VISION

To be a centre of excellence for development and dissemination of knowledge in Applied Sciences, Technology, Engineering and Management for the Nation and beyond.

MISSION

We are committed to value based Education, Research and Consultancy in Engineering and Management and to bring out technically competent, ethically strong and quality professionals to keep our Nation ahead in the competitive knowledge intensive world.

QUALITY POLICY

We are committed to

- Provide value based quality education for the development of students as competent and responsible citizens.
- Contribute to the nation and beyond through research and development
- Continuously improve our services

DEPARTMENT OF MECHATRONICS ENIGNEERING

VISION

To be a centre of excellence for development and dissemination of knowledge in Mechatronics Engineering for the Nation and beyond.

MISSION

Department of Mechatronics Engineering is committed to:

- MS1: Disseminate knowledge through effective teaching-learning process to develop quality Mechatronics professionals to meet the global challenges
- MS2: Foster continuous learning and research by nurturing innovation and providing state-of-the art facilities
- MS3: Collaborate with industries and R&D organizations to promote training and consultancy services

2018 REGULATIONS

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

Graduates of M.E. Mechatronics Engineering will

- PEO1: Design and develop Mechatronic products by integrating mechanical engineering, electronic control and system concepts
- PEO2: Exhibit research aptitude and life-long learning in the working environment
- PEO3: Solve real world needs and troubleshoot industrial problems

MAPPING OF MISSION STATEMENTS (MS) WITH PEOS

MS\PEO	PEO1	PEO2	PEO3
MS1	3	2	3
MS2	3	3	2
MS3	2	2	3
		adamata 2 Subatant	• 1

1 – Slight, 2 – Moderate, 3 – Substantial

PROGRAM OUTCOMES (POs)

Engineering Post Graduates will be able to:

- **PO1** Independently carry out research /investigation and development work to solve practical problems
- **PO2** Write and present a substantial technical report/document
- **PO3** Identify, formulate and analyze Mechatronics engineering problems and provide solutions using modern engineering and IT tools

PEO\PO	PO1	PO2	PO3
PEO1	3	2	3
PEO2	3	3	3
PEO3	2	2	3

MAPPING OF PEOs WITH POs

1 – Slight, 2 – Moderate, 3 – Substantial

CURRICULUM BREAKDOWN STRUCTURE UNDER REGULATION 2018

Curriculum Breakdown Structure (CBS)	Curriculum Content (% of total number of credits of the program)	Total number of contact hours	Total number of credits
Program Core (PC)	43	465	31
Program Electives (PE)	25	270	18
Humanities and Social Sciences and Management Studies (HSMS)	4.2	45	3
Project(s)/Internships (PR)/Others	27.8	600	20
		Total	72

KEC R2018: SCHEDULING OF COURSES – M.E. (Mechatronics Engineering)

Semes			Theory/ Theory cun	n Practical / Practi	cal		Internship & Projects	Special Courses	Credits
ter	1	2	3	4	5	6	7	8	
I	18MMT11 Bridge Course Electronics / 18MMT12 Bridge Course Mechanical (PC-3-1-0-4)	18AMT12 Advanced Mathematics for Mechatronics (PC-3-1-0-4)	18MMT13 Sensors and Instrumentation (PC-3-0-0-3)	18MMC11 Computer Numerically Controlled Machines (PC-3-0-2-4)	18MMC12 Microcontroller and applications (PC-3-0-2-4)	18GET01 Introduction to Research (PC-3-0-0-3)			22
П	18MMC21 Robotics Engineering (PC-3-0-2-4)	18MMC22 Integrated Automation Controller (PC-3-0-2-4)	18MMC23 Control System Engineering (PC-3-0-2-4)	Elective-I (Professional) (PE-3-0-0-3)	Elective-II (Professional) (PE-3-0-0-3)	Elective-III (Professional) (PE-3-0-0-3)	18MMP21 Mini Project (PR-0-0-4-2)		23
ш	Elective-IV (Professional) (PE-3-0-0-3)	Elective-V (Professional) (PE-3-0-0-3)	Elective-VI (Professional) (PE-3-0-0-3)				18MMP31 Project Work – Phase I (PR-0-0-12-6)		15
IV							18MMP41 Project Work – Phase II (PR-0-0-24-12)		12

Total Credits: 72

M.E. DEGREE IN MECHATRONICS ENGINEERING

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

SEMESTER – I

Course	Course Title		lours Weel		Credit	N	/laxim Mark		CBS
Code			Т	Р	Creuit	CA	ESE	Total	
	Theory/Theory with Practical								
18MMT11/	Bridge Course Electronics (or)	3	1	0	4	50	50	100	PC
18MMT12	Bridge Course Mechanical		1	0	4	50	50	100	rC
18AMT12	Advanced Mathematics for Mechatronics	3	1	0	4	50	50	100	PC
18MMT13	Sensors and Instrumentation	3	0	0	3	50	50	100	PC
18MMC11	Computer Numerically Controlled Machines	3	0	2	4	50	50	100	PC
18MMC12	Microcontroller and applications	3	0	2	4	50	50	100	PC
18GET01	Introduction to Research		0	0	3	50	50	100	PC
	Total				22				

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

M.E. DEGREE IN MECHATRONICS ENGINEERING CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

SEMESTER – I	I
--------------	---

Course	Course Title		lours Weel		Credit	N	/laxim Mark		CBS
Code	Course Title L T P Credit		CA	ESE	Total	CBS			
	Theory/Theory with Practical								
18MMC21	Robotics Engineering	3	0	2	4	50	50	100	PC
18MMC22	Integrated Automation Controller	3	0	2	4	50	50	100	PC
18MMC23	Control System Engineering	3	0	2	4	50	50	100	PC
	Elective - I	3	0	0	3	50	50	100	PE
	Elective - II	3	0	0	3	50	50	100	PE
	Elective - III	3	0	0	3	50	50	100	PE
	Practical								
18MMP21	Mini Project	0	0	4	2	100	0	100	PR
	Total				23				

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

M.E. DEGREE IN MECHATRONICS ENGINEERING

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

SEMESTER – III

Course					Credit	Maximum Marks			CBS
Code		CA	ESE	Total	CDS				
	Theory/Theory with Practical								
	Elective - IV	3	0	0	3	50	50	100	PE
	Elective - V	3	0	0	3	50	50	100	PE
	Elective - VI	3	0	0	3	50	50	100	PE
	Practical								
18MMP31	Project Work Phase I	0	0	12	6	50	50	100	PR
	Total	•	•	•	15				

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

M.E. DEGREE IN MECHATRONICS ENGINEERING

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

SEMESTER – IV

Course	Course Title		lours Weel		Credit	Maximum Marks			CBS
Code	Course The	L	Т	Р	Creuit	CA	ESE	Total	CBS
	Practical								
18MMP41	Project Work Phase II	0	0	24	12	50	50	100	PR
	Total				12				

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

Total Credits: 72

	LIST OF PROFESSIONAL ELECTIV	ES				
Course		Но	urs/W	eek		
Code	Course Title	L	Т	Р	Credit	CBS
	SEMESTER II		1			
18CCE02	Safety in Engineering Industry	3	0	0	3	PE
18MME01	Fluid Power System Design	3	0	2	4	PE
18MME02	Advanced Microcontrollers with IOT	3	0	2	4	PE
18MME03	Applied Finite Element Method	3	1	0	4	PE
18MME04	Factory Automation and CIM	3	0	0	3	PE
18MME05	Process Control Engineering	3	0	2	4	PE
18MME06	Metrology and Computer Aided Inspection	3	0	0	3	PE
18MME07	Applied Signal Processing	3	0	0	3	PE
18MME08	Virtual Instrumentation	3	0	2	4	PE
18MME09	Advanced Sensor Technology	3	0	0	3	PE
	SEMESTER III					
18CCC11	Computer Applications in Design	3	0	2	4	PE
18CCE06	Modeling and Analysis of Manufacturing Systems	3	0	0	3	PE
18VLE12	Nature Inspired Optimization Techniques	3	0	0	3	PE
18COE13	Digital Image Processing and Multi Resolution Analysis	3	0	0	3	PE
18COE14	Industrial Data Communication	3	0	0	3	PE
18AEE11	Industrial Electronics	3	0	0	3	PE
18MSE17	Machine Learning	3	0	0	3	PE
18MWE12	Cyber Physical Systems	3	0	0	3	PE
18MME10	Mechatronics System Design and Control	3	0	2	4	PE
18MME11	Machine Vision System	3	0	2	4	PE
18MME12	Autonomous Mobile Robotics	3	0	2	4	PE
18MME13	MEMS Design	3	0	0	3	PE
18MME14	Machine Tool Control and Condition Monitoring	3	0	0	3	PE
18MME15	Bio Mechatronics	3	0	0	3	PE
18MME16	Additive Manufacturing	3	0	0	3	PE
18MME17	Automotive Electronics and Control	3	0	0	3	PE

			P	Credit
		$\frac{2}{3}$ 1	0	4
Prea	mble	To impart the knowledge on basic working principle and characteris		electronic
		devices, electrical drives and special machines.		
Prer	equisites	Nil		
UNI	[T – I			9
Basi	ic Electro	nics: Intrinsic and Extrinsic Semiconductors – Junction diode Char	acteristi	ics and its
		Special purpose diodes: Zener diode – Tunnel diode – Schottky diode – Vara		
		PN Junction Diode – Zener Effect – Zener Diode and its Characteristics – H	lalf way	ve and Ful
wav	e Rectifier	s – Voltage Regulators.		
TTNT				
	[T – II alan Junat	ion Transistory CE CD CC Configurations and Characteristics. Transistor		9 Secondifier
		ion Transistor: CE, CB, CC Configurations and Characteristics – Transisto FET – UJT – Need for biasing and biasing methods - Single stage transition		
		plifiers – Oscillators.	515101	impinier ·
Cub	Juding un			
UNI	T – III			9
Ope	rational A			
	auvnai P	Amplifiers and its Applications: Operational amplifier (op-amp) – DC and	l AC pe	erformance
_		Amplifiers and its Applications: Operational amplifier (op-amp) – DC and Arithmetic operations using op-amp - Applications: Instrumentation amp	-	
Cha	racteristics	- Arithmetic operations using op-amp - Applications: Instrumentation amp	lifier, S	ample and
Cha Holo	racteristics d circuits, (- Arithmetic operations using op-amp - Applications: Instrumentation amp Clippers, Clampers, Peak detectors - Op-amp as comparator - Schmitt trigger	lifier, S : - Appl	ample and ications o
Cha Holo	racteristics d circuits, (- Arithmetic operations using op-amp - Applications: Instrumentation amp	lifier, S : - Appl	ample and ications o
Char Holo com	racteristics d circuits, (parator - V	- Arithmetic operations using op-amp - Applications: Instrumentation amp Clippers, Clampers, Peak detectors - Op-amp as comparator - Schmitt trigger	lifier, S : - Appl	ample and ications of tors.
Char Holo com	racteristics d circuits, (parator - V T – IV	- Arithmetic operations using op-amp - Applications: Instrumentation amp Clippers, Clampers, Peak detectors - Op-amp as comparator - Schmitt trigger Vaveform generator: square, sine, triangular waves - Multivibrators - Voltage	lifier, S - Appl regula	ample and ications of tors.
Chai Hold com UNI Pow	racteristics d circuits, (parator - V T – IV ver Electro	- Arithmetic operations using op-amp - Applications: Instrumentation amp Clippers, Clampers, Peak detectors - Op-amp as comparator - Schmitt trigger Vaveform generator: square, sine, triangular waves - Multivibrators - Voltage onics: Operating mechanism, characteristics and applications of power di	lifier, S - Appl regula odes, S	ample and ications of tors.
Char Hold com UNI Pow Tria	racteristics d circuits, (parator - V T – IV er Electro c, SCS, G	 Arithmetic operations using op-amp - Applications: Instrumentation amp Clippers, Clampers, Peak detectors - Op-amp as comparator - Schmitt trigger Vaveform generator: square, sine, triangular waves - Multivibrators - Voltage Onics: Operating mechanism, characteristics and applications of power di TO, LASCR – two transistor model of SCR Controlled Rectifiers: single ph 	lifier, S - Appl regula odes, S	ample and ications of tors.
Chai Holo com UNI Pow Tria	racteristics d circuits, (parator - V T – IV er Electro c, SCS, G	- Arithmetic operations using op-amp - Applications: Instrumentation amp Clippers, Clampers, Peak detectors - Op-amp as comparator - Schmitt trigger Vaveform generator: square, sine, triangular waves - Multivibrators - Voltage onics: Operating mechanism, characteristics and applications of power di	lifier, S - Appl regula odes, S	ample and ications of tors.
Chai Holo com UNI Pow Tria Rect	racteristics d circuits, (parator - V T – IV er Electro c, SCS, G	 Arithmetic operations using op-amp - Applications: Instrumentation amp Clippers, Clampers, Peak detectors - Op-amp as comparator - Schmitt trigger Vaveform generator: square, sine, triangular waves - Multivibrators - Voltage Onics: Operating mechanism, characteristics and applications of power di TO, LASCR – two transistor model of SCR Controlled Rectifiers: single ph 	lifier, S - Appl regula odes, S	ample and ications of tors.
Char Hold com UNI Pow Tria Rect UNI Elec	racteristics d circuits, (parator - V T - IV ver Electro c, SCS, G' tifying circ T - V ctrical Dri	 Arithmetic operations using op-amp - Applications: Instrumentation amp Clippers, Clampers, Peak detectors - Op-amp as comparator - Schmitt trigger Vaveform generator: square, sine, triangular waves - Multivibrators - Voltage onics: Operating mechanism, characteristics and applications of power di TO, LASCR – two transistor model of SCR Controlled Rectifiers: single pl suits and filters - Regulated power supply – SMPS – UPS. ves and Special Machines: Basic Elements – Types of Electric Drives – 	lifier, S - Appl regula odes, S hase – t Factor	ample and ications of tors. CR, Diac hree phase s influence
Char Hold com UNI Pow Tria Rect UNI Elec the d	racteristics d circuits, (parator - V T - IV er Electro c, SCS, G' tifying circ T - V etrical Dri choice of e	 Arithmetic operations using op-amp - Applications: Instrumentation amp Clippers, Clampers, Peak detectors - Op-amp as comparator - Schmitt trigger Vaveform generator: square, sine, triangular waves - Multivibrators - Voltage Onics: Operating mechanism, characteristics and applications of power di TO, LASCR – two transistor model of SCR Controlled Rectifiers: single pleuits and filters - Regulated power supply – SMPS – UPS. ves and Special Machines: Basic Elements – Types of Electric Drives – electrical drives – Loading conditions and classes of duty. Constructional detection 	lifier, S - Appl regula odes, S nase – t Factors ails and	ample and ications of tors. CR, Diac hree phase s influence l operatior
Char Hold com UNI Pow Tria Rect UNI Elec the c of si	racteristics d circuits, (parator - V T - IV rer Electro c, SCS, G' tifying circe T - V etrical Dri choice of e ingle phas	 Arithmetic operations using op-amp - Applications: Instrumentation amp Clippers, Clampers, Peak detectors - Op-amp as comparator - Schmitt trigger Vaveform generator: square, sine, triangular waves - Multivibrators - Voltage Onics: Operating mechanism, characteristics and applications of power di TO, LASCR – two transistor model of SCR Controlled Rectifiers: single pleuts and filters - Regulated power supply – SMPS – UPS. ves and Special Machines: Basic Elements – Types of Electric Drives – lectrical drives – Loading conditions and classes of duty. Constructional det e induction motors – Shaded pole induction motor – Linear reluctance m 	lifier, S - Appl regula odes, S nase – t Factors ails and	ample and ications of tors. CR, Diac hree phase s influence l operatior
Char Hold com UNI Pow Tria Rect UNI Elec the c of si	racteristics d circuits, (parator - V T - IV er Electro c, SCS, G' tifying circ T - V etrical Dri choice of e	 Arithmetic operations using op-amp - Applications: Instrumentation amp Clippers, Clampers, Peak detectors - Op-amp as comparator - Schmitt trigger Vaveform generator: square, sine, triangular waves - Multivibrators - Voltage onics: Operating mechanism, characteristics and applications of power di TO, LASCR – two transistor model of SCR Controlled Rectifiers: single pl uits and filters - Regulated power supply – SMPS – UPS. ves and Special Machines: Basic Elements – Types of Electric Drives – electrical drives – Loading conditions and classes of duty. Constructional det e induction motors – Shaded pole induction motor – Linear reluctance m Motors. 	lifier, S - Appl regula odes, S hase – t Factor ails and otor –	ample and ications of tors. CR, Diac hree phase s influence l operation Hysteresis
Char Hold com UNI Pow Tria Rect UNI Elec the c of si Mot	racteristics d circuits, (parator - V T - IV ver Electro c, SCS, G' tifying circe T - V ctrical Dri choice of e ingle phas or – Servo	 Arithmetic operations using op-amp - Applications: Instrumentation amp Clippers, Clampers, Peak detectors - Op-amp as comparator - Schmitt trigger Vaveform generator: square, sine, triangular waves - Multivibrators - Voltage onics: Operating mechanism, characteristics and applications of power di TO, LASCR – two transistor model of SCR Controlled Rectifiers: single pleuits and filters - Regulated power supply – SMPS – UPS. ves and Special Machines: Basic Elements – Types of Electric Drives – electrical drives – Loading conditions and classes of duty. Constructional det e induction motors – Shaded pole induction motor – Linear reluctance m Motors. 	lifier, S - Appl regula odes, S hase – t Factor ails and otor –	ample and ications of tors. CR, Diac hree phase s influence l operatior Hysteresis
Chai Hold com UNI Pow Tria Rect UNI Elec the c of si Mot	racteristics d circuits, (parator - V T - IV rer Electro c, SCS, G' tifying circe T - V etrical Dri choice of e ingle phas or – Servo	 Arithmetic operations using op-amp - Applications: Instrumentation amp Clippers, Clampers, Peak detectors - Op-amp as comparator - Schmitt trigger Vaveform generator: square, sine, triangular waves - Multivibrators - Voltage onics: Operating mechanism, characteristics and applications of power di TO, LASCR – two transistor model of SCR Controlled Rectifiers: single pleuits and filters - Regulated power supply – SMPS – UPS. ves and Special Machines: Basic Elements – Types of Electric Drives – electrical drives – Loading conditions and classes of duty. Constructional det e induction motors – Shaded pole induction motor – Linear reluctance m Motors. Lecture:45, Tuto ES: 	lifier, S - Appl regula odes, S hase – t Factor ails and otor –	ample and ications of tors. CR, Diac hree phase s influence l operation Hysteresis
Char Hold com UNI Pow Tria Rect UNI Elec the c of si Mot	racteristics d circuits, (parator - V T - IV ver Electro c, SCS, G' tifying circ T - V etrical Dri choice of e ingle phas or – Servo FERENCH Sedha R.S	 Arithmetic operations using op-amp - Applications: Instrumentation amp Clippers, Clampers, Peak detectors - Op-amp as comparator - Schmitt trigger Vaveform generator: square, sine, triangular waves - Multivibrators - Voltage onics: Operating mechanism, characteristics and applications of power di TO, LASCR – two transistor model of SCR Controlled Rectifiers: single pl vuits and filters - Regulated power supply – SMPS – UPS. ves and Special Machines: Basic Elements – Types of Electric Drives – lectrical drives – Loading conditions and classes of duty. Constructional det e induction motors – Shaded pole induction motor – Linear reluctance m Motors. Es: S., "Applied Electronics", S. Chand & Co., Revised Edition, 2008. 	lifier, S - Appl regula odes, S aase – t Factor ails and otor – rial:15	ample and ications of tors. CR, Diac hree phase s influence l operation Hysteresis , Total: 60
Char Hold com UNI Pow Tria Rect UNI Elec the c of si Mot	racteristics d circuits, (parator - V T - IV ver Electro c, SCS, G ^T tifying circe T - V ctrical Dri choice of e ingle phas or – Servo FERENCH Sedha R. ² Sergio F	 Arithmetic operations using op-amp - Applications: Instrumentation amp Clippers, Clampers, Peak detectors - Op-amp as comparator - Schmitt trigger Vaveform generator: square, sine, triangular waves - Multivibrators - Voltage onics: Operating mechanism, characteristics and applications of power di TO, LASCR – two transistor model of SCR Controlled Rectifiers: single pleuits and filters - Regulated power supply – SMPS – UPS. ves and Special Machines: Basic Elements – Types of Electric Drives – lectrical drives – Loading conditions and classes of duty. Constructional det e induction motors – Shaded pole induction motor – Linear reluctance m Motors. Lecture:45, Tuto ES: S., "Applied Electronics", S. Chand & Co., Revised Edition, 2008. 	lifier, S - Appl regula odes, S aase – t Factor ails and otor – rial:15	ample and ications of tors. CR, Diac hree phase g s influence l operation Hysteresis , Total: 60
Chai Hold com UNI Pow Tria Rect UNI Elec the c of si Mot Elec the c 2.	racteristics d circuits, (parator - V T - IV rer Electro c, SCS, G' tifying circe T - V ctrical Dri choice of e ingle phas or – Servo FERENCE Sedha R.S Sergio F McGraw	 Arithmetic operations using op-amp - Applications: Instrumentation amp Clippers, Clampers, Peak detectors - Op-amp as comparator - Schmitt trigger Vaveform generator: square, sine, triangular waves - Multivibrators - Voltage onics: Operating mechanism, characteristics and applications of power di TO, LASCR – two transistor model of SCR Controlled Rectifiers: single pleuits and filters - Regulated power supply – SMPS – UPS. ves and Special Machines: Basic Elements – Types of Electric Drives – electrical drives – Loading conditions and classes of duty. Constructional det e induction motors – Shaded pole induction motor – Linear reluctance m Motors. Lecture:45, Tuto CS: S., "Applied Electronics", S. Chand & Co., Revised Edition, 2008. ranco, "Design with operational amplifiers and analog integrated circu Higher Ed, 2016. 	lifier, S - Apple regula odes, S oase – t Factors ails and otor – rial:15	ample and ications of tors. CR, Diac hree phase s influence l operation Hysteresis , Total: 60
Chai Hold com UNI Pow Tria Rect UNI Elec the c of si Mot REH 1. 2. 3.	racteristics d circuits, (parator - V T - IV ver Electro c, SCS, G' tifying circe T - V ctrical Dri choice of e ingle phas or - Servo FERENCH Sedha R.S Sergio F McGraw Muhamed	 Arithmetic operations using op-amp - Applications: Instrumentation amp Clippers, Clampers, Peak detectors - Op-amp as comparator - Schmitt trigger Vaveform generator: square, sine, triangular waves - Multivibrators - Voltage onics: Operating mechanism, characteristics and applications of power di TO, LASCR – two transistor model of SCR Controlled Rectifiers: single pl uits and filters - Regulated power supply – SMPS – UPS. ves and Special Machines: Basic Elements – Types of Electric Drives – lectrical drives – Loading conditions and classes of duty. Constructional det e induction motors – Shaded pole induction motor – Linear reluctance m Motors. Es: S., "Applied Electronics", S. Chand & Co., Revised Edition, 2008. ranco, "Design with operational amplifiers and analog integrated circu Higher Ed, 2016. H. Rashid, "Power Electronics Circuits, Devices and Applications", 4th Edi 	lifier, S - Appl e regula odes, S hase – t Factors ails and otor – rial:15 hits", 4	ample and ications of tors. CR, Diac hree phase gradient s influence l operation Hysteresis , Total: 60 th Edition H, 2013.
Char Hold com UNI Pow Triac Rect UNI Elec the c of si Mot	racteristics d circuits, (parator - V T - IV ver Electro c, SCS, G' tifying circe T - V ctrical Dri choice of e ingle phas or - Servo FERENCH Sedha R.S Sergio F McGraw Muhamed	 Arithmetic operations using op-amp - Applications: Instrumentation amp Clippers, Clampers, Peak detectors - Op-amp as comparator - Schmitt trigger Vaveform generator: square, sine, triangular waves - Multivibrators - Voltage onics: Operating mechanism, characteristics and applications of power di TO, LASCR – two transistor model of SCR Controlled Rectifiers: single pleuits and filters - Regulated power supply – SMPS – UPS. ves and Special Machines: Basic Elements – Types of Electric Drives – electrical drives – Loading conditions and classes of duty. Constructional det e induction motors – Shaded pole induction motor – Linear reluctance m Motors. Lecture:45, Tuto CS: S., "Applied Electronics", S. Chand & Co., Revised Edition, 2008. ranco, "Design with operational amplifiers and analog integrated circu Higher Ed, 2016. 	lifier, S - Appl e regula odes, S hase – t Factors ails and otor – rial:15 hits", 4	ample and ications of tors. CR, Diac hree phase gradient s influence l operation Hysteresis , Total: 60 th Edition H, 2013.
Chai Hold com UNI Pow Tria Rect UNI Elec the c of si Mot REH 1. 2. 3.	racteristics d circuits, (parator - V T - IV ver Electro c, SCS, G' tifying circe T - V ctrical Dri choice of e ingle phas or - Servo FERENCH Sedha R.S Sergio F McGraw Muhamed	 Arithmetic operations using op-amp - Applications: Instrumentation amp Clippers, Clampers, Peak detectors - Op-amp as comparator - Schmitt trigger Vaveform generator: square, sine, triangular waves - Multivibrators - Voltage onics: Operating mechanism, characteristics and applications of power di TO, LASCR – two transistor model of SCR Controlled Rectifiers: single pl uits and filters - Regulated power supply – SMPS – UPS. ves and Special Machines: Basic Elements – Types of Electric Drives – lectrical drives – Loading conditions and classes of duty. Constructional det e induction motors – Shaded pole induction motor – Linear reluctance m Motors. Es: S., "Applied Electronics", S. Chand & Co., Revised Edition, 2008. ranco, "Design with operational amplifiers and analog integrated circu Higher Ed, 2016. H. Rashid, "Power Electronics Circuits, Devices and Applications", 4th Edi 	lifier, S - Appl e regula odes, S hase – t Factors ails and otor – rial:15 hits", 4	ample and ications of tors. CR, Diac hree phase CR, Diac hree phase s influence l operation Hysteresis , Total: 60 th Edition H, 2013.

	RSE OUTO	COMES: the course, the students will b	aa ahla ta	BT Mapped (Highest Level)		
		*				
CO1:	explain th	e basics of semiconductor dev	vices and its relevant characteristics	Understanding (K2)		
CO2:	identify th	Applying (K3)				
CO3:	analyze the performance of OP-AMP and its applications Analyzi					
CO4:	infer the p	ower electronic devices		Understanding (K2)		
CO5:	explain th	e basics of electrical drives an	d special machines	Understanding (K2)		
		Mappi	ing of COs with POs			
CC	Os/POs	PO1	PO2	PO3		
(CO1	2	1	2		
(CO2		1	1		
(CO3	2	1	2		
(CO4	1				
(CO5	1	2			
1 - Sli	ght, 2 – Mo	oderate, 3 – Substantial, BT	Г – Bloom's Taxonomy			

		18MMT12 BRIDGE COURSE MECHANICAL			
		L	Т	Р	Credit
		3	1	0	4
Prea	amble	To impart knowledge of basic Mechanical Engineering concepts,	mechan	isms,	design of
		machine elements and machine tools characteristics.			-
Prer	requisites	Nil			
UN	IT – I				9
Mee	chanisms:	Kinematics - Links, pairs and mechanisms - 4 Bar mechanism - Crar	nk rocke	er - Sl	ider crank
mec	hanisms –	Inversions – Determination of Velocity and acceleration of simple med	hanisms	5.	
UN]	IT – II				9
		bes of friction - simple contact friction- belt and rope drives - Ratio			
scre	w and nuts	s - Bearings- pivot, collar, journal bearings and rolling element - Pla	ate and	disc o	clutches -
basi	cs of brake	s, Springs – Close coiled and Leaf spring.			
UN]	IT – III				9
	,	and Gear Trains: Design of shafts - Couplings - Gears - law of gearing	0 1	0	0
of g	gears - Gea	r trains - simple and compound gear trains - determination of speed a	and tore	que in	epicyclic
gear	r trains.				
UN	IT – IV				9
		ngle degree of freedom systems - Forced, damped vibrations - System	-		
-Vi	bration isol	ation – Torsional vibrations – Two/ Three rotor systems – torsionally e	quivale	nt syst	em.
	IT – V				
					9
		s: Machine tool construction features and operations: lathe, milling ma	ichine, c	lrilling	
Ma – Di	chine Tool rive system	for machine tools – mechanical, hydraulic and electric- stepped and va	ariable s	speeds	g machine – spindle
Ma – Di	chine Tool rive system	1 0	ariable s	speeds	g machine – spindle
Mae – Di spee	chine Tool rive system	for machine tools – mechanical, hydraulic and electric- stepped and va	ariable s	speeds	g machine – spindle
Mae – Di spee	chine Tool rive system eds and fee	for machine tools – mechanical, hydraulic and electric- stepped and va	ariable s nine bui	speeds	g machine – spindle for FDM
Mae – Dr spee tech	chine Tool rive system eds and fee	for machine tools – mechanical, hydraulic and electric- stepped and va ad drives – Additive Manufacturing (Basics only) – 3D printer mach Lecture:45,	ariable s nine bui	speeds	g machine – spindle for FDM
Mae – Dr spee tech	chine Tool rive system eds and fee nology. FERENCE	for machine tools – mechanical, hydraulic and electric- stepped and va ad drives – Additive Manufacturing (Basics only) – 3D printer mach Lecture:45,	ariable s nine bui Tutori a	speeds ilding al:15,	g machine – spindle for FDM Total: 60
Mae - Dr spee tech	chine Tool rive system eds and fee nology. FERENCE Shigley, 3 Inc., 2010	for machine tools – mechanical, hydraulic and electric- stepped and va ad drives – Additive Manufacturing (Basics only) – 3D printer mach Lecture:45, S: J.E., Pennock, G.R. and Uicker, J.J., "Theory of Machines and Mech b.	ariable s nine bui Tutori : anisms'	speeds ilding al:15, ', Mc	g machine – spindle for FDM Total: 60 Graw-Hill
Mae - Dr spee tech	chine Tool rive system eds and fee nology. FERENCE Shigley, 3 Inc., 2010	for machine tools – mechanical, hydraulic and electric- stepped and va ed drives – Additive Manufacturing (Basics only) – 3D printer mach Lecture:45, S: J.E., Pennock, G.R. and Uicker, J.J., "Theory of Machines and Mech	ariable s nine bui Tutori : anisms'	speeds ilding al:15, ', Mc	g machine – spindle for FDM Total: 60 Graw-Hill
Mad - Dr spee tech REI 1.	chine Tool rive system eds and fee nology. FERENCE Shigley, 3 Inc., 2010 Budyna,R Edition, 2	for machine tools – mechanical, hydraulic and electric- stepped and va ad drives – Additive Manufacturing (Basics only) – 3D printer mach Lecture:45, S: J.E., Pennock, G.R. and Uicker, J.J., "Theory of Machines and Mech .G. and Nisbett.K.J., "Shigley's Mechanical Engineering Design" Mc 014.	ariable s nine bui Tutori a anisms' graw H	speeds ilding al:15, ', Mco ill Int	g machine – spindle for FDM Total: 60 Graw-Hill ernational
Mad – Dr spee tech REI 1.	chine Tool rive system eds and fee nology. FERENCE Shigley, 3 Inc., 2010 Budyna,R Edition, 2	for machine tools – mechanical, hydraulic and electric- stepped and va d drives – Additive Manufacturing (Basics only) – 3D printer mach Lecture:45, S: J.E., Pennock, G.R. and Uicker, J.J., "Theory of Machines and Mech .G. and Nisbett.K.J., "Shigley's Mechanical Engineering Design" Mc	ariable s nine bui Tutori a anisms' graw H	speeds ilding al:15, ', Mco ill Int	g machine – spindle for FDM Total: 60 Graw-Hill ernational

	RSE OUTC			BT Mapped		
On co	mpletion of	the course, the students will	be able to	(Highest Level)		
CO1:	determine crank mec	•	on for rigid links in four bar and slide	r Analyzing (K4)		
CO2:	1	the influence of friction b clutches, brakes and belt driv				
CO3:	design a n realistic co	Analyzing (K4)				
CO4:	O4: assess the effect of vibrations in linear and torsional systems			Analyzing (K4)		
CO5:	-	ret the various machine tools and drive mechanisms for subtractive and ve processes		Understanding (K2)		
		Mapp	ping of COs with POs			
CC	Ds/POs	PO1	PO2	PO3		
(CO1	3	3	1		
(CO2	3		2		
(CO3	1	3	3		
(CO4	1		3		
(CO5	1	2	3		
1 - Sli	ight, 2 – Mo	oderate, 3 – Substantial, BT	– Bloom's Taxonomy			

		18AMT	LZ ADVA				COTUN	K MECI	HAIKO	JNICS			
									L		-	P	Credit
									3	1		0	4
Pream	nble	This cours	se will help	the stud	dents to	identify	, formula	ate and	solve p	roblem	s in	mec	chatronics
			ig using va				S						
	quisites	Calculus,	Matrices a	nd Laplac	ce Tran	sform.							
UNII													9
	0	a: Vector s	-	-	-		-				men	sior	n – Lineai
UNII	Γ – II												9
– Var deriva	riational p ates – Fur	ariation: C problems in actional inv method – K	volving sevent	veral unk eral indep	known f pendent	functions	s – Func	ctional i	involvir	ng first	and	sec	ond order
UNIT	Γ – III												9
	h Theor	v: Introdu	action of	graphs –	- Isomo	orphism	– Sube	graphs -	– Walk	s. patl	ns ar	nd (I
-		ohs – Euler		U 1		-	0			· •			
		– Adjacen	-					-	-	•	-		
		arshall's alg											
Prim'	a Algorit			1005 - 1	ropertie	es of tree	es – spa		1000 1				0
1 1 11 11	s Aigonu	nm – Krusk			ropertie	es of tree	es – spa		1005 1		1		0
		1m – Krusk			ropertie	es of tree	es – Spa				-		
UNII	Γ – IV		al's algorit	hm.									9
UNIT Lapla	Γ–IV ace Tran	sform Me	al's algorit thods: S	hm. olution c	of initia	al and l	boundary	y value	e proble	ems –	Cha	ract	eristics –
UNIT Lapla Canor	Γ – IV ace Tran nical forn	sform Me 1s – D'Ale	al's algorit thods: S nbert's So	hm. olution c	of initia	al and l	boundary	y value	e proble	ems –	Cha	ract	eristics –
UNIT Lapla Canor	Γ – IV ace Tran nical forn	sform Me	al's algorit thods: S nbert's So	hm. olution c	of initia	al and l	boundary	y value	e proble	ems –	Cha	ract	eristics –
UNII Lapla Canor Soluti	Γ – IV ace Tran nical forn ion of Dif	sform Me 1s – D'Ale	al's algorit thods: S nbert's So	hm. olution c	of initia	al and l	boundary	y value	e proble	ems –	Cha	ract	9 eristics – g string –
UNIT Lapla Canor Soluti UNIT	$\Gamma - IV$ ace Tran nical form ion of Dif $\Gamma - V$	sform Me ns – D'Ale fusion equa	al's algorit thods: S mbert's So tion.	hm. olution c lution –	of initia Laplace	al and l e transfo	boundary orm meth	y value hods –	e proble Displac	ems – ement	Cha: in a	ract lon	9 eristics – g string – 9
UNIT Lapla Canor Soluti UNIT Eigen	$\Gamma - IV$ ace Tran nical form ion of Dif $\Gamma - V$ n Value a	sform Me ns – D'Ale fusion equa and Bound	al's algorit thods: S nbert's So tion. ary Value	hm. olution c lution – e Proble	of initia Laplace ems: E	al and t e transfo Eigen va	boundary orm meth	y value hods –	e proble Displac Power	ems – ement method	Chai in a - Ir	ract	g string - 9 9 9 9 9
UNIT Lapla Canor Soluti UNIT Eigen metho	$\Gamma - IV$ ace Tran nical form ion of Dif $\Gamma - V$ n Value a od - Faddo	sform Me ns – D'Ale fusion equa and Bound eev – Lever	al's algorit thods: S nbert's So tion. ary Value rier Metho	hm. olution of lution – f e Proble d. Solutio	of initia Laplace ems: E on of bo	al and t e transfo Eigen va oundary	boundary orm meth lue prob value pr	y value hods – plems: 1 roblems	e proble Displac Power 1 : Introd	ems – ement method	Chai in a - Ir	ract	g string - 9 9 9 9 9
UNII Lapla Canor Soluti UNII Eigen metho	$\Gamma - IV$ ace Tran nical form ion of Dif $\Gamma - V$ n Value a od - Faddo	sform Me ns – D'Ale fusion equa and Bound	al's algorit thods: S nbert's So tion. ary Value rier Metho	hm. olution of lution – f e Proble d. Solutio	of initia Laplace ems: E on of bo	al and t e transfo Eigen va oundary	boundary orm meth lue prob value pr	y value hods – plems: 1 roblems ne metho	e proble Displac Power 1 : Introd od.	ems – ement method uction	Chai in a - Ir - Fin	ract long	g string - 9 9 9 9 9
UNIT Lapla Canon Soluti UNIT Eigen metho metho	$\Gamma - IV$ ace Tran nical form ion of Dif $\Gamma - V$ h Value a od - Fadde od - Shoot	sform Me ns – D'Ale fusion equa and Bound eev – Leven ting method	al's algorit thods: S nbert's So tion. ary Value rier Metho - Weighte	hm. olution c lution – e Proble d. Solutio d Residu	of initia Laplace ems: E on of bo ial meth	al and t e transfo Eigen va oundary nod - Cut	boundary orm meth lue prob value pr bic Splin	y value hods – olems: 1 coblems ne methe Lec	e proble Displac Power 1 : Introd od. cture:45	ems – ement method uction 5, Tuto	Chai in a - Ir - Fin rial:	ract long	9 eristics – g string – 9 rse power difference Total: 60
UNIT Lapla Canon Soluti UNIT Eigen metho metho REFI	$\Gamma - IV$ ace Tran nical form ion of Dif $\Gamma - V$ h Value a od - Fadde od - Shoot ERENCE Stephen A 2010.	sform Me ns – D'Ale fusion equa and Bound eev – Lever ting method S: Andrilli and	al's algorit thods: S nbert's So tion. ary Value rier Metho - Weighte David He	hm. olution c lution – e Proble d. Solutio d Residu cker, "El	of initia Laplace ems: E on of bo al meth lementa	al and t e transfo Gigen val oundary nod - Cut	boundary orm meth lue prob value pr bic Splin ar Algebr	y value hods – olems: 1 roblems he methe Lec ra", 4 th	e proble Displac Power 1 : Introd od. cture:45	ems – ement method uction 5, Tuto	Chai in a - Ir - Fin rial: emic	ract long iver ite o 15 ,	9 eristics – g string – 9 rse power difference Total: 60 ess, USA
UNIT Lapla Canon Soluti UNIT Eigen metho metho 1.	$\Gamma - IV$ ace Tran nical form ion of Dif $\Gamma - V$ h Value a od - Fadde od - Shoot ERENCE Stephen A 2010. Gupta A.S New Delf	sform Me ns – D'Aler fusion equa and Bound eev – Lever ting method S: Andrilli and S., "Calculu i, 2015.	al's algorit thods: S mbert's So tion. ary Value rier Metho - Weighte David He Is of Varia	hm. olution of lution – T e Proble d. Solution d Residu cker, "El tions wit	of initia Laplace ems: E on of bo al meth lementa th Appli	al and l e transfo Eigen va oundary nod - Cul iry Linea	boundary orm meth lue prob value pr bic Splin ar Algeb	y value hods – olems: 1 roblems he methe Lec ra", 4 th	e proble Displac Power 1 : Introd od. cture:45 Edition Prentice	ems – ement method uction 5, Tuto h, Acad e Hall o	Char in a - Ir - Fin rial: of In	ract long ite o 15, dia	9 eristics – g string – 9 rse power difference Total: 60 ess, USA Pvt. Ltd.
UNIT Lapla Canor Soluti UNIT Eigen metho metho 2. 2. 3.	$\Gamma - IV$ ace Tran nical form ion of Dif $\Gamma - V$ n Value a od - Fadde od - Shoot ERENCE Stephen A 2010. Gupta A.3 New Delh Narsingh 2005.	sform Me ns – D'Aler fusion equa and Bound eev – Lever ting method S., "Calculu i, 2015. Deo, "Grap	al's algorit thods: S mbert's So tion. ary Value rier Metho - Weighte David He Is of Varia h Theory v	hm. olution of lution – e Proble d. Solution d Residu cker, "El tions wit	of initia Laplace ems: E on of bo al meth lementa th Appli	al and be transfore Eigen value oundary nod - Cube ary Linea lications'	boundary orm meth lue prob value pr bic Splin ar Algebr ", 12 th E gineering	y value hods – oblems: 1 roblems he methe Lec ra", 4 th cdition, g and Co	e proble Displac Power 1 : Introd od. : ture:45 Edition Prentice	ems – ement method uction 5, Tuto a, Acad e Hall o	Char in a - Ir - Fin rial: emic of In- xe", I	ract long iver ite o 15, Pro- dia	9 eristics – g string – 9 se power difference Total: 60 ess, USA Pvt. Ltd. pvt. Ltd.
UNIT Lapla Canon Soluti UNIT Eigen metho metho 2. 0 1 3. 1 2. 4. 5	$\Gamma - IV$ ace Tran nical form ion of Dif $\Gamma - V$ n Value a od - Fadde od - Shoot ERENCE Stephen A 2010. Gupta A.3 New Delh Narsingh 2005.	sform Me ns – D'Aler fusion equa and Bound eev – Lever ting method S: Andrilli and S., "Calculu i, 2015.	al's algorit thods: S mbert's So tion. ary Value rier Metho - Weighte David He Is of Varia h Theory v	hm. olution of lution – e Proble d. Solution d Residu cker, "El tions wit	of initia Laplace ems: E on of bo al meth lementa th Appli	al and be transfore Eigen value oundary nod - Cube ary Linea lications'	boundary orm meth lue prob value pr bic Splin ar Algebr ", 12 th E gineering	y value hods – oblems: 1 roblems he methe Lec ra", 4 th cdition, g and Co	e proble Displac Power 1 : Introd od. : ture:45 Edition Prentice	ems – ement method uction 5, Tuto a, Acad e Hall o	Char in a - Ir - Fin rial: emic of In- xe", I	ract long iver ite o 15, Pro- dia	9 eristics – g string – 9 se power difference Total: 60 ess, USA Pvt. Ltd. pvt. Ltd.

COU	COURSE OUTCOMES: BT Mapped							
On con	mpletion of	the course, the students will be	e able to	(Highest Level)				
CO1:	apply line	ar algebra concepts for solving	engineering problems	Applying (K3)				
CO2:	solve vari	ational problems		Evaluating (K5)				
CO3:	solve grap	Applying (K3)						
CO4:	CO4: solve wave and diffusion equations by Laplace transforms			Applying (K3)				
CO5:	use variou value proł	Evaluating (K5)						
		Mappin	ng of COs with POs					
CC	Os/POs	PO1	PO2	PO3				
(CO1	2	1	3				
(CO2	2	1	3				
(CO3	3	1	2				
(CO4	2	1	3				
CO5 2 1 2								
1 – Sli	herefore here ghere here ghere here here here	oderate, 3 – Substantial, BT	- Bloom's Taxonomy					

	18MMT13 SENSORS AND INSTRUMENTATION (Common to Mechatronics, Engineering Design and CAD/CAM Bran	ches)		
		Т	P	Credit
	3	0	0	3
Preamble	To impart basic knowledge about sensors used to measure various resistance, pressure, flow, level, humidity and so on and convert them (digital or analog) that can be easily read by the user or any other instrum	into el		
Prerequisites	Physics			
UNIT – I				9
	to Measurement: Units and Standards - Instrument classification - C of Instruments - Static and dynamic - Classification of errors - Error ertainty.			-
UNIT – II				9
	Transducers: Classification of transducers - Temperature Measu	rement:	Fille	
thermometer -	Bimetallic thermometer - Pressure Transducers: Elastic transducers - Bou cuum: McLeod gauge, thermal conductivity gauge - Ionization gauge.			
UNIT – III				9
Electrical Tra	nsducers: Turbine flow meter, Electromagnetic flow meter - Hot wire a ve transducers - Potentiometer - RTD - Thermistor - Thermocouple - Rad			
UNIT – IV				9
Force, Displa transducer - L' Magneto resis	cement, Magnetic and Digital Sensors: Strain gauges - Force me VDT - RVDT - Capacitive transducer - Piezo electric transducer – Ma ive – Hall effect – Current sensor - Digital displacement transduce er optic sensors – Film sensors - Introduction to MEMS and Nano sensors	gnetic S rs. Digi	Sensor	- Types –
UNIT – V				9
Signal Condit	oning and Data Acquisition: Need for Signal Conditioning - Amplificat Data logging and Acquisition - Distributed Data Acquisition and con- indards.			- Sample
				Total: 45
			A	FT'11 NT
1. Doebelin Delhi, 20	E.O., "Measurement Systems – Applications and Design", 6 th Edition, 7	ata Mc	Graw	Hill, New
2. Sawhney and Co. P	A.K., "A course in Electrical and Electronic Measurement and Instrum vt Ltd. New Delhi 2017			-
3. Beckwith York, 200	Marangoni and Lienhard, "Mechanical Measurements", 6 th Edition, 9.			
Delhi, 20		ational	Pvt. I	Ltd., New
	S D., "Sensor and Actuators", Prentice Hall of India, 2005.			
2011.	dra Bhuyan, "Intelligent Instrumentation: Principles and Applications",			Newyork,
7. Barney G	C.V., "Intelligent Instrumentation", Prentice Hall of India Pvt. Ltd., New	Delhi,	1988.	

COU	RSE OUTC	OMES:			BT Mapped	
On co	mpletion of	the course, the students will be	able to		(Highest Level)	
CO1:	demonstra	te the basic concepts of measur	ement system and error analysis		Understanding (K2)	
CO2:	2: categorize the different type of non-electrical transducers based on the Applying (K3) applications					
CO3:	<u>, , , , , , , , , , , , , , , , , , , </u>				Applying (K3)	
CO4:	O4: infer the role of sensors in evolving technologies				Understanding (K2)	
CO5:	analyze th	e need for signal conditioning,	, filters and acquiring data in real	time	Analyzing (K4)	
	systems					
		Маррі	ng of COs with POs			
CC	Os/POs	PO1	PO2		PO3	
(CO1	1	2		3	
(CO2	3	2		1	
(CO3	2	3		3	
(CO4	3	2		1	
CO5 1 2 3						
1 - Sli	ght, 2 – Mo	derate, 3 – Substantial, BT -	Bloom's Taxonomy			

	18MMC11 COMPUTER NUMERICALLY CONTROLLED MACE (Common to Mechatronics, Engineering Design & CADCAM Branch			
		Τ	P	Credit
	3	0	2	4
Preamble	To impart the fundamental knowledge and programming concepts of CNC	C mach	ines.	
Prerequisites	Nil			
UNIT – I				9
Construction	Features of CNC Machines: Introduction - CNC Machine Building, Driv	es and	Contro	ols: Drive
Mechanism, S	pindle Drives, Axes drives, Feed drives, Linear Motors and Actuators,	Magn	etic L	evitation.
Power transmi	ssion elements - Spindle bearing - Arrangement and installation - Guide	ways -	- Con	figuration
and design, frid	ction and anti-friction LM guide ways, Retrofitting.			
UNIT – II				9
	ms for CNC Machines and CAD/CAM Integration: Interfacing – Moni			
	- Sources of errors - Compensations for Machine accuracy - DNC - A	-		
	epts of High speed Machining and micro machining. Networking - network			
	Graphics standards – Data exchange format, evolution - features of various			
	STEP etc., Process planning, Computer Aided process planning (CAPP)	- var	iant, g	generative
Approaches.				
UNIT – III				9
	nming: Structure of CNC program, Part Program Terminology Coordi	inata ci	vetom	
0	mining. Subclute of CIVC program, rait riogram reminiology Coold	maie s'		
codes cutter re	adjus compensation tool nose radjus compensation tool wear compensation	•		
	adius compensation, tool nose radius compensation, tool wear compensation	on, can	ned c	ycles, sub
routines, mirro	oring features, Manual part programming for CNC turning and mach	on, can hining	ned cy centre	ycles, sub
routines, mirro		on, can hining	ned cy centre	ycles, sub
routines, mirro	oring features, Manual part programming for CNC turning and mach	on, can hining	ned cy centre	ycles, sub
routines, mirro programming f UNIT – IV	oring features, Manual part programming for CNC turning and mach	on, can hining proces	ned cy centre sing.	ycles, sub e – APT 9
routines, mirro programming f UNIT – IV Tooling System	oring features, Manual part programming for CNC turning and machines in FANUC - Computer aided part programming - Post	on, can hining proces	ned cy centre sing.	ycles, sub e – APT 9 lified and
routines, mirro programming f UNIT – IV Tooling System semi-qualified Automatic hea	bring features, Manual part programming for CNC turning and mach for various machines in FANUC - Computer aided part programming - Post m and Management: Tooling system - Interchangeable tooling system - tools – Coolant fed tooling system – Modular fixturing – Quick cha d changers – Tooling requirements for Turning and Machining centers -	on, can hining proces - Preset nge to	ned cy centro sing. , Qua oling	ycles, sub e – APT 9 lified and system –
routines, mirro programming f UNIT – IV Tooling System semi-qualified Automatic hea	bring features, Manual part programming for CNC turning and mach for various machines in FANUC - Computer aided part programming - Post m and Management: Tooling system - Interchangeable tooling system - tools – Coolant fed tooling system – Modular fixturing – Quick cha	on, can hining proces - Preset nge to	ned cy centro sing. , Qua oling	ycles, sub e – APT 9 lified and system –
routines, mirro programming f UNIT – IV Tooling System semi-qualified Automatic heat assemblies – T	bring features, Manual part programming for CNC turning and mach for various machines in FANUC - Computer aided part programming - Post m and Management: Tooling system - Interchangeable tooling system - tools – Coolant fed tooling system – Modular fixturing – Quick cha d changers – Tooling requirements for Turning and Machining centers -	on, can hining proces - Preset nge to	ned cy centro sing. , Qua oling	ycles, sub e – APT 9 lified and system – rs – Tool
routines, mirro programming f UNIT – IV Tooling System semi-qualified Automatic hea assemblies – T UNIT – V	pring features, Manual part programming for CNC turning and mach for various machines in FANUC - Computer aided part programming - Post m and Management: Tooling system - Interchangeable tooling system - tools – Coolant fed tooling system – Modular fixturing – Quick cha d changers – Tooling requirements for Turning and Machining centers - ool Magazines – ATC Mechanisms – Tool management.	on, can hining proces - Preset nge to - Tool	ned cy centro sing. , Qua oling holde	ycles, sub e – APT 9 lified and system – rs – Tool 9
routines, mirro programming f UNIT – IV Tooling System semi-qualified Automatic heat assemblies – T UNIT – V Economics of	oring features, Manual part programming for CNC turning and machines in FANUC - Computer aided part programming - Post m and Management: Tooling system - Interchangeable tooling system - tools - Coolant fed tooling system - Modular fixturing - Quick cha d changers - Tooling requirements for Turning and Machining centers - ool Magazines - ATC Mechanisms - Tool management. CNC Operations and Special Purpose CNC Machines: Factors influen	on, can hining proces - Preset nge too - Tool cing se	ned cy centre sing. , Qua oling holde	ycles, sub e – APT 9 lified and system – rs – Tool 9 n of CNC
routines, mirro programming f UNIT – IV Tooling System semi-qualified Automatic heat assemblies – T UNIT – V Economics of machines - Cos	oring features, Manual part programming for CNC turning and mach for various machines in FANUC - Computer aided part programming - Post m and Management: Tooling system - Interchangeable tooling system - tools – Coolant fed tooling system – Modular fixturing – Quick cha d changers – Tooling requirements for Turning and Machining centers - ool Magazines – ATC Mechanisms – Tool management. CNC Operations and Special Purpose CNC Machines: Factors influen st of operation of CNC machines - Practical aspects of introducing CNC m	on, can hining proces - Preset nge too - Tool cing se achines	ned cy centro sing. , Qua oling holde lection s - Ma	ycles, sub e – APT 9 lified and system – rs – Tool 9 n of CNC intenance
routines, mirro programming f UNIT – IV Tooling System semi-qualified Automatic heat assemblies – T UNIT – V Economics of machines - Cos features of CN	oring features, Manual part programming for CNC turning and mach for various machines in FANUC - Computer aided part programming - Post m and Management: Tooling system - Interchangeable tooling system - tools – Coolant fed tooling system – Modular fixturing – Quick cha d changers – Tooling requirements for Turning and Machining centers - ool Magazines – ATC Mechanisms – Tool management. CNC Operations and Special Purpose CNC Machines: Factors influen st of operation of CNC machines - Practical aspects of introducing CNC m IC machines - Preventive and other maintenance requirements. CNC grint	on, can hining proces - Preset nge to - Tool cing se achines nding r	ned cy centro sing. , Qua oling holde lection s - Ma nachin	ycles, sub e – APT 9 lified and system – rs – Tool 9 n of CNC intenance nes, CNC
routines, mirro programming f UNIT – IV Tooling System semi-qualified Automatic heat assemblies – T UNIT – V Economics of machines - Cos features of CN bending machi	oring features, Manual part programming for CNC turning and mach for various machines in FANUC - Computer aided part programming - Post m and Management: Tooling system - Interchangeable tooling system - tools - Coolant fed tooling system - Modular fixturing - Quick cha d changers - Tooling requirements for Turning and Machining centers - ool Magazines - ATC Mechanisms - Tool management. CNC Operations and Special Purpose CNC Machines: Factors influen st of operation of CNC machines - Practical aspects of introducing CNC m C machines - Preventive and other maintenance requirements. CNC grin nes - pipe bending, CNC turret Press, CNC EDM - Wire cut EDM, CNC E	on, can hining proces - Preset nge to - Tool cing se achines nding r	ned cy centro sing. , Qua oling holde lection s - Ma nachin	ycles, sub e – APT 9 lified and system – rs – Tool 9 n of CNC intenance nes, CNC
routines, mirro programming f UNIT – IV Tooling System semi-qualified Automatic heat assemblies – T UNIT – V Economics of machines - Cos features of CN bending machi	oring features, Manual part programming for CNC turning and mach for various machines in FANUC - Computer aided part programming - Post m and Management: Tooling system - Interchangeable tooling system - tools - Coolant fed tooling system - Modular fixturing - Quick cha d changers - Tooling requirements for Turning and Machining centers - ool Magazines - ATC Mechanisms - Tool management. CNC Operations and Special Purpose CNC Machines: Factors influen st of operation of CNC machines - Practical aspects of introducing CNC m C machines - Preventive and other maintenance requirements. CNC grin nes - pipe bending, CNC turret Press, CNC EDM - Wire cut EDM, CNC E	on, can hining proces - Preset nge to - Tool cing se achines nding r	ned cy centro sing. , Qua oling holde lection s - Ma nachin	ycles, sub e – APT 9 lified and system – rs – Tool 9 n of CNC intenance nes, CNC
routines, mirro programming f UNIT – IV Tooling Syster semi-qualified Automatic hea assemblies – T UNIT – V Economics of machines - Cos features of CN bending machi grinding machi	oring features, Manual part programming for CNC turning and mach for various machines in FANUC - Computer aided part programming - Post m and Management: Tooling system - Interchangeable tooling system - tools - Coolant fed tooling system - Modular fixturing - Quick cha d changers - Tooling requirements for Turning and Machining centers - ool Magazines - ATC Mechanisms - Tool management. CNC Operations and Special Purpose CNC Machines: Factors influen st of operation of CNC machines - Practical aspects of introducing CNC m IC machines - Preventive and other maintenance requirements. CNC grin nes - pipe bending, CNC turret Press, CNC EDM - Wire cut EDM, CNC E nes.	on, can hining proces - Preset nge to - Tool cing se achines nding r	ned cy centro sing. , Qua oling holde lection s - Ma nachin	ycles, sub e – APT 9 lified and system – rs – Tool 9 n of CNC intenance nes, CNC
routines, mirro programming f UNIT – IV Tooling Syster semi-qualified Automatic hea assemblies – T UNIT – V Economics of machines - Cos features of CN bending machi grinding machi	oring features, Manual part programming for CNC turning and mach or various machines in FANUC - Computer aided part programming - Post m and Management: Tooling system - Interchangeable tooling system - tools - Coolant fed tooling system - Modular fixturing - Quick cha d changers - Tooling requirements for Turning and Machining centers - ool Magazines - ATC Mechanisms - Tool management. CNC Operations and Special Purpose CNC Machines: Factors influen st of operation of CNC machines - Practical aspects of introducing CNC m IC machines - Preventive and other maintenance requirements. CNC grin nes - pipe bending, CNC turret Press, CNC EDM - Wire cut EDM, CNC E nes.	on, can hining proces - Preset nge to - Tool cing se achines nding r	ned cy centro sing. , Qua oling holde lection s - Ma nachin	ycles, sub e – APT 9 lified and system – rs – Tool 9 n of CNC intenance nes, CNC
routines, mirro programming f UNIT – IV Tooling Syster semi-qualified Automatic hea assemblies – T UNIT – V Economics of machines - Cos features of CN bending machi grinding machi 1. Study of G	or various machines in FANUC - Computer aided part programming - Post m and Management: Tooling system - Interchangeable tooling system - tools - Coolant fed tooling system - Modular fixturing - Quick cha d changers - Tooling requirements for Turning and Machining centers - ool Magazines - ATC Mechanisms - Tool management. CNC Operations and Special Purpose CNC Machines: Factors influen st of operation of CNC machines - Practical aspects of introducing CNC m IC machines - Preventive and other maintenance requirements. CNC grin nes - pipe bending, CNC turret Press, CNC EDM - Wire cut EDM, CNC E nes.	on, can hining proces - Preset nge to - Tool cing se achines nding r	ned cy centro sing. , Qua oling holde lection s - Ma nachin	ycles, sub e – APT 9 lified and system – rs – Tool 9 n of CNC intenance nes, CNC
routines, mirro programming f UNIT – IV Tooling Syster semi-qualified Automatic hea assemblies – T UNIT – V Economics of machines - Cos features of CN bending machi grinding machi List of Exercis 1. Study of G 2. Programmi	oring features, Manual part programming for CNC turning and mach or various machines in FANUC - Computer aided part programming - Post m and Management: Tooling system - Interchangeable tooling system - tools - Coolant fed tooling system - Modular fixturing - Quick cha d changers - Tooling requirements for Turning and Machining centers - ool Magazines - ATC Mechanisms - Tool management. CNC Operations and Special Purpose CNC Machines: Factors influen st of operation of CNC machines - Practical aspects of introducing CNC m IC machines - Preventive and other maintenance requirements. CNC grim nes - pipe bending, CNC turret Press, CNC EDM - Wire cut EDM, CNC E nes. Ses: codes and M codes for machining centre and turning centre ng and machining of given component using HMT VMC 200T	on, can hining proces - Preset nge to - Tool cing se achines nding r	ned cy centro sing. , Qua oling holde lection s - Ma nachin	ycles, sub e – APT 9 lified and system – rs – Tool 9 n of CNC intenance nes, CNC
routines, mirro programming f UNIT – IV Tooling Syster semi-qualified Automatic hea assemblies – T UNIT – V Economics of machines - Cos features of CN bending machi grinding machi I. Study of G 2. Programmi 3. Programmi	oring features, Manual part programming for CNC turning and mach or various machines in FANUC - Computer aided part programming - Post m and Management: Tooling system - Interchangeable tooling system - tools - Coolant fed tooling system - Modular fixturing - Quick cha d changers - Tooling requirements for Turning and Machining centers - ool Magazines - ATC Mechanisms - Tool management. CNC Operations and Special Purpose CNC Machines: Factors influen st of operation of CNC machines - Practical aspects of introducing CNC m IC machines - Preventive and other maintenance requirements. CNC grin nes - pipe bending, CNC turret Press, CNC EDM - Wire cut EDM, CNC E nes. Ses: codes and M codes for machining centre and turning centre ng and machining of given component using HMT VMC 200T ng and machining of given component using HMT CNC T70	on, can hining proces - Preset nge to - Tool cing se achines nding r	ned cy centro sing. , Qua oling holde lection s - Ma nachin	ycles, sub e – APT 9 lified and system – rs – Tool 9 n of CNC intenance nes, CNC
routines, mirro programming f UNIT – IV Tooling Syster semi-qualified Automatic hea assemblies – T UNIT – V Economics of machines - Cos features of CN bending machi grinding machi grinding machi 1. Study of G 2. Programmi 3. Programmi 4. Programmi	oring features, Manual part programming for CNC turning and mach for various machines in FANUC - Computer aided part programming - Post m and Management: Tooling system - Interchangeable tooling system - tools - Coolant fed tooling system - Modular fixturing - Quick cha d changers - Tooling requirements for Turning and Machining centers - ool Magazines - ATC Mechanisms - Tool management. CNC Operations and Special Purpose CNC Machines: Factors influen st of operation of CNC machines - Practical aspects of introducing CNC m IC machines - Preventive and other maintenance requirements. CNC grin nes - pipe bending, CNC turret Press, CNC EDM - Wire cut EDM, CNC E nes.	on, can hining proces - Preset nge to - Tool cing se achines nding r	ned cy centro sing. , Qua oling holde lection s - Ma nachin	ycles, sub e – APT 9 lified and system – rs – Tool 9 n of CNC intenance nes, CNC
routines, mirro programming f UNIT – IV Tooling Syster semi-qualified Automatic hea assemblies – T UNIT – V Economics of machines - Cos features of CN bending machi grinding machi grinding machi 1. Study of G 2. Programmi 3. Programmi 4. Programmi	oring features, Manual part programming for CNC turning and mach or various machines in FANUC - Computer aided part programming - Post m and Management: Tooling system - Interchangeable tooling system - tools - Coolant fed tooling system - Modular fixturing - Quick cha d changers - Tooling requirements for Turning and Machining centers - ool Magazines - ATC Mechanisms - Tool management. CNC Operations and Special Purpose CNC Machines: Factors influen st of operation of CNC machines - Practical aspects of introducing CNC m IC machines - Preventive and other maintenance requirements. CNC grin nes - pipe bending, CNC turret Press, CNC EDM - Wire cut EDM, CNC E nes. Ses: codes and M codes for machining centre and turning centre ng and machining of given component using HMT VMC 200T ng and machining of given component using HMT CNC T70	on, can hining proces	ned cy centro sing. , Qua oling holde lection s - Ma nachin Electro	ycles, sub e – APT 9 lified and system – rs – Tool 9 n of CNC intenance nes, CNC ochemical

REFERENCES:							
1. I	Michael Fitz	patrick N.E., and Arlington W.	A., "Machining and CNC Techr	ology	² , 3 rd Edition, Mc Graw		
	Hill Educati		-				
2. \$	Sehrawat M	.S. and Narang J.S., "CNC Mac	chines (Computer Numerical Co	ntrol)"	, Dhanpat Rai and Co.,		
		ew Delhi, 2014.					
			Building, Programming and Im	plemer	ntation", The McGraw-		
		nies Inc., 2011.					
]	Industrial Pr	ess Inc., 2005.					
1	RSE OUTC				BT Mapped		
		the course, the students will be			(Highest Level)		
CO1:		e basic components and mechan			Understanding (K2)		
CO2:		he control system concepts used			Understanding (K2)		
CO3:	••• =••==============================	part programming for turning an			Creating (K6)		
CO4:		per tooling systems and fixtures			Applying (K3)		
CO5:			chine and selection of special pu	rpose	Understanding (K2)		
	CNC mac						
CO6:	develop C	NC programming using differen	at G codes and M codes		Applying (K3),		
0.07	1 1	1	· · · · · · · · · · · · · · · · · · ·		Precision (S3)		
CO7:	develop pa	art program and perform machin	ing in Turning Centre		Creating (K6),		
0.00	1 1	1 0 1:	· · · M 1: · · O /		Precision (S3)		
CO8:	develop pa	art program and perform machin	ling in Machining Centre		Creating (K6),		
		Mannia	ng of COg with DOg		Precision (S3)		
		марри	ng of COs with POs				
CO	Os/POs	PO1	PO2		PO3		
	CO1	2	1		1		
	CO2	3	3		1		
	CO3	3	2		2		
	CO4	3	1		1		
	CO5	2	3		3		
	CO6	3	3		3		
	CO7	3	3		3		
	CO8	3	3		3		
1 - Sl	ight, 2 – Mo	oderate, 3-Substantial, BT -	Bloom's Taxonomy				

	18MMC12 MICROCONTROLLER AND APPLICAT	IONS			
		L	Т	Р	Credit
		3	0	2	4
Preamble	Microcontroller has become important building block in digital e			0	
	microcontroller architecture, programming, and interfacing is de				
	Interfacing, assembly language programming and interfacing of 80	051/PI	C micr	roconti	oller and
n • • ·	its application in industry are also covered in this course.				
Prerequisites	Nil				<u> </u>
UNIT – I		6 .1	0051	C '1	9
	ntroller: Microcontroller and embedded processors - Overview				
Output ports, p	r architecture - Memory organization of 8051 - PSW register - Reg	ister b	anks a	na sta	ck, Input/
Output ports, p					
UNIT – II					9
	ed C Programming: Introduction to Embedded C Programmin	g - Ti	imer/C	ounter	
	ns Interrupts - Instruction set - Addressing modes - I/O port Prog	-			
programming -	Serial communications Programming - Interrupt Programming.		Ũ		
UNIT – III					9
	trollers Architecture: PIC microcontroller overview and featur				
	rchitecture of PIC18-PinDescription-Memory organization: Progra	im me	mory-l	Jata N	lemory -
Register Organ	ization.				
UNIT – IV					9
PIC 18 Featu	res: I/O Ports Timers Counters-Capture/ Compare - PWM- Ex	ternal	Hardv	vare I	nterrupts-
USART-ADC-	Interfacing to External memory.				_
UNIT – V		~			9
	edded C Programming: Addressing Modes - Instruction set-	-	_		-
	Timer/Counter programming - Serial communications Programm	ung -	ADC	Progra	imming -
Application cas					
List of Experi	nonfo				
	of switch, LED and seven segment LED				
2. Interfacing					
	of DC motor				
	of stepper motor				
	of pressure, temperature, proximity, level switch etc., for a given cas	e study	17		
J. Interfacing				J.20 '	Total: 75
REFERENCE		. 3, P	1 actilia	11.30,	101al. 13
	s. shammad Ali and Mazidi Janice Gillispie, "The 8051 Microcontroller	and F	mbedde	ed Svst	tems" 2 nd
	arson Education, 2009.	ana 12			
	uhammad Ali, Mckinlay Rolin .D., and Causey Danny," PIC Microco	ontrolle	er and	Embed	Ided System
	and C for PIC18", Pearson Education Asia, 2008.				2980
	Haring, Kai Qian, and Li Cao., "Embedded Software Development With	C". Spi	ringer. 2	2009.	
J. David Den	manng, Kai Qian, and Li Cao., Enlocuded Software Development With	C, Spi	mgel, a	2009.	

COUI	RSE OUTC	OMES:			BT Mapped		
On co	mpletion of	the course, the students will be	able to		(Highest Level)		
CO1:	explain the	e organization of 8051 microcor	troller and its programming con-	cepts	Understanding (K2)		
CO2:	interpret th	ne basic architecture and feature	s of PIC18 microcontroller		Understanding (K2)		
CO3:	develop E	mbedded C programming for 89	c51 and PIC microcontroller		Applying (K3)		
CO4:	experimen	t with microcontroller hardware	n	Applying (K3)			
CO5:	develop microcontroller hardware for industrial applications				Creating (K6)		
CO6:		nexa decimal code for a gi ing software	ven application using embedo	ded C	Applying (K3), Precision (S3)		
CO7:					Analyzing (K4),		
					Precision (S3)		
CO8:	interface n	nicrocontroller hardware with I/	Os for a specific application		Analyzing (K4),		
					Precision (S3)		
		Mappin	ng of COs with POs				
CC	Os/POs	PO1	PO2		PO3		
(CO1	1	1		2		
(CO2	1	1		2		
(CO3	3	2		2		
(CO4	3	2		3		
(CO5	3	2		3		
(CO6	3	2		3		
(CO7	3	2		3		
(CO8	3	2		3		
1 - Sli	ght, 2 – Mo	derate, 3-Substantial, BT -	Bloom's Taxonomy				

18GET01 INTRODUCTION TO RESEARCH

L

Т

Р

Credit

9

9

9

9

9

(C	ommon	to Eng	gineering	and '	Technol	logy l	Brancl	hes))

		3	0	0	3
Preamble	To familiarize the fundamental concepts/techniques adopted in	researc	ch, pro	blem f	ormulation
	and patenting.				
	To disseminate the process involved in collection, consolidation	on of j	publisł	ned lite	rature and
	rewriting them in a presentable form using latest tools.				
Prerequisites	Nil				

UNIT – I

Concept of Research: Meaning and Significance of Research: Skills, Habits and Attitudes for Research -Time Management - Status of Research in India. Why, How and What a Research is? - Types and Process of Research - Outcome of Research - Sources of Research Problem - Characteristics of a Good Research Problem - Errors in Selecting a Research Problem - Importance of Keywords - Literature Collection – Analysis - Citation Study - Gap Analysis - Problem Formulation Techniques.

UNIT – II

Research Methods and Journals: Interdisciplinary Research - Need for Experimental Investigations - Data Collection Methods - Appropriate Choice of Algorithms / Methodologies / Methods - Measurement and Result Analysis - Investigation of Solutions for Research Problem - Interpretation - Research Limitations. Journals in Science/Engineering - Indexing and Impact factor of Journals - Citations - h Index - i10 Index - Journal Policies - How to Read a Published Paper - Ethical issues Related to Publishing - Plagiarism and Self-Plagiarism.

UNIT – III

Paper Writing and Research Tools: Types of Research Papers - Original Article/Review Paper/Short Communication/Case Study - When and Where to Publish? - Journal Selection Methods. Layout of a Research Paper - Guidelines for Submitting the Research Paper - Review Process - Addressing Reviewer Comments. Use of tools / Techniques for Research - Hands on Training related to Reference Management Software - EndNote, Software for Paper Formatting like LaTeX/MS Office. Introduction to Origin, SPSS, ANOVA etc., Software for detection of Plagiarism.

UNIT – IV

Effective Technical Thesis Writing/Presentation: How to Write a Report - Language and Style - Format of Project Report - Use of Quotations - Method of Transcription Special Elements: Title Page - Abstract - Table of Contents - Headings and Sub-Headings - Footnotes - Tables and Figures - Appendix - Bibliography etc. - Different Reference Formats. Presentation using PPTs.

UNIT – V

Nature of Intellectual Property: Patents - Designs - Trade and Copyright. Process of Patenting and Development: Technological research - innovation - patenting - development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents.

Total: 45

REF	TERENCES :
1.	DePoy, Elizabeth, and Laura N. Gitlin, "Introduction to Research-E-Book: Understanding and Applying
	Multiple Strategies", Elsevier Health Sciences, 2015.
2.	Walliman, Nicholas, "Research Methods: The basics", Routledge, 2017.
3.	Bettig Ronald V., "Copyrighting culture: The political economy of intellectual property", Routledge,
	2018.

	COURSE OUTCOMES: On completion of the course, the students will be able to						
CO1:	list	various stages in research/patentin	ng and categorize the quality of j	ournals	Analyzing (K4)		
CO2:	forn	nulate a research problem from p	ublished literature/journal papers		Evaluating (K5)		
CO3:	writ	e, present a journal paper/ project	Creating (K6)				
CO4:	select suitable journal and submit a research paper				Applying (K3)		
	Mapping of COs with POs						
COs/PC	Os	PO1	PO2		PO3		
CO1 3 2 1			1				
CO2 3			2	3			
CO3		3	3	1			
CO4		3	2	1			
1 – Slig	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy						

18MMC21 ROBOTICS ENGINEERING

(Common to Mechatronics, CADCAM & Control and instrumentation Engineering branches)							
		L	Т	Р	Credit		
		3	0	2	4		
Preamble	The course on Robotics Engineering is intended to provide a	a reaso	nable	unders	tanding of		
	robotics and robot anatomy, the mathematics behind kinemat	tics and	d dyna	mics o	of robot. It		
also involves controlling the robot motion using different control strategies.							
Prerequisites	Bridge Course Mechanical and Applied Mathematics for Mecha	atronic	S				
UNIT – I					9		
Introduction: History of robotics – Robot Anatomy – Robot specifications - Work space – Degree of							
freedom - Join	freedom - Joint types - Types of robots – Precision of movements - End effectors – Dexterity - Robot						

UNIT – II

applications.

Robot Kinematics: Descriptions: Position, Orientations and translation – Mapping: Changing from frame to frame – Operators: Translations, Rotation and Transformation - Homogeneous Transformation matrices - Forward and Inverse kinematics - Representation of links using Denavit - Hartenberg parameters.

UNIT – III

Velocity and Static Force: Introduction - Linear and angular velocities of a rigid body - Velocity propagation – Derivation of Jacobian matrix for Serial manipulator – Singularities - Static force of serial manipulator.

UNIT – IV

Robot Dynamics: Acceleration of a rigid body - Inertia of a link - Equations of motion for serial manipulators: Euler Lagrange formulation, Newton Euler formulation — Inverse dynamics of serial manipulator.

$\mathbf{UNIT} - \mathbf{V}$

Robot Control: Point to point and Continuous path motions – Joint trajectory Vs Cartesian trajectory – Trajectory planning – Trajectory following - Disturbance rejection – PD and PID control – Computer torque control - Adaptive control – Feedback linearization control.

List of Experiments:

- 1. Study the functions of ABB IRB 1410 industrial robot- components, drive system and end effectors.
- 2. Virtual reality robot programming for different tasks- Painting, Pick and place and switch off intruder alarm.
- 3. Virtual reality robot programming for different tasks- Stacking of blocks and Machining of billets.
- 4. Creation of Tool Centre Point (TCP) and Work Object using ABB IRB 1410 industrial robot.
- 5. Pick and place operation in teach mode using ABB IRB 1410 industrial robot.
- 6. Machine tending operation in teach mode using ABB IRB 1410 industrial robot.
- 7. Robot programming exercises Point-to-point programming.
- 8. Robot programming exercises Continuous path programming.
- 9. Robot programming exercises Path planning in offline mode.
 - 10. Vision based On-line Inspection and sorting of components using ABB IRB 1410 industrial robot.

Lecture: 45, Practical:30, Total: 75

9

9

9

9

REFERENCES / MANUALS / SOFTWARES:							
			ustrial R	photics Technology			
Programmin	Groover M.P., Weiss M., Magel R.N., Odrey N.G. and Dulta A., "Industrial Robotics, Technology, Programming and Applications", 2 nd Edition, McGraw-Hill Companies, 2012.						
2. Saeed B. Nil	ku "Introduction to Robotics"	Analysis, Control, Applications"	2^{nd} Edit	ion. Wiley India Pyt.			
Ltd., 2012.							
	,						
Publication,			,				
COURSE OUT	COMES:			BT Mapped			
On completion o	of the course, the students will	be able to		(Highest Level)			
CO1: interpret	the industrial manipulator and	atomy and estimate the gripping	force of	Applying (K3)			
robot end	l effector						
1	the forward and inverse kinem	1		Applying (K3)			
CO3: formulate	e Jacobian matrix for veloc	city and static force analysis o	f serial	Applying (K3)			
manipula							
	e dynamic equations for serial	1		Applying (K3)			
	e scheme of trajectory plann	ing and control for manipulator	motion	Applying (K3)			
control							
CO6: analyze t	he industrial robot work cell p	problems		Analyzing (K4),			
				Manipulation (S2)			
CO7: develop 1	robot programming through or	nline /offline mode		Creating (K6),			
<u> </u>				Precision (S3)			
CO8: develop a	an online inspection system us	sing machine vision		Creating (K6),			
				Precision (S3)			
		ping of COs with POs		DOA			
COs/POs	PO1	PO2		PO3			
CO1	2	-		3			
	CO2 2 -						
CO3	2			3			
CO4	2		3				
CO5	2			3			
CO6	2	3		3			
CO7	3	3		3			
CO8	3	3	3				
1 - Slight, 2 - M	loderate, 3 – Substantial, B	Г - Bloom's Taxonomy					

18MMC22 INTEGRATED AUTOMATION CONTROLLER										
	L T P Credit									
3 0 2 4										
Preamble	This course is intended for learning the device layer compo	nents	and A	rchited	ture and					
	Operations of programmable logic controller, Fundamentals of	Prog	ammir	ng and	problem					
	solving using logic ladder diagrams. This course is also giving	g the i	deas o	f Fund	amentals					
	Networking of PLC, SCADA architecture and Distributed control	l syste	m and	its case	e studies.					
Prerequisites	Sensors and Instrumentation									
UNIT – I					9					
Device Layer	Components: Input Devices- Pushbuttons - Proximity Sensors-	Read	switch	1 –floa	t switch-					
pressure switch	n-temperature switch-limit switch-Encoders – MCB - Output Dev	ices –	Relays	– Cor	itactors -					
OLR – DOL St	arter - Solenoid valves- relay logic program for simple industrial c	case stu	idies.							
UNIT – II					9					
Programmabl	e Logic Controller: Parts of PLC – Principles of operation –	PLC s	sizes –	PLC	hardware					
components – I/O modules – Programming devices- different modes of PLC operation-maintenance and										
troubleshooting procedure.										
UNIT – III					9					
PLC Program	ming: Types of PLC programming – Simple instructions – L	atchin	g relay	/s - Co	onverting					
simple relay 1	adder diagram into PLC ladder diagram Timer instructions	On I	Jolov	Off D	alaw and					

Р simple relay ladder diagram into PLC ladder diagram-Timer instructions - On Delay, Off Delay and Retentive Timers – Counter instructions – Up Counter, Down Counter and Up Down Counters- Program control instructions – Data manipulating instructions, math instruction – Closed loop control.

UNIT - IV

Networking of PLC and SCADA: Networking of PLCs – Data communication — data highway- serial communication- device net -control net - Ethernet IP -Modbus- field bus - Profibus DP - OPC function. Supervisory Control and Data Acquisition - Architecture - Remote terminal units - Master Terminal units -Operator interface - security considerations - alarming- control change screen- status screen-graphics and trending - reports.

9

9

UNIT - V

Distributed Control System and Case Studies: Evolution - Architectures - Comparison - Local control unit – Process interfacing issues – Communication facilities. Operator interfaces – Low level and high-level operator interfaces - Operator displays - Engineering interfaces - Low level and high-level engineering interfaces – Applications of DCS in – Pulp and paper environment – Petroleum – Refining environment.

List of Experiments:

- 1. Introduction to ladder programming using software
- 2. Introduction to simulation/communication/HMI software for PLC programming
- 3. Construction of Ladder programming for Boolean, math, compare operations.
- 4. Logical testing of field devices such as, Pushbutton, selector switch, proximity sensor, Relay, Contactor etc., by using PLC.
- 5. Level process control using PLC.
- 6. Linear and sequential actuation of pneumatic cylinder with timer and counter functions.
- 7. Interfacing pneumatic cylinders with SCADA
- 8. Interfacing of AC drive with PLC

9. Interfacing of AC drive with PLC and SCADA.

10. Application case study

Lecture: 45, Practical: 30, Total: 75								
REF	REFERENCES / MANUALS / SOFTWARES:							
	4-							
2.	Webb J	ohn, W and Reis Ronald A., "Pro	ogrammable Logic Controllers: P	rinciples	and Applications", 5th			
	Edition, Prentice Hall of India, New Delhi, 2011.							
3.	Stuart E	Boyer A., "SCADA Supervisory (Control and Data Acquisition", 4 th	¹ Edition	ISA, USA, 2010.			
COU	RSE O	UTCOMES:			BT Mapped			
		on of the course, the students will			(Highest Level)			
CO1:		i 1	functions and its role in in	dustrial	Understanding (K2)			
		nation system						
CO2:			ming device, installation procedu	res and	Applying (K3)			
		le shooting						
CO3:		<u> </u>	unctions of PLCs for a given appli		Creating (K6)			
CO4:		01	s for PLC, application developme	nt	Understanding (K2)			
005		dures in SCADA and manage da						
CO5:		rate the architecture of DCS, inte	rfaces and its applications		Understanding (K2)			
CO6:	build	and simulate PLC programming	for discrete and analog I/Os		Applying(K3),			
007					Precision (S3)			
CO7:	devel	op PLC program and interface fi	eld I/Os for a provided application	n	Applying(K3),			
<u> </u>					Precision (S3)			
CO8:	devel	op a SCADA program and interf	ace with PLC for a provided appl	ication	Creating (K6), Precision (S3)			
	l	Man	ping of COs with POs		Precision (55)			
COs/	POs	PO1	PO2		PO3			
	01	2	1 1		2			
		2	1		3			
	CO2 2 1 CO3 3 3			3				
		2	1		3			
CO4			1		2			
CO5 CO6		2	1		2 2			
		3	2					
	07	3	2		2			
	08	3			2			
1-S	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy							

	18MMC23 CONTROL SYSTEM ENGINEERING				
		L	Т	Р	Credit
		3	0	2	4
Preamble	Control system is the collection of physical components connected	togeth	er to se	erve a	particular
	objective. Control system Engineering has become an integral part of	0			±
	industrial process.				U
Prerequisites	Applied Mathematics for Mechatronics				
UNIT – I					9
	eling: System concepts – Mathematical modeling: Electrical systems,				
Mechanical s	ystems - Electrical analogous for mechanical systems - Block dia	agram	reduct	tion te	chniques,
Signal flow g	caph.				
UNIT – II					9
-	se Analysis: Test signals – Time response of I and II order systems –			-	
 Steady state 	error - Generalized error series - Concepts of stability - Routh Hurw	itz cri	terion -	- Root	locus.
UNIT – III					9
	esponse Analysis: Frequency domain specifications – Correlation				frequency
domain specif	ïcations – Bode plot, Polar plot – Nyquist stability criterion – Constar	nt M &	N CIRC	eles.	
UNIT – IV					0
	rs Design: Realization of basic compensators – Cascade compen	action	in tir	na da	9 main and
	nain –Design of Lag, Lead and Lag, Lead compensator using root loc		III UI.	ne uo	inani anu
inequency doi	nam –Design of Lag, Lead and Lag, Lead compensator using foot foc	us.			
UNIT – V					9
	Analysis: Continuous and discrete time state variable theory – Stat	te spac	e forn	nulatio	-
	ntation using physical variables, phase variables and canonical variables				
	ontrollability - Observability.				
	5				
List of Exper	iments:				
1. Introd	uction to linear and non linear system				
2. Digita	l simulation of second order linear system				
3. Deterr	nination of Transfer Function Parameters for linear system				

- 4. Effect of P, PI, PID Controller on a linear system model
- 5. Frequency Response of Second Order System

- 6. Stability Analysis of Linear Systems using Bode Plot
- 7. Stability Analysis of Linear Systems using Root Locus
- 8. Effect of Addition of Poles and Zeros on System Stability
- 9. Design of Compensators using MATLAB/LabVIEW
- 10. Design and implementation of simple controller for real time application

Lecture: 45, Practical:30, Total: 75

REFERENCES / MANUAL / SOFTWARES:

Ogata K., "Modern Control Engineering", 5th Edition, Pearson Education/ PHI, New Delhi, 2015. 1.

Nise Norman S., "Control Systems Engineering", 7th Edition, Wiley Publishers, 2018. 2.

Nagrath I.J. and Gopal M., "Control Systems Engineering", 6th Edition, New Age International Publishers, 3. New Delhi, 2018.

COURSE OUTCOMES: BT Mapped							
On con	mpleti	on of the course, the students will	l be able to	(Highest Level)			
CO1:		develop the mathematical model of an Electrical, Mechanical and Electro Applying (K3) mechanical systems					
CO2:	inter	pret the time response analysis of	the system	Applying (K3)			
CO3:	inter	pret the frequency response and s	tability of the system	Applying (K3)			
CO4:	demo	onstrate the compensation technic	ues for stabilizing the system	Applying (K3)			
CO5:	ident	ify continuous and discrete time	state variable theory	Applying (K3)			
CO6:	desig	n and model second order linear	Analyzing (K4), Precision (S3)				
CO7:	analy	ze the stability of system using the	Analyzing (K4), Precision (S3)				
CO8:	analyze controller design for the given application			Analyzing (K4), Precision (S3)			
	-	Map	oping of COs with POs				
COs/P	Os	PO1	PO2	PO3			
CC)1	1	2	3			
CC)2	2	1	3			
CO3 2		2	1	3			
CO4		1	2	3			
CO5		1	2	3			
CO6		2	1	3			
CC)7	2	1	3			
CC		2	1	3			
1 - Sli	ight, $\overline{2}$	– Moderate, 3 – Substantial, B	BT - Bloom's Taxonomy				

18CCE02 SAFETY IN ENGINEERING INDUSTRY

(Common to CADCAM, Engineering Design & Mechatronics branches)
--

		3	0	0	3
Preamble	The course deals with the study on hazards involved in p operations, safety precautions and guidelines to be followed		U		U
	industrial equipments utilizing safety devices for specified oper systems in machines for safe operation.	eration	s and t	types o	of guarding
				•	

Prerequisites Manufacturing Technology, Material Removal Processes, Thermal Engineering.

UNIT – I

Safety in Metal Working Machinery and Wood Working Machines: General safety rules, principles, maintenance, Inspections of turning machines, boring machines, milling machine, planning machine and grinding machines, CNC machines, Wood working machinery, types, safety principles, electrical guards, work area, material handling, inspection, standards and codes- saws, types, hazards.

UNIT – II

Principles of Machine Guarding: Guarding during maintenance, Zero Mechanical State (ZMS), Definition, Policy for ZMS – guarding of hazards - point of operation protective devices, machine guarding, types, fixed guard, interlock guard, automatic guard, trip guard, electron eye, positional control guard, fixed guard fencing- guard construction- guard opening. Selection and suitability: lathe-drilling-boring-milling-grinding-shaping-sawing-shearing-presses- forgehammer – flywheels - shafts couplings-gears-sprockets wheels and chains- pulleys and belts-authorized entry to hazardous installations-benefits of good guarding systems.

UNIT – III

Safety in Welding and Gas Cutting: Gas welding and oxygen cutting, resistances welding, arc welding and cutting, common hazards, personal protective equipment, training, safety precautions in brazing, soldering and metalizing – explosive welding, selection, care and maintenance of the associated equipment and instruments – safety in generation, distribution and handling of industrial gases - colour coding – flashback arrestor – leak detection - pipe line safety - storage and handling of gas cylinders.

UNIT – IV

Safety in Cold Forming and Hot Working of Metals: Cold working, power presses, point of operation safe guarding, auxiliary mechanisms, feeding and cutting mechanism, hand or foot-operated presses, power press electric controls, power press set up and die removal, inspection and maintenance-metal sheers-press brakes. Hot working safety in forging, hot rolling mill operation, safe guards in hot rolling mills – hot bending of pipes, hazards and control measures. Safety in gas furnace operation, cupola, crucibles, ovens, foundry health hazards, work environment, material handling in foundries, foundry production cleaning and finishing foundry processes.

UNIT – V

Safety in Finishing, Inspection and Testing: Heat treatment operations, electro plating, paint shops, sand and shot lasting, safety in inspection and testing, dynamic balancing, hydro testing, valves, boiler drums and headers, pressure vessels, air leak test, steam testing, safety in radiography, personal monitoring devices, radiation hazards, engineering and administrative controls, Indian Boilers Regulation. Health and welfare measures in engineering industry-pollution control in engineering industry- industrial waste disposal.

Total: 45

9

9

9

9

9

Т

L

Р

Credit

REFERENCES:							
1. John V. Grin	1. John V. Grimaldi and Rollin H. Simonds, "Safety Management", 5 th Edition, All India Travelers Book						
Seller, New D							
	., "Safety Management in Indus	3 /					
	Nigel C. Balchin, "Health an	d Safety in Welding and	Allied Proce	esses", 5 th Edition,			
Woodhead Pu	ıblishing Ltd., U.K., 2002.						
COURSE OUTC				BT Mapped			
	the course, the students will be			(Highest Level)			
CO1: work safe	ly in metal and wood working n	nachines		Applying (K3)			
CO2: identify pr	coper guarding for different app	lications		Analyzing (K4)			
CO3: work safely in welding and allied process Analyzing (K4)							
CO4: work safely in cold and hot working metals Applying (K3)							
CO5: handle safely testing and inspection instruments Analyzing (K4)							
Mapping of COs with POs							
COs/POs	PO1	PO2		PO3			
CO1	1	2		1			
CO2	1	2		2			
CO3 1		2		1			
CO4	1	2		1			
CO5	2	2		1			
1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy							

18MME01 FLUID POWER SYSTEM DESIGN

(Common to Mechatronics, Engineering Design & CADCAM branches)

	L	Т	Р	Credit
	3	0	2	4
1		1 1		• •

9

9

9

9

9

Preamble	This course deals with the design of a system which generate, control and transmission of	
	power using pressurized fluids.	I
Prerequisites	Nil	I

UNIT – I

Fundamentals and Power Source of Hydraulic System: Basics, Types and structure of fluid power systems – Pascal's Law and its application –Fluid properties – Losses in pipes, valves and fittings – Advantages and applications of Fluid power systems. Fluid power symbols – Hydraulic pumps: Gear, Vane and Piston pumps, Pump Performance, Characteristics and Selection - Sizing of hydraulic pumps.

UNIT – II

Control Components of Hydraulic System: Direction control valves: Three-way valve, Four way valve, Check valve and shuttle valve – Actuation mechanism of DCV – Pressure control valves: Pressure relief, Pressure Reducing, Counter balance, Sequencing and Unloading Valves – Flow control valves and its types – Proportional Valves – Servo valves and its types.

UNIT – III

Fundamentals of Pneumatic System: Perfect Gas laws – Compressors: piston, screw and vane compressor – Fluid conditioning Elements: Filter, Regulator and Lubricator unit, Pneumatic silencers, After coolers, Air dryers – Air control valves – Fluid power actuators: Linear and Rotary actuators – types – Cushioning mechanism in cylinders – Sizing of Actuators.

UNIT – IV

Fluid Power Circuit Design: Circuit design methods: Cascade method, Step counter method and KV Map method (two / three-cylinder circuits) – Basic pneumatic circuits – Electrical components and electrical controls for Fluid power circuits – Introduction to Fluid logic devices and applications – Accumulator: Types and application circuits – Pressure intensifier circuits – PLC applications in Fluid power circuit.

UNIT – V

Industrial Circuits and Maintenance: Industrial circuits: Speed control circuits – Regenerative cylinder circuits – Pump unloading circuit – Double pump circuit – Counter balance valve circuit – Hydraulic cylinder sequencing circuit – Automatic cylinder reciprocating circuit – Cylinder synchronizing circuits – Fail safe circuits - Sealing devices: Types and materials – Installation, Maintenance and trouble shooting of Fluid Power systems.

List of Experiments:

- 1. Design and testing of Electro-hydraulic circuit with pressure sequence valve
- 2. Design of hydraulic circuit for speed control of hydraulic motor and cylinder
- 3. Circuits with logic controls AND valve and OR valve
- 4. Sequential Circuit with pneumatic control without pneumatic timers
- 5. Sequential Circuit with pneumatic control with pneumatic timers
- 6. Cylinder synchronizing circuits

	8. Circuit with rod less cylinder – Electrical control						
9. Proportional and Servo control of Pressure and Flow in hydraulic Circuits							
10. Simulation and analysis of fluid power circuits using fluid power simulation software							
Lecture: 45, Practical: 30, Total: 75							
REFERENCES / MANUALS / SOFTW	ARES:						
	th Applications", 7 th Edition, Pearson	Education Ltd., New York,					
2. Majumdar S.R., "Pneumatic System Delhi, 2017.	s – Principles and Maintenance", 1 st	Edition, McGraw-Hill, New					
3. Majumdar S.R., "Oil Hydraulic Sys New Delhi, 2017.	stems - Principles and Maintenance",	28 th Edition, McGraw-Hill,					
COURSE OUTCOMES: On completion of the course, the students	will be able to	BT Mapped (Highest Level)					
CO1: identify the fluid power componen		Applying (K3)					
	trol components for a given application						
	design a system with low cost automat						
	circuit with different methodologies f						
industrial environment	encuit with unrefert methodologies i						
CO5: design and analyze the fluid po simulation software	wer circuit for a given application	using Creating (K6)					
	ts and their symbols used in industry	Applying (K3),					
cool. Identify the find power component	to the men symbols used in medsity	Manipulation (S2)					
CO7: design, construct and test fluid por	wer circuits with pneumatic, electrical						
and logic control for low cost auto		Precision (S3)					
	ver circuit using simulation softwar						
industrial application	-	Precision (S3)					
Ν	Iapping of COs with POs						
COs/POs PO1	PO2	PO3					
CO1 3	2	3					
CO2 3	2	3					
CO3 3	2	3					
CO4 3	2	3					
CO5 3	2	3					
CO6 3	3	3					
CO7 3 3		3					
CO8 3	3	3					
1 - Slight, $2 - $ Moderate, $3 - $ Substantial	, BT - Bloom's Taxonomy						

	18MME02 ADVANCED MICROCONTROLLERS WITH IOT						
L T P Cr							
		3	0	2	4		
Preamble	This course provides detailed architecture about ATMEGA mi	icrocon	troller	, progi	ramming,		
	IoT, Raspberry Pi and Arduino which are powerful tools pr	ovidin	g impi	oved	solutions		
	optimized around the global market.						
Prerequisites	Microcontroller and Applications						
UNIT 1					9		
ATMEGA 8	Microcontroller: Architecture of ATMEGA 8 - Pin Descript	ion–. I	Memor	y orga	anization:		
Program mem	ory – Data Memory - I/O Ports – Timers – Counters – Analog co	mpara	tor – S	erial F	Peripheral		
Interface - US	Interface – USART – External Hardware Interrupts – ADC.						
UNIT II	UNIT II 9						
ATMEGA 8 Embedded C Programming: I/O ports: Register configuration-programming - Timers:							
modes-programming - Counters - ADC: configuration registers-programming - External Hardware							
Interrupts: types –programming.							
	· · ·						

UNIT III

Introduction to IoT: Definition and characteristics –Physical System – Cyber Physical System – Layers of IoT – Levels of IoT – Networking Topologies and Communication Protocols(CoAP, 6LoWPAN, REST, MQTT, HTTP).

UNIT IV

Microcontroller for real time applications: Embedded C programming for interfacing switch, LED, seven segment LED, Buzzer, analog sensors, solenoid valves, motors for real time case studies.

UNIT V

Microcontroller and IoT for real time applications: Decentralized monitoring and control, data retrieval using microcontroller, data communication, data storage and data analytics. Case studies: pressure, level and temperature monitoring and control.

List of Experiments:

- 1. Introduction to microcontroller programming software for ATMEGA microcontroller programming
- 2. Introduction to Arduino microcontroller programming software
- 3. Interfacing Switch/LED with ATMEGA 8 Microcontroller Simulation
- 4. Interfacing 7 Segment with ATMEGA 8 Microcontroller Simulation
- 5. Programming with timers in ATMEGA 8 Microcontroller Simulation
- 6. Programming with Arduino Microcontroller with IoT
- 7. Interfacing Raspberry-pi with Arduino and IoT
- 8. Case study- Application specific using Arduino and IoT
- 9. Case study- Application specific using Arduino and IoT
- 10. Case study- Application specific using Arduino and IoT

Lecture: 45, Practical: 30, Total: 75

9

9

9

REFERENCES / MANUAL / SOFTWARES:									
	1. Valvano Jonathan W., "Embedded Microcomputer Systems: Real Time Interfacing", 3 rd Edition,								
,	Thomse	mson Asia, Singapore, 2011.							
2.	Arshde	ndeep Bahga, Vijay Madisetti, "Internet of Things: A Hands-on Approa			h", 1 st Edition, Orient				
	Blackswan Pvt. Ltd., New Delhi, 2015.								
3.	3. Data sheet – ATMEGA 8.								
COURSE OUTCOMES: BT Mapped									
On co	ompleti	on of the course, the students will	be able to		(Highest Level)				
CO1:	inter	pret architecture and features of A	ATMEGA 8 microcontroller		Understanding (K2)				
CO2:	build	embedded programming using A	ATMEGA 8 microcontroller		Applying (K3)				
CO3:	comp	prehend the significance and appl	ications of IOT		Understanding (K2)				
CO4:	provi	de IOT based solutions using Ra	spberry pi development board		Evaluating (K5)				
CO5:	deve	lop a control system with Arduine	o board		Creating (K6)				
CO6:	deve	levelop embedded C programming using Arduino microcontroller		Applying (K3),					
					Precision (S3)				
CO7:	build	build communication link between microcontroller and IoT hardware		Applying (K3),					
				Precision (S3)					
CO8:		e solution for remote monitoring and control using microcontroller and		0					
	IoT			Precision (S3)					
	D O		ping of COs with POs		200				
COs/		PO1	PO2		PO3				
	01	1	1		1				
	02	3	1	3					
	03	3	2	2					
	04	3	1	3					
	05	3	2	3					
i	06	2	2	2					
CO7 2			2	2					
	08	3	2		3				
1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy									

	18MME03 APPLIED FINITE ELEMENT METH	OD					
L T P Credit							
		3	1	0	4		
Preamble	Preamble This course provides basic concepts about FEM, discretization process, assembly, stiffness						
	matrix and load vector for 1D & 2D problems.						
Prerequisites	Strength of Materials						
UNIT – I					9		
Introduction:	Introduction to finite element analysis – Discretization – Matrix	x algel	bra – (Gauss e	elimination		
	erning equations for continuum – Classical Techniques in FEM	-					
	otential energy approach – Galerkin approach for one and two di						
UNIT – II					9		
	onal Elasticity Problems: 1-D Finite element modeling – Ba	r Eler	nent –	Beam	Element-		
	d shape functions – Assembly of stiffness matrix and load vec						
	quations - Analysis of Truss and Beam problems – Applications						
	4			F			
UNIT – III					9		
Two-Dimensio	onal Elasticity Problems: Introduction to 2-D Finite element m	odelin	g – Pla	ne stre	ess – Plane		
	acement Equations – Element Matrices – Element Equations		-				
Coordinates.	1				C		
UNIT – IV					9		
Axisymmetric	Elements: Axisymmetric formulation – Element stiffness matri	ix and	force	vector	– Galerkin		
approach – Body forces and temperature effects – Stress calculations – Boundary conditions – Applications to							
cylinders under internal or external pressures – Rotating discs.							
UNIT – V					9		
	Elements: Four node quadrilateral elements – Shape functions -	– Elen	nent sti	ffness	matrix and		
	Numerical integration - Stiffness integration – Stress calculations						
			Tutor	ial. 15	Total: 60		

	Lecture: 45, Tutorial: 15, Total: 60							
RE	REFERENCES:							
1.	Rao Singiresu S., "The Finite Element Method in Engineering", 6 th Edition, Butterworth-heinemann,							
	2017.							
2.	Reddy J.N., "An Introduction to the Finite Element Method", 3 rd Edition, McGraw Hill Edition, 2017.							
3.	Logan D.L., "A First Course in the Finite Element Method", 6 th Edition, Cengage Learning, 2018.							

COUR	RSE O		BT Mapped				
On con	(Highest Level)						
CO1:	D1: explain the finite element concepts used for designing engineering Understandin components						
CO2:	deri	1	for solving one dimensional s	structural	Analyzing (K4)		
CO3:		rmine the results for a 3D mptions for different applications	domain using simple two-dim s	ensional	Analyzing (K4)		
CO4:	4: solve and analyze the 3D engineering problems using axisymmetric assumptions				Analyzing (K4)		
CO5:	-	onstrate the effective usage of gration techniques used in FEM	e the effective usage of isoparametric elements and Numerical techniques used in FEM		Understanding (K2)		
		Map	pping of COs with POs				
COs/P	PO3						
CO)1	2			3		
CO	02	1	1		2		
CO3		1	1		2		
CO4		1	1		2		
CO5		1		2			
1 – Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy						

18MME04 FACTORY AUTOMATION AND CIM

(Common to Mechatronics and CAD/CAM branches)

	L	Ι	ľ	Credit
	3	0	0	3
ut automation in the field	of prod	luction	and as	ssembly

Preamble	To impart fundamental knowledge about automation in the field of production and assembl	y
	lines.	
Prerequisites	Nil	
UNIT – I		9

Automation: Principles and strategies - Elements of an automated system –Levels of automation – Automation in production systems – Automated manufacturing systems – Types – Reasons for automation. Material handling systems – Types – Design considerations – AGVs – Types and applications – Vehicle guidance technology - Storage systems – Performance – Methods – Automated storage systems.

UNIT – II

Transfer Machines: Types, transfer machines for housing type parts, transfer systems, turning devices, pallets, mechanisms for locating and clamping housing type parts. Transfer machines for shaft production and gear production. Continuous rotary transfer lines - Layout and output. Transfer lines, Automatic Pallet Changer, Modular Fixtures.

UNIT – III

Manufacturing Systems: Components of Manufacturing system - Single station manufacturing cells, Manual assembly lines - Automated production lines - automated assembly systems.

UNIT – IV

Cellular Manufacturing: Group technology – Part families – Parts classification and coding – Production flow analysis – Composite part concept – Machine cell design –FMS – Types – Components – Applications and benefits - Automatic data capture - Barcode technology – Radio frequency identification.

UNIT – V

CAQC and Production Planning: Benefits of CAQC - Computer Aided Inspection - Contact and Noncontact Inspection Methods - Optical and Non-optical types - Computer Aided Testing - Co-ordinate Measuring Machines (CMM). Material requirement Planning (MRP) - Structure of MRP - Inputs and Outputs of MRP - Manufacturing resource Planning (MRP II) – Enterprise Resource Planning (ERP) – Inventory control - statistical inventory control models.

REFERENCES:

1.	Groover M.P., "Automation, Production Systems, and Computer-integrated Manufacturing", 4 th Edition,
	Pearson Education, 2016.

- 2. Groover M.P. and Zimmers E.W., "Computer Aided Design and Manufacturing", Pearson Education, 2011.
- 3. Nand K. Jha, "Handbook of Flexible Manufacturing Systems", Academic Press, Orlando, 2006.

9

9

Total: 45

9

COUI On cor	BT Mapped (Highest Level)						
CO1:		the automation principles, a rial handling systems	nd Understanding (K2)				
CO2:	demo	onstrate about the transfer machin	es for production process	Applying (K3)			
CO3:	expla	in the types of manufacturing sys	stems in manufacturing plants	Understanding (K2)			
CO4:	: identify the coding systems for different manufacturing parts and design Applying (K3) flexible manufacturing systems for a manufacturing industry						
CO5:	illust	illustrate computer aided quality control techniques and production planning Applying					
	meth	ods in a manufacturing environm	ent				
		Map	ping of COs with POs				
COs/P	Os	PO1	PO2	PO3			
CC)1	2	1	2			
CC)2	3	2	3			
CC)3	3	2				
CC)4	2	2	2			
CC)5	3	2	3			
1 - Sli	ight, 2	– Moderate, 3 – Substantial, B	T - Bloom's Taxonomy				

	18MME05 PROCESS CONTROL ENGINEERIN	G			
		L	Т	Р	Credit
		3	0	2	4
Preamble	This course covers basics of process control and the instrumenta control part includes introductory concepts, mathematical mo aspects of various control valves and its use for control purposes	deling			-
Prerequisites	Control System				
UNIT – I					9
Thermal proces	hics: Need for process control – Mathematical model of first orcesses – Higher order process – Interacting and non-interacting systegulation – Servo and regulator operation.				
UNIT – II					9
Integral and D	Actions: Basic control actions – Characteristics of on-off, proporerivative control modes – P+I, P+D and P+I+D control moderia: IAE, ISE, ITAE and ¹ / ₄ decay ratio.				
UNIT – III					9
– Split range of	Multiple Loops: Feed forward control – Ratio control – Selectic control – Inferential control – Predictive control – Adaptive a acquisition and control – Computer control loops.				
UNIT – IV					9
- Characteristic	Element: I/P converter – Pneumatic and electric actuators – Valves of control valves: Inherent and Installed characteristics. Valvel valve sizing – Cavitation and flashing – Selection criteria.				
UNIT – V					9
Advanced Con	trol Techniques: Introduction to stable and unstable process od – Internal model control – Delay compensation – Model predi-			metho	d – Pole
List of Experim	nents:				
1. Respons	e of Interacting systems				
2. Respons	e of non-interacting systems				
	e of ON/OFF Control				
	oop response of Flow Control System				
5. Closed l					
	oop response of Level Control System				
	oop response of Temperature Control System				
7. Closed l	oop response of Temperature Control System oop response of Pressure Control System				
 Closed I Tuning e 	oop response of Temperature Control System oop response of Pressure Control System of PID Controller				
 Closed I Tuning Response 	oop response of Temperature Control System oop response of Pressure Control System of PID Controller e of feed forward and feedback control system				
 Closed I Tuning Response 	oop response of Temperature Control System oop response of Pressure Control System of PID Controller e of feed forward and feedback control system and Inherent characteristics of a control valve.				Total:75

REFERE	NCES /MANUAL/ SOFTWARES	3:					
			tion New Delhi 2015				
2. Seborg	 Stephanopoulos G., "Chemical Process Control", 1st Edition, Pearson Education, New Delhi, 2015. Seborg D.E., Mellichamp D.A., Edgar T.F. and Doyle III F.J., "Process Dynamics and Control", 2nd 						
	Edition, John Wiley and Sons, New York, 2010.						
3. Seborg	D.E., Edgar T.F. and Mellichamp	D.A., "Process Dynamics and Cont	trol", 3 rd Edition, Wiley, New				
York,		, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,				
COURSE	OUTCOMES:	BT Mapped					
On comple	etion of the course, the students will	be able to	(Highest Level)				
-	ply knowledge of mathematics, sc		11.00				
an	alyze models for flow, level, and	d thermal processes and second	order				
	ocess						
	plain the control modes and feature		Applying (K3)				
1 1	fer the Multi-loop Control Scheme ntrol interfaces	s for industrial processes and com	uputer Understanding (K2)				
1 1	ference the role of converters and defined and defined and defined and the selection parameters of control variables.	1	ristics Applying (K3)				
CO5: ap	ply the advanced control technique ocess		stable Applying (K3)				
i	ild mathematical model of real time	e processes	Creating (K6),				
		Freedow	Precision (S3)				
CO7: de	sign controllers for real time proces	ses	Applying (K3),				
			Precision (S3)				
CO8: an	alyze the time domain specification	of processes	Evaluating (K5),				
			Precision (S3)				
		ping of COs with POs					
COs/POs	PO1	PO2	PO3				
CO1	2	1	2				
CO2	2	2	3				
CO3	3	2	3				
CO4	2	2	3				
CO5	2	2	3				
CO6	2	1	2				
CO7	2	1	2				
CO8	2	1	2				
1 – Slight,	2 – Moderate, 3 – Substantial, B	T - Bloom's Taxonomy					

18MME06 METROLOGY AND COMPUTER AIDED INSPECTION (Common to Mechatronics and CADCAM branches)

		\mathbf{L}	Т	Р	Credit
		3	0	0	3
Preamble	To make the learner to design and fabricate inspection method	s and	system	s inco	rporating
	electronic systems for inspection and quality control in engineerin	ıg.			
Prerequisites	Sensors and Signal Processing				

Linear and Angular Measurements: Basic concept – Legal metrology- Precision- Accuracy- Types of errors – Standards of measurement- traceability – Interchange ability and selective assembly, gauge blocks, limit gauges - Gauge design. Comparators: mechanical, electronic, optical and pneumatic - Angular measurement: bevel protractor - Angle gauges - Sine bar – Autocollimator - Profile projectors.

UNIT – II

UNIT – I

Surface Finish and Form Measurement: Measurement of surface finish: terminology – Roughness – Waviness – Evaluation of surface finish - Stylus probe instrument – Talysurf – Screw thread metrology: errors in thread – Pitch error – Measurement of various elements - Two and three wire method - Best wire size - Thread gauges - Floating carriage micrometer. Measurement of gears - Terminology- Measurement of various elements of gear - Tooth thickness - Constant chord and base tangent method - Parkinson Gear Tester.

UNIT – III

Laser Metrology: Characteristics of LASER sources, LASER micrometer, LASER interferometer – Constructional features - Sources of errors – Measurement of position error, straightness and angle of machine tools, LASER alignment telescope, LASER triangulation techniques. In-process and post process gauging, Automatic gauging, Tool wear measurement, Roundness measurement using LASER, Flexible inspection systems.

UNIT – IV

Co-Ordinate Measuring Machines: Coordinate Metrology, types of CMM, constructional features - Structural elements - Drive systems -Support systems - Displacement transducers - Probing system – Software - Control system, temperature fundamentals and accuracy enhancement

UNIT – V

Image Processing and Machine Vision System: Image processing: Image acquisition and digitization – Windowing – Segmentation - Thresholding - Edge detection techniques, interpretation - Grey scale correlation – Template matching, applications in Inspection, interfacing machine vision and robot, Reverse engineering Applications.

REFERENCES / MANUAL/SOFTWARES:

- 1. Connie Dotson, Roger Harlow and Richard Thompson, "Fundamentals of Dimensional Metrology", 4th Edition, Thompson Asia, Singapore, 2003.
- 2. Jain R.K., "Engineering Metrology", 21st Edition, Khanna Publishers, New Delhi, 2018.
- 3. Gupta I.C., "A Text Book of Engineering Metrology", 7th Edition, Dhanpat Rai Publications, New Delhi, 2018.

9

9

9

9

9

COU	RSE O	OUTCOMES:	BT Mapped					
On con	mpleti	(Highest Level)						
CO1:	infer	linear and angular measurements	Understanding (K2)					
CO2:	deter	mine the surface roughness and f	Applying (K3)					
CO3:	appra	appraise laser interferometry and recent advancements in metrologyApplying (K3)						
CO4:	make	e profile measurements using Coo	ordinate Measuring Machine (CMM)	Applying (K3)				
CO5:	apply	the principle of image processing	and machine vision system techniques	Applying (K3)				
		Мар	pping of COs with POs					
COs/P	POs	PO1	PO2	PO3				
CC)1	3	2	2				
CC)2	3	2	2				
CC)3	3	2	2				
CC)4	3	2					
CC)5	3	2	2				
1 – Sli	ight, 2	– Moderate, 3 – Substantial, B	T - Bloom's Taxonomy					

18MME07 APPLIED SIGNAL PROCESSING Т Р Credit L 3 0 0 3 Preamble To emphasize the significance of knowledge on signal processing. Prerequisites Nil UNIT – I Sources of Signals: Generation and characteristics of Speech signals – Seismic signals – Radar, vibration, ultrasonic, pressure, strain, temperature signals - Bio signals (ECG, EEG, phonocardiogram and EMG). UNIT – II Pre-Processing Signals: Noise sources and characteristics - Filters- IIR and FIR filters -Design of filters low pass, high pass, band pass, notch filter and chebshiv filters. Elliptic filters, butter worth filters - Kalman Filter- Adaptive filtering - Comb Filter- Denoising concepts.

UNIT – III

Digital Signal Processing: Time series analysis – Time varying analysis - Time frequency representation -ARMA Signal modelling- FFT - Power spectral density estimation.

UNIT – IV

Feature Extraction Methods: STFT – DFFT – sine and cosine transform – wavelet concept – Empirical Mode Decomposition (EMD) - Time frequency representation, spectrogram - Methods for extracting the parameters: Energy, Average Magnitude - Introduction to feature extraction and Classification.

UNIT - V

Analysis and Application of Signal Processing: Cepstral analysis of speech signals- spectral analysis of bio signals and vibration signals- Radar signal processing for multiple sensor information- signal processing in affective state computation and brain computer interface – introduction to Fusion technique.

Total: 45

9

9

9

9

9

REFERENCES:

- John G. Proakis and Dimitrisk Manolakis, "Digital Signal Processing: Principles, Algorithms and 1. Applications", 4th Edition, Pearson Education Ltd., 2006.
- Rangaraj M. Rangayyan, 'Biomedical Signal Analysis-A case study approach'', 2nd Edition, Wiley, New 2. York, 2016.
- Emmanuel C. Ifeachor, Barrie W. Jervis, "Digital Signal Processing A Practical Approach", 2nd Edition, 3. Pearson Education Ltd., New Delhi, 2002.

	SE OUTCOMES: pletion of the course, the students will	BT Mapped (Highest Level)			
CO1:	explain the characteristics of differen	Understanding (K2)			
CO2:	illustrate the use of filters for signals	Understanding (K2)			
CO3:	analyze the techniques used for digit	Analyzing (K4)			
CO4:	describe the various signal extraction	Applying (K3)			
CO5:					
	Maj	pping of COs with POs			
COs/PO	s PO1	PO2	PO3		
CO1	2	1	3		
CO2	2	1	3		
CO3	3	3			
CO4	2	3			
CO5	3	2	3		
1 – Sligh	nt, 2 – Moderate, 3 – Substantial, H	BT - Bloom's Taxonomy			

	18MME08 VIRTUAL INSTRUMENTATION				
		L	Т	Р	Credit
D		3	0	2	4
Preamble	Virtual instrumentation is an interdisciplinary field that mer software technologies to create flexible and sophisticated in monitoring applications.				
Prerequisites	Sensors and Instrumentation				
UNIT – I					9
Architecture of the second sec	to Virtual Instrumentation: Historical perspective and tradition of virtual instrument, Physical quantities and analog interfaces – G operating system. Programming Fundamentals: Front panel - Blog palette, Modular programming.	braphic	al Use	r Inter	faces and
	rogramming Basics – I: VI and sub VI, Structures: FOR, WHILE,	Casa	Coquer	00.00	
	rmula nodes, Expression nodes - Local and Global variables, Wavel		-		
UNIT – III			Stupilio	inui t O	
LabVIEW Pa – Time and D	rogramming Basics – II: Arrays, Clusters, String functions, File I/0 ialog control - Report generation and publishing measurement data			e - Cs	v/Ini files
UNIT – IV					
-	ition System: Data Acquisition: Review of Transducer and S	0			-
	AQ assistant and configurations. Instrument control - TCP/IP, V	/15A 1	modulle		nstrumen
drivera Soria	I part communication Naturaling basics for office and industrial a	malia			instrumen
	l port communication, Networking basics for office and industrial a	applica			
UNIT – V			tions.		
UNIT – V Applications	of Virtual Instrumentation: Image processing: pattern matching a		tions.		
UNIT – V Applications			tions.		
UNIT – V Applications control – Con	of Virtual Instrumentation: Image processing: pattern matching a trol design and simulation: closed loop system analysis plot.		tions.		
UNIT – V Applications control – Con List of Exper	of Virtual Instrumentation: Image processing: pattern matching a trol design and simulation: closed loop system analysis plot.	and par	tions.		
UNIT – V Applications control – Con List of Exper 1. Develo	of Virtual Instrumentation: Image processing: pattern matching a trol design and simulation: closed loop system analysis plot.	and par	tions.		9
UNIT – V Applications control – Con List of Exper 1. Develo 2. Develo	of Virtual Instrumentation: Image processing: pattern matching a trol design and simulation: closed loop system analysis plot. iments: op graphical program in structures using FOR and WHILE operation	and par	tions.		
UNIT – V Applications control – Con List of Exper 1. Develo 2. Develo 3. Develo	of Virtual Instrumentation: Image processing: pattern matching a trol design and simulation: closed loop system analysis plot. iments: op graphical program in structures using FOR and WHILE operatio op graphical program in String functions.	and par	tions.		9
UNIT – V Applications control – Con List of Exper 1. Develo 2. Develo 3. Develo 4. Develo	of Virtual Instrumentation: Image processing: pattern matching a trol design and simulation: closed loop system analysis plot. iments: op graphical program in structures using FOR and WHILE operation op graphical program in String functions. op graphical program in Case/Sequence structure operations.	and par	tions.		
UNIT – V Applications control – Con List of Exper 1. Develo 2. Develo 3. Develo 4. Develo 5. Develo	of Virtual Instrumentation: Image processing: pattern matching a trol design and simulation: closed loop system analysis plot. iments: op graphical program in structures using FOR and WHILE operation op graphical program in String functions. op graphical program in Case/Sequence structure operations. op graphical program in Case/Sequence structure operations.	ns.	tions.		
UNIT – V Applications control – Con List of Exper 1. Develo 2. Develo 3. Develo 4. Develo 5. Develo 6. Develo	of Virtual Instrumentation: Image processing: pattern matching a trol design and simulation: closed loop system analysis plot. iments: op graphical program in structures using FOR and WHILE operatio op graphical program in String functions. op graphical program in Case/Sequence structure operations. op graphical program in Case/Sequence structure operations. op graphical programming using Array and Clusters. op graphical program in Sub VI's.	ns.	tions.		
UNIT – V Applications control – Con List of Exper 1. Develo 2. Develo 3. Develo 4. Develo 5. Develo 6. Develo 7. Develo	of Virtual Instrumentation: Image processing: pattern matching a trol design and simulation: closed loop system analysis plot. iments: op graphical program in structures using FOR and WHILE operatio op graphical program in String functions. op graphical program in Case/Sequence structure operations. op graphical programming using Array and Clusters. op graphical program in Sub VI's. op graphical program in Formula node and Property node operation	ns.	tions. rt inspe		9
UNIT – V Applications control – Con List of Exper 1. Develo 2. Develo 3. Develo 4. Develo 5. Develo 6. Develo 7. Develo 8. Develo	of Virtual Instrumentation: Image processing: pattern matching a trol design and simulation: closed loop system analysis plot. iments: op graphical program in structures using FOR and WHILE operation op graphical program in String functions. op graphical program in Case/Sequence structure operations. op graphical programming using Array and Clusters. op graphical program in Sub VI's. op graphical program in Formula node and Property node operation op graphical program using local and global variables.	ns.	tions. t inspe		9
UNIT – V Applications control – Con List of Exper 1. Develo 2. Develo 3. Develo 4. Develo 5. Develo 6. Develo 7. Develo 8. Develo	of Virtual Instrumentation: Image processing: pattern matching a trol design and simulation: closed loop system analysis plot. iments: op graphical program in structures using FOR and WHILE operatio op graphical program in String functions. op graphical program in Case/Sequence structure operations. op graphical program in Case/Sequence structure operations. op graphical program in Sub VI's. op graphical program in Sub VI's. op graphical program in Formula node and Property node operation op graphical program using local and global variables. op graphical program File Input / File Output function using Read / op graphical program for real time interface to measure physical variables.	ns.	tions. t inspe		
UNIT – V Applications control – Con List of Exper 1. Develo 2. Develo 3. Develo 4. Develo 5. Develo 6. Develo 7. Develo 8. Develo	of Virtual Instrumentation: Image processing: pattern matching a trol design and simulation: closed loop system analysis plot. iments: op graphical program in structures using FOR and WHILE operation op graphical program in String functions. op graphical program in Case/Sequence structure operations. op graphical program in Case/Sequence structure operations. op graphical program in Sub VI's. op graphical program in Sub VI's. op graphical program in Formula node and Property node operation op graphical program using local and global variables. op graphical program File Input / File Output function using Read /	ns. s. write f	tions. t inspe	ction -	– Motion
UNIT – V Applications control – Con List of Exper 1. Develo 2. Develo 3. Develo 4. Develo 5. Develo 6. Develo 7. Develo 8. Develo 9. Develo	of Virtual Instrumentation: Image processing: pattern matching a trol design and simulation: closed loop system analysis plot. iments: op graphical program in structures using FOR and WHILE operation op graphical program in String functions. op graphical program in Case/Sequence structure operations. op graphical programming using Array and Clusters. op graphical program in Sub VI's. op graphical program in Formula node and Property node operation op graphical program Using local and global variables. op graphical program File Input / File Output function using Read / op graphical program for real time interface to measure physical variables and program in Machine Vision/Vision Assistant.	ns. s. write f	tions. t inspe	ction -	– Motion
UNIT – VApplicationscontrol – ConList of Exper1.Develo2.Develo3.Develo4.Develo5.Develo6.Develo7.Develo8.Develo9.Develo10.Develo11.Jeffery Tr 3^{rd} Editio	of Virtual Instrumentation: Image processing: pattern matching a trol design and simulation: closed loop system analysis plot. iments: op graphical program in structures using FOR and WHILE operatio op graphical program in String functions. op graphical program in Case/Sequence structure operations. op graphical program in Case/Sequence structure operations. op graphical program in Sub VI's. op graphical program in Formula node and Property node operation op graphical program using local and global variables. op graphical program file Input / File Output function using Read / op graphical program for real time interface to measure physical var op graphical program in Machine vision/ Vision Assistant. Lecture: ES / MANUAL / SOFTWARES: ravis and Jim Kring, "LabVIEW for Everyone: Graphical Program n, Pearson Education, India, 2009.	ns. s. write friables.	tions. t inspe file. file. mactica Made	ction -	Total: 7: and Fun [?]
UNIT – V Applications control – Con List of Exper 1. Develo 2. Develo 3. Develo 4. Develo 5. Develo 6. Develo 7. Develo 8. Develo 9. Develo 10. Develo 10. Develo 2. Jeffery Tr 3^{rd} Editio 2. Wells L.F	of Virtual Instrumentation: Image processing: pattern matching a trol design and simulation: closed loop system analysis plot. iments: op graphical program in structures using FOR and WHILE operatio op graphical program in String functions. op graphical program in Case/Sequence structure operations. op graphical program in Case/Sequence structure operations. op graphical program in Sub VI's. op graphical program in Formula node and Property node operation op graphical program using local and global variables. op graphical program file Input / File Output function using Read / op graphical program for real time interface to measure physical var op graphical programming in Machine vision/ Vision Assistant. Lecture: ES / MANUAL / SOFTWARES: ravis and Jim Kring, "LabVIEW for Everyone: Graphical Program	ns. s. write friables 45, P rinning ull, New	tions. t inspe file. file. mactica Made	ction -	Total: 7: and Fun"

COURSE OUTCOMES:							BT Mapped			
On con	n completion of the course, the students will be able to							(Highest Level)		
CO1:	illustrate the fundamentals of virtual instrumentation and its basic Understand								Understanding (K2)	
	programming concepts									
CO2:	identify different tools in virtual instrumentation software Understanding (K2)									
CO3:	develop	programming	in graphi	cal syst	em de	esign platform				Applying (K3)
CO4:	interfac	e data acquisiti	on system	1 and m	easure	e real world physica	l parar	neters	6	Applying (K3)
CO5:	apply vi	rtual instrume	ntation pro	ogramn	ning t	o solve industrial	applic	ation	S	Creating (K6)
CO6:	apply th	e VI tools in g	raphical p	orogram	nming					Applying (K3),
										Precision (S3)
CO7:	analyze	real time data	through d	ata acq	uisitio	on card				Analyzing (K4),
										Precision (S3)
CO8:	develop	graphical prog	gramming	for ma	chine	vision system				Applying (K3),
										Precision (S3)
				Mapp	ping o	of COs with POs				
COs/P	Os	PO	1			PO2				PO3
CO	01	3				1				2
CO	02	2				1				3
CO)3	2				1				3
CO	04	3				3				3
CO)5	2				3				3
CO	06	2				1				2
CO	07	1				1				2
CO	08	2				1				2
1 - Sli	ght, 2 - N	Aoderate, 3 -	- Substant	ial, BT	Г-В	loom's Taxonom	у			

18MME09 ADVANCED SENSOR TECHNOLOGY

L	Т	Р	Credit
3	0	0	3

Preamble	This course equip the students to apply newly introduced techniques in sensor design and
1 Ioumore	
	fabrication.
Prerequisites	Sensors and Instrumentation

UNIT – I

Fundamentals of Physical Sensors: Introduction – Historical development of sensors – Sensor Characteristics and Terminology – Physical Effects Employed for Signal Transduction – Classification of sensors – New Sensor Materials and Technologies.

UNIT – II

Chemical and Optical Sensors: Principle of Semiconductor Sensors – Thickness-Shear-Mode (TSM) Resonators – Surface Acoustic Wave Sensors – Amperometric Sensors – Conductometric Sensors: Chemiresistors – Capacitive pH Sensors – Ion Channel Sensors – Organic Field-Effect Transistors. Optical Sensors: Introduction – Corpuscular Properties of Light: Lambert–Beer Law – Luminescence – Light Polarization – Light Scattering – Characteristics of optical sensors – Fiber Optic Sensors Based upon the Fabry– Perot Interferometer – Polarimetric Optical Fiber Sensors – In-Fiber Grating Optic Sensors – Distributed Fiber Optic Sensors.

UNIT – III

Magnetic Sensors: Hall sensors – AMR sensors – GMR sensors – Induction and fluxgate sensors – Resonance sensors – Magnetic position sensors – Contactless current sensors.

UNIT – IV

Advanced Sensor Design: Fluoroscopic machines design, Nuclear medical systems, EMI to biomedical sensors, types and sources of EMI, Fields, EMI effects. Laser Gyroscope and accelerometers.

UNIT – V

Wireless Sensor Networks: Introduction to Wireless Sensor Networks – Individual Wireless Sensor Node Architecture – Wireless Sensor Networks Architecture – Inter layer Communication – Power Consideration in Wireless Sensor Networks – Applications of Wireless Sensor Networks - disaster management.

REFERENCES:

	TERENCES.
1.	John Vetelino and Aravind Reghu, "Introduction to Sensors", CRC Press-Taylor and Francis Group, New
	York, 2017.
2.	Jacob Fraden, "Handbook of Modern Sensors", 5 th Edition, Springer, New York, 2015.
3.	Yin S., Ruffin P.B. and Yu Francis T.S., "Fiber Optic Sensors", 2 nd Edition, CRC Press-Taylor and Francis
	Group, New York, 2017.

9

9

9

9

9

COU	COURSE OUTCOMES: BT Mapped							
On con	On completion of the course, the students will be able to			(Highest Level)				
CO1:	categ	egorize the physical principles behind signal transduction Analyzing (K4)						
CO2:	corre	elate the chemical properties of materials in identifying new solutions Analyzing (K4)						
CO3:	evalu	ate techniques adopted in magne	etic measurements	Evaluating (K5)				
CO4:	CO4: choose appropriate sensor for given application Applying (
CO5:	analy	ze the concepts of wireless sense	or network	Analyzing (K4)				
		Mar	pping of COs with POs					
COs/P	Os	PO1	PO2	PO3				
CC)1	2	1	2				
CC)2	2	1	1				
CO3 3 1		3						
CO4 3 2		3						
CO5 1 2 3				3				
1 - Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy							

18CCC11 COMPUTER APPLICATIONS IN DESIGN

(Common to CADCAM & Mechatronics Branches)

(Approved Data book may be permitted)

		L	T	P	Credit	
		3	0	2	4	
Preamble	Preamble As modeling is inevitable in design process, the application of computer graphics and visual realism concepts are to be known. To develop models the knowledge on surface and solid modeling is mandatory. Basic knowledge on programming is needed to develop design program for mechanical components.					
Prerequisites	Applied Mathematics, Engineering Drawing					
UNIT – I					9	
T-+ 4-+ + J-+ + 4 ¹ + -+	to Commenter Commission Device Device and CAD Comme		0		1 . *	

Introduction to Computer Graphics: Design Process and CAD – Constraints – Computer graphics principles – Output primitives - Line and Circle drawing algorithms- Parametric equations (lines, circle) - 2 D and 3D transformation - Translation, scaling, rotation - Windowing, view ports - Clipping transformation.

UNIT – II

Visual Realism and Curves: Hidden Line, Surface, Solid removal Algorithms - Shading - Coloring - RGB, HSV, HLS models - Introduction to curves - Analytical curves: line, circle and conics - Synthetic curves: Hermite cubic spline - Bezier curve and B-Spline curve - Curve manipulations.

UNIT – III

Surface and Solid Modeling: Introduction to surfaces - Analytical surfaces: Plane surface, ruled surface, surface of revolution and tabulated surface - Synthetic surfaces: Hermite bicubic surface - Bezier surface and B-Spline surface - Surface manipulations. Solid Modeling Techniques - Constructive Solid Geometry and Boundary Representation - Solid modeling systems - Parametric modeling - Creation of prismatic and revolved parts using solid modeling packages.

UNIT – IV

Tolerance analysis and Mass property calculations: Assembly Modeling - Geometrical tolerance - Tolerance modeling and analysis - Mass property calculations - Curve length, Area, Volume, Mass, Moment of inertia - Mechanism simulation.

UNIT – V

Computers in Design Productivity: Data Exchange formats - IGES, STEP - Reverse Engineering of components - Design optimization. Developing design programs using C for applications like design of shafts, gears etc.

List of Exercises / Experiments :

1. Creation of solid components by CSG and assemble the models to create a final assembly

- 2. Construction of solid models using parameters (variable quantities such as measurements) and editing the model by using its history
- 3. Creation of surfaces of desired shape by trimming, stitching and joining different surfaces to create a final shape model
- 4. Conversion of the real component into 3D CAD Model using measurement tools & CMM (coordinate measuring machine)
- 5. Development of design programs using C for applications like design of shafts and gears.

Lecture:45, Practical:30, Total: 75

9

9

9

REFE	REFERENCES:							
1. Z	1. Zeid Ibrahim, "Mastering CAD/CAM", Tata McGraw Hill, New Delhi, 2007.							
2. H	Hearn Donald and Baker M Pauline, "Computer Graphics", C Version, Prentice Hall Inc., 2000.							
3. N								
E	Book Co., 20	001.		_				
4. R	Rao P.N., "C	CAD/CAM: Principles and Appl	ications", 3 rd Edition, McGraw	Hill, 2010	•			
	RSE OUTC				BT Mapped			
On completion of the course, the students will be able to					(Highest Level)			
CO1:	CO1: develop the output primitives and demonstrate transformations by applying the				Applying (K3)			
		ical concepts behind computer g						
CO2:			ematical concepts and illustrat	e visual	Applying (K3)			
	realism te	1						
CO3:		te surface and solid modeling te			Applying (K3)			
CO4:		olerance analysis and calculate	e geometrical and mass proper	ties of a	Evaluating (K5)			
005	model							
CO5:		gn programs using C/Auto LISF		1 1	Applying (K3)			
CO6:		1 .	rep and assemble the models to	develop	Applying (K3),			
007	final asser	5		1	Precision(S3)			
CO7:			ape by trimming, stitching and	Joining	Applying (K3), Precision(S3)			
CO8:		urfaces to create a final shape n	D model using measurement t	oola and	Analyzing (K4),			
C08.	CMM	le lear component into 5D CA	D model using measurement t	oors and	Precision(S3)			
		N		<u> </u>	1160181011(33)			
			g of COs with POs					
	Os/POs	3			2			
(CO1	3	2		2			
(CO2	2	2		1			
(CO3	2	2		3			
(CO4 2 2		2					
(CO5 2		3					
(CO6 2			3				
(CO7	3			2			
	CO8	3			2			
1 – Sli	ight, 2 – Mo	oderate, 3 – Substantial, BT - I	Bloom's Taxonomy	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy				

18CCE06 MODELING AND ANALYSIS OF MANUFACTURING SYSTEMS (Common to CAD/CAM, Engineering Design & Mechatronics Branches)

		3	0	0	3
Preamble	This course provides the knowledge of modeling analysis of	manuf	acturin	g syste	ems which
	ensures a very good performance.				
Prerequisites	Industrial Engineering				

UNIT – I

Manufacturing Systems and Models: Types and principles of manufacturing systems, types and uses of manufacturing models, physical models, mathematical models, model uses, model building.

UNIT – II

Material Flow Systems: Assembly lines-Reliable serial systems, approaches to line balancing, sequencing mixed models. Transfer lines and general serial systems-paced lines without buffers, unpaced lines. Shop scheduling with many products. Flexible manufacturing systems-system components, planning and control. Group technology-assigning machines to groups, assigning parts to machines. Facility layout-Quadratic assignments problem approach, graphic theoretic approach.

UNIT – III

Supporting Components: Machine setup and operation sequencing-integrated assignment and sequencing. Material handling systems-conveyor analysis, AGV systems. Warehousing-storage and retrieval systems, order picking.

UNIT – IV

Generic Modeling Approaches: Analytical queuing models, a single workstation, open networks, closed networks. Empirical simulation models-event models, process models, simulation system, example manufacturing system

$\mathbf{UNIT} - \mathbf{V}$

Synchronization Manufacturing and Petri Nets: Synchronization Vs Optimization, defining the structure, identifying the constraint, exploitation, buffer management. Basic definitions-dynamics of Petri nets, transformation methods, event graphs, modeling of manufacturing systems

REFERENCES:

NĽ	
1.	Ronald G. Askin, and Charles R. Standridge, "Modeling and Analysis of Manufacturing Systems", John
	Wiley & Sons, New York, 1993.
2.	Mengchu Zhou, "Modeling, Simulation, and Control of Flexible Manufacturing Systems: A Petri Net
	Approach", World Scientific Publishing Co. Pte. Ltd., 2000.
3.	Jean Marie Proth and XiaolanXie, "Petri Nets: A Tool for Design and Management of Manufacturing
	Systems", John Wiley & Sons, New York, 1996.
4	Brandimarte P and Villa A "Modeling Manufacturing Systems" Springer Verlag Berlin 1999

9

9

P Credit

L

Т

9

9

Total: 45

COU	RSE OUTC	COMES:		BT Mapped	
On co	mpletion of	the course, the students will be a	able to	(Highest Level)	
CO1:	select the	appropriate type of manufacturin	g system and model	Analyzing (K4)	
CO2:	know abo	ut the assembly line transfer line	and FMS	Understanding (K2)	
CO3:	usage of v	arious materials handling system	18	Applying (K3)	
CO4:	know the	generic modeling systems		Understanding (K2)	
CO5:	use the-th	eory of constraints for manufact	uring a component	Applying (K3)	
		Mapping	g of COs with POs		
CC	Os/POs	PO1	PO2	PO3	
(CO1	3	1	3	
(CO2	3	1	3	
(CO3	2	1	2	
CO4 3 1		3			
(CO5 3 1 2			2	
1 – Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy				

18VLE12 NATURE INSPIRED OPTIMIZATION TECHNIQUES

(Common to VLSI Design, Communication Systems, Embedded Systems,

Computer Science and Engineering & Mechatronics branches)

		3	0	0	3
Preamble	To acquaint and familiarize with different types of optim	nizatio	n tech	niques	, solving
	optimization problems, implementing computational technique	es, abs	stractin	g matl	hematical
	results and proofs etc.				
Prerequisites	Linear algebra and Calculus				
TINITO T					•

UNIT – I

Introduction to Algorithms: Newton's Method – Optimization - Search for Optimality - No-Free-Lunch Theorems - Nature-Inspired Metaheuristics - Brief History of Metaheuristics. **Analysis of Algorithms:** Introduction - Analysis of Optimization Algorithms - Nature-Inspired Algorithms - Parameter Tuning and Parameter Control.

UNIT – II

Simulated Annealing: Annealing and Boltzmann Distribution - Parameters - SA Algorithm - Unconstrained Optimization - Basic Convergence Properties - SA Behavior in Practice - Stochastic Tunneling. **Genetic Algorithms** : Introduction - Genetic Algorithms - Role of Genetic Operators - Choice of Parameters - GA Variants - Schema Theorem - Convergence Analysis

UNIT – III

Particle Swarm Optimization: Swarm Intelligence - PSO Algorithm - Accelerated PSO – Implementation - Convergence Analysis - Binary PSO – Problems. **Cat Swarm Optimization:** Natural Process of the Cat Swarm - Optimization Algorithm – Flowchart - Performance of the CSO Algorithm.

UNIT – IV

TLBO Algorithm: Introduction - Mapping a Classroom into the Teaching-Learning-Based optimization – Flowchart- Problems. **Cuckoo Search:** Cuckoo Life Style - Details of COA – flowchart - Cuckoos' Initial Residence Locations - Cuckoos' Egg Laying Approach - Cuckoos Immigration - Capabilities of COA. **Bat Algorithms:** Echolocation of Bats - Bat Algorithms – Implementation - Binary Bat Algorithms - Variants of the Bat Algorithm - Convergence Analysis.

UNIT – V

Other Algorithms: Ant Algorithms - Bee-Inspired Algorithms - Harmony Search - Hybrid Algorithms.

Total: 45

T P Credit

L

REFERENCES:

- 1. Xin-She Yang, "Nature-Inspired Optimization Algorithms", 1st Edition, Elsevier, 2014.
- 2. Omid Bozorg-Haddad, "Advanced Optimization by Nature-Inspired Algorithms" Springer Volume 720, 2018.
- 3. Srikanta Patnaik, Xin-She Yang, Kazumi Nakamatsu, "Nature-Inspired Computing and Optimization Theory and Applications", Springer Series, 2017.

9

9

9

COUI	RSE O	UTCOMES:		BT Mapped		
On co	On completion of the course, the students will be able to			(Highest Level)		
CO1:	1: infer the basic concepts of optimization techniques			Understanding (K2)		
CO2:	ident	ify the parameter which is to be o	ptimized for an application	Analyzing (K4)		
CO3:	analy	ze and develop mathematical mo	del of different optimization algorithm	s Analyzing (K4)		
CO4:	4: select suitable optimization algorithm for a real time application			Applying (K3)		
CO5:	recor	nmend solutions, analyses, and lin	mitations of models	Analyzing (K4)		
		Мар	ping of COs with POs			
COs/P	Os	PO1	PO2	PO3		
CC)1	3	1	1		
CC)2	3	1	3		
CO3 3 2 3		3				
CO4 3 1		3				
CC)5	3	1	1 3		
1 - Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy					

18COE13 DIGITAL IMAGE PROCESSING AND MULTI RESOLUTION ANALYSIS

(Common to Communication Systems, Mechatronics, Information Technology & Applied Electronics branches)

		3	0	0	3
Preamble	To analyze the images in frequency domain and to perfo	rm va	rious	operat	ions like
	enhancement, Restoration, Compression, Registration and Multi	resolut	tion an	alysis.	
Prerequisites	Digital Signal Processing				
UNIT – I					9

Image Transforms: Orthogonal transforms - FT, DST, DCT, Hartley, Walsh hadamard, Haar, Radon, Slant Wavelet, KL, SVD and their properties.

UNIT – II

Image Enhancement and Restoration: Image enhancement - Point operations - contrast stretching clipping and thresholding - digital negative intensity level slicing - bit extraction. Histogram processing histogram equalisation -modification. Spatial operations – smoothing spatial filters, sharpening spatial filters. Transform operations. Color image enhancement. Image Restoration - degradation model, Noise models, Unconstrained and Constrained restoration, Inverse filtering - removal of blur caused by uniform linear motion, Wiener filtering, Restoration by SVD and Homomorphic filtering

UNIT – III

Image Compression: Image Compression – Need for data compression – Run length encoding – Huffman coding – Arithmetic coding – predictive coding- transform based compression, - vector quantization – block truncation coding. Image Segmentation: Point, Edge and line detection -thresholding-Region based approach Image Representation: boundary based – region based and intensity based description

UNIT - IV

Registration and Multivalued Image Processing: Registration – geometric transformation – registration by mutual information Mutivalued image processing - colour image processing - colour image enhancementsatellite image processing- radiometric correction – other errors- multi spectral image enhancement- medical image processing - image fusion.

UNIT - V

Wavelets and Multiresolution Processing: Image Pyramids – Subband coding – The Haar Transform – Multiresolution Expansion – Series Expansion – Scaling Function – Wavelet Function – Wavelet Transform in One Dimension- The Wavelet Series Expansion - The Discrete Wavelet Transform - The Continuous Wavelet Transform - The Fast Wavelet Transform - Wavelet transform in two dimensions- Applications in image denoising and compression.

	10tal: 45
RE	FERENCES:
1.	Gonzalez Rafel C. and Woods Richard E., "Digital Image Processing", 4 th Edition, Prentice Hall, New
	York, 2017.
2.	Chanda B., Dutta Majumder D., "Digital Image Processing and Analysis", 2 nd Edition, PHI Learning,
	2011.
3.	Abdeljalil Ouahabi, "Signal and Image Multiresolution Analysis", John Wiley & Sons, 2012.
4.	Rosenfield Azriel and Kak Avinash C., "Digital Picture Processing", 2 nd Edition, Academic Press Inc.,
	New York, 1982.

9

9

Total: 45

9

9

T P

L

Credit

COURSE	OUTCOMES:		BT Mapped
On comple	etion of the course, the students will	be able to	(Highest Level)
CO1: im	plement the image enhancement and	l image restoration techniques	Applying (K3)
CO2: mo	odel the systems to enhance and rest	ore the image optimally	Applying (K3)
CO3: ap	ply the coding technique to perform	compression of images	Applying (K3
CO4: ap	ply the concepts of registration to fu	se images of various modalities	Applying (K3)
CO5: an	alyze the images in one dimension a	nd two dimension simultaneously	Analyzing (K4)
	Map	ping of COs with POs	
COs/POs	PO1	PO2	PO3
CO1	2	1	2
CO2	2	1	2
CO3	3	2	3
CO4	2	1	2
CO5	3	1	3
1 – Slight,	, 2 – Moderate, 3 – Substantial, B'	T - Bloom's Taxonomy	

18COE14 INDUSTRIAL DATA COMMUNICATION

(Common to Communication Systems & Mechatronics branches)

 3
 0
 0
 3

 Preamble
 To appreciate industrial control protocol and layers involved in it and use suitable protocol for various conditioning methods

Prerequisites Computer Communication Networks, Wireless Networks

UNIT – I

Modbus: Modbus-Overview, protocol structure, Modbus troubleshooting – common problems-detailed troubleshooting: Modbus plus-protocol overview, common problems/faults-detailed troubleshooting. Modbus II-protocol architecture.

UNIT – II

DNP 3 and IEC 60870-5: DNP 3-Overview, physical layer, data link layer, transport layer, application layer; IEC 60870-5 – standard-protocol architecture, physical layer, data link layer, application layer

UNIT – III

Industrial Ethernet: 10Mbps Ethernet - Medium-access-control – signalling - Frame-format, transmission - reception. 802.2LLC- 100Mbps - Media-access – Autonegotiation – Industrial - Ethernet troubleshooting.

UNIT – IV

AS-Interface and Devicenet: As-interface-overview, physical layer, data link layer-Device Net-physical layer, data link layer, application layer.

UNIT – V

Data Highway Plus and HART: Data highway plus (DH 485)-overview; HART-protocol overview, physical layer, data link layer and application layer

REFERENCES:

1.	Deon Reynders, Steve Mackay and Edvin Wright, "Practical Industrial Data Communication: Best
	Practice Technique", 1 st Edition, Elsevier, 2005.
2.	Deon Reynders, Steve Mackay and Edvin, "Practical Industrial Data Network Design and Installation",
	1 st Edition, Elsevier, 2004.
2	

3. https://www.moxa.com/doc/man/Industrial_Protocols_Users_Guide_6e.pdf

9

9

9

Total: 45

9

9

Т

Р

Credit

L

COURSE	OUTCOMES:		BT Mapped
On comple	etion of the course, the students will	be able to	(Highest Level)
CO1: ap	ply the concepts of Modbus used in	modern data communication	Applying (K3)
		tion protocol for various conditioni	ng Applying (K3)
me	ethods		
CO3: ana	alyze different Ethernet standards us	sed in Industry	Analyzing (K4)
CO4: exa	amine need for AS-interface and its	various layers	Analyzing (K4)
CO5: in	plement Data Highway plus and H	ART protocol in industry	Applying (K3)
	Мар	ping of COs with POs	
COs/POs	PO1	PO2	PO3
CO1	1	1	1
CO2	2	1	2
CO3	3	1	3
CO4	3	2	3
CO5	2	1	2
1 – Slight,	2 – Moderate, 3 – Substantial, B	T - Bloom's Taxonomy	

18AEE11 INDUSTRIAL ELECTRONICS

(Common to Applied Electronics & Mechatronics branches)

			1	1	Cicuit
		3	0	0	3
Preamble	This course brings an overview of power converters and its ap	plicati	ons to	wards	industrial
	perspective. It also includes the various control and protection te	chniqu	les for	conver	rters.
Prerequisites	Electron Devices, Electrical Machines, Power Electronics				
UNIT – I					9
Power Semico	nductor Devices: Principle of operation and characteristics of p	ower	diodes	, SCR	, TRIAC,
GTO, Power B.	IT, Power MOSFET and IGBT – Thyristor protection circuits.				

UNIT – II

Phase Controlled Rectifiers: Single phase half and full converters – Three phase half and full converters – Triggering circuits. Inverters: Single phase and three phase inverters – Types of PWM techniques: Sinusoidal PWM, modified sinusoidal PWM and multiple PWM.

UNIT – III

DC-DC Converters: Chopper: Principle of operation – Step up and step down chopper – Control strategies – Voltage, Current and Load commutated chopper.

UNIT – IV

AC-AC Converters: Principle of single phase AC voltage controller – Phase control – ON-OFF control. Cycloconverters: Step up and step down operation - Three phase to single phase and three phase to three phase cycloconverters - Introduction to Matrix Converters

UNIT-V

Solid State DC and AC Drives: DC Drives: Conventional speed control methods for DC motors – DC motor control using rectifiers and choppers – AC drives: Conventional speed control methods for AC motors – Control of induction motor by Voltage, frequency, V/f and slip power recovery scheme. Speed control methods of single phase induction motors and synchronous motors.

REFERENCES:

Total: 45

Т

р

Credit

9

9

9

9

1.	Muhammad H. Rashid, "Power Electronics: Circuits Devices and Applications", 3 rd Edition, Pearson
	Education, 2003.
2.	Khanchandani K.B. and Singh M.D., "Power Electronics", 2 nd Edition, Tata McGraw Hill Publishers,
	New Delhi, 2006.
3.	Gopal K. Dubey, "Fundamentals of Electrical Drives", 2 nd Edition, Narosa Book Distributors Pvt. Ltd,

2012.

COURSE (OUTCOMES:	В	T Mapped
On complet	tion of the course, the students will be able to	(Hi	ghest Level)
	derstand the operation and characteristics of basic power semiconovices	luctor Unde	erstanding (K2)
	monstrate the various PWM techniques for inverter and con erations	verter Ap	oplying (K3)
CO3: exp	plicate the principle and operation of choppers	Unde	erstanding (K2)
CO4: sun	nmarize the types and operation of AC-AC converters	Unde	erstanding (K2)
CO5: exp	periment with various speed control methods with respect to indu	ustrial Ap	oplying (K3)
app	plications		
	Mapping of COs with POs		
COs/PO	Ds PO1 PO2	Р	03
CO1	2 1		2
CO2	2 1		2
CO3	2 1		3
CO4	2 1		2
CO5	2 1		2
1 – Slight, 2	2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy		

18MSE17 MACHINE LEARNING				
	L	Т	Р	Credit
	3	0	0	3
Preamble: Machine learning has a huge potential to improve products, process				
focuses on supervised machine learning algorithms to create simple, inte	erpreta	ble m	odels	to solve
classification and regression problem.				
Prerequisites: Linear Algebra, Calculus				
UNIT – I				9
Discriminative Algorithms: Cost function - LMS Algorithm - The norm				•
interpretation-locally weighted linear regression-logistic regression-generalized	linear	models	s-Appl	ication to
prediction.				
UNIT – II				9
Generative Algorithms: Generative Models: Gaussian Discriminant Analysis (,		•	-
smoothing-Marginal classifier: Support Vector Machine (SVM) as optimal Mar	gin Cla	assifier	-Appl	ication to
Classification.				
UNIT – III				9
Neural Networks: ANN Architecture- Parameter Initialization -Forward Propag				
(Sigmoid, tanh, relu)-Training and Optimization with back propagation-Learning	Boole	an Fun	ctions	•
UNIT – IV				9
Convolutional Neural Networks (CNN): Convolution kernel-Pooling (Max I	-			0,
Strides-Fully Connected Layers - Loss functions - MiniBatch Training - Op	otimiza	tion –	Appli	cation to
MNIST image classification.				
UNIT – V				9

Error Analysis: Regularization: Bias-Variance – Bias-variance Trade off – Initialization of parameters (Xavier) - Cross Validation - Data Augmentation - dropouts - Batch Normalization.

Total: 45

REFERENCES: Christopher M. Bishop, "Pattern Recognition and Machine Learning" Reprint, Springer-Verlag, New 1. York. 2010.

Trevor Hastie, "The Elements of Statistical Learning", Springer, 2013. 2.

UCI Machine Learning repository: http://archive.ics.uci.edu/ml/index.php 3.

COUR	SE OUTC	COMES:			BT Mapped
On con	npletion of	the course, the students will be	e able to		(Highest Level)
CO1:	analyze a problems		rithms for classification and regr	ession	Analyzing (K4)
CO2:	create an		l-based algorithm for classificatio	on and	Analyzing (K4)
CO3:	design, de	evelop and validate ANN for a	real time application using BPN		Analyzing (K4)
CO4:	develop a	CNN model for image analysi	S		Evaluating (K5)
CO5:	analyze v	arious error metrics used in su	pervised learning		Evaluating (K5)
	<u>.</u>	Mappi	ng of COs with POs	I.	
CO	s/POs	PO1	PO2		PO3
C	201	2	1		3
C	CO2	2	1		3
C	203	2	1		3
C	CO4	3	1		3
C	CO5	3	1		3
1 - Slig	ght, 2 – Mo	oderate, 3 – Substantial, BT	– Bloom's Taxonomy		

18MWE12 CYBER PHYSICAL SYSTEMS

(Common to Information Technology(ICW) & Mechatronics branches)

		3	0	0	3
Preamble	This subject strives to identify and introduce the durable into systems as a technology and as a subject of study. The emphasis analysis of cyber-physical systems, which integrate computing	s is on	model	ing, de	sign, and
	processes				
Prerequisites	Nil				

UNIT – I

9

9

9

Credit

L

Т

Р

Cyber Physical Systems: Introduction- Applications -Modeling dynamic behaviors –continue dynamics – Newtonian mechanics – actor models – properties of systems – feedback control-Discrete dynamics: discrete systems – the notion of state – finite-state machines – extended state machines – non determinism – behaviors and traces

UNIT – II

Hybrid Systems: Modal models – classes of hybrid systems-Composition of state machines: concurrent composition – hierarchical state machines-Concurrent models of computation: structure of models – synchronous-reactive models – dataflow models of computation – timed models of computation

UNIT – III

Design of Embedded Systems: Embedded processors: types of processors – parallelism-Memory architectures: memory technologies – memory hierarchy – memory models-Input and output: i/o hardware – sequential software in a concurrent world – the analog digital interface-Multi Tasking: Imperative programs – threads – processes and message processing- Scheduling : basics of scheduling – rate monotonic scheduling – earliest deadline first – scheduling and mutual exclusion – multiprocessor scheduling

UNIT – IV

Analysis and Verification: Invariants and temporal logic: invariants – linear temporal logic-Equivalence and refinement: models as specifications – type equivalence and refinement – language equivalence and containment – simulation – bisimulation- Reachability analysis and model checking: open and closed systems – reach ability analysis – abstraction in model checking – model checking liveness properties

UNIT – V

Quantitative Analysis: Problems of internet – programs as graphs – factors determining execution time – basics of execution time analysis – other quantitative analysis problems- Sets and functions: sets – relations and functions – sequences- Complexity and computability: effectiveness and complexity of algorithms – problems, algorithms and programs – turing machines and un decidability – intractability: P and NP

	10tal: 45
REI	FERENCES:
1.	Lee E.A. and SeshiaS.A., "Introduction to Embedded Systems - A Cyber-Physical Systems Approach",
	2 nd Edition, UC Berkeley, 2017.
2.	Peter Marwedel, "Embedded system design – Embedded systems foundations of cyber- physical
	systems and the Internet of things", 3 rd Edition, Springer Publisher, 2018.
3.	http://LeeSeshia.org

9

COUI	RSE OUTC	COMES:				BT Mapped
On co	mpletion of	the course, the stud	ents will be able to			(Highest Level)
CO1:	identify th	ne applications and	the methods for n	nodeling dynamic	behaviors of	Understanding (K2)
	cyber phys	sical systems				
CO2:	explain the	e concurrent models	s of computation for	the hybrid system	ıs	Understanding (K2)
CO3:	design an	embedded system f	or cyber physical sy	stems		Applying (K3)
CO4:	analyze the	e invariants and ten	nporal logic models	for open and close	ed systems	Analyzing (K4)
CO5:	analyze the	e effectiveness and	complexity of algor	ithms		Analyzing (K4)
			Mapping of C	Os with POs		
CC	Os/POs	PO1	PO2	PO3	PO4	PO5
	CO1	3	1	3	3	1
	CO2	2	1	2	2	1
	CO3	3	2	3	3	2
	CO4	3	2	3	3	2
	CO5	2	2	2	2	2
1 - Sli	ight, 2 – Mo	oderate, 3 – Substa	antial, BT - Bloom'	s Taxonomy		

	т	ROL	P	0.11
	L 3	Т 0	<u>Р</u> 2	Credit 4
Preamble: To impart knowledge in Mechatronics system design for real time ap	-	-	4	4
Prerequisites: Advanced Mathematics for Mechatronics, Control System Engine		115.		
UNIT – I				
Introduction: Mechatronics systems - key elements - mechatronics design	-	• 1		0
traditional and mechatronics design - integrated product design - advanced a	pproacl	hes in	mech	atronics
industrial design and ergonomics - safety.				
UNIT – II				
Concepts of System and Modeling: Concept of systems - modeling of system	ems - r	nodel 1	repres	l
block diagram, transfer function, state space model - system identification t	echniqu	ues – I		
nonlinear models - model development for physical systems in a software enviro	nment.	•		
UNIT – III				
Simulation of Mechatronics Systems: Simulation: Basics, types, Hardware-in	-the-lo	on sim	ulatio	
response parameters – frequency response parameters- simulation of phy		-		
environment.		-		
UNIT – IV Controllor Design: Basic elements of control system — open loop and closed le		tome	char	
Controller Design: Basic elements of control system - open loop and closed le				acteristic
Controller Design: Basic elements of control system – open loop and closed lo of on-off, P, PI, PD and PID controllers –implementation issues of PID controllet tuning of PID controllers.				acteristic ontroller
Controller Design: Basic elements of control system – open loop and closed lo of on-off, P, PI, PD and PID controllers –implementation issues of PID controlle tuning of PID controllers.	r – moo	dified F	PID co	acteristic ontroller
Controller Design: Basic elements of control system – open loop and closed lo of on-off, P, PI, PD and PID controllers –implementation issues of PID controlle tuning of PID controllers. UNIT – V Case Studies: Building Mechatronics systems for measurement and control	r – moo	dified F	PID co	acteristic ontroller
Controller Design: Basic elements of control system – open loop and closed le of on-off, P, PI, PD and PID controllers –implementation issues of PID controlle tuning of PID controllers. UNIT – V Case Studies: Building Mechatronics systems for measurement and control environment.	r – moo	dified F	PID co	acteristic ontroller
Controller Design: Basic elements of control system – open loop and closed lo of on-off, P, PI, PD and PID controllers –implementation issues of PID controlle tuning of PID controllers. UNIT – V Case Studies: Building Mechatronics systems for measurement and control	r – moo applio	dified H	PID co	acteristic ontroller
Controller Design: Basic elements of control system – open loop and closed loof on-off, P, PI, PD and PID controllers –implementation issues of PID controller tuning of PID controllers. UNIT – V Case Studies: Building Mechatronics systems for measurement and control environment. List of Experiments:	r – moo applio	dified H	PID co	acteristic ontroller
Controller Design: Basic elements of control system – open loop and closed loof on-off, P, PI, PD and PID controllers –implementation issues of PID controller tuning of PID controllers. UNIT – V Case Studies: Building Mechatronics systems for measurement and control environment. List of Experiments: 1. Introduction to modeling and simulation of mechatronics system using M	r – moo applio	dified H	PID co	acteristic ontroller
Controller Design: Basic elements of control system – open loop and closed le of on-off, P, PI, PD and PID controllers –implementation issues of PID controlle tuning of PID controllers. UNIT – V Case Studies: Building Mechatronics systems for measurement and control environment. List of Experiments: 1. Introduction to modeling and simulation of mechatronics system using M 2. Time response analysis of PID controller for level process	r – moo applio	dified H	PID co	acteristic ontroller
Controller Design: Basic elements of control system – open loop and closed le of on-off, P, PI, PD and PID controllers –implementation issues of PID controlle tuning of PID controllers. UNIT – V Case Studies: Building Mechatronics systems for measurement and control environment. List of Experiments: 1. Introduction to modeling and simulation of mechatronics system using M 2. Time response analysis of PID controller for level process 3. Time response analysis of PID controller for temperature process	r – moo applio	dified H	PID co	acteristic ontroller
Controller Design: Basic elements of control system – open loop and closed le of on-off, P, PI, PD and PID controllers –implementation issues of PID controlle tuning of PID controllers. UNIT – V Case Studies: Building Mechatronics systems for measurement and control environment. List of Experiments: 1. Introduction to modeling and simulation of mechatronics system using M 2. Time response analysis of PID controller for level process 3. Time response analysis of PID controller for temperature process 4. Time response analysis of PID controller for flow process	r – moo applio	dified H	PID co	acteristic ontroller
Controller Design: Basic elements of control system – open loop and closed le of on-off, P, PI, PD and PID controllers –implementation issues of PID controlle tuning of PID controllers. UNIT – V Case Studies: Building Mechatronics systems for measurement and control environment. List of Experiments: 1. Introduction to modeling and simulation of mechatronics system using M 2. Time response analysis of PID controller for level process 3. Time response analysis of PID controller for temperature process 4. Time response analysis of PID controller for flow process 5. Time response analysis of PID controller for pressure process loop	r – moo applio	dified H	PID co	acteristic ontroller
Controller Design: Basic elements of control system – open loop and closed le of on-off, P, PI, PD and PID controllers –implementation issues of PID controlle tuning of PID controllers. UNIT – V Case Studies: Building Mechatronics systems for measurement and control environment. List of Experiments: 1. Introduction to modeling and simulation of mechatronics system using M 2. Time response analysis of PID controller for level process 3. Time response analysis of PID controller for temperature process 4. Time response analysis of PID controller for flow process 5. Time response analysis of PID controller for pressure process loop 6. Speed variation analysis of electromechanical gear trains	r – moo applio	dified H	PID co	acteristic ontroller
Controller Design: Basic elements of control system – open loop and closed le of on-off, P, PI, PD and PID controllers –implementation issues of PID controlle tuning of PID controllers. UNIT – V Case Studies: Building Mechatronics systems for measurement and control environment. List of Experiments: 1. Introduction to modeling and simulation of mechatronics system using M 2. Time response analysis of PID controller for level process 3. Time response analysis of PID controller for temperature process 4. Time response analysis of PID controller for pressure process loop 6. Speed variation analysis of PID controller for pressure process loop 7. Closed loop control of servo control system	r – moo applio	dified H	PID co	acteristic ontroller
Controller Design: Basic elements of control system – open loop and closed le of on-off, P, PI, PD and PID controllers –implementation issues of PID controlle tuning of PID controllers. UNIT – V Case Studies: Building Mechatronics systems for measurement and control environment. List of Experiments: 1. Introduction to modeling and simulation of mechatronics system using M 2. Time response analysis of PID controller for level process 3. Time response analysis of PID controller for temperature process 4. Time response analysis of PID controller for pressure process loop 6. Speed variation analysis of PID controller for pressure process loop 6. Speed variation analysis of electromechanical gear trains 7. Closed loop control of servo control system 8. Closed loop control of inverted pendulum system	r – moo applio	dified H	PID co	acteristic

REFERENCES:					
			Mechatronics System Design", 2 nd	Edition, CT Cengage	
		amford, 2011.		th =	
			trol Systems in Mechanical and Elect	rical Engineering", 6 th	
	Edition, Pea	rson Education Ltd., New York	<u>x, 2015.</u>	N and Elicie and	
3. F	Kobert H. I	Bishop, "The mechatronics ha	ndbook - Fundamentals and modelin	g ⁷ , 2 nd Edition, CRC	
ļ	Press, Londe RSE OUTO			DT Monnod	
		The course, the students will be	able to	BT Mapped (Highest Level)	
CO1:		ne components of mechatronics		Understanding (K2)	
CO2:		e concepts of system modeling	• •	Understanding (K2)	
CO3:	-	he physical systems using softw		Applying (K3)	
CO4:	design PI	D controllers for mechatronics s	system	Evaluating (K5)	
CO5:	build a mo	echatronics system and simulate	e using software	Creating (K6)	
CO6:	design co	ntroller for real time processes	time processes		
				Precision (S3)	
CO7:	analyze th	e time domain specification of	processes	Analyzing (K4),	
				Precision (S3)	
CO8:	analyze th	e characteristics of stable and u	instable systems	Analyzing (K4),	
	<u> </u>	Monui	a of COs with POs	Precision (S3)	
		,	ng of COs with POs	DO2	
	Ds/POs	PO1	PO2	PO3	
(CO1	1	1	1	
(CO2	2	2	2	
CO3		2	2	3	
CO4		3	3	3	
CO5 3		3	3	3	
(CO6	2	2	2	
CO7 3			2	2	
(CO8 3 2 3				
1 - Sli	herefore generating here generating here generating here $here = 1$	oderate, 3 – Substantial, BT	– Bloom's Taxonomy		

18MME11 MACHINE VISION SYSTEM				
	L	Т	Р	Credit
	3	0	2	4
Preamble: To impart knowledge on image processing based automatic i	-		d ana	lysis for
applications such as automatic inspection, process control and robot guidance in i	ndustr	у.		
Prerequisites: Sensors and Instrumentation UNIT – I				9
Fundamental Concepts: Processing of information in human visual system -	Adapta	ntion to	diffe	
level. Introduction to Machine Vision System: components and specification, adv	-			-
Working principle of MVS – Task and benefit – Performance requirement.	-			_
UNIT – II		a	1	9
Design of Machine Vision System: Camera type - Field view - Resolution		-		
Measurement of accuracy – Calculation of resolution - Choice of camera - F platform - Pixel rate - Lens design – Focal length – Choice of illumination.	rame ş	gradder	and I	laruware
platorini Tixer fate Dens design Toeur fengui Choice of indimination.				
UNIT – III				9
Lighting System: Demands on Machine Vision Lighting - Light and light perception				
Light sources: monochromatic light, white light, UV, IR LED and laser - Polariz				
laws of light distribution - Light filter - Directional properties of the light - Type	s of ill	uminat	ors - P	roperties
of illuminated field.				
UNIT – IV				9
Camera Computer Interface and Image Processing: Analog camera buses – P	arallel	digital	camer	
Standard pc buses – Computer buses – Driver software. introduction to digita				
basic, scalar, arithmetic- Image enhancement: thresholding, histogram, line prof	ïle, int	ensity	measu	rement –
Image processing - Geometric transformation - Image segmentation - Feature	extrac	ction –	Morp	hology –
Edge detection – Fitting - Template matching.				
UNIT – V Software and Applications: Diameter inspection of rivets – Tubing inspection -	Glue	check	under	9 UV light
- Completeness check of automotive control component – Multiple position and				1
hybrid circuit – Pin type verification.	compr	cterress	eneek	or sman
List of Experiments:				
1. Study on vision and motion tools in LabVIEW				
2. Study on smart camera interface using vision development module				
3. Study on Image processing and Image calibration using LabVIEW				
4. Develop graphical program to inspect defects in industrial components				
5. Develop graphical program to identify objects using Color / Pattern match	ing			
6. Develop graphical program to inspect product label				
7. Develop graphical program to inspect missing part in the product				
8. Check the dimension of the spark plug and count the number of edges in i	t			

9. Count the number of defect tablets in the given blister

10. Identify and count the number of circular edges in the given product

Lecture: 45, Practical:15, Total: 60

REF	REFERENCES:					
1.	Alexander Hornberg, "Handbook of machine vision", Wiley-VCH, 2007.					
2.		Davies E.K., "Machine Vision: Theory, Algorithms, Practicalities", 3 rd Edition, Elsevier, 2005.				
3.	Milan Sonka, Vaclav Hlavac, Roger Boyle, "Image Processing, Analysis, and Machine Vision", 4th					
		elson Education Ltd., 2008.				
	RSE OUTO			BT Mapped		
		the course, the students will b		(Highest Level)		
CO1	-		in human visual system with mac	hine Understanding (K2)		
	vision sy		•••			
CO2	-		signing machine vision system	Applying (K3)		
CO3			n and camera computer interface	e for Applying (K3)		
		applications				
CO4	1	ze the different image proce	ssing techniques available for vi	sion Understanding (K2)		
~ ~ ~	system					
CO5	: develop	evelop solution for real time applications using machine vision system		Analyzing (K4)		
CO6	: interface	camera and process the image	Analyzing (K4),			
				Precision (S3)		
CO7	: inspect the	inspect the defects and identify the object using LabView				
				Precision (S3)		
CO8	: check the	e dimensions and count the ob	Creating (K6),			
			Precision (S3)			
			ing of COs with POs			
С	Os/POs	PO1	PO2	PO3		
	CO1	1	1	1		
	CO2	1	2	1		
	CO3	1	1	2		
	CO4	3	3	3		
	CO5	3	3	3		
	CO6	2	2	2		
	CO7	3	3	3		
	CO8	3	3	3		
1 - S	light, 2 – Mo	oderate, 3 – Substantial, BT	– Bloom's Taxonomy			

18MME12 AUTONOMOUS MOBILE ROBOTICS

(Common to Mechatronics & CAD CAM branches)

		T	P	Credit
	3	0	2	4
Preamble: The course on Autonomous Mobile Robots provides the fundation the basic principles of locomotion, kinematics, sensing, perception and cognito develop the autonomous mobile robots.				
Prerequisites: Robotics Engineering				
UNIT – I				9
Mobile Robot Kinematics: Introduction - Kinematic models and co	nstraints	5 – M	anoeu	vrability –
Workspace – Motion control				
UNIT – II Locomotion: Introduction – Key issues for locomotion – Legged mobile ro	bots – V	Wheeler	1 mobi	9 9
Aerial mobile robots	bots - v	VIICCIC		
UNIT – III				9
Perception: Introduction - Sensors for mobile robots - Fundamentals	of comp	outer v	vision	and image
processing - Feature extraction based on range data - Image feature extraction	n – Plac	e recog	gnition	•
UNIT – IV Legelization Introduction Challenges of legelization Relief represent	tation	Mon		9
Localization: Introduction – Challenges of localization – Belief represent Probabilistic Map-Based localization – Autonomous map building.	itation -	- мар	repres	sentation –
1100a0mstie Map-Dased localization – Autonomous map building.				
UNIT – V				9
Planning and Navigation: Introduction – Competence for Navigation:	Plannin	g and	Reacti	ing – Path
planning – Obstacle avoidance – Navigation architectures.		<u> </u>		
List of Experiments:				
1. Study of Fire Bird – V robot and its accessories.				
2. Development of embedded programming for Buzzer interfacing using	g Fire Bi	ird – V	robot.	
3. Development of embedded programming for LCD interfacing using I	Fire Bird	l – V ro	obot.	
4. Development of embedded programming for motion control using Fin				
5. Development of embedded programming for position control using F				
6. Development of embedded programming for velocity control using F	ire Bird	– V ro	bot.	
7. Development of embedded programming for ADC interfacing using				
8. Development of embedded programming for path planning using Fire				
 Development of embedded programming for obstacle avoidance usin 				
10. Development of embedded programming for wireless motion control				
ZigBee Communication.	01110	Diru v	10000	using
Lectu	re: 45,	Practio	cal: 15	, Total: 60
REFERENCES:				
1. Roland Siegwart, Illah Reza Nourbakhsh and Davide Scaramuzza, Mobile Robots", 2 nd Edition, MIT Press, Cambridge, 2011.				
2. Farbed Fahimi, "Autonomous Robots – Modeling, Path Planning and C				
3. Alonzo Kelly, "Mobile Robotics: Mathematics, Models and Methods	", Camł	oridge	Unive	rsity Press,
2013.				

COUR	COURSE OUTCOMES: BT Mapped					
On con	npletion of	the course, the students will be	able to	(Highest Level)		
CO1:	develop t	he kinematic model of mobile r	obots	Evaluating (K5)		
CO2:	interpret	the different concepts of locome	Applying (K3)			
CO3:	select the	sensory devices for environme	ntal perception	Applying (K3)		
CO4:	identify the	he techniques for localization		Applying (K3)		
CO5:	apply the	concepts of planning and navig	gation	Applying (K3)		
CO6:	develop e	mbedded programming for mo	tion control	Applying (K3), Manipulation (S2)		
CO7:	develop e	mbedded programming for plan	nning and navigation	Creating (K6),		
	_			Precision (S3)		
CO8:	develop e	mbedded programming for wir	eless control	Creating (K6),		
				Precision (S3)		
		Mappin	g of COs with POs			
CO	s/POs	PO1	PO2	PO3		
C	201	2		3		
C	CO2	2		3		
CO3		2		3		
CO4		2		3		
CO5		2		3		
CO6		3	2	3		
CO7		3	2	3		
С	CO8	3	2	3		
1 – Slig	1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy					

10MME12 MEMO DECICN

18MME13 MEMS DESIGN				
(Common to Mechatronics, CADCAM, Engineering Design, VLSI Design, Ap	plied I	Electro	onics,	Power
Electronics and Drives & Control and Instrumentation Engineerin	g brand	ches)		
	L	Т	Р	Credit
	3	0	0	3
Preamble: This course equips the students to understand the concepts of Micro	mecha	tronics	and	apply the
knowledge of micro fabrication techniques for various applications.				
Prerequisites: Sensors and Instrumentation and Bridge course mechanical				
UNIT – I				9
Materials for MEMS and Scaling Laws: Overview - Microsystems and n principle of Microsystems - Si as a substrate material - Mechanical properties - S piezo resistors - Gallium arsenide - Quartz-piezoelectric crystals - Polymer - Scali	Silicon	comp	ounds	- Silicon
UNIT – II				9
Micro Sensors, Micro Actuators: Micro sensors - Micro actuation techni Micromotors – Microvalves – Micro grippers – Micro accelerometer: intr principles, design rules, modeling and simulation, verification and testing, applica	oducti			
UNIT – III				9
Mechanics for Microsystem Design: Static bending of thin plates - Mech mechanics - Thermal stresses - Fracture mechanics - Stress intensity factor interfacial fracture mechanics-Thin film Mechanics-Overview of Finite Element S	rs, fra	cture	tough	
UNIT – IV				9
Fabrication Process and Micromachining: Photolithography - Ion implantation CVD - Physical vapor deposition - Deposition by epitaxy - Etching process- E Surface micro machining – LIGA –SLIGA.				
UNIT – VMicro System Design, Packaging and Applications: Design considerations - Fdesign – Mechanical Design using Finite Element Method-Micro system packagin- System level – Packaging techniques - Die preparation - Surface bonding -Applications of micro system in Automotive industry: Bio medical, AerospaceCAD tools to design a MEMS device.	ıg – Di Wire	e level bondi	l - De ng – nmuni	vice level Sealing - cations –
				Total: 45
REFERENCES: 1. Tai-Ran Hsu, "MEMS and Microsystems Design and Manufacture", Tata 2008.	McGr	aw-Hi	ll, Ne	ew Delhi,
2. Mohamed Gad-el-Hak, "The MEMS Handbook", CRC Press, 2009.				
3. Bao M.H., "Micromechanical Transducers: Pressure sensors, accelrometers New York, 2000.	, and g	yrosco	pes",	Elsevier,

COUR	COURSE OUTCOMES: BT Mapped					
On cor	npletion of	(Highest Level)				
CO1:	CO1: interpret the concepts of MEMS materials and scaling laws			Remembering (K1)		
CO2:	explain th	e principles of micro sensors a	nd actuators	Understanding (K2)		
CO3:	apply the	mechanics for micro system de	sign	Applying (K3)		
CO4:	design and	d fabrication of microsystem		Applying (K3)		
CO5:	design of	design of microsystem packaging and application		Applying (K3)		
		Mappir	ng of COs with POs			
CO	s/POs	PO1	PO2	PO3		
0	201	2	2	2		
0	202	2	2	3		
0	CO3 2 2		3			
0	CO4 3 2		3			
CO5 3 2		3				
1-Slig	1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy					

18MME14 MACHINE TOOL CONTROL AND CONDITION MONITORING (Common to Mechatronics & CADCAM branches)

TPCredit003

L 3

Preamble: To impart the knowledge in machine tool control and condition monitoring in a mechatronics perspective.

Prerequisites: Nil

UNIT – I

Overview of Automatic Control in Machine Tools: Open loop and closed loop system in machine tools - process model formulation - transfer function. Control actions - block diagram representation of mechanical pneumatic and electrical systems. Process computer: Peripherals, Data Logger, Direct digital control - Supervisory computer control.

UNIT – II

Adaptive Control and PLC: Adaptive control: ACC, ACO, Real time parameter estimation, Applications of adaptive control for turning, milling, grinding and EDM. Programmable logic controller: Functions, Applications in machine tools.

UNIT – III

Introduction to Condition Monitoring: Condition Monitoring: Cost comparison with and without CM. On-load testing and offload testing – Methods and instruments for CM: Temperature sensitive tapes, Pistol thermometers. Wear-debris analysis.

UNIT – IV

Vibration, Acoustic Emission and Sound Monitoring: Primary and Secondary signals: Online and Off line monitoring. Fundamentals of Vibration: Sound, Acoustic Emission. Machine Tool Condition Monitoring through Vibration, Sound, Acoustic Emission - Case Studies.

UNIT – V

Condition Monitoring through other techniques: Visual and temperature monitoring - Leakage monitoring - Lubricant monitoring - condition monitoring of Lube oil and Hydraulic systems - Thickness monitoring - Image processing techniques in condition monitoring.

Total: 45 REFERENCES: 1. Sushil Kumar Srivastava, "Industrial Maintenance Management" S. Chand & Company Ltd., New Delhi, 2016. 2. Mishra R.C., Pathak K., "Maintenance Engineering and Management", Prentice Hall of India Pvt. Ltd., 2016. 3. Robert Bond Randall, "Vibration-Based Condition Monitoring – Industrial, Aerospace and Automotive applications", John Wiley & Sons Ltd., 2014.

9

9

9

9

COUR	SE OUTCO	BT Mapped			
On com	pletion of t	he course, the students will be	able to	(Highest Level)	
CO1:	O1: summarize the concepts of automatic control in machine tools			Understanding (K2)	
CO2:	choose the	type of adaptive control and I	PLC for machining operations	Applying (K3)	
CO3:	explain the	e concepts of condition monito	oring techniques	Understanding (K2)	
CO4:	select the	condition monitoring techni	ique for the machine tool among	Analyzing (K4)	
	vibration,	acoustic emission and sound a	nalysis		
CO5:	select appropriate condition monitoring technique for machine tool control		Analyzing (K4)		
	application	18			
		Mappin	g of COs with POs		
CO	s/POs	PO1	PO2	PO3	
0	201	3	1	2	
CO2		3	2	2	
CO3		3	2	3	
CO4		3	2	3	
CO5 2		2	3	2	
1 – Slig	1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy				

18MME15 BIO MECHATRONICS L Т Р Credit 3 0 0 3 Preamble: To impart knowledge in application of mechanics in medicine, properties and kinematics of bone and muscles Prerequisites: Advanced Mathematics for Mechatronics, Sensors and Instrumentation UNIT – I 9 Introduction: Introduction to bio-mechanics: relation between mechanics and medicine, Newton's laws, stress, strain, shear rate, viscosity, visco elasticity, non-Newtonian viscosity and soft tissue mechanics. Mechanical properties of soft biological tissues - Bio fluid mechanics - Introduction to Biomechatronic Systems. UNIT – II 9 Mechanics in Skeletal and Muscular System: Bones, types, mechanical properties and functions - Axial and Appendicular Skeleton. Joints: Definition, Types and functions. Kinetics and Kinematics relationship of skeletal and muscular system. UNIT – III 9 Control Mechanism of Biological Systems: Skeletal muscles servo mechanism - Cardio vascular control mechanism - respiratory control mechanism - interfacing techniques with natural servo mechanism UNIT – IV 9 Prosthetic and Orthotic Devices: Analysis of force in orthopedic implants: Hand and arm replacement -Different types of models for externally powered limb prosthetics: Lower limb, Upper limb orthotics and material for prosthetic and orthotic devices. Functional Electrical Stimulation - Sensory Assist Devices. 9 UNIT - VSimulation and Modelling of Bio mechatronics: Physics based modelling and simulation of biological structures - Variables of interest - Geometry - Introduction to model the skeletal system using open source software - Human leg prosthesis - Normal gait vs prosthesis leg analysis - Upper Extremity Kinematic Model Total: 45 **REFERENCES:** Ethier C.R., and Simmons C.A., "Biomechanics from Cells to Organisms", Cambridge University 1. Press, 2007.

- 2. Dawson D. and Right, "Introduction to Bio-mechanics of Joints and Joint Replacement", Wiley Publications Ltd., 1991.
- 3. Jacob Kline, "Handbook of Bio Medical Engineering", Academic Press, 1988.

COUR	COURSE OUTCOMES: BT Mapped					
On con	On completion of the course, the students will be able to			(Highest Level)		
CO1:	identify t	Understanding (K2)				
CO2:	interpret	the concept of mechanics in ske	eletal and muscular system	Understanding (K2)		
CO3:	develop c	control mechanism for biologica	al systems	Applying (K3)		
CO4:	14: identify the prosthetic and orthotic devices			Analyzing (K4)		
CO5:	simulate	and model bio mechatronics sys				
		Марріг	ng of COs with POs			
CO	s/POs	PO1	PO2	PO3		
0	201	1	1	2		
0	CO2	1	1	2		
CO3 1 1			2			
CO4 1 1 2				2		
CO5 3 3			3			
1 - Slig	1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy					

18MME16 ADDITIVE MANUFACTURING (Common to Mechatronics & CADCAM branches)

Т L Р Credit 3 0 0 3

Preamble: This course provides scientific as well as technological aspects of various additive, subtractive and formative rapid manufacturing processes. Variety of applications also will be covered ranging from rapid prototyping, rapid manufacturing to mass customization.

Prerequisites: Nil

9

9

9

UNIT – I Introduction to RP systems: Evolution, fundamental fabrication processes, CAD for RPT, product design and rapid product development - Need for time compression in product development - Conceptual design -Detail design, Prototype fundamentals - Fundamentals of RP systems - RP process chain - 3D modelling - 3D solid modeling software and their role in RPT - Data format - STL files- Creation of STL file - History of RP systems - Classification of RP systems - Benefits of RPT.

UNIT – II

Liquid based RP systems: Stereo Lithography Apparatus (SLA): Principle, Photo polymers, Post processes, Process parameters, Machine details, Advantages. Solid Ground Curing (SGC): Principle, Process parameters, Process details, Machine details, Limitations. Solid Object Ultraviolet Laser Printer (SOUP): Principle, Process parameters, Process details, Machine details, Applications.

UNIT – III

Solid based RP systems: Fusion Deposition Modeling (FDM): Principle, Raw materials, BASS, Water soluble support system, Process parameters, Machine details, Advantages and limitations. Laminated Object Manufacturing (LOM): Principle, Process parameters, Process details, Advantages and limitations. Solid Deposition Manufacturing (SDM): Principle, Process parameters, Process details, Machine details, Applications.

UNIT - IV

Powder based RP systems: Selective Laser Sintering (SLS): Principle, Process parameters, Process details, Machine details, Advantages and applications. 3-Dimensional Printers (3DP): Principle, Process parameters, Process details, Machine details, Advantages and limitations. Laser Engineered Net Shaping (LENS): Principle, Process details, Advantages and applications, Concept Modelers.

UNIT - V

Rapid Tooling and Applications of RP: Direct Rapid Tooling: Direct AIM, Quick cast process, Copper polyamide, Rapid Tool, DMLS, ProMetal, Sand casting tooling. Indirect Rapid Tooling: Silicone rubber tooling, Aluminum filled epoxy tooling, Spray metal tooling, soft tooling vs hard tooling. Applications of RP in product design: automotive industry, medical field - Conversion of CT/MRI scan data - Customized implant - Case studies -reverse engineering - Surface Generation from points on cloud - Growth of RP industry.

REFERENCES:

1.	Chua C. K., Leong K.F. and Lim C.S., "Rapid Prototyping: Principles and Applications", World
	Scientific, New Jersey, 2010.
2.	Pham D.T. and Dimov S.S., "Rapid manufacturing", Springer-Verlag, London, 2011.
3.	Amitabha Ghosh, "Rapid manufacturing a brief introduction", Affiliated East West Press, New Delhi,
	2016.

9

9

COUR	SE OUTO	COMES:			BT Mapped	
On con	npletion of	the course, the students will be	e able to		(Highest Level)	
CO1:	apply the	concepts of rapid prototyping	in product design and developm	nent	Applying (K3)	
CO2:	select th application	e suitable liquid based rapid prototyping system for a specific Applying (K3)				
CO3:						
CO4:				pecific	Applying (K3)	
CO5:		e various tooling systems and r turing applications	everse engineering concepts fo	r rapid	Analyzing (K4)	
		Марріі	ng of COs with POs			
CO	s/POs	PO1	PO2		PO3	
CO1 3		3	1		2	
C	CO2 3		1	2		
CO3 3		3	1	2		
CO4		3	1	2		
CO5 3 1				3		
1 – Slig	ght, 2 – Mo	oderate, 3 – Substantial, BT	– Bloom's Taxonomy			

18MME17 AUTOMOTIVE ELECTRONICS AND CONTROL

L Т Р Credit 3 0 0

3

9

9

9

9

9

Preamble: To impart the fundamental knowledge of engine and the usage of sensors, actuators, electronic components to integrate electronics with automobile.

Prerequisites: Basics of Electronics

UNIT – I

Automotive Electronics Fundamentals and Emissions: Evolution of electronics in automobile - Ignition system- Fuel system- Cooling system - Exhaust system- MPFI, CRDI, Euro Norms, Equivalent Bharat Stage Norms.

UNIT – II

Sensors and Actuators: Introduction - Types of sensors: oxygen sensor, crank shaft position sensor, temperature sensor, engine oil pressure sensor, fuel metering, vehicle speed sensor and detonation sensor -Airbag sensors, feedback carburetor systems - Solenoids - Stepper motors- Relays.

UNIT – III

Engine Management System: Electronic fuel control - Electronic ignition system - Combined ignition and fuel management - Advanced engine management technology – Application of CAN network in engine ECU - BOSCH Monojetronic and L jetronic system - Diagnostics systems in modern automobiles.

UNIT – IV

Chassis Control and Safety: Anti-lock brakes - Traction control - Electronic Power Steering- Body Electronics-Automatic transmission - Cruise control - Airbags system - Application of Control elements and control methodology in automotive system.

UNIT - V

Automotive Electricals: Vehicle electrical systems and circuits – Batteries – Charging systems – Starting systems – Dash board instruments – Horn — Electric and hybrid vehicles – OBD diagnostics, BOSCH driver assistance systems.

REF	ERENCES:
1.	Ribbens William B., "Understanding Automotive Electronics", 6 th Edition, Newnes Publishing, 2003.
2.	Denton Tom, "Automobile Electrical and Electronics Systems", 5 th Edition, Routledge Publishers,
	2017.
3.	Kohli P.L., "Automotive Electrical Equipment", 1 st Edition, McGraw-Hill, New York, 2001.

COURSE OUTCOMES:				BT Mapped
On completion of the course, the students will be able to				(Highest Level)
CO1:	explain the fundamentals of automobile electronics and emissions			Understanding (K2)
CO2:	interpret	Applying (K3)		
CO3:	identify the elements of engine management system			Understanding (K2)
CO4:	analyze the importance of safety system used in automotive cars			Analyzing (K4)
CO5:	discover the need of electrical accessories in automotive systems			Applying (K3)
Mapping of COs with POs				
COs/POs		PO1	PO2	PO3
CO1		2	1	1
CO2		2	1	1
CO3		3	1	3
CO4		2	1	2
CO5		1	1	1
1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy				