con criteria	n Applying (K3)				
		Mappin	ng of COs with POs			
CC	Os/POs	PO1	PO2	PO3		
(CO1	3		2		
(CO2	2		3		
(CO3	2		2		
(CO4	2		3		
(CO5	2	2	3		
1 – Sli	ight, 2 – Mo	derate, 3 – Substantial, BT - E	Bloom's Taxonomy			

	18PET12 MODELING AND ANALYSIS OF ELECTRICAL MACH	IIIIEO)	
	L	Т	Р	Credit
	3	1	0	4
Preamble	The objective of the course is to derive, model and analyze the various DC magnet electrical machines.	C, AC a	and pe	ermanent
Prerequisites	Electrical Machines			
UNIT – I				9
Machine – Inv Phase to Two I	Machine Theory: Essential of Rotating Electrical Machines – Conventions – variance of Power – MMF Distribution of DC and AC Machines – Transfe Phase – Kron's Primitive Machine – Electrical Torque – Restriction of the C chines – Applications.	ormati	ons fr	om Three
0	DC Machines: Theory of Operation – Induced EMF – Equivalent Circud Excitation- Steady State and Transient Analysis of DC Machine – Separa			•
UNIT – III Modeling of I	- Series Motor – Compound Motor. Induction Machines: Three Phase Induction Motor – Voltage and Torque	Equat	ion in	9 Machine
UNIT – III Modeling of I Variables – Re	- Series Motor – Compound Motor.	Equat	ion in	9 Machine
UNIT – III Modeling of I Variables – Re and Torque Eq UNIT – IV	- Series Motor – Compound Motor. Induction Machines: Three Phase Induction Motor – Voltage and Torque eference Frame Theory – Voltage and Torque Equation in Arbitrary Refere quation in Stator Reference Frame.	Equat ence Fr	ion in rame	9 Machine – Voltage 9
UNIT – III Modeling of I Variables – Re and Torque Eq UNIT – IV Modeling of S Machine Varia Frame.	- Series Motor – Compound Motor. Induction Machines: Three Phase Induction Motor – Voltage and Torque eference Frame Theory – Voltage and Torque Equation in Arbitrary Refere	Equat ence Fr	ion in rame	9 Machine Voltage 9 uations in
UNIT – III Modeling of I Variables – Re and Torque Eq UNIT – IV Modeling of S Machine Varia Frame. UNIT – V	- Series Motor – Compound Motor. Induction Machines: Three Phase Induction Motor – Voltage and Torque eference Frame Theory – Voltage and Torque Equation in Arbitrary Refere quation in Stator Reference Frame. Synchronous Machines: Three Phase Synchronous Motor – Voltage and ables – Voltage Equation in Arbitrary Reference Frame – Voltage Equatio	Equat ence Fr Torqu on in R	ion in rame ie Equ totor 1	9 Machine – Voltage 9 uations in Reference
UNIT – III Modeling of I Variables – Re and Torque Eq UNIT – IV Modeling of S Machine Varia Frame. UNIT – V Modeling of F – Magnet and	- Series Motor – Compound Motor. Induction Machines: Three Phase Induction Motor – Voltage and Torque eference Frame Theory – Voltage and Torque Equation in Arbitrary Refere quation in Stator Reference Frame. Synchronous Machines: Three Phase Synchronous Motor – Voltage and	Equat ence Fr Torqu on in R ent Ma	ion in rame le Equ totor l gnet I	9 Machine – Voltage 9 uations in Reference 9 DC Motor
UNIT – III Modeling of I Variables – Re and Torque Eq UNIT – IV Modeling of S Machine Varia Frame. UNIT – V Modeling of H – Magnet and Analysis of Pe	 Series Motor – Compound Motor. Induction Machines: Three Phase Induction Motor – Voltage and Torque eference Frame Theory – Voltage and Torque Equation in Arbitrary Refere quation in Stator Reference Frame. Synchronous Machines: Three Phase Synchronous Motor – Voltage and ables – Voltage Equation in Arbitrary Reference Frame – Voltage Equation PM Machines: Permanent Magnet Synchronous Motor (PMSM) – Permane Characteristics – PMSM Voltage and Torque Equation in Machine Varia ermanent Magnet DC Motor using MATLAB Simulink. 	Equat ence Fr Torqu on in R ent Ma ables –	ion in rame le Equ Rotor I gnet I - Mod	9 Machine – Voltage 9 uations in Reference 9 DC Motor eling and
UNIT – III Modeling of I Variables – Re and Torque Eq UNIT – IV Modeling of S Machine Varia Frame. UNIT – V Modeling of F – Magnet and Analysis of Pe REFERENCE	Series Motor – Compound Motor. Induction Machines: Three Phase Induction Motor – Voltage and Torque eference Frame Theory – Voltage and Torque Equation in Arbitrary Refere quation in Stator Reference Frame. Synchronous Machines: Three Phase Synchronous Motor – Voltage and ables – Voltage Equation in Arbitrary Reference Frame – Voltage Equatio PM Machines: Permanent Magnet Synchronous Motor (PMSM) – Permane Characteristics – PMSM Voltage and Torque Equation in Machine Varia ermanent Magnet DC Motor using MATLAB Simulink. Lecture:45, T ES:	Equat ence Fr Torqu on in R ent Ma ables –	ion in rame ue Equ Rotor I gnet I - Mod al:15,	9 Machine – Voltage 9 uations in Reference 9 DC Motor leling and Total: 60
UNIT – III Modeling of I Variables – Re and Torque Eq UNIT – IV Modeling of S Machine Varia Frame. UNIT – V Modeling of H – Magnet and Analysis of Pe REFERENCE 1. Bimbhra	 Series Motor – Compound Motor. Induction Machines: Three Phase Induction Motor – Voltage and Torque eference Frame Theory – Voltage and Torque Equation in Arbitrary Refere quation in Stator Reference Frame. Synchronous Machines: Three Phase Synchronous Motor – Voltage and ables – Voltage Equation in Arbitrary Reference Frame – Voltage Equation PM Machines: Permanent Magnet Synchronous Motor (PMSM) – Permane Characteristics – PMSM Voltage and Torque Equation in Machine Varia ermanent Magnet DC Motor using MATLAB Simulink. 	Equat ence Fr Torqu on in R ent Ma ables –	ion in rame le Equ Rotor I gnet I - Mod al:15,	Machine – Voltage – Voltage guations in Reference – 9 DC Motor leling and Total: 60

COU	RSE OUTC	OMES:			BT Mapped	
On con	mpletion of		(Highest Level)			
CO1:	explain the		Understanding (K2)			
CO2:	derive the	mathematical equation for DC s	shunt, series and compound moto	ors	Applying (K3)	
CO3:		derive the mathematical equation for induction, synchronous and permanent magnet motors				
CO4:	······································				Applying (K3)	
CO5:	analyze D	C machines and permanent mag	gnet machines		Analyzing (K4)	
		Mappi	ng of COs with POs			
CC	Ds/POs	PO1	PO2	PO3		
	CO1	3			2	
(CO2	3			2	
(CO3	3	2			
(CO4 3 1			2		
(CO5 3 2 2				2	
1 – Sli	ght, 2 – Mo	derate, 3 – Substantial, BT -	Bloom's Taxonomy			

	18PEC11 A.C. CONVERTERS	P	Credit
		2	<u>4</u>
Preamble	The aim of the subject is to understand the working operation of various ac consignification	_	ers and its
Prerequisites	Electron Devices, Power Electronics		
ÚNIT – I			9
-	e Inverters: Principle of operation of half and full bridge inverters - Performation of single phase inverters using various PWM techniques - various harmonic	-	
UNIT – II			9
Voltage contr	Inverters: 180° and 120° conduction mode of inverters with star and delta corrol of three phase inverters - Current source inverters - Operation of six-step thation modes - load commutated inverters - ASCI- current pulsations - Comparison	yristor	inverter
UNIT – III			9
AC Voltage	Controllers: Principle of On off control and phase control – single phase bidirect	ional c	controller
	e and inductive loads - Three phase bidirectional delta connected control		
	ns- Analysis with pure R and L loads- Cycloconverters- Principle of operation -	single	phase and
three phase cy	yclo converters- Control circuit strategies.		
UNIT – IV		strol o	<u> </u>
UNIT – IV Resonant In	verters: Resonant inverters -Series and Parallel resonant inverters - Voltage con		
UNIT – IV Resonant In			
UNIT – IV Resonant In	verters: Resonant inverters -Series and Parallel resonant inverters - Voltage con		
UNIT – IV Resonant In inverters – Cl UNIT – V	verters: Resonant inverters -Series and Parallel resonant inverters - Voltage con	rter.	f resonan
UNIT – IV Resonant In inverters – Cl UNIT – V Multilevel In –Switching te	verters: Resonant inverters -Series and Parallel resonant inverters - Voltage con ass E resonant inverter – resonant DC-link inverters - Introduction to matrix conver- verters: Multilevel concept – diode clamped – flying capacitor – cascade type mu echniques for multilevel inverters - Comparison of multilevel inverters – application	erter. ltileve	f resonan
UNIT – IV Resonant In inverters – Cl UNIT – V Multilevel In –Switching te	verters: Resonant inverters -Series and Parallel resonant inverters - Voltage con ass E resonant inverter – resonant DC-link inverters - Introduction to matrix converters: werters: Multilevel concept – diode clamped – flying capacitor – cascade type mu	erter. ltileve	f resonan
UNIT – IV Resonant In inverters – Cl UNIT – V Multilevel In –Switching te inverters – De	verters: Resonant inverters -Series and Parallel resonant inverters - Voltage con ass E resonant inverter – resonant DC-link inverters - Introduction to matrix conver- everters: Multilevel concept – diode clamped – flying capacitor – cascade type mu echniques for multilevel inverters - Comparison of multilevel inverters – application esign and analysis of multilevel inverters for renewable energy applications.	erter. ltileve	f resonan
UNIT – IV Resonant In inverters – Cl UNIT – V Multilevel In –Switching te inverters – De List of Expe	verters: Resonant inverters -Series and Parallel resonant inverters - Voltage con ass E resonant inverter – resonant DC-link inverters - Introduction to matrix conver- verters: Multilevel concept – diode clamped – flying capacitor – cascade type mu echniques for multilevel inverters - Comparison of multilevel inverters – application esign and analysis of multilevel inverters for renewable energy applications.	erter. ltileve	f resonan
UNIT – IV Resonant In inverters – Cl UNIT – V Multilevel In –Switching te inverters – De List of Expe 1. Design	verters: Resonant inverters -Series and Parallel resonant inverters - Voltage con ass E resonant inverter – resonant DC-link inverters - Introduction to matrix conver- everters: Multilevel concept – diode clamped – flying capacitor – cascade type mu echniques for multilevel inverters - Comparison of multilevel inverters – application esign and analysis of multilevel inverters for renewable energy applications.	erter. ltileve	f resonan
UNIT – IV Resonant In inverters – Cl UNIT – V Multilevel In –Switching te inverters – De List of Expe 1. Desig 2. Desig	verters: Resonant inverters -Series and Parallel resonant inverters - Voltage cor ass E resonant inverter – resonant DC-link inverters - Introduction to matrix conver- verters: Multilevel concept – diode clamped – flying capacitor – cascade type mu echniques for multilevel inverters - Comparison of multilevel inverters – application esign and analysis of multilevel inverters for renewable energy applications. riments : n of Voltage Source Inverter using SCR n of AC to AC converter using SCR	erter. ltileve	f resonan
UNIT – IV Resonant In inverters – Cl UNIT – V Multilevel In –Switching te inverters – De List of Expe 1. Desig 2. Desig 3. Desig	verters: Resonant inverters -Series and Parallel resonant inverters - Voltage con ass E resonant inverter – resonant DC-link inverters - Introduction to matrix conver- everters: Multilevel concept – diode clamped – flying capacitor – cascade type mu echniques for multilevel inverters - Comparison of multilevel inverters – application esign and analysis of multilevel inverters for renewable energy applications. riments : n of Voltage Source Inverter using SCR n of AC to AC converter using SCR n of single phase cyclo converters	erter. ltileve	f resonan
UNIT – IV Resonant In inverters – Cl UNIT – V Multilevel In –Switching te inverters – De List of Expe 1. Desig 2. Desig 3. Desig 4. Simul	verters: Resonant inverters -Series and Parallel resonant inverters - Voltage con ass E resonant inverter – resonant DC-link inverters - Introduction to matrix conver- everters: Multilevel concept – diode clamped – flying capacitor – cascade type mu- chniques for multilevel inverters - Comparison of multilevel inverters – application esign and analysis of multilevel inverters for renewable energy applications. riments : n of Voltage Source Inverter using SCR n of AC to AC converter using SCR n of single phase cyclo converters ation of Three Phase Full Bridge Inverter using PSIM	erter. ltileve	f resonan
UNIT – IV Resonant In inverters – Cl UNIT – V Multilevel In –Switching te inverters – De List of Expe 1. Desig 2. Desig 3. Desig 4. Simul	verters: Resonant inverters -Series and Parallel resonant inverters - Voltage con ass E resonant inverter – resonant DC-link inverters - Introduction to matrix conver- enverters: Multilevel concept – diode clamped – flying capacitor – cascade type mu- conduction for multilevel inverters - Comparison of multilevel inverters – application esign and analysis of multilevel inverters for renewable energy applications. riments : n of Voltage Source Inverter using SCR n of AC to AC converter using SCR n of single phase cyclo converters ation of Three Phase Full Bridge Inverter using PSIM ation of Three Phase AC Voltage Controller using PSPICE	Itileve	f resonan
UNIT – IV Resonant In inverters – Cl UNIT – V Multilevel In –Switching te inverters – De List of Expe 1. Desig 2. Desig 3. Desig 4. Simul 5. Simul	verters: Resonant inverters -Series and Parallel resonant inverters - Voltage cor ass E resonant inverter – resonant DC-link inverters - Introduction to matrix conver- verters: Multilevel concept – diode clamped – flying capacitor – cascade type mu- chniques for multilevel inverters - Comparison of multilevel inverters – application esign and analysis of multilevel inverters for renewable energy applications. riments : n of Voltage Source Inverter using SCR n of AC to AC converter using SCR n of single phase cyclo converters ation of Three Phase Full Bridge Inverter using PSIM ation of Three Phase AC Voltage Controller using PSPICE Lecture:45, Practic	Itileve	f resonan
UNIT – IV Resonant Im inverters – Cl UNIT – V Multilevel Im –Switching te inverters – De List of Expe 1. Desig 2. Desig 3. Desig 4. Simul 5. Simul REFERENC 1. Rashid I 2003.	verters: Resonant inverters -Series and Parallel resonant inverters - Voltage con ass E resonant inverter – resonant DC-link inverters - Introduction to matrix conver- everters: Multilevel concept – diode clamped – flying capacitor – cascade type mu- coniques for multilevel inverters - Comparison of multilevel inverters – application esign and analysis of multilevel inverters for renewable energy applications. riments : n of Voltage Source Inverter using SCR n of AC to AC converter using SCR n of single phase cyclo converters ation of Three Phase Full Bridge Inverter using PSIM ation of Three Phase AC Voltage Controller using PSPICE Lecture:45, Practic TES: M.H., "Power Electronics Circuits, Devices and Applications", 3 rd Edition, Pear	rter. Itileve ons of cal:30, son, N	f resonan f resonan i inverters multileve Total: 75 ew Delhi
UNIT – IV Resonant Im inverters – Cl UNIT – V Multilevel Im –Switching te inverters – De List of Expe 1. Desig 2. Desig 3. Desig 4. Simul 5. Simul REFERENC 1. Rashid I 2003.	verters: Resonant inverters -Series and Parallel resonant inverters - Voltage con ass E resonant inverter – resonant DC-link inverters - Introduction to matrix conver- everters: Multilevel concept – diode clamped – flying capacitor – cascade type mu- coniques for multilevel inverters - Comparison of multilevel inverters – application esign and analysis of multilevel inverters for renewable energy applications. riments : n of Voltage Source Inverter using SCR n of AC to AC converter using SCR n of single phase cyclo converters ation of Three Phase Full Bridge Inverter using PSIM ation of Three Phase AC Voltage Controller using PSPICE Lecture:45, Practic TES: M.H., "Power Electronics Circuits, Devices and Applications", 3 rd Edition, Pear	rter. Itileve ons of cal:30, son, N	f resonan f resonan i inverters multileve Total: 75 ew Delhi
UNIT – IV Resonant Im inverters – Cl UNIT – V Multilevel Im –Switching te inverters – De List of Expe 1. Desig 2. Desig 3. Desig 4. Simul 5. Simul 5. Simul REFERENC 1. Rashid I 2003. 2. Bimal K 3. Ned Mo	verters: Resonant inverters -Series and Parallel resonant inverters - Voltage cor ass E resonant inverter – resonant DC-link inverters - Introduction to matrix conver- verters: Multilevel concept – diode clamped – flying capacitor – cascade type mu- echniques for multilevel inverters - Comparison of multilevel inverters – application esign and analysis of multilevel inverters for renewable energy applications. riments : n of Voltage Source Inverter using SCR n of AC to AC converter using SCR n of single phase cyclo converters ation of Three Phase Full Bridge Inverter using PSIM ation of Three Phase AC Voltage Controller using PSPICE Lecture:45, Practic	rter. Itileve ons of eal:30, son, N	f resonan f resonan l inverters multileve Total: 7 ew Delhi D5.
UNIT – IV Resonant In inverters – Cl UNIT – V Multilevel In –Switching te inverters – De I. Design 2. Design 3. Design 4. Simul 5. Simul 5. Simul REFERENC 1. Rashid I 2003. 2. Bimal K 3. Ned Mo Wiley, N	verters: Resonant inverters -Series and Parallel resonant inverters - Voltage con ass E resonant inverter – resonant DC-link inverters - Introduction to matrix conver- eventers: Multilevel concept – diode clamped – flying capacitor – cascade type mu- echniques for multilevel inverters - Comparison of multilevel inverters – application esign and analysis of multilevel inverters for renewable energy applications. riments : n of Voltage Source Inverter using SCR n of AC to AC converter using SCR n of single phase cyclo converters ation of Three Phase Full Bridge Inverter using PSIM ation of Three Phase Full Bridge Inverter using PSIM ation of Three Phase AC Voltage Controller using PSPICE Lecture:45, Practic ES: M.H., "Power Electronics Circuits, Devices and Applications", 3 rd Edition, Pear- . Bose, "Modern Power Electronics and AC Drives", 2 nd Edition, Prentice Hall Ind- han,Undeland and Robbin, "Power Electronics: Converters, Application and Desi	rter. Itileve ons of eal:30, son, N	f resonan f resonan l inverters multileve Total: 7 ew Delhi D5.

COUI	RSE OUTC	COMES:			BT Mapped	
On co	mpletion of	the course, the students will be	able to		(Highest Level)	
CO1:	select suit	able control techniques for singl	e phase inverter		Understanding (K2)	
CO2:	interpret v		Understanding (K2)			
CO3:	examine tl	ne operation of various control n	nethods		Applying (K3)	
CO4:	explain the	e concepts of resonant and soft s	witching converters		Applying (K3)	
CO5:	analyze an	d design multilevel inverters for	r Renewable Energy sources		Analyzing (K4)	
CO6:	design and	l select suitable converters for sp	pecific applications		Applying (K3),	
					Manipulation (S2)	
CO7:	design and	l model the performance charac	teristics of cycloconverter for	variable	Applying (K3),	
	frequency	applications			Precision (S3)	
CO8:	analyze a	and show the performance	of various converters in sin	nulation	Analyzing (K4),	
<u> </u>	environme	ents			Precision (S3)	
		Маррії	ng of COs with POs			
CC	Os/POs	PO1	PO2		PO3	
	CO1	2			2	
(CO2	2			2	
(CO3	3	1		2	
(CO4	3			2	
(CO5	3	2		3	
(CO6	3	2		2	
(CO7	3	2	2		
(CO8	3	2		2	
1 - Sli	ght, 2 – Mo	derate, 3 – Substantial, BT - I	Bloom's Taxonomy			

]	18PEC12 POWER SEMICONDUCTOR DEVICES AND D.C.				
		L	T	<u>P</u>	Credit
Preamble	The objective of this course is to study and analyze the chara devices. This course also brings an insight to principles of D.C conv			2 semio	4 conductor
Prerequisites	Electron Devices, Power Electronics		-		
UNIT – I					9
various device carbide devices	onductor Characteristics: Steady state, transient characteristics as catalogues: Power diode, SCR, TRIAC, MOSFET, IGBT, GTC s – various Protection circuits- Calculation of losses. Thermal resistant d loading- Safe Operating Area (SOA) for transistors - Comparison	D, MC	T, IGO d Desig	CT an gn of l	nd silicon heat sinks
UNIT – II Single phase	AC-DC Converters: Review of half-wave and full-wave diode			-	-
loads and free analysis of sin performance pa	verter operation: Single phase half controlled and fully controlled of wheeling diodes – continuous and discontinuous modes of operati gle phase semi converter/half controlled converter: Asymmetric and arameters: harmonics, ripple, distortion, power factor – effect of sou and power balance in converter circuits.	on - i l Symı	nvertei metric	config	ation and gurations-
UNIT – III Three Phase	AC-DC Converters: Operation of half wave converter-Full wave	fully	control	lled co	9 onverters:
Three Phase Analysis and o Dual converter	AC-DC Converters: Operation of half wave converter-Full wave peration with different type of loads-Rectification and inversion mod "Principal and operation-single phase and three phase configuration oad inductances-Applications of AC-DC converters.	e-semi	i contro	olled c	onverters: converter-
Three Phase Analysis and o Dual converter of source and l UNIT – IV	peration with different type of loads-Rectification and inversion mod :: Principal and operation-single phase and three phase configuration oad inductances-Applications of AC-DC converters.	e-semi ns-12 j	i contro pulse c	olled c conver	onverters: converter- ter-Effect
Three Phase Analysis and o Dual converter of source and la UNIT – IV DC-DC Conve and analysis o	peration with different type of loads-Rectification and inversion mod :: Principal and operation-single phase and three phase configuration	e-semi ns-12 j ers-con	i contro pulse c	olled conver	onverters: converter- ter-Effect 9 es-Design
Three Phase Analysis and o Dual converter of source and la UNIT – IV DC-DC Conve and analysis o	peration with different type of loads-Rectification and inversion mod :: Principal and operation-single phase and three phase configuration oad inductances-Applications of AC-DC converters. erters: Basic principle of DC chopper-classification of DC chopper of non-isolated converters: Buck, Boost, Buck-Boost, CUK, SE	e-semi ns-12 j ers-con	i contro pulse c	olled conver	onverters: converter- ter-Effect 9 es-Design
Three Phase A Analysis and o Dual converter of source and b UNIT – IV DC-DC Conve and analysis o continuous and UNIT – V Isolated Switc	peration with different type of loads-Rectification and inversion mod :: Principal and operation-single phase and three phase configuration oad inductances-Applications of AC-DC converters. erters: Basic principle of DC chopper-classification of DC chopper of non-isolated converters: Buck, Boost, Buck-Boost, CUK, SE I discontinuous operation. h Mode Converters: Design and analysis of isolated switch mode converters with continuous and discontinuous	e-semi ns-12 j ers-con PIC, f	i contro pulse c ntrol str Zeta c ers- fly	rategie onver	onverters: converter- ter-Effect 9 es-Design ters with 9 , forward,
Three Phase Analysis and o Dual converter of source and b UNIT – IV DC-DC Converter and analysis of continuous and UNIT – V Isolated Switc push-pull, and DC-DC converter	peration with different type of loads-Rectification and inversion mod :: Principal and operation-single phase and three phase configuration oad inductances-Applications of AC-DC converters. erters: Basic principle of DC chopper-classification of DC chopper of non-isolated converters: Buck, Boost, Buck-Boost, CUK, SE I discontinuous operation. h Mode Converters: Design and analysis of isolated switch mode converters.	e-semi ns-12 j ers-con PIC, f	i contro pulse c ntrol str Zeta c ers- fly	rategie onver	onverters: converter- ter-Effect 9 es-Design ters with 9 , forward,
Three Phase A Analysis and o Dual converter of source and h UNIT – IV DC-DC Conver and analysis of continuous and UNIT – V Isolated Switc push-pull, and DC-DC conver List of Expert 1. Design of s circuits.	peration with different type of loads-Rectification and inversion mod :: Principal and operation-single phase and three phase configuration oad inductances-Applications of AC-DC converters. erters: Basic principle of DC chopper-classification of DC chopper of non-isolated converters: Buck, Boost, Buck-Boost, CUK, SE I discontinuous operation. 	e-semi ns-12 j ers-con PIC, d onverte	i contro pulse c ntrol str Zeta c ers- fly ration-	rategie onver rategie onver back.	onverters: converter- ter-Effect 9 es-Design ters with 9 , forward, cations of
Three Phase A Analysis and o Dual converter of source and b UNIT – IV DC-DC Converting and analysis of continuous and UNIT – V Isolated Switc push-pull, and DC-DC converting List of Experting 1. Design of s circuits. 2. Modeling a	peration with different type of loads-Rectification and inversion mod " Principal and operation-single phase and three phase configuration oad inductances-Applications of AC-DC converters. erters: Basic principle of DC chopper-classification of DC chopper of non-isolated converters: Buck, Boost, Buck-Boost, CUK, SE I discontinuous operation. ch Mode Converters: Design and analysis of isolated switch mode converters. iments : snubber circuits, semi conductor fuses dv/dt and di/dt protection, gate and simulation of single phase controlled rectifier.	e-semi ns-12 j ers-con PIC, d onverte	i contro pulse c ntrol str Zeta c ers- fly ration-	rategie onver rategie onver back.	onverters: converter- ter-Effect 9 es-Design ters with 9 , forward, cations of
Three Phase Analysis and o Dual converter of source and b UNIT – IV DC-DC Convertion and analysis of continuous and UNIT – V Isolated Switc push-pull, and DC-DC convertion List of Expertina 1. Design of s circuits. 2. Modeling a 3. Simulation	peration with different type of loads-Rectification and inversion mod :: Principal and operation-single phase and three phase configuration oad inductances-Applications of AC-DC converters. erters: Basic principle of DC chopper-classification of DC chopper of non-isolated converters: Buck, Boost, Buck-Boost, CUK, SE I discontinuous operation. h Mode Converters: Design and analysis of isolated switch mode con half bridge, full bridge Converters with continuous and discontinuous ters. iments : snubber circuits, semi conductor fuses dv/dt and di/dt protection, gate and simulation of single phase controlled rectifier. of three phase full converters	e-semi ns-12 j ers-con PIC, d onverte	i contro pulse c ntrol str Zeta c ers- fly ration-	rategie onver rategie onver back.	onverters: converter- ter-Effect 9 es-Design ters with 9 , forward, cations of
Three Phase A Analysis and o Dual converter of source and b UNIT – IV DC-DC Converting and analysis of continuous and UNIT – V Isolated Switce push-pull, and DC-DC converting List of Experting 1. Design of s circuits. 2. Modeling a 3. Simulation 4. Design and	peration with different type of loads-Rectification and inversion mod :: Principal and operation-single phase and three phase configuration oad inductances-Applications of AC-DC converters. erters: Basic principle of DC chopper-classification of DC choppe of non-isolated converters: Buck, Boost, Buck-Boost, CUK, SE I discontinuous operation. h Mode Converters: Design and analysis of isolated switch mode con- half bridge, full bridge Converters with continuous and discontinuous ters. iments : snubber circuits, semi conductor fuses dv/dt and di/dt protection, gate and simulation of single phase controlled rectifier. of three phase full converters Simulation of non-isolated switch mode converters	e-semi ns-12 j ers-con PIC, d onverte	i contro pulse c ntrol str Zeta c ers- fly ration-	rategie onver rategie onver back.	onverters: converter- ter-Effect 9 es-Design ters with 9 , forward, cations of
Three Phase A Analysis and o Dual converter of source and b UNIT – IV DC-DC Converting and analysis of continuous and UNIT – V Isolated Switce push-pull, and DC-DC converting List of Experting 1. Design of s circuits. 2. Modeling a 3. Simulation 4. Design and	peration with different type of loads-Rectification and inversion mod " Principal and operation-single phase and three phase configuration oad inductances-Applications of AC-DC converters. erters: Basic principle of DC chopper-classification of DC chopper of non-isolated converters: Buck, Boost, Buck-Boost, CUK, SE discontinuous operation. A Mode Converters: Design and analysis of isolated switch mode con half bridge, full bridge Converters with continuous and discontinuous ters. iments : snubber circuits, semi conductor fuses dv/dt and di/dt protection, gate and simulation of single phase controlled rectifier. of three phase full converters Simulation of non-isolated switch mode converters Simulation of isolated switch mode converters Simulation of isolated switch mode converters	e-semi ns-12 j ers-con PIC, d onverto us oper signal	i contro pulse c ntrol str Zeta c ers- fly ration-	rategie conver rategie conver back. Applie ation a	onverters: converter- ter-Effect 9 es-Design ters with 9 , forward, cations of

REFERENCES:	
1. Mohan N, Undeland and Robins, "Power Electronics – Concepts, Applications and Design", John Wile	эу
& Sons, Singapore, 2012.	
2. Rashid M.H., "Power Electronics Circuits, Devices and Applications", 11 th Edition, Pearson, 2012.	
3. Singh M.D., and Khanchandani K.B., "Power Electronics", 2 nd Edition, Tata McGraw Hill, 2006.	
4. Sen P.C., "Modern Power Electronics", 2 nd Edition, S. Chand, 2005.	
5. Bimbra P.S., "Power Electronics", 5 th Edition, Khanna Publishers, 2012.	
6. Bill Drury, "Control Technique Drives and Controls Handbook", 2 nd Edition, IET Power and Energy	зy
Series 57.	
COURSE OUTCOMES: BT Mapped	
On completion of the course, the students will be able to (Highest Level)	
CO1: explain the characteristics of various power semiconductor devices and protection Understanding (K2 circuits	2)
CO2: describe the operation of single phase AC-DC converters and its performance Understanding (K2 parameters	2)
CO3: explain the working of three phase AC-DC converters and applications of AC- DC converters	2)
CO4: analyze and design of non-isolated DC to DC Converters Analyzing (K4)	
CO5: analyze the types of isolated DC to DC switched mode converters Analyzing (K4)	
CO6: design and select suitable power semiconductor protective circuits for specific Applying (K3),	
applications Manipulation (S2)
CO7: experiment and document the performance characteristics of power electronic Applying (K3),	
rectifiers for variable DC output applications Precision (S3)	
CO8: analyze and show the performance difference of various switched mode Analyzing (K4),	
converters Precision (S3)	
Mapping of COs with POs COs/POs PO1 PO2 PO3	
CO1 3 102 103	
CO1 3 2 CO2 3 2	
CO3 3 2	
CO4 3 2 2	
CO5 3 2 2	
CO6 3 2 2	
CO7 3 2 2	
CO8 2 2 2	
1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy	

	18AET13 COMPUTATIONAL INTELLIGENCE TECHNIQU (Common to Applied Electronics & Power Electronics and Drives Brar			
		T	Р	Credit
	3	0	0	3
Preamble	This course serves as a guide to explore computer methodolog improves automatically through experience.	y and	algori	thms that
Prerequisites	Numerical methods			
UNIT – I				9
functions – are algorithm – R	ral Networks: Introduction to Soft computing – Neural Networks hitecture – Supervised learning – Perceptrons – Adaline and Madali adial Basis Function Networks – Unsupervised Learning and Othe earning Networks – Kohonen Self Organizing Networks – Learning ng.	ne – Ba er Neur	ack pr ral Ne	opagation etworks –
UNIT – II				9
function formu Fuzzy Reasoni	Fuzzy Sets – Basic Definition and Terminology – Set theoretic operation and parameterization - Extension principle and Fuzzy Relations of – Fuzzy Inference Systems – Mamdani Fuzzy Models – Sugeno Fuzzy - Input Space Partitioning - Fuzzy Modeling.	- Fuzzy	if-the	n Rules –
UNIT – III				9
Optimization Descent – Cla	Techniques: Derivative based Optimization: Descent Methods –Thesical Newton's Method – Step Size Determination – Derivative free imulated Annealing – Particle swarm Optimization - Ant colony optimization	Optimi		
Algorithm -le	Modeling: Adaptive Neuro Fuzzy Inference Systems – Architecturning methods that Cross-fertilize ANFIS and RBFN – Coactive Neuron Functions for Adaptive Networks – Neuro Fuzzy spectrum.			
computing tec	Printed Character Recognition – Inverse kinematics Problem – nniques for power electronics: MPPT - Speed control for electrical nniques in power converters.			Harmonic
	0			Total: 45
REFERENCE		II D-	Macre T	ducati
2004.	R., Sun C.T., and Mizutani E., "Neuro-Fuzzy and Soft Computing", P.			
	7. Fausett, "Fundamentals of Neural Networks: Architectures, Algorith n, Pearson Education, 2008.	ims and	l App	ications",
3. Timothy	. Ross, "Fuzzy Logic with Engineering Applications", Wiley India.			
4. David E.	Goldberg, "Genetic Algorithms: Search, Optimization and Machir lew York, 1989.	e Lear	ning",	Addison
5. Bimal K.	Bose, "Neural Network Applications in Power Electronics and Motor Electronics, Vol.54, Issue			
6. Whei-Mi Stand Al	Lin, Chih-Ming Hong and Chiung-Hsing Chen, "Neural Network Batone Hybrid Power Generation System", IEEE Transactions on Power pp.3571 – 3581, December 2011.			

COUR	SE OUTC	COMES:						BT Mapped		
On con	npletion of	the course,	the students	will	be able to			(Highest Level)		
CO1:	CO1: interpret and analyze various artificial neural networks							Understanding (K2)		
CO2:								Analyzing (K4)		
CO3:	gain fun	damental	knowledge	on	optimization	techniques	and its	Understanding (K2)		
	implemen	tation proce	edures							
CO4:	illustrate v	various hybi	rid topology	of ne	uro fuzzy syste	m		Understanding (K2)		
CO5:	develop s	uitable soft	computing to	echni	que on real tim	ne systems		Applying (K3)		
			Ν	Ларр	oing of COs wi	th POs				
CO	s/POs		PO1			PO2		PO3		
C	201		2			1		2		
C	CO2		3					2		
C	203		3					2		
С	CO4		2			1		3		
C	CO5		3					2		
1 – Slig	ght, 2 – Mo	oderate, 3	– Substantia	I, BT	T - Bloom's Tax	xonomy				

18PEC21 SOLID STATE DC DRIVES L Т Р Credit 3 0 2 4 Preamble The aim of the subject is to understand the conventional and solid state speed control methods pertaining to DC drives. Power Electronics, Electrical machines, Electric Drives and Control Prerequisites UNIT – I Review of Conventional DC Drives: Basic characteristics of DC motor- starting & braking - Different techniques of speed control of series and separately excited DC motors - Ward-Leonard Speed control of DC motors. Transformer and uncontrolled rectifier control. UNIT – II AC-DC Converter Drives: Controlled Rectifier fed DC Drives-Single phase and there phase converter fed DC drives- Drive employing dual converter-Supply Harmonics, Power Factor and Ripple in motor current.

UNIT – III

DC-DC converter Drives: Principles of power control-principle of regenerative brake control - principle of rheostatic brake control-principles of combined regenerative and rheostatic brake control-two and four quadrant DC-DC converter drives-Multi-phase DC-DC converters.

UNIT – IV

Closed loop Control of DC Drives: Open-loop transfer function – closed-loop transfer function-closed – loop control of DC drive-phase locked loop control-microcomputer control of DC drives- Simulation of converter and chopper fed DC drive.

UNIT - V

Traction Drives: Electric Traction services-Nature of traction load-Main line and suburban train configuration –Traction Motors-Traction drives- Traction using converter and chopper controlled DC motors -Solar and battery powered Drives.

List of Experiments :

- 1. Speed control of DC motor using Three phase Rectifier
- 2. Analysis of Dual converter fed DC motor drive
- 3. DSP based chopper drive for DC Motor
- 4. Simulation of closed loop control of converter fed DC motor
- 5. Simulation of closed loop control of chopper fed DC motor

Lecture:45, Practical:30, Total: 75

REFERENCES / MANUALS / SOFTWARES:

- Gopal K. Dubey, "Power Semiconductor Controlled Drives", Prentice Hall Inc., New Jersey, 1989. 1.
- Buxbaum A., Schierau K. and Staughen, "A Design of Control System for D.C.Drives", Springer-2. Verlag, Berlin, 1990.
- Krishnan R., "Electric Motor Drives Modelling, Analysis and Control", Prentice-Hall of India Pvt. 3. Ltd., New Delhi, 2008.

9

9

9

9

COUR	RSE OUTC	COMES:			BT Mapped		
On con	npletion of	the course, the students will be	e able to		(Highest Level)		
CO1:	explain the	e conventional speed control m	echanism for DC motor.		Remembering (K1)		
~~ .	~ .						
CO2:		e the various control mechanis			Understanding (K2)		
CO3:		ppropriate control circuit for d	1 1		Understanding (K2)		
CO4:		of digital drives for closed loo			Applying (K3)		
CO5:		tal drive for traction application			Applying (K3)		
CO6:	analyze ar	d document the performance of	of converter fed DC drives		Analyzing (K4),		
					Precision (S3)		
CO7:	inspect an	d Observe the performance of I	DSP based chopper fed DC drive	es	Analyzing (K4),		
					Precision (S3)		
CO8:			control technique for speed cont	rol of	Evaluating (K5),		
	DC motor				Articulation (S4)		
		Mappi	ng of COs with POs				
CC	Ds/POs	<u>PO1</u>	PO2		PO3		
(CO1	3			1		
(CO2	3			2		
(CO3	3			2		
(CO4	2	1		2		
(CO5	3	2		2		
(CO6	2	1		2		
(CO7	2	1		2		
(CO8	2	1		2		
1 – Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy						

18PEC22 SOLID STATE AC DRIVES

 L
 T
 P
 Credit

 3
 0
 2
 4

Preamble	The objective of the course is to provide concepts about conventional and solid state control
	techniques for induction and synchronous motor.
Prerequisites	Power Electronics, Electrical Machines, Electric Drives and Control

 UNIT – I
 9

 Induction Motor Conventional Control: Steady State Performance Equation – Torque Production –

 Variable Voltage Constant Frequency Operation – Constant Voltage Variable Frequency Operation –

 Constant Volt/Hz Operation – Rotor Resistance Control – Dahlander Pole Changing Control – Drive Operating Regions – Variable Stator Current Operation – Slip Power Recovery Schemes – Different Braking Methods.

UNIT – II

Induction Motor Solid State Stator Control: AC Voltage Controller Fed Induction Motor Drive – Four Quadrant Operation – Voltage Controller for Pump and Hoist Drives – Six Step Inverter Voltage Control – PWM Inverter – VSI Variable Frequency Drive – Control of IM by CSI – CSI Variable Frequency Drive – Braking and Multi Quadrant Operation of VSI and CSI.

UNIT – III

Induction Motor Solid State Rotor Control: Static Rotor Resistance Control – Injection of Voltage in the Rotor Circuit – Static Scherbius Drives – Power Factor Consideration – Rating and Application – Closed Loop Speed Control – Static Kramer Drive – Modified Kramer Drives – DFIM Drive.

UNIT – IV

Field Oriented Control and Direct Torque Control: Field Oriented Control of Induction Machines – Theory – DC Drive Analogy – Direct and Indirect Methods – Flux Vector Estimation - Direct Torque Control of Induction Machines – Torque Expression with Stator and Rotor Fluxes – DTC Control Strategy.

UNIT – V

Synchronous Motor Drives: Wound Field Cylindrical Rotor Motor – Open Loop Volts/Hertz Control – Self Control Model – Vector Control – Starting and Braking – Load Commutated Synchronous Motor Drives – Brush and Brushless Excitation.

List of Experiments :

- 1. V/f controlled Induction motor Drive
- 2. Microcontroller based speed control of VSI fed three phase Induction motor
- 3. DSP controlled AC drive
- 4. Analysis of vector controlled Induction motor Drive
- 5. Condition monitoring of three phase induction motor under fault condition (Simulation)

Lecture:45, Practical:30, Total: 75

REFERENCES / MANUALS / SOFTWARES:

- 1. Dubey G.K., "Power Semiconductor Controlled Drives", Prentice Hall Inc., A division of Simon and Schester England cliffs, New Jersey, 1989.
- 2. Bimal K. Bose, "Modern Power Electronics and AC Drives", 2nd Edition, Prentice Hall of India Pvt. Ltd., 2014.
- 3. Dubey G.K., "Fundamentals of Electric Drives", 2nd Edition, Narosa Book Distributors Pvt. Ltd., 2015.

9

9

9

COU	RSE OUTC	COMES:		BT Mapped
On con	mpletion of	(Highest Level)		
CO1:	classify th	Understanding (K2)		
CO2:	explain the	e solid state stator control te	chniques for induction motor drive	Understanding (K2)
CO3:	explain the	e solid state rotor control tec	chniques for induction motor drive	Understanding (K2)
CO4:	evaluate th	ne performance of motor by	vector control	Applying (K3)
CO5:	analyze th	e control technique for synch	nronous motor	Applying (K3)
CO6:	build and	analyze the performance of v	various induction motor drive	Applying (K3) Manipulation (S2)
CO7:	demonstra	te the modern digital control	technique for AC drive	Analyzing (K4) Precision (S3)
CO8:	estimate th	ne behavior of induction mot	or under fault condition	Analyzing (K4) Manipulation (S2)
		Марј	ping of COs with POs	
CC	Os/POs	PO1	PO2	PO3
(CO1	3		2
(CO2	3		1
(CO3	3		1
(CO4	3	2	1
(CO5	3	2	2
CO6		2	1	2
(CO7	2	1	2
(CO8	2	1	2
1 – Sli	ght, $2 - Mc$	derate, 3 – Substantial, B	Г - Bloom's Taxonomy	

1	18PET21 POWER ELECTRONICS FOR RENEWABLE ENERG	-			
		L	Т	Р	Credit
		3	0	0	3
Preamble	This course will cover the applications of power electronics for the	contr	col and	l conv	version o
	electrical power with emphasis on renewable energy systems.				
Prerequisites	Electrical Machines, Power Electronics				
UNIT – I					9
Analysis of So	lar Energy: Trends in energy consumption - Energy sources and their	avai	lability	/ - Ph	otovoltai
	rsion and applications: Solar radiation and measurement - Solar cells solation and temperature - PV arrays - Introduction to flexible solar cel				
UNIT – II					
Solar Energy	Conversion and Applications: Switching devices for solar energy c	onve	rsion -	– Arr	av sizino
controllers - V Systems.	Vater pumping and Street lighting-Grid integrated solar system - De	esign	and	analy	sis of PV
UNIT – III					
	I (ind Energy: Basic Principle of wind Energy conversion - Nature of W	Vind	Douv	or in t	-
	f Wind Energy Conversion System (WECS) - Performance of Induction				
	of WECS- Lightning protection for wind turbine	ЛО	meran	15 10	WLCD
Clussification	st where the second sec				
UNIT – IV					
	Conversion: Self Excited Induction Generator (SEIG) for isolated Pow	ver G	enerat	ors -	1
	- Capacitance requirements - Controllable DC Power from SEIGs - C				-
	id its accessories- Grid related problems - Generator control - Perf				
	nes - AC voltage controllers - Harmonics and PF improvement.			mpro	v ennemes
Different sener	nes rie voluge contronois riamones and ri miprovenent.				
UNIT – V					
	ms and Power Converters: Need for Hybrid systems-Wind / Solar	· DV	integ	·ated	
• •	ower conversion ratio - Optimization of system components - Reli		-		•
-	shamas: DC Power conditioning Converters Maximum Power point	uaci	ang a	igoriu	iiiis - Av
Power conditio	chemes: DC Power conditioning Converters - Maximum Power point				
DEEDENCT	chemes: DC Power conditioning Converters - Maximum Power point oners - Line commutated inverters -Grid interactive inverters.				Total: 4
REFERENCE	oners - Line commutated inverters -Grid interactive inverters.				Total: 4
1 01 1 01	oners - Line commutated inverters -Grid interactive inverters.	A 1	. ,.		
PHI Learn	oners - Line commutated inverters -Grid interactive inverters.			s", 2 ^r	^{ad} Edition

- Tiwari G., "Fundamentals, Design, Modeling and Applications of Solar Energy, / Publishers, 2010. Roger A. Messenger, Jerry Ventre, "Photovoltaic System Engineering", CRC Press, 2004. 3.

COU	COURSE OUTCOMES: BT Mapped							
On con	mpletion of	the course, the students will be	able to	(Highest Level)				
CO1:	summariz	e the basic characteristics, work	king and application of PV cells	Understanding (K2)				
CO2:	apply the	modern power converters for so	olar PV systems and applications	Applying (K3)				
CO3:	explain the	e working principle of wind ene	ergy conversion system	Understanding (K2)				
CO4:	identify th	e components of wind energy c	conversion system	Applying (K3)				
CO5:	show the r	need for hybrid system and pow	wer converters	Understanding (K2)				
		Mappir	ng of COs with POs					
CC	Os/POs	PO1	PO2	PO3				
	CO1	3		2				
(CO2	3		3				
(CO3	3		2				
CO4 3				2				
CO5		3	1	2				
1 – Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy							

18COE04 ELECTROMAGNETIC INTERFERENCE AND COMPATIBILITY

(Common to Communication Systems, VLSI Design, Applied Electronics &

Power Electronics and Drives branches)

			-	-		
		3	0	0	3	
Preamble	To expose the basics and fundamentals of Electromagnetic Inter	ference	e and C	Compa	tibility	' in
	Communication System Design and to know the concepts of EM	AI Cou	ipling	Princip	ples, El	MI
	Measurements and Control techniques and the methodologies of H	EMI ba	sed PC	B des	ign.	
Prerequisites	Electromagnetic Principles					
UNIT – I						9

EMI Environment: EMI/EMC concepts and definitions, Sources of EMI, conducted and radiated EMI, Transient EMI, Time domain Vs Frequency domain EMI, Units of measurement parameters, Emission and immunity concepts, ESD.

UNIT – II

EMI Coupling Principles: Conducted, Radiated and Transient Coupling, Common Impedance Ground Coupling, Radiated Common Mode and Ground Loop Coupling, Radiated Differential Mode Coupling, Near Field Cable to Cable Coupling, Power Mains and Power Supply coupling.

UNIT – III

EMI/EMC Standards and Measurements: Civilian standards - FCC, CISPR, I EC, EN, Military standards -MIL STD 461D/462, EMI Test Instruments /Systems, EMI Shielded Chamber, Open Area Test Site, TEM Cell, Sensors/Injectors/Couplers, Test beds for ESD and EFT, Military Test Method and Procedures (462).

UNIT – IV

EMI Control Techniques: EMI Control Techniques : Shielding, Filtering, Grounding, Bonding, Isolation Transformer, Transient Suppressors, Cable Routing, Signal Control, Component Selection and Mounting

UNIT - V

EMC Design of PCBs: PCB Traces Cross Talk, Impedance Control, Power Distribution Decoupling, Zoning, Motherboard Designs and Propagation Delay Performance Models.

REFERENCES:

Ott W. Henry, "Noise Reduction Techniques in Electronic Systems", 2nd Edition, John Wiley & Sons, 1. New York, 2008.

Kodali V.P., "Engineering EMC Principles, Measurements and Technologies", 2nd Edition, IEEE Press, 2. London, 2006.

Keiser Bernhard, "Principles of Electromagnetic Compatibility", 3rd Edition, Artech House, Dedham, 3. 1987.

9

9

9

T P Credit

L

9

Total: 45

COU	COURSE OUTCOMES: BT Mapped						
On con	mpletion of	the course, the students will be	able to	(Highest Level)			
CO1:	estimate th	ne EMI and analyze in time don	nain and frequency domain	Analyzing (K4)			
CO2:	compare the	he various EMI coupling metho	ods	Evaluating (K5)			
CO3:	conduct th	e EMI measurement for civilian	n and military appliances	Analyzing (K4)			
CO4:	device the	EMI control techniques		Applying (K3)			
CO5:	evaluate tl	ne PCB'S and motherboards E	EMI performance and design the EM	C Creating (K6)			
	circuits						
		Mappin	ng of COs with POs				
CC	Os/POs	PO1	PO2	PO3			
(CO1	2					
(CO2	2					
(CO3	3	1				
(CO4 2 1						
(CO5 2 1						
1 – Sli	ght, 2 – Mo	derate, 3 – Substantial, BT -	Bloom's Taxonomy				

18AEE01 DATA COMMUNICATION NETWORKS

(Common to Applied Electronics & Power Electronics and Drives branches)

Т Р L Credit 3 0 0 3

Preamble	To provide understanding of the concepts of computer networks, multiple access techniques,
	network protocols, the upper layers of the OSI model, internetworking and emerging trends in
	networking technologies
Prerequisites	Nil
UNIT – I	9

UNIT – I

Introduction: Definition of Networks-Classification of Networks-LAN, MAN, WAN, internet-Network Topology – Protocols and Standards – Network Models – OSI, TCP/IP Models of networking – Internet.

UNIT – II

Physical Layer: Review of Signals-Data Rate Limits-Performance Issues-Bandwidth, Throughput, Latency, Bandwidth-Delay Product, Jitter. Digital Transmission and Analog Transmission: Line coding techniques, PCM and Delta Modulation techniques - ASK, FSK, PSK, and QAM Techniques - Bandwidth Utilization: Multiplexing and Spreading.

UNIT – III

Communication Media and Data Link Layer: Data Transmission using Telephone Networks-Dial-up MODEMS, Digital Subscriber Line (DSL).Error Detection and Correction techniques:Linear and Cyclic codes-Data Link Control: Framing, Flow and Error Control - HDLC and PPP protocols. Multiple Access Techniques - CSMA, CSMA/CD, CSMA/CA - Channelization - TDMA, FDMA, and CDMA.

UNIT - IV

Wired LANs and WANs: Wired LANs-IEEE 802 standards - Ethernet-IEEE 802.3 MAC Frame-Token RingLAN - IEEE 802.5 MAC Frame - Wireless LANs - IEEE 802.11 standard - Bluetooth Technology -Interconnection of LANs. Wired WANs - Circuit-Switched Networks, Datagram Networks, Virtual Circuit- switched Networks, Structure of Circuit and Packet Switches - Wireless WANs.

UNIT - V

Internetworking: Internetworking-tunneling-IP Addressing Scheme-Structure of IP Datagram-IP Routing - TCP as Transport Layer Protocol - Structure of TCP Segment - TCP Connection: Establishment and Closing – SMTP Protocol for E- Mail Application.

REFERENCES:

1.	Forouzan Behrouz A., "Data Communications and Networking", 4 th Edition, Tata McGraw-Hill, New
	Delhi, 2006.
2.	Peterson Larry L. and Davie Bruce S., "Computer Networks: A Systems Approach", 4 th Edition, Elsevier

- Publications, New Delhi, 2007.
- Rowe Stanford H. and Schuh Marsha L., "Computer Networking", Pearson Education, New Delhi, 2005. 3.
- Kurose James and Ross Keith, "Computer Networking: Top Down Approach featuring the Internet", 4. Pearson Education, New Delhi, 2002.

9

9

Total: 45

9

COUR	COURSE OUTCOMES: BT Mapped							
On con	mpletion of	the course, the students will b	be able to	(Highest Level)				
CO1:	explain the	e basic concepts of networking	g	Understanding (K2)				
CO2:	acquire th	e knowledge of various perfe	ormance parameters and modulati	On Understanding (K2)				
	techniques	5						
CO3:	schedule the	he network components and the	ne functioning of data link layer	Applying (K3)				
CO4:	classify va	rious IEEE standards of wirel	ess networks	Applying (K3)				
CO5:	manipulate	e the addressing scheme and s	ummarize the operations of TCP/II	P Applying (K3)				
		Марр	ing of COs with POs					
CC	Ds/POs	PO1	PO2	PO3				
(CO1	1						
(CO2	1						
(CO3	1						
(CO4							
(CO5	1						
1 – Sli	ght, $2 - Mo$	derate, 3 – Substantial, BT	- Bloom's Taxonomy					

18AEE03 PROGRAMMABLE LOGIC CONTROLLERS

(Common to Applied Electronics & Power Electronics and Drives branches)

		3	0	0	3
Preamble	The aim of the subject is to develop an understanding of the basic	c conce	epts of	PLC,	advanced
	PLC programming, installation &troubleshooting and to develop	indust	rial ap	plicatio	ons.
Prerequisites	Nil				
UNIT – I					

UNIT – I 9 Introduction to Programmable Logic Controller: Overview of Programmable Logic Controller - Architecture – Principle of operation - I/O Modules: Discrete, Analog, Special – I/O Specifications – CPU – Memory design and types – Programming devices – Recording and Retrieving data –PLC programming languages.

UNIT – II

Basic PLC Programming: Fundamentals of Logic – Program Scan– Relay-Type Instructions - Instruction addressing – Branch and Internal relay instructions – Entering the Ladder diagram – Electromagnetic Control relays – Contactors – Motor Starters – Manual operated switches and Mechanically operated switches.

UNIT – III

Advanced PLC Programming: Programming Timers – Programming Counters – Program Control Instructions – Data Manipulation Instructions – Math Instructions – Sequencer and Shift Register Instructions.

$\mathbf{UNIT} - \mathbf{IV}$

PLC Installation and Troubleshooting: PLC Enclosures – Electrical Noise – Leaky Inputs and Outputs – Grounding – Voltage Variations and Surges – Program Editing – Programming and Monitoring – Preventive Maintenance – Connecting PC and PLC.

UNIT – V

PLC Communication and its Applications: Computer Fundamentals – Computer-Integrated Manufacturing – Data Communications – Computer numeric control – Robotics - PLC Applications: Bottle filling system – Pneumatic stamping system – Material handling system – Spray Painting system – Traffic light control system.

REFERENCES:

1	1.	Frank D. Petruzella, "Programmable Logic Controllers", Tata McGraw-Hill Edition, New Delhi, 2010.
2	2.	Webb John W. and Reis Ronald A., "Programmable Logic Controllers", Prentice Hall Publications,
		New Delhi, 2005.
	3.	Bolton W., "Programmable Logic Controllers", Elsevier, New York, 2006.
2	4.	Rockwell Automation, "Logix 5000 Controllers" – system reference

9

Total: 45

9

9

9

Т

L

Р

Credit

COURSE OUTC	COURSE OUTCOMES: BT Mapped							
On completion of	the course, the students will be	able to		(Highest Level)				
CO1: identify th	e PLC hardware and programm	ning languages for various appli	cations	Applying (K3)				
CO2: develop P	O2: develop PLC ladder logic programming for industrial problems			Applying (K3)				
CO3: design a P	LC system, component, or proc	cess to meet a set of specification	ns	Applying (K3)				
CO4: install and	l troubleshoot the PLC			Analyzing (K4)				
CO5: apply the	PLC in various industrial applic	cations		Applying (K3)				
	Mappin	ng of COs with POs						
COs/POs	PO1	PO2		PO3				
CO1	2	1		2				
CO2	3	1		3				
CO3	3	1		3				
CO4	3			3				
CO5			3					
1 - Slight, 2 - Mo	oderate, 3 – Substantial, BT -	Bloom's Taxonomy						

18AEE06 PROGRAMMABLE DIGITAL SIGNAL PROCESSORS

(Common to Applied Electronics & Power Electronics and Drives branches)

		L	I	P	Credit
		2	0	2	3
Preamble	This course brings the DSP processors architecture, addressi	ng mo	des an	d prog	gramming
	with DSP processors. It also provides an insight to the various	types	of on-c	hip pe	ripherals,
	interfacing methods and various applications.				
Prerequisites	Digital Signal Processing, Microprocessors and Microcontrolle	ers			
UNIT – I					6

Architectures of Programmable Digital Signal Processors: Introduction, Basic Architectural Features, DSP Computational Building Blocks, Bus Architecture and Memory, Data Addressing Capabilities, Address Generation Unit, Programmability and Program Execution, Features for External Interfacing.

UNIT – II

TMS320C5416 Digital Signal Processor: TMS320C5416: Introduction: History Development and Advantages of TMS320 DSPs, Applications. TMS320C5416: Functional Overview Features, Architectural Overview, Pin configuration, Registers, Addressing modes, On-Chip Peripherals, Memory Map, Instruction set. Simple Programs: Addition, Multiplication, Division, Convolution. Introduction to Code Composer studio.

UNIT – III

Interfacing peripherals with TMS320C5416: I/O Interface, ADC Interface, DAC Interface, CODEC Interface. Program: Switch and LED Interfacing, Square wave generation, Saw tooth wave generation.

UNIT – IV

TMF28335 Digital Signal Processor: TMF28335 DSP: Overview, Key features: Hardware Features, Software Features, Architecture, Pin configuration, Memory Map, Switches: Boot Load option switch, Processor configuration switch, Power Connector.

UNIT - V

Interfacing peripherals with TMF28334: I/O Interface, ADC Interface, DAC Interface, PWM Module. Programs: Switch and LED interfacing, ADC Port Control, PWM generation.

List of Exercises / Experiments :

- 1. Generation and Convolution of signals using MATLAB
- 2. Square Wave form Generation using TMS320C5416 Digital Signal Processor
- 3. Saw tooth waveform Generation using TMS320C5416 Digital Signal Processor
- 4. Variable PWM waveform generation using TMF28335 Digital Signal Processor
- 5. Switch and LED Interfacing using TMF28335 Digital Signal Processor

Lecture: 30, Practical: 30, Total: 60

REFERENCES:

- Avatar Singh, Srinivasan S., "Digital Signal Processing- Implementation using DSP Microprocessors 1. with Examples from TMS320C54xx", Thomson India, 2004. Venkataramani B. and Bhaskar M., "Digital Signal Processors, Architecture, Programming and
- 2. Applications", 2nd Edition, Tata Mc Graw Hill, 2010. User Manual: VSK5416 & eZdspTMF28335 Technical Reference
- 3.

6

6

6

C---- l'4

COUR	BT Mapped						
On con	(Highest Level)						
CO1:	explain the	explain the Basic architectural features of DSP processors					
CO2:		describe the various features and programming concepts of TMS320C5416					
	DSP						
CO3:	apply the 320C5416	Applying (K3)					
CO4:		point out the functionality of TMSF28355 DSP					
CO5:	employ th	e Interfacing mechanism of var	ious peripherals with TMS 3200	C5416	Understanding (K2) Applying (K3)		
	DSP and its programming concepts.						
CO6:	make use		Applying (K3),				
			Manipulation (S2)				
CO7:	apply emb	16	Applying (K3),				
			Manipulation (S2)				
CO8:		demonstrate the PWM waveform Generation and I/O interfacing using					
	DSPF283				Precision (S3)		
Mapping of COs with POs							
-	Os/POs	PO1	PO2		PO3		
(CO1	1					
(CO2	1					
CO3		2					
CO4		1					
CO5		2	1				
CO6		2	2		1		
CO7		3	2		1		
CO8		2					
1 – Slight, 2 – Moderate, 3 – Substantial BT - Blooms Taxonomy							

	18PEE01 PWM TECHNIQUES AND ITS APPLICAT	TIONS	5		
	~	L	Т	Р	Credit
		3	0	0	3
Preamble	This course brings the fundamentals of pulse width modulation	techn	iques	and th	e various
	types. It is certainly needed for the development of pulses require	ed for t	he pov	ver con	nverters.
Prerequisites	Power Electronics, AC converters				
UNIT – I					9
Fundamentals	of PWM: Fundamental Concepts of PWM - Evaluation of PWM	I Sche	emes -	Doubl	e Fourier
Integral Analy	sis of a Two-Level PWM waveform - Naturally Sampled PWM	[- PW	/M Ar	alysis	by Duty
Cycle Variation	a - Regular Sampled PWM- Direct modulation.				
UNIT – II					9
	Modulation Strategies: Integer versus non integer frequency				
	timized spaced vector PWM- Harmonic elimination PWM - Perfo	ormanc	e inde	x for c	ptimality
- optimum PW	M – Minimum loss PWM.				
UNIT – III					0
	VSI: Topology of a Single Phase Inverter -Three level Modulatio	n of o	Single	Dhaga	9 Invertor
			0		
-	lation of Harmonic Losses-Sideband Modulation-Switched Pul				lea Puise
Sequence - Top	ology of a Three Phase VSI-Three Phase Modulation with Sinuso	idal Re	eterenc	es.	
UNIT – IV		1	C 11	•	9
	d Control: Third Harmonic Reference Injection-Analytic Calcu				
	Modulation Strategies- Triplen Carrier Ratios and Sub harmo				converter
alternatives - H	armonic Elimination applied to multilevel inverters- Minimum Ha	rmoni	c disto	rtion.	
UNIT – V					9
	Modulation: Phase Leg References - Naturally Sampled SVM-A	nalvti	cal So	lution	-
	ses for SVM-Placement of the Zero Space Vector-Discontinu				
	rters- discontinuous modulation in multilevel inverters.	005 1	Iouulu	1011	5 • 101 101
inditite ver mve	ters discontinuous modulation in multilevel involters.				Total: 45
REFERENCE	S:				- Juli 70
	ed H. Rashid, "Power Electronics-Circuits, Devices and Applica	ations'	² , 3 rd F	Editior	. Eastern
	Edition, 2004.		,		,
	D. Holmes and Thomas A. Lipo, "Pulse width Modulation for Pov	ver Co	nverte	rs", IE	EEE Press
	Power Engineering, Wiley, 2003.			-	
2 Durin O	Nacional (Description Constants Medican and High Desc			, ,	т 1 0

3. Dorin O. Neacsu, "Power Switching Converters: Medium and High Power", CRC Press, Taylor & Francis, 2006.

COURSE OUTC	BT Mapped							
On completion of	(Highest Level)							
CO1: explain the	D1: explain the fundamental concepts of pulse width modulation techniques							
CO2: list the typindex	pes of pulse width modulation	nce Understanding (K2)						
CO3: make use	of inverter topologies in applying	ng PWM techniques	Applying (K3)					
CO4: explain the	4: explain the strategies involved for harmonic elimination using PWM							
CO5: summarize	e the space vector modulation to	echniques and its advantages	Understanding (K2)					
Mapping of COs with POs								
COs/POs	PO1	PO2	PO3					
CO1	3		2					
CO2	3		2					
CO3	3		2					
CO4	3	1	2					
CO5	3	1	2					
1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy								

18PEE02 OPTIMAL CONTROL THEORY

(Common to Power Electronics and Drives & Applied Electronics branches)

L	Т	Р	Credit
3	1	0	4

Preamble	The objective of the course is to build and analyze models for time varying systems and non
	linear systems
Prerequisites	System Theory
UNIT – I	9

UNIT – I

Introduction: Review - Models for Time-varying and Nonlinear systems, state space representation, matrix theory, static optimization with and without constraints. Calculus of variations-basic concepts- functional of a single function and several functions - necessary conditions and boundary conditions.

UNIT – II

Optimal Control Formulation: Performance measures for optimal control problems-Hamiltonian approachnecessary conditions for optimal control- Linear regulator problem-infinite time regulator problem-, Regulators with a prescribed degree of stability.

UNIT – III

The Minimum (Maximum) Principle: Pontryagin's minimum principle and state inequality constraints, Minimum time problem, Minimum control energy problems. Singular intervals in optimal control.

UNIT – IV

Numerical Techniques: Numerical solution of two-point boundary value problem -Gradient method and Quasi Linearisation method - solution of Ricatti equation by iterative method.

UNIT – V

Dynamic Programming: Principle of optimality - recurrence relation of dynamic programming for optimal control problem - computational procedure for solving optimal control problems - characteristics of dynamic programming solution - dynamic programming application to discrete and continuous systems - Hamilton Jacobi Bellman equation. Relationship between Dynamic Programming and Minimum Principle.

	Lecture:45, Tutorial:15, Total: 60							
RE	REFERENCES:							
1.	Kirk Donald, "Optimal Control Theory", Prentice Hall, New Jersey, 1970.							
2.	Anderson B.D.O. and Moore J.B., "Optimal Control: Linear Quadratic Methods", Prentice Hall, New							
	Jersey, 1979.							
3.	Desineni Subburam Naidu, "Optimal Control Systems", CRC Press, 2003.							

9

9

9

COU	COURSE OUTCOMES: BT Mapped							
On con	On completion of the course, the students will be able to (Highest Lev							
CO1:	analyze models for time varying systems and non linear systems Applying (H							
CO2:	apply the	optimal control functions to sol	ve the stability related problems		Applying (K3)			
CO3:	analyze the problems using minimum (maximum) principles and numerical Analyzing (K4) techniques							
CO4:	design cor	trollers using various numerica	l techniques		Analyzing (K4)			
CO5:	explain the concept of dynamic programming to solve optimal control Understanding (K2) problems							
		Mappin	ng of COs with POs					
CC	Os/POs	PO1	PO2	PO3				
(CO1	3	1	2				
(CO2	3	1	2				
(CO3	3 1		2				
(CO4	3	2		2			
(CO5		2					
1 – Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy							

18PEE03 SWITCHED MODE POWER CONVERTERS

L	Т	Р	Credit
3	0	0	3

9

9

9

9

9

3

Resonant Converters: Resonant Converters - Basic resonant circuit concepts - series resonant circuit - parallel resonant circuit - load resonant converter - ZCS resonant converter - L type & M type - ZVS resonant converter - comparison of ZCS & ZVS Resonant Converters.

UNIT – II

Class-E Resonant Converter: Starting States of the Steady State - Time-Domain Steady-State Solutions -Closed-Loop AC and DC Analysis - Type II Amplifier implementation.

UNIT – III

Isolated Converter: Step-Down (Buck)-duty cycle for CCM, DCM in open loop control- voltage and current mode CCM and DCM closed loop control- Push-Pull Converter with Current-Mode Control- Flyback Converters - DCM and DCM Duty-Cycle Determination- Critical Inductance - Voltage-Mode CCM, DCM in Closed Loop - Peak Current-Mode DCM,CCM Closed Loop.

UNIT – IV

Non isolated Converter: Forward Converter- Duty Cycle Determination - Steady-State Closed Loop -Regulation and Output Sensitivity –Boost Converter - Duty-Cycle Determination - Critical Inductance -Peak Current-Mode Closed-Loop Steady State in CCM, DCM - Output Capacitor Size for CCM, DCM.

UNIT - V

AC-DC Power-Factor Correction Converter: Fundamental Definition - Single-Phase Single-Stage Nonisolated Boost PFC- Output Capacitor Size - CCM, DCM Boost Inductor Selection - High-Power PFC and Load Sharing - Surge Protection - Load Short-Circuit Protection - Three-Phase PFC.

Total: 45 **REFERENCES:** Ned Mohan, Undeland and Robbins, "Power Electronics: Converters, Applications and Design", John 1. Wiley & Sons (Asia) Pvt. Ltd., Singapore, 2003. Rashid M.H., "Power Electronics: Circuits, Devices and Applications", Pearson Education (Singapore) 2. Pvt. Ltd., Prentice Hall of India, New Delhi, 2004. Keng C.Wu, "Switch-Mode Power Converters: Design and Analysis", Elsevier, Technology & 3. Engineering, 2005.

COU	COURSE OUTCOMES: BT Mapped								
On con	On completion of the course, the students will be able to (Highest Level)								
CO1:	interpret t	he operation of resonant conv	erters for ZVS and ZCS	Understanding (K2)					
CO2:	acquire the	e knowledge about Class-E rea	sonant converter	Understanding (K2)					
CO3:	analyze th	e operation and design parame	eter for various isolated converter	Understanding (K2)					
CO4:	examine t	he operation and design paran	neter for various non-isolated conver	ter Applying (K3)					
CO5:	choose a s	uitable power factor correction	on methods	Applying (K3)					
		Mappi	ing of COs with POs						
CC	Os/POs	PO1	PO2	PO3					
(CO1	2	1	3					
(CO2	2		3					
(CO3	3							
(CO4	3							
(CO5 2 1								
1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy									

18PEE04 COMPUTER AIDED DESIGN OF ELECTRICAL MACHINES

 L
 T
 P
 Credit

 3
 1
 0
 4

9

9

9

9

9

Preamble The objective of the course is to identify the design parameter for electromechanical system using various standard design procedures and development constrain. Apply finite element method and CAD package to design and analysis of various electromechanical systems.

Prerequisites Electromagnetic Theory, Circuit Theory, Electrical Machines

UNIT – I

Fundamental Aspects and Materials: Introduction – Design Factor – Limitations in Design – Electric Conductivity and Resistivity Materials – Magnetic Material – Insulating Material – Permanent Magnet and Characteristics – Modern design and Manufacturing Techniques

UNIT – II

Principles of Magnetic and Thermal Design: Fundamental of Magnetic Circuit – Magnetizing Curve – MMF in Magnetic Circuit – Real and Apparent Flux Density – Determination of Iron Loss – Modes of Heat Dissipation – Newton's Law of Cooling – Thermal State in Electrical Machine

UNIT – III

Design of DC Motor: Constructional Details – Choice of Flux Density and Ampere Conductor – Main Dimension – Poles and Slots- Design of Field, Armature System and Inter Poles – Design Commutator and Brushes

UNIT – IV

Design of Induction Motor: Constructional Details - Choice of Flux Density and Ampere Conductor – Main Dimension – Stator Design – Rotor Design – Length of Air Gap – Design of Shaft

UNIT – V

Finite Element Modeling and Analysis using ANSYS Software: Preprocessing - Meshing - Material Assigning - Boundary Conditions - Setting up Solution – Post processing - Design of Actuator – DC Motor - Induction Motor – BLDC Motor.

Lecture:45, Tutorial:15, Total: 60

REFERENCES:

1. Sawhney A.K., "Electrical Machine Design", Dhanpat Rai & Co, 2017.

2. Silvester and Ferrari, "Finite Elements for Electrical Engineers", Cambridge University Press, 1983.

3. Hoole S.R.H., "Computer- Aided, Analysis and Design of Electromagnetic Devices", Elsevier, New York, Amsterdam, London, 1989.

COU	COURSE OUTCOMES: BT Mapped						
On co	n completion of the course, the students will be able to (Highest Level)						
CO1:	classify and compare the various fundamental aspects and materials used for Understanding (K2) electrical machines						
CO2:	illustrate the principles of magnetic and thermal design for various electrical Applying (K3) machines						
CO3:	identify th	e design parameter of DC mo	otor by considering load requireme	nt	Applying (K3)		
CO4:	identify the design parameter of induction motor by considering load Applying (K3) requirement						
CO5:	design and finite element analysis of various electrical machines using ANSYS Analyzing (K4) software						
		Марр	ing of COs with POs				
CC	Os/POs	PO1	PO2		PO3		
(CO1	2	1	1			
(CO2	3 2			1		
CO3		2	2		1		
CO4		3 2			1		
(3						
1 – Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy						

	18PEE05 MICROCONTROLLER APPLICATIONS IN POWER ELECTRONICS													
											L	Т	Р	Credit
											3	0	0	3
D	1.1	T			0 1		•			 •	 11 0			• •

 Preamble
 The objective of the course is to comprehend the microcontroller families, interfacing the peripheral devices with microcontroller and its programming concepts for designing Power Electronics based applications

 Prerequisites
 Microprocessors and Microcontrollers, Power Electronics

Prerequisites Microprocessors and M

9

9

9

Introduction To Microcontroller: Evolution of microcontrollers –comparison between microprocessor and microcontrollers –Embedded systems and their characteristics – steps in Designing microcontroller based system - Instruction pipelining & advanced concepts. Architecture and programming Intel 8051, and PIC mid range microcontroller –Different types of addressing modes. Selection of Microcontrollers for suitable application and clock pulse generation.

UNIT – II

Input Interfacing Device: Interfacing LCD Display –Keypad Interfacing –Controlling DC/ AC appliances – Measurement of frequency Stand alone Data Acquisition System-Interfacing external hardware like Driver Ics, sensors and actuators –Practical aspects-Interfacing of relay circuit-Interfacing of 7 segment LED displays-Interfacing Matrix keyboards

UNIT – III

Output Interfacing Device: Measurement of voltage, current, and speed, power and power factor using microcontrollers-Power quality/power factor correction - AC load control –-Motor Control-PID control of DC motor –stepper motor control –brush less DC motor control. Practical Aspects-Implementation in electromechanical system for stepper motor-Typical applications in the control of power electronic converter for power supplies

UNIT – IV

Microcontrolles in Power Electronics: Gate firing control of converters and inverters -PWM implementation -Feedback control and processing of feedback signals-Implementation of digital controllers and filters-Monitoring, sequencing, diagnostics and miscellaneous computation and control-Control of AC/DC electric drives-Solar Power Conditioning (MPPT)-Remote Control-UPS Applications.

UNIT – V

I/O Programming: Software Debugging-Hardware Test-Assembly language programming for -Zero crossing detectors –square wave generation -firing pulse generation for typical single-phase andThree Phase converters and inverters -ADC program-PWM Techniques.

REFERENCES:

1.	Martin P. Bates, "Interfacing PIC Microcontrollers: Embedded Design by Interactive Simulation", 2 nd
	Edition, Newness Publisher, 2013.
2.	Mazidi and Mazidi, "The 8051 Microcontroller and Embedded Systems", 5 th Edition, Pearson Education
	Indian Reprint, 2003.
2	

3. Kenneth Ayala, "The 8051 Microcontroller and its Programming", Thomson-Delmar Learning, 2004.

9

9

COU	COURSE OUTCOMES: BT Mapped							
On con	On completion of the course, the students will be able to (Highest Level)							
CO1:	explain the	e basics concepts in microcontr	oller		Understanding (K2)			
CO2:	illustrate t	he interfacing of input devices	with microcontroller		Understanding (K2)			
CO3:	illustrate t	he interfacing of output devices	s with microcontroller		Understanding (K2)			
CO4:	apply the	knowledge of microcontroller is	n power electronics based applic	ations	Applying (K3)			
CO5:	develop a	n ALP for power electronic bas	sed applications		Applying (K3)			
		Mappir	ng of COs with POs					
CC	Os/POs	PO1	PO2		PO3			
(CO1	3			1			
(CO2	3			1			
(CO3 3 1							
(CO4	2						
CO5 3 1 2								
1 – Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy							

18PEE06 POWER QUALITY ENGINEERING

L	Т	Р	Credit
3	0	0	3

9

9

9

9

Preamble	The objective of the course is to provide knowledge about various power quality problems,
	effects and improvement techniques.
Prerequisites	Power Quality, Power Electronics for Renewable Energy Systems

UNIT – I

Power Quality Definitions and Fundamentals of Harmonics: Introduction – Power Quality definitions: Transients, Short Duration and Long Duration Voltage variations, Voltage imbalance, Waveform distortion, Voltage fluctuations. Power frequency disturbances: curves for low frequency disturbances – voltage tolerance criteria - power acceptability curves (CBEMA and ITI). – Introduction to Harmonic standards.

UNIT – II

Waveform Distortions: Harmonic indices, inter-harmonics, voltage unbalance, flicker, Harmonic sources from commercial and industrial loads, Standards on harmonics. System response characteristics: System impedance, capacitor impedance, parallel resonance, series resonance loads, effects of resistance and resistive load. Effects of harmonic distortion: Impact on capacitors, transformers, motors and telecommunication circuits – Guidelines for voltage and current harmonics limitations.

UNIT – III

Waveform Processing Techniques and Monitoring: Fundamental frequency characterization: Curve – fitting algorithm, implementation, frequency estimation, R.M.S Error assessment, Fourier analysis: Convolution of harmonic phasors, sampled time functions, DFT, Efficiency of FFT algorithms, Wavelet transform, automation of disturbance reorganization.

UNIT – IV

Wiring, Grounding and Power Quality Measurement Equipment: Definitions- National Electrical Code Grounding Requirements - Reasons for grounding. Typical Wiring and grounding problems: Problems with conductors and connectors, missing safety ground, multiple neutral-to-ground connections, ground loops, Solutions to wiring and grounding problems: proper grounding practices, Rod, separately derived systems. Grounding techniques for signal reference – Types of instruments, wiring and grounding testers, disturbance analyzers, spectrum and harmonic analyzer, flicker meter, smart power quality monitor – number of test locations – test duration of measurement.

UNIT – V

Power Quality Assessment, Improvement and Harmonic Filters: Assessment of power quality measurement data: Off – line, On – line data assessment, Application of Intelligent systems – Active, Passive and Hybrid filters. Custom power Devices: Network reconfiguring devices, Load compensation using DSTATCOM, Voltage regulation using DSTATCOM, protecting sensitive loads using DVR, UPQC. Control strategies: P - Q theory, Synchronous detection method.

REFERENCES:

1.	Dugan C. Roger, "Electrical Power Systems Quality", 3 rd Edition, Tata McGraw Hill, New Delhi, 2012.
2.	Arillaga J., "Power System Quality Assessment", Wiley India Pvt. Ltd., New Delhi, 2011.
3.	Sankaran C., "Power Quality", CRC Press, 2011.

9

COU	RSE OUTC	COMES:			BT Mapped
On con	mpletion of	the course, the students will be	able to		(Highest Level)
CO1:	explain the	e concepts of different power q	uality indices		Understanding (K2)
CO2:	classify the condition	ne types of waveform distortion	ns and its impact on various load	ding	Understanding (K2)
CO3:	apply dif improvem	1 0	g techniques for power qua	ality	Applying (K3)
CO4:	•	e wiring and grounding proble souring instruments	ems and explain the different ty	ypes	Understanding (K2)
CO5:	assess the	power quality using filters and	custom power devices		Analyzing (K4)
		Mappir	ng of COs with POs		
CC	Ds/POs	PO1	PO2		PO3
(CO1	3	1		2
(CO2	2	2		2
(CO3	3	1		2
(CO4	3	2		2
(CO5	3	2		2
1 – Sli	ght, $2 - Mo$	derate, 3 – Substantial, BT -	Bloom's Taxonomy		

L	Т	Р	Credit
3	0	0	3

Preamble	The aim of the course is to provide basic concept of history, challenges, future scope,
	infrastructure, available computational tools, communications and its standards in smart grids
Prerequisites	Power System Operation and Control
UNIT – I	9

UNIT – I

Smart Power Grids: Introduction - Todays Grid Challenges - Background and History of Smart Power Grid Evolution - Definition, Characteristics and Benefits of Smart Grid-Vision and its Realisation - Architectural and Functional Concepts-Examples of SG projects in India- Outline of US Effort, Europe effort and China Effort -Research Issues.

UNIT – II

Smart Grid Infrastructure: Composition of Smart Grid based on: Standards adaptation, technical and Technical Components perspective, Conceptual reference model Perspective, Basic components of smart grid and its technical infrastructure.

UNIT – III

Computational Tools for Smart Grid: Introduction -Decision Support Tools (DS) - Optimization Techniques-Classical Optimization Methods-Heuristic Optimization- Evolutionary Computational Techniques -Adaptive Dynamic Programming Techniques- Pareto Methods - Hybridizing Optimization Techniques and Applications to the Smart Grid -Computational Challenges

UNIT - IV

Communications and Standards: Communication and Measurement , Monitoring, PMU, Smart Meters, and Measurements Technologies , Multiagent Systems (MAS) Technology .Standards: Approach to Smart Grid Interoperability Standards ,Synchrophasor Standards IEEE 1548,IEC 61850, IEEE C37.118,IEEE C37.242.IEEE C37.238.IEEE C37.244.C37.247.

UNIT - V

Case studies and Test Beds for Smart Grids: Demonstration Projects, Advanced Metering, Micro grid with Renewable Energy ,Power System Unit Commitment (UC) Problem, ADP for Optimal Network Reconfiguration in Distribution Automation ,Case Study of RER Integration ,Testbeds and Benchmark Systems, Challenges of Smart Transmission, Benefits of Smart Transmission, Introduction to Smart grid Distribution Systems.

REFERENCES: Janaka Ekanayake, Nick Jenekins, "Smart Grid: Technology and Applications", John Wiley and Sons, 1. Canada, 2011. James Mamoh, "Smart Grid Fundamentals of Design and Analysis", IEEE Press, John Wiley and Sons, 2. Canada, 2012. IEEE respective Standards, IEEE Press. 3.

Total: 45

9

9

9

COU	RSE OUTC	OMES:			BT Mapped
On con	mpletion of	the course, the students will be	e able to		(Highest Level)
CO1:	explain the	e basics of smart grid and its is	sues		Understanding (K2)
CO2:	explain the	e smart grid infrastructure and i	its composition		Understanding (K2)
CO3:	identify th	e computational methods and t	ools associated with it.		Applying (K3)
CO4:	make use	of the communication protocol	s and standards associated with i	t.	Applying (K3)
CO5:	develop th	ne case studies for specified p	roblem, test bench and its benc	hmark	Analyzing (K4)
	system.				
		Mappir	ng of COs with POs		
CC	Os/POs	PO1	PO2		PO3
(CO1	3			2
(CO2	3			2
(CO3	3	3		2
(CO4	3	2		2
(CO5	3	3		3
1 - Sli	ght, 2 – Mo	derate, 3 – Substantial, BT -	Bloom's Taxonomy		

18PEE08 SPECIAL ELECTRICAL MACHINES AND CONTROL

L	Т	Р	C
ľ	0	0	

redit

9

9

9

9

2

		e	v	v	e
Preamble	The aim of the course is to provide knowledge about of	construction,	workin	g of	Special
	Electrical Machines and its applications.				
Prerequisites	DC Machines, AC Machines				

UNIT – I

Permanent Magnet Synchronous Motors – Classification – Construction - Principle of operation – EMF and torque equations – Phasor diagram – Locus diagram –Power controllers – Converter Volt-ampere requirements – torque speed characteristics – Microprocessor based control.

UNIT – II

Synchronous Reluctance Motors – Constructional features – Types – Axial and Radial motors – Operating principle – Reluctance torque – Torque equation – Phasor diagram – Characteristics – Introduction to Vernier motor – Construction and Operating principle.

UNIT – III

Permanent Magnet Brushless D.C. Motors: Construction – Principle of operation – Types – Comparison between conventional DC and PMBLDC – Electronic commutation – EMF and torque equations – Speed Torque relations – Rotor position Sensors – Power controllers – Motor characteristics and Computer control

UNIT – IV

Switched Reluctance Motors: Constructional features – Principle of operation – Torque prediction – Inductance profile – Simple Application problems – Analysis – Types of Power controllers and converter topologies – Current control schemes – Torque Speed Characteristics – Hysteresis and PWM – Phase current analysis for low, Medium and High speed operation – Microprocessor based control.

UNIT – V

Stepping Motors: Constructional features – Types – Principle of operation – Permanent Magnet motor – Variable reluctance motor – Hybrid motor – Single and multi-stack configurations – Theory of torque predictions – Characteristics – Simple problems.

REFERENCES:

Miller T.J.E., "Brushless Permanent Magnet and Reluctance Motor Drives", Clarendon Press, Oxford, 1989.
 Aearnley P. P., "Stepping Motors - A Guide to Motor Theory and Practice", Peter Perengrinus, London, 1982.
 Kenjo T. and Nagamori S., "Permanent Magnet and Brushless DC Motors", Clarendon Press, London, 1988.
 Kenjo T., "Stepping Motors and Their Microprocessor Controls", Clarendon Press, London, 1984.

9 or –

COUR	RSE OUTC	OMES:			BT Mapped
On con	mpletion of	the course, the students will	be able to		(Highest Level)
CO1:	explain th	e construction, operation a	ind performance of permanent	magnet	Understanding (K2)
	synchrono				
CO2:	-	ne construction, principle us reluctance motors	of operation and characteris	tics of	Understanding (K2)
CO3:		ermanent magnet brushless e its performance	DC motor with conventional DC	c motor	Analyzing (K4)
CO4:	explain the	e construction, principle of	operation of switched reluctance	motor	Analyzing (K4)
	and analyz	e its performance			
CO5:	classify th	e stepper motor and summa	rize the operation and characteri	stics of	Understanding (K2)
	stepper mo	otor			
		Mapp	oing of COs with POs		
CC	Os/POs	PO1	PO2		PO3
(CO1	2			2
(CO2	2			2
(CO3	3	1		2
(CO4	3	1		2
(CO5	2			2
1 – Sli	ght, $2 - Mo$	derate, 3 – Substantial, BT	- Bloom's Taxonomy		

		~~~				
	3 MEMS DESIG		1'1 1	<b>[]</b> ](	•	D
(Common to Mechatronics, CADCAM, Engine Electronics and Drives & Control					onics,	Power
Electronics and Drives & Control	and instrumental	ion Engineerin	ľ	· · ·		
			L 3	T 0	P 0	Credit 3
<b>D</b> escribles This second environment the students to second	1	and a f Miana	_		ÿ	-
<b>Preamble:</b> This course equips the students to und		-	mecha	tronics	s and	apply the
knowledge of micro fabrication techniques for var <b>Prerequisites:</b> Sensors and Instrumentation and B	11					
UNIT – I	ridge course mec	nanicai				9
Materials for MEMS and Scaling Laws: Ov	anvious Mioros	waterna and n	nioraal	ootron	ioc	
principle of Microsystems - Si as a substrate mate		•				0
piezo resistors - Gallium arsenide - Quartz-piezoel						
piezo resistors - Gamun arsenide - Quartz-piezoer	eetite erystais - r	orymer - Seam	ing law	5 111 111	matu	IIIZation.
UNIT – II						9
Micro Sensors, Micro Actuators: Micro sens	sors - Micro ac	ctuation techni	iques	- Mic	ro ac	
Micromotors – Microvalves – Micro grippers						
principles, design rules, modeling and simulation,				, ,	1 /	U
UNIT – III						9
Mechanics for Microsystem Design: Static b	ending of thin	plates - Mech	anical	vibra	tion -	- Thermo
mechanics - Thermal stresses - Fracture mech		•			0	ness and
interfacial fracture mechanics-Thin film Mechanic	s-Overview of Fi	nite Element S	tress A	nalysi	is.	
UNIT – IV						9
Fabrication Process and Micromachining: Pho						
CVD - Physical vapor deposition - Deposition b	y epitaxy - Etch	ing process- B	Bulk M	licro n	nanut	acturing -
Surface micro machining – LIGA –SLIGA.						
TINTED X7						
UNIT – V	• D			1		9
Micro System Design, Packaging and Applicat						
design – Mechanical Design using Finite Element - System level – Packaging techniques - Die pr	reparation Surf	ystem packagin	ig – Di Wire	bondi	1 - De	Sealing
Applications of micro system in Automotive indu						
CAD tools to design a MEMS device.	isuy. Dio mean	ai, Acrospace	anu I	ciccon	mull	

**REFERENCES:** 

Tai-Ran Hsu, "MEMS and Microsystems Design and Manufacture", Tata McGraw-Hill, New Delhi, 2008.
 Mohamed Gad-el-Hak, "The MEMS Handbook", CRC Press, 2009.
 Reg M H. "Migramechanical Transducers: Pressure sensors, accelerators, and guroscopes", Electrical Content of the Statemeters.

Total: 45

3. Bao M.H., "Micromechanical Transducers: Pressure sensors, accelrometers, and gyroscopes", Elsevier, New York, 2000.

COUI	RSE OUTC	COMES:			BT Mapped
On co	mpletion of	the course, the students will be	e able to		(Highest Level)
CO1:	interpret t	he concepts of MEMS material	ls and scaling laws		Remembering (K1)
CO2:	explain th	e principles of micro sensors a	nd actuators		Understanding (K2)
CO3:	apply the	mechanics for micro system de	esign		Applying (K3)
CO4:	design and	d fabrication of microsystem			Applying (K3)
CO5:	design of	microsystem packaging and ap	plication		Applying (K3)
		Mappi	ing of COs with POs		
CC	Os/POs	PO1	PO2		PO3
(	CO1	2			2
(	CO2	2			2
(	CO3	3			3
(	CO4	3			3
(	CO5	3			3
1 - Sli	ight, 2 – Mo	oderate, 3 – Substantial, BT -	- Bloom's Taxonomy BT – B	looms	Гахопоту

### **18CIE15 VIRTUAL INSTRUMENTATION FOR INDUSTRIAL APPLICATIONS**

(Common to Control and Instrumentation Engineering, Embedded Systems, Applied Electronics & Power Electronics Drives branches)

			$\mathbf{L}$	Т	Р	Credit
			3	0	0	3
Prea	umble	To impart knowledge about advanced tools in virtual instrumentation applications	on to d	evelop	new i	ndustrial
Prer	requisites	Virtual Instrumentation				
UN	[T – I					9
-		tem Design Programming Concepts: G-Programming- debugging		-	-	<b>1</b>
Whi	ile Loop, S	hift registers-Structures: Case Structure, Sequence Structure, Event	Struc	ture. Ti	imed	Structure-
UN	[T – II					9
Dat	a Acquisit	ion and Interfacing: Data Acquisition in LabVIEW-Hardware ins	stallati	on and	l conf	iguration-
DA	Q compone	nts-DAQ signal Accessory-DAQ Assistant-DAQ Hardware-DAQ So	oftware	2.		-
UN	IT – III					9
		<b>The ming Toolkits:</b> Signal Processing and Analysis-Control System De	sion a	and Sin	nulatio	-
		pectral Measurements-Report generation-PID Control-Biomedical St			indiativ	JII DIGItul
			our ourp			
1						
UN	IT – IV					9
		ns Part I: Material Handling System -Fiber-Optic Component I	Inspec	tion U	sing	
<b>VI</b> Visi	Applicatio on and Mo	<b>ns Part I:</b> Material Handling System -Fiber-Optic Component I tion Components-Internet-Ready Power Network Analyzer for Power	-		0	Integrated
<b>VI</b> Visi	Applicatio		-		0	Integrated
<b>VI</b> Visi Mot	Applicatio on and Mo nitoring.		-		0	Integrated ments and
VI Visi Mor	Applicatio on and Mo nitoring. IT – V	tion Components-Internet-Ready Power Network Analyzer for Powe	r Qua	lity Me	asurei	Integrated ments and
VI Visi Mor UN	Applicatio on and Mo nitoring. IT – V Application	tion Components-Internet-Ready Power Network Analyzer for Power	r Qua s- Usi	lity Me	Time	Integrated ments and 9 d Loop to
VI Visi Mor UN VI Wri	Applicatio on and Mo nitoring. IT – V Application te Multiration	tion Components-Internet-Ready Power Network Analyzer for Power <b>ns Part II:</b> Developing Remote Front Panel LabVIEW Applications e Applications in LabVIEW - Client–Server Applications in LabV	r Qua s- Usi	lity Me	Time	Integrated ments and 9 d Loop to
VI Visi Mor UN VI Wri	Applicatio on and Mo nitoring. IT – V Application te Multiration	tion Components-Internet-Ready Power Network Analyzer for Power	r Qua s- Usi	lity Me	asurei Time I Net	Integrated nents and 9 d Loop to works for
VI Visi Mon UNI VI Wri Mea	Applicatio on and Mo nitoring. IT – V Application te Multiration surement a	tion Components-Internet-Ready Power Network Analyzer for Power <b>ns Part II:</b> Developing Remote Front Panel LabVIEW Applications e Applications in LabVIEW - Client–Server Applications in LabV and Instrumentation in Virtual Environments.	r Qua s- Usi	lity Me	asurei Time I Net	Integrated ments and 9 d Loop to
VI Visi Moi UN VI Wri Mea REI	Applicatio on and Mo nitoring. IT – V Application te Multirate surement a	tion Components-Internet-Ready Power Network Analyzer for Power <b>ns Part II:</b> Developing Remote Front Panel LabVIEW Applications e Applications in LabVIEW - Client–Server Applications in LabV and Instrumentation in Virtual Environments. S:	r Qua s- Usi IEW-	lity Me ng the Neura	asurei Time I Net	Integrated ments and 9 d Loop to works for Total: 45
VI Visi Mon UNI VI Wri Mea	Applicatio on and Mo nitoring. IT – V Application te Multirate surement a FERENCE Jovitha Je	tion Components-Internet-Ready Power Network Analyzer for Power <b>ns Part II:</b> Developing Remote Front Panel LabVIEW Applications e Applications in LabVIEW - Client–Server Applications in LabV and Instrumentation in Virtual Environments. <b>S:</b> erome, "Virtual Instrumentation using LabVIEW", 3 rd Edition, PH	r Qua s- Usi IEW-	lity Me ng the Neura	asurei Time I Net	Integrated ments and 9 d Loop to works for Total: 45
VI Visi Mor VI Wri Mea REI 1.	Applicatioon and Monitoring. $IT - V$ Applicationte Multirateasurement aFERENCEJovitha JeDelhi, 20	tion Components-Internet-Ready Power Network Analyzer for Power <b>ns Part II:</b> Developing Remote Front Panel LabVIEW Applications e Applications in LabVIEW - Client–Server Applications in LabV and Instrumentation in Virtual Environments. <b>S:</b> erome, "Virtual Instrumentation using LabVIEW", 3 rd Edition, PH 12.	r Qua s- Usi IEW-	lity Me ng the Neura arning	Time I Net	Integrated ments and 9 d Loop to works for Total: 45 Ltd., New
VI Visi Moi UN VI Wri Mea REI	Applicatio on and Mo nitoring. IT – V Application te Multirate surement a FERENCE Jovitha Je Delhi, 20 Sumathi	tion Components-Internet-Ready Power Network Analyzer for Power <b>ns Part II:</b> Developing Remote Front Panel LabVIEW Applications e Applications in LabVIEW - Client–Server Applications in LabV ind Instrumentation in Virtual Environments. <b>S:</b> erome, "Virtual Instrumentation using LabVIEW", 3 rd Edition, PH 12. S., Surekha P., "LabVIEW based Advanced Instrumentation Systemetical Systeme	r Qua s- Usi IEW-	lity Me ng the Neura arning	Time I Net	Integrated ments and 9 d Loop to works for Total: 45 Ltd., New
VI Visi Mor VI Wri Mea REI 1.	Applicatio on and Mo nitoring. IT – V Application te Multirate surement a FERENCE Jovitha Je Delhi, 20 Sumathi Business	tion Components-Internet-Ready Power Network Analyzer for Power <b>ns Part II:</b> Developing Remote Front Panel LabVIEW Applications e Applications in LabVIEW - Client–Server Applications in LabV and Instrumentation in Virtual Environments. <b>S:</b> erome, "Virtual Instrumentation using LabVIEW", 3 rd Edition, PH 12.	r Qua s- Usi IEW- HI Lea tems"	ng the Neura arning , Sprin	Time I Net	Integrated nents and 9 d Loop to works for Total: 45 Ltd., New cience &

COUI	RSE OUTO	COMES:			BT Mapped	
On co	mpletion of	the course, the students will b	e able to		(Highest Level)	
CO1:	apply stru various de	ams and employ	Applying (K3)			
CO2:	interface l	nardware devices with software	e using DAQ system		Applying (K3)	
CO3:	design, in	plement and analyze an applic	cation using different too	ls	Applying (K3)	
CO4:	apply kno		Applying (K3)			
CO5:	create virt	Applying (K3)				
	•	Маррі	ing of COs with POs	i		
CC	Os/POs	PO1	PO2		PO3	
(	CO1	1			1	
(	CO2	2			2	
(	CO3	2				
(	CO4	1				
(	CO5 2 2					
1 – Sli	ight, 2 – Mo	oderate, 3 – Substantial, BT	- Bloom's Taxonomy I	BT – Blooms Taxo	nomy	

#### **18AEE07 ENERGY CONSERVATION, MANAGEMENT AND AUDITING** (Common to Applied Electronics & Power Electronics and Drives branches)

		L	I	P	Credit
		3	0	0	3
Preamble	The aim of the course is to understand the basics of energy con auditing in industries and the associated economical benefits.	servat	ion tec	hnique	es, energy
Prerequisites	Nil				
UNIT – I					9
Energy: Energy	y Scenario – India and World – Energy Resources Availability in	India-	– Ener	gv con	sumption

**Energy:** Energy Scenario – India and World – Energy Resources Availability in India– Energy consumption – Pattern, Energy and Environment - Energy Security - Energy Conservation and its importance, Energy Conservation Act, 2001 and its features

#### UNIT – II

**Energy Conservation in Thermal Systems:** Energy Conservation in Thermal Systems – Needs and Advantages. – Properties of steam –Assessment of steam distribution losses, steam leakages, steam trapping, Various Energy Conservation measures in Steam Systems – Losses in Boilers, Energy Conservation opportunities in Boilers

#### UNIT – III

**Energy Management:** Importance of Energy Management, Financial analysis Techniques – Simple Payback Period, Return on Investment, Net present Value, Internal Rate of Return, Cash flows, Risk and Sensitivity Analysis, Financing Options, Energy Performance Contract and Role of ESCOS.

#### UNIT – IV

**Energy Efficient technologies in Electrical System:** Maximum Demand Controllers, Automatic Power Factor Controllers, Energy Efficient motors, Soft starters with Energy Saver, Variable speed drives, Energy Efficient transformers, Electronic Ballast, Energy Efficient Lighting Controls- Occupancy Sensors, Time based control.

#### $\overline{\mathbf{UNIT}} - \mathbf{V}$

**Energy Audit:** Energy Audit – Need, Principle, Types, Methodologies, Energy audit approach, Barriers, Role of Energy Manager and Auditor – Energy Audit Questionnaire – Bench marking and Energy Performance – Energy Audit Instruments, Case study.

#### **REFERENCES:**

1.	"Book I - General Aspect of Energy Management and Energy Audit", 3 rd Edition, Bureau of Energy
	Efficiency, Ministry of Power, India, 2010,
-	

- 2. "Book II Energy Efficiency in Thermal Utilities", 3rd Edition, Bureau of Energy Efficiency, Ministry of Power, India, 2010.
- 3. "Book III Energy Efficiency in Electrical Utilities", 3rd Edition, Bureau of Energy Efficiency, Ministry of Power, India, 2010.

9

9

9

9

COUR	COURSE OUTCOMES: BT Ma						
On cor	npletion of	the course, the students will be	e able to		(Highest Level)		
CO1:	1: outline the energy scenario			Understanding (K2)			
CO2:	apply the	energy performance measures	in thermal system		Applying (K3)		
CO3:	apply var	ious financial techniques for ec	conomic analysis		Applying (K3)		
CO4:	apply the	energy performance measures	in electrical system		Applying (K3)		
CO5:				Understanding (K2)			
		Mappi	ng of COs with POs				
CO	s/POs	PO1	PO2		PO3		
(	201	2					
(	CO2	3	2		2		
(	203	3	3		2		
CO4 3		3	2		2		
(	CO5	2	1		2		
1 - Sli	ght, 2 – Mo	oderate, 3 – Substantial, BT -	Bloom's Taxonomy BT -	Blooms '	Taxonomy		

#### **18AEE08 PROJECT MANAGEMENT** (Common to Applied Electronics & Power Electronics and Drives branches) L Т Р Credit 3 0 0 3 Preamble This course serves as a guide to learn and execute various phases of undertaking a project. Prerequisites Nil UNIT – I 9 **Philosophy and Concepts:** Need - Goals- Evolution-Different Forms -Project Management in Manufacturing, Service and Government Sectors; Systems Development Cycle – Conception phase: proposal, contracting - Definition phase - Execution phase: production / build, implementation - Operation phase-System Development in Industries, service and government sectors - case study. UNIT – II 9 **Planning Fundamentals:** Planning Steps – Project master plan - Tools for project planning – work break down structure, responsibility matrix, events and mile stones- Gantt charts. Network Scheduling – the critical path – early and late times – slack –float – calendar scheduling. UNIT – III 9 PERT: Time estimates – probability of finishing by target completion date – criticisms of PERT -CPM - Time cost relationship - reducing project duration - shortest duration - total project cost; Scheduling with Resource Constraints – resource loading and leveling – constrained resources; Introduction to GERT network - case studies in PERT/CPM. UNIT – IV 9 **Project Cost Estimation:** Process – classification-expert opinion, analogy estimate, parametric estimate, cost engineering, Contingency amount - Elements of budgets and Estimates - direct labour, direct non- labour, overhead, general and administrative expenses, profit and total billing. Project cost accounting - budgeting using cost accounts - cost summaries, cost schedules and forecasts - case study. Project Management Information Systems (PMIS): Functions - Computer based PMI Systems - Web-Based project management UNIT - V9 Project Control: Cost accounting systems- project control process - Project control emphasis-Performance Analysis - cost, schedule, work package analysis, performance indices, updating time estimates, technical performance measurement- Performance Index monitoring - variance limits, controlling changes, contract administration, control problems, case study. Project Evaluation: Review meetings, reporting, terminating, termination responsibilities, closing the contract, project extensions, project summary evaluation. Total: 45 **REFERENCES:** Nicholas John M., "Project Management for Business and Technology", Prentice Hall India, New 1. Delhi, 2011. Pagnoni Anastasia, "Project Engineering: Computer Oriented Planning and Operational Decision 2. Making", Springer-Verlag, Berlin, 2012. Pannerselvam R., "Project Management", PHI Learning Pvt. Ltd., 2010. 3.

COURS	SE OUTO	COMES:		BT Mapped
On com	pletion of	the course, the students will be	e able to	(Highest Level)
CO1:	understa phases	us Understanding (K2)		
CO2:	apply pr	Applying (K3)		
CO3:	understa	and various control measures in	project implementation	Understanding (K2)
CO4:	analysis budgetin goals.			
CO5:	+	, evaluate, control and executin		Evaluating (K5)
		Mappi	ng of COs with POs	
COs	/POs	PO1	PO2	PO3
C	01	1		
C	02	2	1	
C	CO3 1			
CO4 2			1	
C	05	2	1	
1 - Slig	ht, 2 – Mo	oderate, 3 – Substantial, BT -	Bloom's Taxonomy BT – Bloo	oms Taxonomy

SCADA: Concept of SCADA systems, Programming techniques for : Creation of pages, Sequencing of pages, Creating graphics and animation, Dynamos programming with variables, Trending, Historical data storage and Reporting, Alarm management, reporting of events and parameters. Comparison of different SCADA packages. Application Development using SCADA system.         UNIT – III       9         DCS Introduction: Location of DCS in Plant, functions, advantages and limitations, Comparison of DCS with PLC. DCS components/ block diagram, Architecture, Functional requirements at each level. Layout of DCS, Controller Details, Redundancy, I/O Card Details, Junction Box and Marshalling Cabinets.         UNIT – IV       9         Distributed Control System: Distributed Control Systems (DCS) – Difference between SCADA system and DCS – local control unit – programming language – communication facilities – operator interface – engineering interfaces.       9         UNIT – V       9         Applications: Applications of SCADA and DCS – Case studies of Process plants using SCADA and DCS – Advanced features / options in SCADA and DCS – Role of PLC in DCS and SCADA – comparison – field devices (Transducers, drives etc) in DCS / SCADA.				
L       T       P       Credit         3       0       0       3         Preamble       The aim of the subject is to develop an understanding of the basic concepts of automation system using SCADA & DCS and to develop the industrial applications using the same.         Prerequisites       Digital Logic Circuits       9         Automation:       Fundamentals of industrial automation, need and role of automation, evolution of automation.         HMI systems, Text display – operator panels – Touch panels – Panel PCs – Integrated displays (PLC and HMI), Rack installation, Grounding and shielding, physical, electrical, maintenance requirements- Troubleshooting.         UNIT – II       9         SCADA: Concept of SCADA systems, Programming techniques for : Creation of pages, Sequencing of pages, Creating graphics and animation, Dynamos programming with variables, Trending, Historical data storage and Reporting, Alarm management, reporting of events and parameters. Comparison of different SCADA packages. Application Development using SCADA system.         UNIT – III       9         DCS Introduction: Location of DCS in Plant, functions, advantages and limitations, Comparison of DCS with PLC. DCS components/ block diagram, Architecture, Functional requirements at each level. Layout of DCS, Controller Details, Redundancy, I/O Card Details, Junction Box and Marshalling Cabinets.         UNIT – V       9         Distributed Control System: Distributed Control Systems (DCS) – Difference between SCADA system and DCS – local control unit – programming language – communicatin facilities – operator int	(Common to Applied Electronics & Power Electronics and Drives branch	es)		
Image: Concepts of the subject is to develop an understanding of the basic concepts of automation system using SCADA & DCS and to develop the industrial applications using the same.         Prerequisites       Digital Logic Circuits       9         Automation: Fundamentals of industrial automation, need and role of automation, evolution of automation of automation.       9         Automation: Fundamentals of industrial automation, need and role of automation, evolution of automation of automation.       9         MII systems. Text display – operator panels – Touch panels – Panel PCs – Integrated displays (PLC and HMI), Rack installation, Grounding and shielding, physical, electrical, maintenance requirements-Troubleshooting.       9         UNIT – II       9         SCADA: Concept of SCADA systems, Programming techniques for : Creation of pages, Sequencing of pages, Creating graphics and animation, Dynamos programming with variables, Trending, Historical data storage and Reporting, Alarm management, reporting of events and parameters. Comparison of different SCADA packages. Application Development using SCADA system.       9         DCS Introduction: Location of DCS in Plant, functions, advantages and limitations, Comparison of DCS with PLC. DCS components/ block diagram, Architecture, Functional requirements at each level. Layout of DCS, Controller Details, Redundancy, L/O Card Details, Junction Box and Marshalling Cabinets.       9         Distributed Control System: Distributed Control Systems (DCS) – Difference between SCADA system and DCS – local control unit – programming language – communication facilities – operator interface – engineering interfaces.       9		,	Р	Credit
Preamble         The aim of the subject is to develop an understanding of the basic concepts of automation system using SCADA & DCS and to develop the industrial applications using the same.           Prerequisites         Digital Logic Circuits         9           Automation:         Fundamentals of industrial automation, need and role of automation, evolution of automation.         9           Automation:         Fundamentals of industrial automation, need and role of automation, evolution of automation.         9           Mutomation:         Fundamentals of industrial automation, need and role of automation, evolution of automation.         9           Mutomation:         Grounding and shielding, physical, electrical, maintenance requirements- troubleshooting.         9           SCADA:         Concept of SCADA systems, Programming techniques for : Creation of pages, Sequencing of pages, Creating graphics and animation, Dynamos programming with variables, Trending, Historical data storage and Reporting. Alarm management, reporting of events and parameters. Comparison of DCS with PLC. DCS components/ block diagram, Architecture, Functional requirements at each level. Layout of DCS, Controller Details, Redundancy, I/O Card Details, Junction Box and Marshalling Cabinets.         9           Distributed Control System: Distributed Control Systems (DCS) – Difference between SCADA system and DCS – Coal control unit – programming language – communication facilities – operator interface – engineering interfaces.         9           UNIT – V         9           Applications: Applications of SCADA and DCS – Case studies of Process p				
system using SCADA & DCS and to develop the industrial applications using the same.         Prerequisites       Digital Logic Circuits         UNIT - I       9         Automation: Fundamentals of industrial automation, need and role of automation, evolution of automation.         HMI systems, Text display – operator panels – Touch panels – Panel PCs – Integrated displays (PLC and HMI), Rack installation, Grounding and shielding, physical, electrical, maintenance requirements-Troubleshooting.         UNIT - II       9         SCADA: Concept of SCADA systems, Programming techniques for : Creation of pages, Sequencing of pages, Creating graphics and animation, Dynamos programming with variables, Trending, Historical data storage and Reporting, Alarm management, reporting of events and parameters. Comparison of different SCADA packages. Application Development using SCADA system.         UNIT - III       9         DCS Introduction: Location of DCS in Plant, functions, advantages and limitations, Comparison of DCS with PLC. DCS components/ block diagram, Architecture, Functional requirements at each level. Layout of DCS, controller Details, Redundancy, I/O Card Details, Junction Box and Marshalling Cabinets.         UNIT - IV       9         Distributed Control System: Distributed Control Systems (DCS) – Difference between SCADA system and DCS – local control unit – programming language – communication facilities – operator interface – engineering interfaces.         UNIT - V       9         Applications: Applications of SCADA and DCS – Case studies of Process plants using SCADA and DCS – Advanced features / options in SCADA a		-		l
Prerequisites       Digital Logic Circuits       9         Automation:       Fundamentals of industrial automation, need and role of automation, evolution of automation.       9         MMI systems, Text display – operator panels – Touch panels – Panel PCs – Integrated displays (PLC and HMI), Rack installation, Grounding and shielding, physical, electrical, maintenance requirements-Troubleshooting.       9         UNIT – II       9         SCADA:       Concept of SCADA systems, Programming techniques for : Creation of pages, Sequencing of pages, Creating graphics and animation, Dynamos programming with variables, Trending, Historical data storage and Reporting, Alarm management, reporting of events and parameters. Comparison of different SCADA packages. Application Development using SCADA system.       9         DCS Introduction:       10       9         DCS, Controller Details, Redundancy, I/O Card Details, Junction Box and Marshalling Cabinets.       9         UNIT – IV       9         Distributed Control System: Distributed Control Systems (DCS) – Difference between SCADA system and DCS – local control unit – programming language – communication facilities – operator interface – engineering interfaces.       9         UNIT – V       9         Advanced features / options in SCADA and DCS – Case studies of Process plants using SCADA and DCS – Advanced features / options in SCADA and DCS – Case studies of Process plants using SCADA and DCS – Advanced, features / options in SCADA and DCS – Case studies of Process plants using SCADA and DCS – Case (Transducers, drives etc) in DCS / SCADA.	• • •	-		
UNIT - I       9         Automation: Fundamentals of industrial automation, need and role of automation, evolution of automation, HMI systems, Text display – operator panels – Touch panels – Panel PCs – Integrated displays (PLC and HMI), Rack installation, Grounding and shielding, physical, electrical, maintenance requirements-Troubleshooting.         UNIT - II       9         SCADA: Concept of SCADA systems, Programming techniques for : Creation of pages, Sequencing of pages, Creating graphics and animation, Dynamos programming with variables, Trending, Historical data storage and Reporting, Alarm management, reporting of events and parameters. Comparison of different SCADA packages. Application Development using SCADA system.         UNIT - III       9         DCS Introduction: Location of DCS in Plant, functions, advantages and limitations, Comparison of DCS with PLC. DCS components/ block diagram, Architecture, Functional requirements at each level. Layout of DCS, Controller Details, Redundancy, I/O Card Details, Junction Box and Marshalling Cabinets.         UNIT - IV       9         Distributed Control System: Distributed Control Systems (DCS) – Difference between SCADA system and DCS – local control unit – programming language – communication facilities – operator interface – engineering interfaces.       9         UNIT - V       9         Advanced features / options in SCADA and DCS – Case studies of Process plants using SCADA and DCS – Case studies of Process plants using SCADA and DCS – advanced features / options in SCADA and DCS – Case studies of Process plants using SCADA and DCS – davanced features / options in SCADA and DCS – Case studies of Process plants using SCADA and DCS – Case		s usili	g the s	same.
Automation: Fundamentals of industrial automation, need and role of automation, evolution of automation.         HMI systems, Text display – operator panels – Touch panels – Panel PCs – Integrated displays (PLC and HMI), Rack installation, Grounding and shielding, physical, electrical, maintenance requirements-Troubleshooting.         UNIT – II       9         SCADA: Concept of SCADA systems, Programming techniques for : Creation of pages, Sequencing of pages, Creating graphics and animation, Dynamos programming with variables, Trending, Historical data storage and Reporting, Alarm management, reporting of events and parameters. Comparison of different SCADA packages. Application Development using SCADA system.         UNIT – III       9         DCS Introduction: Location of DCS in Plant, functions, advantages and limitations, Comparison of DCS with PLC. DCS components/ block diagram, Architecture, Functional requirements at each level. Layout of DCS, controller Details, Redundancy, I/O Card Details, Junction Box and Marshalling Cabinets.         UNIT – IV       9         Distributed Control System: Distributed Control Systems (DCS) – Difference between SCADA system and DCS – local control unit – programming language – communication facilities – operator interface – engineering interfaces.       9         UNIT – V       9         Advanced features / options in SCADA and DCS – Case studies of Process plants using SCADA and DCS – Advanced features / options in SCADA and DCS – Role of PLC in DCS and SCADA – comparison – field devices (Transducers, drives etc) in DCS / SCADA.         Total: 45         REFERENCES:       1       1 <t< td=""><td></td><td></td><th></th><td></td></t<>				
HMI systems, Text display – operator panels – Touch panels – Panel PCs – Integrated displays (PLC and HMI), Rack installation, Grounding and shielding, physical, electrical, maintenance requirements-Troubleshooting.         UNIT – II       9         SCADA: Concept of SCADA systems, Programming techniques for : Creation of pages, Sequencing of pages, Creating graphics and animation, Dynamos programming with variables, Trending, Historical data storage and Reporting, Alarm management, reporting of events and parameters. Comparison of different SCADA packages. Application Development using SCADA system.         UNIT – III       9         DCS Introduction: Location of DCS in Plant, functions, advantages and limitations, Comparison of DCS with PLC. DCS components/ block diagram, Architecture, Functional requirements at each level. Layout of DCS, Controller Details, Redundancy, I/O Card Details, Junction Box and Marshalling Cabinets.         UNIT – IV       9         Distributed Control System: Distributed Control Systems (DCS) – Difference between SCADA system and DCS – local control unit – programming language – communication facilities – operator interface – engineering interfaces.         UNIT – V       9         Applications: Applications of SCADA and DCS – Case studies of Process plants using SCADA and DCS – local control unit – programming language – communication facilities – operator interface – engineering interfaces.         UNIT – V       9         Applications: Applications of SCADA and DCS – Case studies of Process plants using SCADA and DCS – Advanced features / options in SCADA and DCS – Role of PLC in DCS and SCADA – comparison – field devices (Transducers, drives etc) i			~	
SCADA: Concept of SCADA systems, Programming techniques for : Creation of pages, Sequencing of pages, Creating graphics and animation, Dynamos programming with variables, Trending, Historical data storage and Reporting, Alarm management, reporting of events and parameters. Comparison of different SCADA packages. Application Development using SCADA system.         UNIT – III       9         DCS Introduction: Location of DCS in Plant, functions, advantages and limitations, Comparison of DCS with PLC. DCS components/ block diagram, Architecture, Functional requirements at each level. Layout of DCS, Controller Details, Redundancy, I/O Card Details, Junction Box and Marshalling Cabinets.         UNIT – IV       9         Distributed Control System: Distributed Control Systems (DCS) – Difference between SCADA system and DCS – local control unit – programming language – communication facilities – operator interface – engineering interfaces.         UNIT – V       9         Applications: Applications of SCADA and DCS – Case studies of Process plants using SCADA and DCS – Advanced features / options in SCADA and DCS – Role of PLC in DCS and SCADA – comparison – field devices (Transducers, drives etc) in DCS / SCADA.         Total: 45         REFERENCES:         1       Lukas Michael P., "Distributed Control Systems", Van Nostrand Reinfold Company, 2002.         2.       Dobrivojie Popovic and Vijay P. Bhatkar, "Distributed Computer Control for Industrial Automation", CRC Press, 1990.	HMI systems, Text display – operator panels – Touch panels – Panel PCs – Integrate HMI), Rack installation, Grounding and shielding, physical, electrical, mainter	d dis	plays	(PLC and
SCADA: Concept of SCADA systems, Programming techniques for : Creation of pages, Sequencing of pages, Creating graphics and animation, Dynamos programming with variables, Trending, Historical data storage and Reporting, Alarm management, reporting of events and parameters. Comparison of different SCADA packages. Application Development using SCADA system.         UNIT – III       9         DCS Introduction: Location of DCS in Plant, functions, advantages and limitations, Comparison of DCS with PLC. DCS components/ block diagram, Architecture, Functional requirements at each level. Layout of DCS, Controller Details, Redundancy, I/O Card Details, Junction Box and Marshalling Cabinets.         UNIT – IV       9         Distributed Control System: Distributed Control Systems (DCS) – Difference between SCADA system and DCS – local control unit – programming language – communication facilities – operator interface – engineering interfaces.         UNIT – V       9         Applications: Applications of SCADA and DCS – Case studies of Process plants using SCADA and DCS – Advanced features / options in SCADA and DCS – Role of PLC in DCS and SCADA – comparison – field devices (Transducers, drives etc) in DCS / SCADA.         Total: 45         REFERENCES:         1       Lukas Michael P., "Distributed Control Systems", Van Nostrand Reinfold Company, 2002.         2.       Dobrivojie Popovic and Vijay P. Bhatkar, "Distributed Computer Control for Industrial Automation", CRC Press, 1990.	UNIT – II			9
UNIT - III       9         DCS Introduction: Location of DCS in Plant, functions, advantages and limitations, Comparison of DCS with PLC. DCS components/ block diagram, Architecture, Functional requirements at each level. Layout of DCS, Controller Details, Redundancy, I/O Card Details, Junction Box and Marshalling Cabinets.         UNIT - IV       9         Distributed Control System: Distributed Control Systems (DCS) – Difference between SCADA system and DCS – local control unit – programming language – communication facilities – operator interface – engineering interfaces.       9         UNIT - V       9         Applications: Applications of SCADA and DCS – Case studies of Process plants using SCADA and DCS – Advanced features / options in SCADA and DCS – Role of PLC in DCS and SCADA – comparison – field devices (Transducers, drives etc) in DCS / SCADA.         Total: 45         REFERENCES:         1.       Lukas Michael P., "Distributed Control Systems", Van Nostrand Reinfold Company, 2002.         2.       Dobrivojie Popovic and Vijay P. Bhatkar, "Distributed Computer Control for Industrial Automation", CRC Press, 1990.	pages, Creating graphics and animation, Dynamos programming with variables, Trenstorage and Reporting, Alarm management, reporting of events and parameters. Con-	ding,	Histo	rical data
DCS Introduction: Location of DCS in Plant, functions, advantages and limitations, Comparison of DCS with PLC. DCS components/ block diagram, Architecture, Functional requirements at each level. Layout of DCS, Controller Details, Redundancy, I/O Card Details, Junction Box and Marshalling Cabinets.         UNIT – IV       9         Distributed Control System: Distributed Control Systems (DCS) – Difference between SCADA system and DCS – local control unit – programming language – communication facilities – operator interface – engineering interfaces.       9         UNIT – V       9         Applications: Applications of SCADA and DCS – Case studies of Process plants using SCADA and DCS – Advanced features / options in SCADA and DCS – Role of PLC in DCS and SCADA – comparison – field devices (Transducers, drives etc) in DCS / SCADA.       9         REFERENCES:       1       Lukas Michael P., "Distributed Control Systems", Van Nostrand Reinfold Company, 2002.       2         0       Dobrivojie Popovic and Vijay P. Bhatkar, "Distributed Computer Control for Industrial Automation", CRC Press, 1990.       1				
DCS Introduction: Location of DCS in Plant, functions, advantages and limitations, Comparison of DCS with PLC. DCS components/ block diagram, Architecture, Functional requirements at each level. Layout of DCS, Controller Details, Redundancy, I/O Card Details, Junction Box and Marshalling Cabinets.         UNIT – IV       9         Distributed Control System: Distributed Control Systems (DCS) – Difference between SCADA system and DCS – local control unit – programming language – communication facilities – operator interface – engineering interfaces.       9         UNIT – V       9         Applications: Applications of SCADA and DCS – Case studies of Process plants using SCADA and DCS – Advanced features / options in SCADA and DCS – Role of PLC in DCS and SCADA – comparison – field devices (Transducers, drives etc) in DCS / SCADA.       9         REFERENCES:       1       Lukas Michael P., "Distributed Control Systems", Van Nostrand Reinfold Company, 2002.       2         0       Dobrivojie Popovic and Vijay P. Bhatkar, "Distributed Computer Control for Industrial Automation", CRC Press, 1990.       1				9
Distributed Control System: Distributed Control Systems (DCS) – Difference between SCADA system and DCS – local control unit – programming language – communication facilities – operator interface – engineering interfaces. UNIT – V 9 Applications: Applications of SCADA and DCS – Case studies of Process plants using SCADA and DCS – Advanced features / options in SCADA and DCS – Role of PLC in DCS and SCADA – comparison – field devices (Transducers, drives etc) in DCS / SCADA. Total: 45 REFERENCES: 1. Lukas Michael P., "Distributed Control Systems", Van Nostrand Reinfold Company, 2002. 2. Dobrivojie Popovic and Vijay P. Bhatkar, "Distributed Computer Control for Industrial Automation", CRC Press, 1990.	with PLC. DCS components/ block diagram, Architecture, Functional requirements at a	each l	evel.	
Distributed Control System: Distributed Control Systems (DCS) – Difference between SCADA system and DCS – local control unit – programming language – communication facilities – operator interface – engineering interfaces. UNIT – V 9 Applications: Applications of SCADA and DCS – Case studies of Process plants using SCADA and DCS – Advanced features / options in SCADA and DCS – Role of PLC in DCS and SCADA – comparison – field devices (Transducers, drives etc) in DCS / SCADA. Total: 45 REFERENCES: 1. Lukas Michael P., "Distributed Control Systems", Van Nostrand Reinfold Company, 2002. 2. Dobrivojie Popovic and Vijay P. Bhatkar, "Distributed Computer Control for Industrial Automation", CRC Press, 1990.				0
Applications: Applications of SCADA and DCS – Case studies of Process plants using SCADA and DCS –         Advanced features / options in SCADA and DCS – Role of PLC in DCS and SCADA – comparison – field devices (Transducers, drives etc) in DCS / SCADA.         Total: 45         REFERENCES:         1.       Lukas Michael P., "Distributed Control Systems", Van Nostrand Reinfold Company, 2002.         2.       Dobrivojie Popovic and Vijay P. Bhatkar, "Distributed Computer Control for Industrial Automation", CRC Press, 1990.	<b>Distributed Control System:</b> Distributed Control Systems (DCS) – Difference between DCS – local control unit – programming language – communication facilities –		-	stem and
Applications: Applications of SCADA and DCS – Case studies of Process plants using SCADA and DCS –         Advanced features / options in SCADA and DCS – Role of PLC in DCS and SCADA – comparison – field devices (Transducers, drives etc) in DCS / SCADA.         Total: 45         REFERENCES:         1.       Lukas Michael P., "Distributed Control Systems", Van Nostrand Reinfold Company, 2002.         2.       Dobrivojie Popovic and Vijay P. Bhatkar, "Distributed Computer Control for Industrial Automation", CRC Press, 1990.				
Advanced features / options in SCADA and DCS – Role of PLC in DCS and SCADA – comparison – field devices (Transducers, drives etc) in DCS / SCADA.         Total: 45         REFERENCES:         1.       Lukas Michael P., "Distributed Control Systems", Van Nostrand Reinfold Company, 2002.         2.       Dobrivojie Popovic and Vijay P. Bhatkar, "Distributed Computer Control for Industrial Automation", CRC Press, 1990.		004		
REFERENCES:         1.       Lukas Michael P., "Distributed Control Systems", Van Nostrand Reinfold Company, 2002.         2.       Dobrivojie Popovic and Vijay P. Bhatkar, "Distributed Computer Control for Industrial Automation", CRC Press, 1990.	Advanced features / options in SCADA and DCS - Role of PLC in DCS and SCADA			
<ol> <li>Lukas Michael P., "Distributed Control Systems", Van Nostrand Reinfold Company, 2002.</li> <li>Dobrivojie Popovic and Vijay P. Bhatkar, "Distributed Computer Control for Industrial Automation", CRC Press, 1990.</li> </ol>				Total: 45
2. Dobrivojie Popovic and Vijay P. Bhatkar, "Distributed Computer Control for Industrial Automation", CRC Press, 1990.				
CRC Press, 1990.				
		lustria	al Aut	omation",

COURS	SE OUTC	COMES:		BT Mapped
On com	pletion of	the course, the students will be	e able to	(Highest Level)
CO1:	demonst	Understanding (K2)		
CO2:	develop	programming with SCADA sys	stem	Applying (K3)
CO3:	compare	and explain the basic concepts	of DCS and SCADA	Applying (K3)
CO4:	develop	a DCS and SCADA system	n for a process to meet a set of	of Applying (K3)
	specifica	ations		
CO5:	apply the	e SCADA and DCS in various	industrial applications	Analyzing (K4)
		Mappir	ng of COs with POs	
COs	/POs	PO1	PO2	PO3
CO	D1	1		
CO	D2	3	2	3
CO	03	1		
CO	CO4 3 2		2	3
CO	D5	3	2	3
1 – Sligl	ht, 2 – Mo	oderate, 3 – Substantial, BT -	Bloom's Taxonomy	

	<b>18PEE09 MODERN POWER SYSTEM PROTECTION</b>			
		Т	P	Credit
	3	0	0	3
Preamble	The objective of the course is to provide knowledge about the need	of pro	ection,	operation
	of relays and its modern trend			
Prerequisites	Power System Protection and Switch Gear			
UNIT – I				9
elements and re	General philosophy of protection – Characteristic functions of protect elay terminology – Classification of Relays – Construction and opera eview of conventional protection schemes for Transmission lines atment only)	tion of	Electro	omagnetic
UNIT – II				9
Static Over cur	Solid state devices used in static protection – Amplitude comparator a rent relays: Non-directional, Directional - Synthesis of Mho relay, Read	ctance	relay, I	mpedance
Static Over cur		ctance	relay, I	mpedance
Static Over currelay and Qua	rent relays: Non-directional, Directional - Synthesis of Mho relay, Read	ctance	relay, I	mpedance
Static Over cur relay and Qua only) UNIT – III Microprocesso	rent relays: Non-directional, Directional - Synthesis of Mho relay, Read drilateral Distance relay using Static comparators, Differential relay or Based Relays: Hardware and software for the measurement of volt	etance v.(Qua	relay, I litative	mpedance treatment 9 Trequency,
Static Over cur relay and Qua only) UNIT – III Microprocesso phase angle –	rent relays: Non-directional, Directional - Synthesis of Mho relay, Read drilateral Distance relay using Static comparators, Differential relay <b>or Based Relays:</b> Hardware and software for the measurement of volt Microprocessor implementation of over current relays – Inverse	age, cu	relay, I litative urrent, f charact	mpedance treatment 9 Trequency, teristics –
Static Over cur relay and Qua only) UNIT – III Microprocesso phase angle – Directional rela	rent relays: Non-directional, Directional - Synthesis of Mho relay, Read drilateral Distance relay using Static comparators, Differential relay <b>or Based Relays:</b> Hardware and software for the measurement of volt Microprocessor implementation of over current relays – Inverse ay – Impedance relay– Mho relay, Differential relay – Numerical rela	age, cu time y algo	relay, I litative urrent, f charact	mpedance treatment 9 Trequency, teristics – - SCADA
Static Over cur relay and Qua only) UNIT – III Microprocesso phase angle – Directional rela	rent relays: Non-directional, Directional - Synthesis of Mho relay, Read drilateral Distance relay using Static comparators, Differential relay <b>or Based Relays:</b> Hardware and software for the measurement of volt Microprocessor implementation of over current relays – Inverse	age, cu time y algo	relay, I litative urrent, f charact	mpedance treatment 9 Trequency, teristics – - SCADA
Static Over cur relay and Qua only) UNIT – III Microprocesso phase angle – Directional rela	rent relays: Non-directional, Directional - Synthesis of Mho relay, Read drilateral Distance relay using Static comparators, Differential relay <b>or Based Relays:</b> Hardware and software for the measurement of volt Microprocessor implementation of over current relays – Inverse ay – Impedance relay– Mho relay, Differential relay – Numerical rela	age, cu time y algo	relay, I litative urrent, f charact	mpedance treatment 9 Trequency, teristics – - SCADA

#### UNIT – V

**Modern Trends in Protective Relaying:** Pilot relay protection: Wire pilot relaying, Carrier current pilot relaying, Microwave pilot relaying – Fibre-optic based relaying – Apparatus Protection: Digital protection of generators, Digital protection of Transformers – Protection of Long and short lines– Application of Artificial Intelligence to power system protection – (Qualitative treatment only)

Total: 45

REI	ERENCES:
1.	Paithankar Y.G., Bhide S.R., "Fundamentals of Power System Protection", Prentice Hall India, 2011.
2.	Badri Ram and Vishwakarma D.N., "Power System Protection and Switchgear", Tata McGraw Hill,
	New Delhi, 2011.
3.	Blackburn J.L., "Protective Relaying: Principles and Applications", CRC Press Inc., 2014.

COU	RSE OUTC	BT Mapped		
On con	mpletion of	the course, the students will b	be able to	(Highest Level)
CO1:	recall the	Understanding (K2)		
CO2:	explain th	e importance of Static relays		Understanding (K2)
CO3:	apply the	microprocessor concepts in re	lays for various industrial applications	Applying (K3)
CO4:	develop al	gorithms for DSP and travelli	ng wave relays	Applying (K3)
CO5:	O5: categorize the various concepts of modern trends in protective relaying		Understanding (K2)	
		Марр	ing of COs with POs	
CC	Os/POs	PO1	PO2	PO3
(	CO1	3		2
(	CO2	3		2
(	CO3 3 2		2	
(	CO4 3 2		2	
(	CO5	3	3	2
1 – Sli	ight, 2 – Mo	oderate, 3 – Substantial, BT	- Bloom's Taxonomy	

#### 18PEE10 COMPUTER AIDED SIMULATION AND **DESIGN OF POWER ELECTRONIC SYSTEMS**

		L	Т	Р	Credit
		3	0	0	3
Preamble	The ultimate intention of this subject is to model/simulat semiconductors, electrical machines and power electronics for controlling and conversion of energy.			-	-
Prerequisites	Electron Devices, Power Electronics				
UNIT – I					9
Methods of an File formats - SPICE model Toolboxes of	<ul> <li>Importance of simulation – Challenges in simulation -General nalysis of power electronic systems – Review of power electronic description of circuit elements - Circuit description – Output v s of Diode, Thyristor, Triac, Power MOSFET, IGBT and MCT.</li> <li>MATLAB - Programming and file processing in MATLAB – I SIMULINK - S-Functions - Converting S Functions to blocks.</li> </ul>	levices ariabl <b>MAT</b>	s and ci es - Do <b>LAB a</b>	rcuits. ot com and Si	<b>PSpice</b> : imands - i <b>mulink</b> :
UNIT – II				_ ~	9
	Transient Simulation: Introduction, Numerical methods for		0		•
	thods. Stiff equations, Adaptive step size, Transient analysis in c	ircuit	simulat	10n, E	quivalent
circuit approa	ch, and practical aspects.				
UNIT – III		1	6 D: - 1-	COD	
•	d Simulation of Power Electronic Devices and Machines: Mode	-			
	wer Transistors and their simulation - Simulation of gate/base its. State space modeling and simulation of linear systems - Electric				
	DC, Induction and synchronous machines		lacinite	s mou	lening and
its sinuation.	De, induction and synchronous machines				
UNIT – IV					9
	<b>Converters:</b> Diode rectifiers -Controlled rectifiers - AC voltage	contro	ollers -	DC c	
	ers – waveform control - Voltage source and current source				
	- Resonant pulse inverters - Zero current switching and zero voltage			-	
			0		
UNIT – V					9
Simulation of	f Drives: Block diagram of an electric drives - Rectifier fed DC	c moto	ors – C	hoppe	r fed DC
	ation of closed loop speed control schemes for DC motors — VSI a				
	Simulation of power factor correction schemes.				
					Total: 45
REFERENC	ES:				
1	in Ong, "Dynamic Simulation of Electric Machinery: Using MA	TLA	B/ Sim	ulink"	, Prentice
	R, New Jersey, 1998.			1 -	
	. Mallick, "MATLAB and SIMULINK: Introduction to Applica	tions'	', Scite	ch Pu	blications
(India), 2	2006.				d
	I. Muhammad, "Introduction to PSPICE using Orcad for Circuits a	and El	ectroni	cs", 3'	" Edition
Pearson/	Prentice Hall, 2004.				

Pearson/Prentice Hall, 2004.

COU	RSE OUTC	COMES:		BT Mapped
On con	mpletion of	the course, the students will be	e able to	(Highest Level)
CO1:	choose su	Understanding (K2)		
CO2:	interpret a	pplication of numerical method	ls for transient response	Understanding (K2)
CO3:	model va	rious semiconductor and e	electrical machines in SIMULINK	Applying (K3)
	environme	ent		
CO4:	analyze di	fferent types of power electron	nic circuits	Analyzing (K4)
CO5:	choose a s	uitable drives for industrial app	olication	Applying (K3)
		Mappir	ng of COs with POs	
CC	Os/POs	PO1	PO2	PO3
(	CO1	3	1	3
(	CO2	3	2	2
(	CO3 3 3		3	
(	CO4 3 3		3	
(	CO5         3         2		3	
1 - Sli	ght, 2 – Mo	oderate, 3 – Substantial, BT -	Bloom's Taxonomy	

	L	Т	Р	Credit
	3	0	0	3
Preamble	This course is introduced to comprehend the microcontroller family	and i	ts prog	gramming
	concepts for designing & controlling a real time embedded system.		1 (	
Prerequisites	Microprocessors and Microcontrollers			
UNIT – I	1			9
	: Introduction to Embedded systems - Von Neumann and Harvard ar	chitec	ture –	Need o
	lers – selection criterion - PIC Microcontroller 16F87X: Architecture –			
	anizations: Program Memory, Data Memory – Instruction Set – Simple program			
	ruction sets – Interrupts.	0		<b>.</b>
<u>C</u>				
UNIT – II				9
	terface Support using PIC: PIC Peripherals – I/O Parallel	Ports	- 7	imers -
•	pare/PWM (CCP) Modules - Control registers – Serial ports – Master Sy			
	C mode and in SPI mode – USART – Interfacing of PIC: Analog-to-digit			
	ociated with the peripherals – Initializing the Peripheral modules using Asser			
0			unzuuz	
			unguag	,c.
UNIT – III			unguag	
				9
ARM Proces	ssor and Programming: General concepts - ARM7 - Instruction Set A	Archite	cture,	Levels in
ARM Procest architecture,	ssor and Programming: General concepts - ARM7 - Instruction Set A Functional description - processor and memory organization - Introduction	Archite	cture, SC arc	Levels in chitecture
ARM Proces architecture, pipelining, In	<b>ssor and Programming</b> : General concepts - ARM7 - Instruction Set A Functional description - processor and memory organization - Introduction struction issue and execution - Instruction formats - Addressing modes - Da	Archite	cture, SC arc	Levels ir
architecture, 1 pipelining, In	ssor and Programming: General concepts - ARM7 - Instruction Set A Functional description - processor and memory organization - Introduction	Archite	cture, SC arc	Levels ir
<b>ARM Proce</b> architecture, pipelining, In ordering – Sin	<b>ssor and Programming</b> : General concepts - ARM7 - Instruction Set A Functional description - processor and memory organization - Introduction struction issue and execution - Instruction formats - Addressing modes - Da	Archite	cture, SC arc	Levels ir
ARM Proces architecture, pipelining, In ordering – Sin UNIT – IV	<b>ssor and Programming</b> : General concepts - ARM7 - Instruction Set A Functional description - processor and memory organization - Introduction struction issue and execution - Instruction formats - Addressing modes - Da nple programs using Assembly language Instruction sets.	Archite to Rl ata ali	cture, SC arc gnmen	Levels ir chitecture t and byte
ARM Proces architecture, pipelining, In ordering – Sin UNIT – IV Embedded S	ssor and Programming: General concepts - ARM7 - Instruction Set A Functional description - processor and memory organization - Introduction struction issue and execution - Instruction formats - Addressing modes - Da nple programs using Assembly language Instruction sets. ystem Interfaces: Sensors – Actuators – Interfacing LCD Display – Keypa	Archite to Rl ata ali ad Inte	cture, SC arc gnmen	Levels in chitecture t and byte g - Relays
ARM Proces architecture, pipelining, In ordering – Sin UNIT – IV Embedded S – Seven segn	ssor and Programming: General concepts - ARM7 - Instruction Set A Functional description - processor and memory organization - Introduction struction issue and execution - Instruction formats - Addressing modes - Da mple programs using Assembly language Instruction sets. ystem Interfaces: Sensors – Actuators – Interfacing LCD Display – Keypa nent Display – Organic LED – Optocoupler - Motor Control – H-bridge co	Archite to Rl ata ali ad Inte	cture, SC arc gnmen	Levels in chitecture t and byte g - Relays
ARM Proces architecture, pipelining, In ordering – Sin UNIT – IV Embedded S – Seven segn	ssor and Programming: General concepts - ARM7 - Instruction Set A Functional description - processor and memory organization - Introduction struction issue and execution - Instruction formats - Addressing modes - Da nple programs using Assembly language Instruction sets. ystem Interfaces: Sensors – Actuators – Interfacing LCD Display – Keypa	Archite to Rl ata ali ad Inte	cture, SC arc gnmen	Levels in chitecture t and byte g - Relay
ARM Proces architecture, 1 pipelining, In ordering – Sin UNIT – IV Embedded S – Seven segn control - Con	ssor and Programming: General concepts - ARM7 - Instruction Set A Functional description - processor and memory organization - Introduction struction issue and execution - Instruction formats - Addressing modes - Da mple programs using Assembly language Instruction sets. ystem Interfaces: Sensors – Actuators – Interfacing LCD Display – Keypa nent Display – Organic LED – Optocoupler - Motor Control – H-bridge co	Archite to Rl ata ali ad Inte	cture, SC arc gnmen	Levels ir chitecture t and byte g - Relays per motor
ARM Proces architecture, i pipelining, In ordering – Sin UNIT – IV Embedded S – Seven segn control - Con UNIT – V	ssor and Programming: General concepts - ARM7 - Instruction Set A Functional description - processor and memory organization - Introduction struction issue and execution - Instruction formats - Addressing modes - Da mple programs using Assembly language Instruction sets. ystem Interfaces: Sensors – Actuators – Interfacing LCD Display – Keypa tent Display – Organic LED – Optocoupler - Motor Control – H-bridge co trolling DC/AC appliances.	Archite to Rl ata ali ad Inte	cture, SC arc gnmen erfacing – Step	Levels ir chitecture t and byte g - Relays per motor
ARM Proces architecture, 1 pipelining, In ordering – Sin UNIT – IV Embedded S – Seven segn control - Con UNIT – V System Desi	ssor and Programming: General concepts - ARM7 - Instruction Set A Functional description - processor and memory organization - Introduction struction issue and execution - Instruction formats - Addressing modes - Da nple programs using Assembly language Instruction sets. ystem Interfaces: Sensors – Actuators – Interfacing LCD Display – Keypa nent Display – Organic LED – Optocoupler - Motor Control – H-bridge co trolling DC/AC appliances.	archite to Rl ata ali ad Inte ontrol	cture, SC arc gnmen erfacing – Step and In	Levels in chitecture t and byte g - Relay per moto
ARM Proces architecture, i pipelining, In ordering – Sin UNIT – IV Embedded S – Seven segn control - Con UNIT – V System Desi Measurement	ssor and Programming: General concepts - ARM7 - Instruction Set A Functional description - processor and memory organization - Introduction struction issue and execution - Instruction formats - Addressing modes - Da mple programs using Assembly language Instruction sets. ystem Interfaces: Sensors – Actuators – Interfacing LCD Display – Keypa nent Display – Organic LED – Optocoupler - Motor Control – H-bridge co trolling DC/AC appliances. gn and Case Study Applications: Generation of Gate signals for conv of frequency - Standalone Data Acquisition System – Automatic Vehicle A	archite to Rl ata ali ad Inte ontrol	cture, SC arc gnmen erfacing – Step and In	Levels in chitecture t and byte g - Relay per moto
ARM Proces architecture, i pipelining, In ordering – Sin UNIT – IV Embedded S – Seven segn control - Con UNIT – V System Desi Measurement	ssor and Programming: General concepts - ARM7 - Instruction Set A Functional description - processor and memory organization - Introduction struction issue and execution - Instruction formats - Addressing modes - Da nple programs using Assembly language Instruction sets. ystem Interfaces: Sensors – Actuators – Interfacing LCD Display – Keypa nent Display – Organic LED – Optocoupler - Motor Control – H-bridge co trolling DC/AC appliances.	archite to Rl ata ali ad Inte ontrol	cture, SC arc gnmen rfacing – Step and In at Aler	Levels in chitecture t and byte g - Relays per moto
ARM Proces architecture, i pipelining, In ordering – Sin UNIT – IV Embedded S – Seven segn control - Con UNIT – V System Desi Measurement Brain Machin	ssor and Programming: General concepts - ARM7 - Instruction Set A Functional description - processor and memory organization - Introduction struction issue and execution - Instruction formats - Addressing modes - Da mple programs using Assembly language Instruction sets. ystem Interfaces: Sensors – Actuators – Interfacing LCD Display – Keypa ent Display – Organic LED – Optocoupler - Motor Control – H-bridge co trolling DC/AC appliances. gn and Case Study Applications: Generation of Gate signals for conv of frequency - Standalone Data Acquisition System – Automatic Vehicle A te Interface (BMI).	archite to Rl ata ali ad Inte ontrol	cture, SC arc gnmen rfacing – Step and In at Aler	Levels in chitecture t and byte g - Relay per moto
ARM Proces architecture, i pipelining, In ordering – Sin UNIT – IV Embedded S – Seven segn control - Con UNIT – V System Desi Measurement Brain Machin	ssor and Programming: General concepts - ARM7 - Instruction Set A Functional description - processor and memory organization - Introduction struction issue and execution - Instruction formats - Addressing modes - Da nple programs using Assembly language Instruction sets. ystem Interfaces: Sensors – Actuators – Interfacing LCD Display – Keypa nent Display – Organic LED – Optocoupler - Motor Control – H-bridge co trolling DC/AC appliances. gn and Case Study Applications: Generation of Gate signals for conv of frequency - Standalone Data Acquisition System – Automatic Vehicle A te Interface (BMI). ES:	archite to Rl ata ali ad Inte ontrol	cture, SC arc gnmen erfacing – Step and In at Alert	Levels in chitecture t and byte g - Relay per moto nverters - t System Total: 45
ARM Proces architecture, i pipelining, In ordering – Sin UNIT – IV Embedded S – Seven segn control - Con UNIT – V System Desi Measurement Brain Machin REFERENC 1. Ajay V.	ssor and Programming: General concepts - ARM7 - Instruction Set A Functional description - processor and memory organization - Introduction struction issue and execution - Instruction formats - Addressing modes - Dample programs using Assembly language Instruction sets.           ystem Interfaces: Sensors – Actuators – Interfacing LCD Display – Keypatent Display – Organic LED – Optocoupler - Motor Control – H-bridge controlling DC/AC appliances.           gn and Case Study Applications: Generation of Gate signals for convol frequency - Standalone Data Acquisition System – Automatic Vehicle A te Interface (BMI).           ES:           Deshmukh, "Microcontrollers: Theory and Applications", Tata McGraw Hill	archite to Rl ata ali ad Inte ontrol rerters accider	cture, SC arc gnmen rfacing – Step and In at Alert	Levels in chitecture t and byte g - Relaya per moto nverters - t System Total: 45
ARM Procesarchitecture, ippelining, Inordering – SinUNIT – IVEmbedded S– Seven segncontrol - ConUNIT – VSystem DesiMeasurementBrain MachinREFERENC1.Ajay V.2.Muhami	ssor and Programming: General concepts - ARM7 - Instruction Set A Functional description - processor and memory organization - Introduction struction issue and execution - Instruction formats - Addressing modes - Da nple programs using Assembly language Instruction sets. ystem Interfaces: Sensors – Actuators – Interfacing LCD Display – Keypa ent Display – Organic LED – Optocoupler - Motor Control – H-bridge co trolling DC/AC appliances. gn and Case Study Applications: Generation of Gate signals for conv of frequency - Standalone Data Acquisition System – Automatic Vehicle A e Interface (BMI). ES: Deshmukh, "Microcontrollers: Theory and Applications", Tata McGraw Hil mad Ali Mazidi, Rolin D. Mckinlay, Danny Causey, "PIC Microcontroller and the state of the sta	archite to Rl ata ali ad Inte ontrol rerters accider	cture, SC arc gnmen rfacing – Step and In at Alert	Levels in chitecture t and byte g - Relaya per moto nverters - t System Total: 45
ARM Proces architecture, i pipelining, In ordering – Sin UNIT – IV Embedded S – Seven segn control - Con UNIT – V System Desi Measurement Brain Machin REFERENC 1. Ajay V. 2. Muhami using As	ssor and Programming: General concepts - ARM7 - Instruction Set A Functional description - processor and memory organization - Introduction struction issue and execution - Instruction formats - Addressing modes - Dample programs using Assembly language Instruction sets.           ystem Interfaces: Sensors – Actuators – Interfacing LCD Display – Keypatent Display – Organic LED – Optocoupler - Motor Control – H-bridge controlling DC/AC appliances.           gn and Case Study Applications: Generation of Gate signals for convol frequency - Standalone Data Acquisition System – Automatic Vehicle A te Interface (BMI).           ES:           Deshmukh, "Microcontrollers: Theory and Applications", Tata McGraw Hill	Archite a to Rl ata ali ad Inte ad Inte ontrol verters acciden II, New nd Em	cture, SC arc gnmen erfacing – Step and In at Alert v Delhi beddec	Levels in chitecture t and byt g - Relay per moto nverters - t System <b>Total: 4</b> i, 2007.

COUI	RSE OUTC	COMES:			BT Mapped
On co	mpletion of	(Highest Level)			
CO1:		the basic architecture and dependent dependent of the basic architecture and dependent of the basic architecture and the basic architecture and the basic architecture archite	epts of	Understanding (K2)	
CO2:	apply the application	l time	Applying (K3)		
CO3:	illustrate t processor	of arm	Understanding (K2)		
CO4:	analyze th	e various interfaces for the eml	bedded control		Applying (K3)
CO5:	apply the	system design concepts for vari	ious applications		Applying (K3)
		Mappi	ng of COs with POs		
CC	Os/POs	PO1	PO2	PO3	
(	CO1	3			2
(	CO2	3			2
(	CO3 3 1			2	
(	CO4 3 2		2	2	
(	CO5	2			
1 – Sli	ight, 2 – Mo	oderate, 3 – Substantial, BT -	- Bloom's Taxonomy		

		18PEE12 HYBRID ELECTRIC VEHICLE SYSTEM	MS			
			L	Т	Р	Credit
			3	0	0	3
Prear	nble	This course is aimed to introduce the fundamental concepts, prince	ciples	and var	ious c	lrive train
		topologies of electric and hybrid electric vehicles.	-			
Prere	quisites	Power Electronics, Electrical Machines				
UNI	Γ – Ι					9
Intro	duction t	o HEV: History of hybrid and electric vehicles - social and e	nviron	mental	impo	ortance of
hybri	d and elec	tric vehicles, impact of modern drive-trains on energy supplies- B	asics c	of vehic	le per	formance
- Dy	namics, v	ehicle power source characterization, transmission characteristic	cs, ma	themat	ical r	nodels to
descr	ibe vehicle	e performance.				
	Γ–II					9
Hybı	rid Tracti	on: Basic concept of hybrid traction, Introduction to various hy	ybrid o	drive-tr	ain to	pologies-
powe	er flow co	ntrols in hybrid drive-train topologies - Basic concept of elect	ric tra	ction-	Introc	luction to
vario	us electric	drive-train topologies- fuel efficiency analysis.				
UNI	Γ–III					9
Serie	s and Pa	callel Hybrid Drive Train: Configuration of series drive train -	Opera	ating m	odes	– Control
Strate	egies – N	Aax. SOC-of-PPS Control Strategy - Thermostat Control S	trateg	y (Eng	gine-C	n–Off) -
Conf	iguration of	of parallel drive train – Objectives – Control Strategies – Max. SO	C-of-l	PPS Co	ntrol	Strategy -
Engiı	ne Turn-O	n and Turn-Off (Engine-On–Off) Control Strategy – Fuel Cell Hyl	brid El	ectric v	vehicle	ð.
UNI	$\Gamma - IV$					9
Batte	ery Techn	ologies for Electric Vehicle: Introduction - Power and Ener	rgy of	Electr	ic Pro	pulsion -
Basic	e Terms of	f Battery Performance and Characterization - Battery Charging	Meth	ods and	d EV	Charging
Scher	mes: Cha	rging Methods - EV Charging Schemes - Basic Operation of	of a R	echarge	eable	Battery -
Batte	ry Modeli	ng - Current Status of Battery in Automobile Applications				
UNI	$\Gamma - V$					9
Cont	rol of DC	and AC Vehicle Drives: DC/DC chopper based four quadrant	t opera	ations of	of DC	drives –
Inver	ter based	V/f Operation (motoring and braking) of induction motor drive sy	ystem -	– Induc	ction r	notor and
		or based vector control operation – Switched reluctance motor (SR				
Tech	nology.	-				
						Total: 45
	ERENCE					
1.	Mehrdad	Ehsani, Yimin Gao, Ali Emadi, "Modern Electric, Hybrid Elect	tric an	d Fuel	Cell	Vehicle",
	CRC Publ	isher, 2010.				
2.	Iqbal Hus	sain, "Electric and Hybrid Vehicles: Design Fundamentals", 2nd E	dition,	CRC I	Press,	Taylor &

- Iqbal Hussain, "Electric and Hybrid Vehicles: Design Fundamentals", 2nd Edition, CRC Press, Taylor Francis Group, 2011. Sira-Ramirez, Silva Ortigoza R., "Control Design Techniques in Power Electronics", Springer, 2006. 3.

COU	COURSE OUTCOMES: BT Mapped							
On con	mpletion of	(Highest Level)						
CO1:	explain the	Understanding (K2)						
CO2:	illustrate t	he principles of various EV/HE	EVs drive train topologies	Understanding (K2)				
CO3:	apply the	various control strategies of ser	ies & Parallel HEVs	Applying (K3)				
CO4:	analyze a	nd evaluate the various aspe	ects and performance of EV batter	Applying (K3)				
	technologi	es						
CO5:	design and	Applying (K3)						
		Mappir	ng of COs with POs					
CC	Ds/POs	PO1	PO2	PO3				
(	CO1	2		2				
(	CO2	2		2				
(	CO3	3		2				
(	CO4 3 2			1				
(	CO5 3 2		1					
1 – Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy							

	18PEE13 ENERGY STORAGE SYSTEMS				
		L	Т	Р	Credit
		3	0	0	3
Preamble	This course is aimed to introduce the fundamental concepts and	princi	ples of	vario	ous energy
	storage systems that aids in various electrical applications.		•		
Prerequisites	Fundamental Chemistry				
UNIT – I					9
<b>Energy Stora</b>	ge Systems: Introduction - Need of energy storage - Battery	- Con	ponen	ts of	Cells and
Batteries – C	assification - Operation of a Cell - Theoretical Cell Voltag	e, Ca	pacity,	and	Energy -
Electrochemic	al Principles and Reactions: Cell Polarization - Electrical Double	le-Lay	er Cap	acity	and Ionic
Adsorption - N	lass Transport to the Electrode Surface	•	-	•	
UNIT – II					9
<b>Primary and</b>	Secondary Batteries: Battery parameters and specification -	Perfo	rmanc	e, cha	rging and
	orage density, energy density, classical & Modern batteries: Zinc-				
	ckel Hydride, Lithium Battery-Principle and working.				
UNIT – III					9
	tors and Fuel Cells: Ultracapacitors: Features- Basic Prin	ciples	of U	Itraca	-
-	Ultracapacitors – Mathematical model, Fuel cells: direct energy c	-			
	cells -hydrogen oxygen cells, Comparison of fuel cells, Hybr				
systems.			011 01	8	<i>j</i> 2001080
UNIT – IV					9
	f Secondary Batteries: Storage of Solar – generated Electricity –	Batte	ries in	Space	
	ply Networks – Electric Vehicles – Role of Ultracapacitors in EVs			-part	21011180
r	F-J	-			
UNIT – V					9
	<b>Storage Techniques:</b> General Considerations - Thermal Energy S	Storage		whool	
	Storage – Compressed Energy Storage – Applications.	storage	<i>z</i> = 1 1 y	wheel	Storage –
rumped fryard	Storage – Compressed Energy Storage – Applications.				Total: 45
REFERENCI	с,				1 Utal: 45
		dition	CDC	Dugge	Toylar 9
-	ssain, "Electric and Hybrid Vehicles: Design Fundamentals", 2 nd E	attion	, UKU	Press,	raylor &
	roup, 2011. di Mahada Ehaani Jaha MMillan Wahiraha Ehadais Daara			C	-1 T., 1'
2. Ali Ema	di, Mehrdad Ehsani, John M.Miller, "Vehicular Electric Powe	r Sys	tems",	Speci	al Indian

- Ali Emadi, Mehrdad Ehsani, John M.Miller, "Vehicular Electric Power Systems", Special Indian Edition, Marcel dekker, Inc 2010.
- 3. Tetsuya Osaka and Madhav Datta, "Energy Storage Systems in Electronics", Gordon and Breach Science Publishers, 2000.

COURSE OUTCOMES: BT Maj							
On completion of	(Highest Level)						
CO1: evaluate t	he various aspects and perform	ance of EV battery technologies	Understanding (K2)				
CO2: conceptua	alize the principles of Primary a	and Secondary batteries	Understanding (K2)				
CO3: illustrate	the concepts & Principles of ult	tra capacitors and fuel cells	Understanding (K2)				
CO4: analyze th	ne requirement of secondary ba	tteries in engineering applications	Applying (K3)				
CO5: identify a	suitable energy storage technic	que for the desirable performance	Applying (K3)				
	Mappir	ng of COs with POs					
COs/POs	PO1	PO2	PO3				
CO1	2		2				
CO2	2		2				
CO3	2		2				
CO4	<u>CO4</u> 3 2						
CO5	CO5 3 3		1				
1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy							

]	8PEE14 POWER ELECTRONIC APPLICATIONS IN POW	ER SY	YSTEN	AS	
		L	Т	P	Credit
		3	0	0	3
Preamble	This course brings the applications of power electronic applic	cations	in po	wer s	ystem by
	incorporating the features of various compensators. In addition,		-		insight to
	harmonics and filters in improving the performance parameters of	_	-		
Prerequisites	Power Electronics, Power System Analysis and Stability, Po Switchgear, Power Quality	wer S	ystem	Protec	ction and
UNIT – I					9
HVDC Tra	nsmission: Introduction - Comparison of AC and DC transn	nission	- App	licatio	n of DC
	Description of DC transmission system-Planning for DC transmis				
transmission-	Characteristics of twelve pulse converters- Principle of DC link	contro	ol - Co	onverte	er control
	– System control hierarchy-Firing angle control-CEA control.				
UNIT – II					9
	ems and Filtering Approach: Introduction to MTDC -poten				
	s of MTDC systems-control and protection of MTDC systems- Sn				
over voltages	in DC line - DC breakers- Monopolar operation - Effects of	proxi	imity o	of DC	and AC
transmission s	ystems.				
UNIT – III					9
	<b>Compensators:</b> Objectives of Shunt Compensation - Methods of C			0	
	Compensators: SVC and STATCOM - Comparison between S				
	ensator: Objectives of Series Compensation- Variable Impedance				
	, TCSC - Switching Converter Type Series Compensators: SSSC	-Exte	rnal C	ontrol	of Series
Reactive Con	pensators- Characteristics and Features of Series Compensators.				
UNIT – IV					9
	ge and Phase Angle Regulators: Objectives of Voltage and	Phase	Angl	e Reg	
	quirements – Thyristor-Controlled Voltage and Phase Angle Regul				
	Converter based Voltage and Phase Angle Regulators- Hybri				· · · ·
	ompensators: Introduction – Unified Power Flow Controller (U				
	control capabilities-Real and reactive Power Flow Control – Inte		-	-	
	ciples and Characteristics – Control Structure- Generalized a				1
Controllers.					
UNIT – V					9
	nd Filters: Introduction- Generation of harmonics - Design of AC	C filter	s - DC	filters	s - carrier
	radio interference.		-		
<b>.</b> .				I	Total: 45

	10tal: 45
RE	FERENCES:
1.	Narain G. Hingorani and Laszlo Gyugyi, "Understanding FACTS Concepts and Technology of Flexible
	AC Transmission Systems", Wiley-Technology and Engineering, 2000.
2.	Padiyar K.R., "HVDC Power Transmission System", 2 nd Edition, New Academic Science Ltd., 2012.
3.	Mohan Mathur P., Rajiv K. Varma, "Thyristor-Based Facts Controller for Electrical Transmission
	System", John Wiley and Sons Inc., IEEE Press, USA, 2012.

COU	RSE OUTO	COMES:					BT Mapped
On con	mpletion of	(Highest Level)					
CO1:	explain t characteri	he concepts stics	r control	Understanding (K2)			
CO2:		he potential ing reactor	applications	of MTDC	systems and	usage of	Understanding (K2)
CO3:	make use in power s	provement	Applying (K3)				
CO4:	explain the phase ang	d voltage,	Understanding (K2)				
CO5:	demonstra system	te the filter de	esign for the	suppression of	of harmonics in	the power	Understanding (K2)
			Map	oping of COs	with POs		
CC	Os/POs	Р	O1		PO2		PO3
(	CO1		2				3
(	CO2		3				3
CO3			3		2		3
CO4			2				3
(	CO5 3 2				3		
1 - Sli	ight, $2 - Mo$	oderate, 3 – S	ubstantial, B	T - Bloom's	Taxonomy		

#### Т Р Credit L 0 3 0 3 Preamble The objective of the course is to provide knowledge about various control mechanisms employed in industrial drives. Power Electronics, Electrical Machines, Solid State DC Drives, Solid State AC Drives Prerequisites UNIT – I 9 Basic Requirements of Industrial Applications: Metal Industries, machine tools, material handling including lifts, hoists, fans, blowers and pumps, test rigs for electric generators and motors, food industries -Drive characteristics - Selection of converters and motors for different applicationsadvantages and limitations - Duty cycles and cyclic duration factor. UNIT – II 9 Typical Drive Functions: Speed / frequency reference setting- speed ramps- PI control- V/f Control systems - torque and current control systems - scalar, vector control- self tuning system, protections and trips- drive programming and user defined functionalities- safety aspects and standards for drives. UNIT – III 9

**18PEE15 INDUSTRIAL DRIVES** 

Special Techniques used in Modern Drives: Speed reference corresponding to linear motion in paper and metal industries - cascade speed controls - registration system for printing applications - master and helper drives and load sharing - load sharing of motors - speed control and current control - tension control using position transducer - winder control

#### UNIT – IV

Specific Industry Applications: HVAC system and building automation; Cranes and hoists; port and gantry cranes - elevators and lifts - metal forming and rolling applications - sectional paper machine applications including load sharing and surface winding - two and three drum winders for finishing paper reels, coating, plating and galvanizing lines- extruder drives for plastic industries

#### UNIT - V

Industry Environment: AC supply - power factor and harmonics- Interaction between drives and motors -Thermal management of motors and drives - Power supply management - EMC - Protection to Drives -Other miscellaneous requirements - vibration, critical speed, safety of Installation.

## **REFERENCES:**

1.	Bill Drury, "The Control Techniques Drives and Controls Handbook", 2 nd Edition, Institution of
	Engineering and Technology, 2009.
2.	Werner Leonhard, "Control of Electrical Drives", Springer, 2006.
3.	Shepherd W., Hulley L.N. and Liang D.T.W., "Power Electronics and Motor Control", 2 nd Edition,

Cambridge University Press, 1996.

- 9
- 9

<b>COURSE OUTC</b>	COMES:		BT Mapped			
On completion of	(Highest Level)					
CO1: explain th						
CO2: identify the	he various control mechanisms	employed in industries	Applying (K3)			
CO3: make use	of the advanced techniques used	d in modern drive applications	Applying (K3)			
CO4: utilize the	concepts employed in HVAC	systems	Applying (K3)			
CO5: infer the s	afety related concepts in industr	ries	Understanding (K2)			
	Mappin	ng of COs with POs				
COs/POs	PO1	PO2	PO3			
CO1	3		2			
CO2	3		2			
CO3	3		2			
CO4	CO4 3		2			
CO5	CO5 3 2					
1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy						