VISION

To be a centre of excellence for development and dissemination of knowledge in Applied Sciences, Technology, Engineering and Management for the Nation and beyond.

MISSION

We are committed to value based Education, Research and Consultancy in Engineering and Management and to bring out technically competent, ethically strong and quality professionals to keep our Nation ahead in the competitive knowledge intensive world.

DEPARTMENT OF INFORMATION TECHNOLOGY VISION

To be a centre of excellence for development and dissemination of knowledge in Information Technology for the Nation and beyond.

MISSION

- To transform the students into innovative, competent and high quality IT professionals to meet the growing global challenges.
- To impart value-based IT education to the students and enrich their knowledge
- To endeavour for continuous upgradation of technical expertise of students to cater to the needs of the society
- To achieve an effective interaction with industry for mutual benefits

2018 REGULATIONS

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

Post Graduates of Information Technology will

- PEO1: Work on need based research in different domains relevant to Information Technology and carry out research projects of national and social relevance
- PEO2: Provide problem solving capability through IT tools and techniques with adequate hands on experience to meet industry/ societal needs
- PEO3: Create, apply and disseminate cognitive ideas related to IT field and advance in their profession

MS\PEO	PEO1	PEO2	PEO3	PEO4
MS1	3	2	3	2
MS2	2	3	2	3
MS3	2	2	3	2
MS4	1	3	3	2

MAPPING OF MISSION STATEMENTS (MS) WITH PEOS

1 – Slight, 2 – Moderate, 3 – Substantial

PROGRAM OUTCOMES (POs)

Engineering Post Graduates will be able to:

- **PO1** Carry out research /investigation and development work independently to solve real world problems in the field of information technology
- PO2 Write and present a substantial technical report on their own research findings
- **PO3** Apply knowledge of mathematics, science, and computer science/technology to analyze, evaluate, model and integrate technologies for the upcoming issues in the field of Information and Communication Technologies
- **PO4** Transfer technology efficiently on engineering needs within engineering community and with society at large, by being able to comprehend and develop presentations and software tools
- **PO5** Identify contemporary issues in providing technology solutions for sustainable development considering impact on economic, social, political, and global issues and thereby contribute to the welfare of the society
- PO6 Demonstrate independent learning and erudition by adopting research mission

PEOs\POs	PO1	PO2	PO3	PO4	PO5	PO6
PEO1	3		2	3	3	
PEO2			2	2	3	1
PEO3	2	2	3	3		

MAPPING OF PEOs WITH POs

1 -Slight, 2 -Moderate, 3 -Substantial

CURRICULUM BREAKDOWN STRUCTURE UNDER REGULATION 2018

Curriculum Breakdown Structure(CBS)	Curriculum Content (% of total number of credits of the program)	Total number of contact hours	Total number of credits
Program Core(PC)	47.2%	585	34
Program Electives(PE)	25.0%	270	18
Project(s)/Internships(PR)/Others	27.7%	600	20
	Total		72

KEC R2018: SCHEDULING OF COURSES – MTech- Information Technology

Semester		Theory / Theory cum Practical / Practical23456T11 need natics r of -0-4)18MSC11 Data Structures and Analysis of Algorithms (PC-3-0-2-4)18MIT11 Modern Information Retrieval Techniques (PC-3-0-0-3)18MIT12 Web Technologies (PC-3-0-0-3)18MIC11 Advanced Database Technology (PC-3-0-2-4)18MIC12 Internet of Things (PC-3-0-2-4)C21 ine ing ques analytics (PC-3-0-2-4)18MIT21 Cloud Architecture and security (PC-3-0-3)Elective – II (PE-3-0-0-3)Elective – II (PE-3-0-0-3)						Internship & Projects	Special Courses	Credits
	1	2	3	4	5	6	7	8	9	
I	18AMT11 Advanced Mathematics for Computing (PC- 3-1-0-4)	18MSC11 Data Structures and Analysis of Algorithms (PC-3-0-2-4)	18MIT11 Modern Information Retrieval Techniques (PC-3-0-0-3)	18MIT12 Web Technologies (PC-3-0-0-3)	18MIC11 Advanced Database Technology (PC-3-0-2-4)	18MIC12 Internet of Things (PC-3-0-2-4)				22
п	18MSC21 Machine Learning Techniques (PC-3-0-2-4)	18MSE07 Big Data analytics (PC-3-0-2-4)	18MIT21 Cloud Architecture and security (PC-3-0-0-3)	Elective – I (PE-3-0-0-3)	Elective – II (PE-3-0-0-3)	Elective – III (PE-3-0-0-3)		18MIP21 Mini Project (PR-0-0-4-2)		22
Ш	Elective – IV (PE-3-0-0-3)	Elective –V (PE-3-0-0-3)	Elective – VI (PE-3-0-0-3)	18MIL31 Computing Lab (PC-0-0-2-1)				18MIP31 Project Work - Phase I (PR-0-0-12-6)		16
IV								18MIP41 Project Work - Phase II (PR-0-0-24-12)		12

Total Credits: 72

M.Tech. DEGREE IN INFORMATION TECHNOLOGY

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

SEMESTER – I

Course	Course Title	Hours / Week			Cradit	N	CBS			
Code	Course Thie	L	Т	Р	Creuit	CA	ESE	Total	000	
	Theory/Theory with Practical									
18AMT11	Advanced Mathematics for Computing	3	1	0	4	50	50	100	PC	
18MSC11	Data Structures and Analysis of Algorithms	3	0	2	4	50	50	100	PC	
18MIT11	Modern Information Retrieval Techniques	3	0	0	3	50	50	100	PC	
18MIT12	Web Technologies	3	0	0	3	50	50	100	PC	
18MIC11	Advanced Database Technology	3	0	2	4	50	50	100	PC	
18MIC12	Internet of Things	3	0	2	4	50	50	100	PC	
	Total				22					

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

M.Tech. DEGREE IN INFORMATION TECHNOLOGY

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

SEMESTER – II

Course	Course Title	H	lours Weel	s / K	Credit	Maximum Marks			CBS
Code		L	Т	Р	Cicuit	CA	ESE	Total	CD3
	Theory/Theory with Practical								
18MSC21	Machine Learning Techniques	3	0	2	4	50	50	100	PC
18MSE07	Big Data Analytics	3	0	2	4	50	50	100	PC
18MIT21	Cloud Architecture and Security	3	0	0	3	50	50	100	PC
	Elective - I	3	0	0	3	50	50	100	PE
	Elective - II	3	0	0	3	50	50	100	PE
	Elective - III	3	0	0	3	50	50	100	PE
	Practical								
18MIP21	Mini Project	0	0	4	2	100	0	100	PR
	Total	•	•		22				

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

M.Tech. DEGREE IN INFORMATION TECHNOLOGY

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

Course	Course Title	H	lours Weel	s / K	Cradit	N	/axim Mark	um s	CBS	
Code	Course The	L	Т	Р	Cleun	CA	ESE	Total	000	
	Theory/Theory with Practical									
	Elective - IV	3	0	0	3	50	50	100	PE	
	Elective - V	3	0	0	3	50	50	100	PE	
	Elective - VI	3	0	0	3	50	50	100	PE	
	Practical									
18MIL31	Computing Laboratory	0	0	2	1	100	0	100	PC	
18MIP31	Project Work Phase I	0	0	12	6	50	50	100	PR	
	Total				16					

SEMESTER – III

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

M.Tech. DEGREE IN INFORMATION TECHNOLOGY

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

SEMESTER – IV

Course	Course Title		lours Weel	s / k	Cradit	N	CBS		
Code			Т	Р	Crean	CA	ESE	Total	
	Practical								
18MIP41	Project Work Phase II	0	0	24	12	50	50	100	PR
	Total				12				

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

Total Credits: 72

	LIST OF PROFESSIONAL ELECTIVES Course Course Code Hours/Week L T P Credit CBS									
Course		Ho	urs/W	/eek	Cradit	CDC				
Code	Course The	L	Т	Р	Crean	CBS				
	SEMESTER II									
18COT21	Wireless Sensor Networks	3	1	0	4	PE				
18MSC22	Network Design and Technologies	3	0	2	4	PE				
18MWC21	Ethical Hacking	3	0	2	4	PE				
18MWE02	Information Theory and Coding	3	0	0	3	PE				
18MWE03	Multimedia Compression Techniques	3	0	0	3	PE				
18MIE01	Distributed Systems	3	0	0	3	PE				
18MIE02	Data Visualization Techniques	3	0	0	3	PE				
18MIE03	Web Analytics and Development	3	0	0	3	PE				
18MIE04	Mobile and Wireless Security	3	0	0	3	PE				
	SEMESTER III									
18COE13	Digital Image Processing and Multi Resolution Analysis	3	0	0	3	PE				
18MST11	Multicore Architectures	3	1	0	4	PE				
18MSE12	Deep Learning Techniques	3	0	2	4	PE				
18MIE05	Software Quality and Testing	3	0	0	3	PE				
18MIE06	Modern High Speed Networking	3	0	0	3	PE				
18MIE07	Forecasting and Optimization Techniques	3	0	0	3	PE				
18MIE08	Quantum Computing	3	0	0	3	PE				
18MIE09	Social Network Analysis	3	0	2	4	PE				
18MIE10	Knowledge Engineering	3	0	0	3	PE				
18MIE11	Data Sciences	3	0	0	3	PE				
18MIE12	GPU Architecture and Programming	3	0	0	3	PE				
18MIE13	Mobile Applications and Services	3	0	0	3	PE				

(Co	18AMT11 ADVANCED MATHEMATICS FOR COMP mmon to Computer Science and Engineering & Information Tech	UTIN nolog	G v Brand	ches)	
		L	Т	P	Credit
		3	1	0	4
Preamble	This course emphasizes the students to identify basic mathemat	ical to	ols and	l techn	iques for
	designing various concepts in computing, storage methods, company managing databases, artificial intelligence, compiler and design etc.	ncepts, DBM	s in di IS, des	gital p ign of	rinciples, Software
Prerequisites	Basic concepts of probability and counting principles.				
UNIT – I					9
Estimation Th	eory: Point Estimation - Characteristics of estimators - Unbias	sed est	timator	s - M	ethods or
Estimation: Me	thod of Maximum Likelihood Estimation - Method of Moments -	Corre	lation	- Regre	ession.
UNIT – II					9
Testing of Hy	pothesis: Sampling Distributions - Large sample tests - Testin	g the	signifi	cance	of single
proportion - Di	terence of proportions - Single mean - Difference of means - Sm	all sar	nple te	sts - To	esting the
significance of	means (student's t-test) - lesting the significance of Varia	nces	(F-test)) - Te	sting the
significance of	goodness of fit - Independence of attributes (χ^{-} -test).				
					0
Combinatorics	• Permutations and Combinations - Pigeonhole principle -	Princi	nle of	inclu	sion and
exclusion - Ma	thematical Induction - Recurrence relations - Solution of recur	rence	relation	$rac{1}{1}$	enerating
Functions - Sol	ving recurrence relation by generating functions	lence	relation	115 U	enerating
	ing recurrence relation of generating randoms.				
UNIT – IV					9
Number Theo	ry: Divisibility - Prime numbers - Fundamental theorem of	arithm	netic -	Ferma	t's Little
theorem - GCD	- Euclid's algorithm - Congruence - Solution of Congruences - C	Chinese	e remai	nder tl	neorem.
UNIT – V					9
Automata The	ory: Formal Languages: Introduction - Phrase structure gram	mar -	Types	of G	rammar -
Finite state ma	chine - Finite state automata - Deterministic and Non-determini	nistic 1	FSA -	Equiv	alence of
DFA to NFA -	Push down automata - Languages accepted by PDA - Equivale	ence of	f Pusho	down A	Automata
and Context Fre	ee Languages - Turing Machine.				
	Lectur	e:45, '	Futoria	al:15, '	Fotal: 60
REFERENCE		22 1 1	th 1 7.11.1		1, 1
I. Gupta S.C	2. and Kapoor V.K., "Fundamentals of Mathematical Statistic	s', 11	Editi	ion, Si	ultan and
2 Vistor Sh	D. Nun "A Computational Introduction to Number Theory and Alex	bro"	nd EA:4	ion C	ombridge
2. VICIOI SIII	Press 2011	01a , 2	L Eull	1011, C	amonuge
3. Kenneth F	Rosen "Discrete Mathematics and Its Applications" Tata McC	iraw F	Hill, 20	10.	
	. ressel, District manonales and his applications, faul Mee		, 20		J

COUF	RSE OUTC	COMES:					B	Г Марреd		
On con	mpletion of	the course, the	students will be	e able to			(Hig	ghest Level)		
CO1:	use a sam	ple to compute	point estimate				Applying (K3)			
CO2:	apply stat	tistical tests in te	esting hypothes	es on data			Analyzing (K4)			
CO3:	use comb	use combinatorial concepts in analysis of algorithms								
CO4:	handle ne	Ap	plying (K3)							
CO5:	Creating (K6)									
	-		Mappir	ng of COs with	POs					
CC	Os/POs	PO1	PO2	PO3	PO4	PO5		PO6		
(CO1	1		1						
(CO2	1	1	1						
(CO3	2	1	2						
CO4 2 1 2										
CO5 3 1 3										
1 - Sli	ght, $2 - Mc$	oderate, 3 – Su	bstantial, BT -	- Bloom's Taxo	onomy					

18MSC11 DATA STRUCTURES AND ANALYSIS OF ALGORITHMS

(Common to Computer Science and Engineering, Information Technology & Information Technology(ICW) Branches)

		L	Т	Р	Cred	lit
		3	0	2	4	
Preamble	Provides insight into the intrinsic nature of the problem as techniques, independent of programming language / progra hardware/ implementation aspect.	s well ammin	as po g para	ossible digm/	solut compt	ion iter
Prerequisites	Nil					
UNIT – I						9
Data Structu Recursive and	res: The Role of Algorithms in Computing- Growth of Non-recursive Functions – Lists - Heap Sort – Quick Sort – Sortin	Func ng in L	tions inear T	- Ana Time	alysis	of
UNIT – II						9
Advanced Dat – Binomial He	ta Structures: Binary Search Trees-Red-Black Trees-Augmentin aps - Fibonacci Heaps	g Data	a Struc	tures -	B- T1	ess
UNIT – III						9
Algorithms Algorithms(Hu matching with Properties - De	sen's Matrix Multiplication) – Dynamic Programmir affman Codes) - String Matching: Naïve Algorithm - Rabin finite automata - Knuth-Morris-Pratt Algorithm - Computation etermining segments intersection – Convex Hull – Closest pair of p	al Geo	ques: l Cu p Alg ometry:	tting) orithm Line	- Gree - Gree - Str Segm	edy ing ing
UNIT – IV Graph Algor Shortest Paths	ithms: Elementary Graph Algorithms - Minimum Spannin - All Pairs Shortest Paths - Maximum Flow	ng Tr	ees -	Single	e Sou	9 Irce
UNIT – V						9
NP and Appr and Reducibil Traveling Sale	oximation Algorithm: NP-Completeness: Polynomial Time ve ity - NP Completeness Proofs - NP Complete Problems - sman Problem - Sum of Subset Problem - Vertex Cover Problem	rificati Appro	on, NI ximati	P Com on Al	pleten gorith	iess ms:
List of Evercie	ses / Fyneriments ·					
1 Implement	any two sorting algorithm					
2 Apply Bins	ary Search Trees Red-Black trees Binomial Hean and Fibonacci l	ieans a	algorith	ms		
3. Strassen's	matrix multiplication algorithm Huffman code using Algorithm I	Design	Techn	iques		
4. Implement	String Matching and Graph algorithms	2001811		19405		
5. Solve NP F	Problems sum of Subset Problem and Travelling sales person prob	lem				
	Lecture	:45. P	ractic	al:30. '	Total:	75
REFERENCE	CS / MANUALS / SOFTWARES:	,-				
1. Thomas Algorithm	H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifns", 3 rd Edition, MIT Press, USA, 2009.	ford S	tein, "	Introd	uction	to
2. Levitin A New Yor	., "Introduction to The Design and Analysis of Algorithms", 2 th k, 2007.	^{id} Edit	tion, A	ddison	Wes]	ley,
3. Weiss Ma New Dell	ark Allen, "Data Structures and Algorithm Analysis in C++", 3 rd ni, 2007.	Editio	on, Pea	rson E	ducati	on,
4. Aho Alfree Education	ed V., Hopcroft John E., and Ulllman Jeffrey D., "Data Structure , New Delhi, 2002.	es and	Algori	thms"	, Pears	son

COUH	OURSE OUTCOMES:					ВЛ	Mapped			
On con	mpletion of	the course, the	students will be	e able to			(Hig	hest Level)		
CO1:	analyze al	gorithms and pr	ove their correct	ctness for searcl	ning and sorting	5	Ana	lyzing (K4)		
CO2:	choose ap	propriate data st	tructure as appli	icable to specifi	ed problem det	inition	App	olying (K3)		
CO3:	design algoright them to re	gorithms using al world proble	different Algor m	rithm Design	Fechniques and	l apply	App	olying (K3)		
CO4:	summariz	e the major grap	h algorithms ar	nd apply on star	ndard problems		Applying (K3)			
CO5:	outline the	e significance of	NP-completen	ess and Approx	imation algorit	hm	Under	standing (K2)		
CO6:	: identify the appropriate data structure for solving the given problem A F							lying (K3), cision (S3)		
CO7:	choose and employ appropriate data structure to represent complex d structure							Applying (K3), Precision (S3)		
CO8:	CO8: synthesize operations like searching, insertion, deletion and traversing on various data structures						Applying (K3), Precision (S3)			
Mapping of COs with POs										
CC	Os/POs	PO1	PO2	PO3	PO4	PC)5	PO6		
(201	2	3		2					
(CO2	3	3							
(CO3	2	3	3		-				
(CO4	1	3	1						
(CO5	2		1						
(CO6	3			3					
(C O 7	3			3	-				
(CO8	3			3					
1 - Sli	ght, $2 - \overline{MG}$	oderate, $3 - Su$	ıbstantial, BT -	Bloom's Taxo	nomy					

18MIT11 MODERN INFORMATION RETRIEVAL TECHNIQUES										
(C	ommon to Information Technology & Computer Science and Engine	ering	branch	es)						
		L	T	<u>P</u>	Credit					
D 11		3	0	0	3					
Preamble	Information Retrieval Techniques discusses about the basic co	oncepts	s of II	\mathbf{R}, and	l various					
	modeling techniques with different ways of indexing and searching	g mecr	anism	s to bu	illd a text					
Droroquisitos	DPMS_DWDM_Web Technology									
Flerequisites	DBMS, DWDM, web Technology									
UNIT – I		T 1	ID G		9					
Introduction and Classic IR Models: Information Retrieval - The IR Problem - The IR System - Search										
Interfaces I oda	y - Visualization in Search Interfaces - Modeling – Boolean Model	- Tern	1 Weig	nting -	- IF-IDF Madal					
Weighting – V	ector Model – Set Theoretic Models – Algeraic Models – Latent	Seman	itic Inc	lexing	Model –					
neural network	K Model - Probabilistic Models - Retrieval Evaluation – Retrieval M	etrics.								
IINIT II					0					
Relevance Fee	dback Languages and Query Properties. A Framework for f	eedbac	k met	hods -	. Explicit					
Relevance feed	back - Implicit feedback through local analysis - Global analysis	is - D_{i}	ocumei	nts: M	etadata -					
Documents for	nats - Oueries - Ouery I anguage – Ouery Properties		Jeumer	1105. 111	Claudala					
	nuts Querres Query Lungauge Query Hoperites.									
UNIT – III 9										
Text Operatio	ns, Indexing and Searching: Text Properties - Document Preproce	essing	- Text	Comp	ression –					
Text Classifica	tion – Characterization of Text Classification – Unsupervised	l Algo	orithms	– Ši	upervised					
Algorithms –	Decision Tree – K-NN Classifier – SVM Classifier – Feature	Selecti	on or	Dimer	isionality					
Reduction – E	valuation Metrics - Accuracy and Error - Indexing and Search	hing -	- Inve	rted I	ndexes –					
Sequential Sear	ching – Multidimensional Indexing.									
UNIT – IV					9					
Web Retrieval	and Web Crawling: The Web – Search Engine Architectures – G	Cluster	Based	Arch	itecture –					
Distributed Ar	chitectures – Search Engine Ranking – User Interaction –Bro	wsing	– We	eb Cra	awling –					
Applications of	a Web Crawler – Taxonomy – Architecture and Implementation	– Sch	ledulin	g Algo	orithms –					
Evaluation.										
UNIT - V		D 11		0	9					
Applications:	Enterprise Search - Tasks - Architecture – Library Systems – Online	Public	c Acce	ss Cat	alogues –					
IR System and	Document Databases – Digital Libraries – Architecture and Fundam	entals.			T 4 1 45					
DEEDENCE	Q.				1 otal:45					
1 Disorde 1	Dearse Vote Douthing Dihaing Nata "Madama Information Detail	vvo1??	2 nd E	d:+:	Deerser					
1. Ricardo I	Agia 2011	eval,	2 E	union,	Pearson					
2 Chowdhu	ASIA, 2011. w G.G. "Introduction to Modern Information Patriaval" 2 nd Edition	n Naol	-Schu	nan D	ublishers					
2. Chowalla 2003	y G.G., mubduction to wibuchi information Kenteval, 2 Edition	n, mea	-sciiul	mali P	uonsners,					
3 Daniel Iu	afsky and James H. Martin, "Sneech and Language Processing" 1 st	Editic	n Pea	rson F	ducation					
2000	ansky and sames II. Martin, Speech and Language I focessing, I	Lunn	, i ca	ISON L	aucation,					
2000.					J					

COUF	RSE OUTC	COMES:					BT Mapped		
On con	mpletion of	the course, the s	tudents will be	e able to			(Hi	ghest Level)	
CO1:	describe th	ne basic concept	s of informatio	n retrieval			Understanding (K2)		
CO2:	apply the v	various modelin	g techniques				Applying (K3)		
CO3:	discuss the		Unde	erstanding (K2)					
CO4:	4: create an IR application by using text-based indexing and searching mechanisms Creating (K5)								
CO5:	design a si	mple search eng		Applying (K3)					
	Mapping of COs with POs								
CC	Ds/POs	PO1	PO2	PO3	PO4	PO	5	PO6	
(CO1			1					
(CO2			3					
(CO3			1					
(CO4 2 3								
(CO5 2 2 1 2								
1 - Sli	ght, 2 – Mo	derate, 3 – Sub	stantial, BT – I	Bloom's Taxono	omy				

	18MIT12 WEB TECHNOLOGIES				
		L	Т	Р	Credit
		3	0	0	3
Preamble	The basic understanding of how things work in the Web world fr view as well as to give the basic overview of the different technolo web-based applications.	om th ogies f	e techi or the o	nology develo	point of ppment of
Prerequisites	Nil				
UNIT – I					9
Design and Sc overview – grid tabs – modal	ripting: Introduction to HTML 5 Tags - Cascading Style Sheet – Navbar - Table - Images - Jumbotron – menu – form – layout - '	- Res Tool ti	ponsiv p – pa	ve We nel – p	b design: popover –
UNIT – II					9
Introduction to Collections - E Classes - Constr	Java Scripting: Control Statements - Function - Objects - Dovent Handling - Form handling and validations. Object-Oriented ructors and Prototyping (Sub classes and Super classes) - JSON - Int	ocume Techr roduct	nt Obj iques ion to	ect M in Jav AJAX	odel and aScript -
UNIT – III					9
Introduction to RDBMS and M	o NoSQL Database: MongoDB Environment - MongoDB : I ongoDB - Data Types in MongoDB - MongoDB CRUD Operations	ntrodu	ction 1	to Mo	ngoDB -
					0
Introduction to Blocking - Even Request and Re implementation	• Server-side JS Framework: Node JS - Needs of Node JS - Arch nt-driven Programming - Event Loop - Installation and setup - Crea esponse - Node JS Callback Pattern - Event Emitter and Event I - Modules - Implementation of CRUD operation using Node JS	itectur ting w Handli	e - Blo eb serv ng - C	ocking vers w iET a	vs. Non- ith HTTP nd POST
UNIT – V					0
Introduction to at Client-side of Introduction to - Work of Chan	• Client-side JS Framework: Challenges and Needs - Merits of Mo over Server-side - Single Page Application (SPA) - Progressive Angular - Setup and Configuration - Use of Components and Modu ge Detection in Components.	odel Vi Web Iles - E	ew Co Applic Elemen	ntrolle ation ts of T	er (MVC) (PWA) - Templates
					Total: 45
REFERENCES	S:		_		
1. Deitel and India, 201	Deitel, "Internet and World Wide Web - How to Program", 5 th 2.	Editio	n, Pear	son E	ducation,
2. Fabio Cim	o, "Bootstrap Programming Cookbook", Exelixis Media P.C., 2015.				
3. https://ww	w.mongodb.com/				
4. Nate Murr September	ay, Felipe Coury, Ari Lerner and Carlos Taborda, "ng-book, The Co 2016.	omplet	e Book	t on A	ngular 4"
5. Krasimir T	Sonev, "Node.js by Example", Packt Publishing, May 2015.				

COUF	RSE OUTC	COMES:					BT Mapped			
On coi	mpletion of	the course, the s	students will be	able to			(Hi	ghest Level)		
CO1:	design we	b pages using h	tml ,CSS and be	ootstrap framew	ork		Understanding (K2)			
CO2:	develop i	nteractive web p	ages using Java	a Script			Understanding (K2)			
CO3:	apply CR	Ap	oplying (K3)							
CO4:	demonstra		Ap	oplying (K3)						
CO5:	develop C		Applying (K3)							
Mapping of COs with POs										
CC	Os/POs	PO1	PO2	PO3	PO4	PO	5	PO6		
(CO1	3	2	3	2	-		1		
(CO2	3	2	2	1	-		1		
(CO3	3	1	2	-	-		-		
(CO4	2	3	1	2	-		-		
(CO5	2	2	-	2	-		3		
CO6 3			2	3	2	-		1		
1 – Sli	ght, 2 – Mo	derate, 3 – Su	bstantial, BT –	Bloom's Taxono	omy					

18MIC11 ADVANCED DATABASE TECHNOLOGY (Common to Information Technology & Computer Science and Engineering Branches)

			-						
		L	Т	Р	Credit				
		3	0	2	4				
Preamble	To acquire knowledge on advanced databases like parallel and	l distri	buted	databas	se, object				
	oriented database, active database, temporal database, spatial database, mobile database,								
	multimedia database, XML database and cloud database to effe	ctively	v store	the dat	a for real				
	time applications.								
Prerequisites	Fundamentals of Database Management Systems								
UNIT – I					9				
Pomplel and Distributed Detabagge Detabagg System Architectures, Controlized and Client Server									

Parallel and Distributed Databases: Database System Architectures: Centralized and Client-Server Architectures - Server System Architectures - Parallel Systems - Distributed Systems - Parallel Databases: I/O Parallelism - Inter and Intra Query Parallelism - Inter and Intra operation Parallelism -Design of Parallel Systems - Distributed Database Concepts - Distributed Data Storage -Distributed Transactions - Commit Protocols - Concurrency Control - Distributed Query Processing - Case Studies.

UNIT – II

Object Oriented Databases: Object Oriented Databases - Introduction - Weakness of RDBMS - Object Oriented Concepts - Storing Objects in Relational Databases - Next Generation - Database Systems - Object Oriented Data models - OODBMS Perspectives - Persistence - Issues in OODBMS - Object Oriented Database Management System Manifesto - Advantages and Disadvantages of OODBMS - Object Oriented Database Design - OODBMS Standards and Systems - Object Management Group - Object Database Standard ODMG - Object Relational DBMS - Postgres - Comparison of ORDBMS and OODBMS.

UNIT – III

Intelligent Databases: Active Databases: Syntax and Semantics (Starburst, Oracle, DB2) – Taxonomy – Applications - Design Principles for Active Rules - Temporal Databases: Overview of Temporal Databases-TSQL2 - Deductive Databases: Logic of Query Languages - Datalog - Recursive Rules-Syntax and Semantics of Datalog Languages - Implementation of Rules and Recursion - Recursive Queries in SQL - Spatial Databases - Spatial Data Types - Spatial Relationships - Spatial Data Structures - Spatial Access Methods - Spatial DB Implementation.

UNIT – IV

Advanced Data Models: Mobile Databases: Location and Handoff Management - Effect of Mobility on Data Management - Location Dependent Data Distribution - Mobile Transaction Models - Concurrency Control - Transaction Commit Protocols - Multimedia Databases - Information Retrieval - Data Warehousing - Data Mining - Text Mining.

UNIT – V

Emerging Technologies: XML Databases: XML Data Model - DTD - XML Schema - XML Querying - Web Databases - Geographic Information Systems - Biological Data Management - Cloud Based Databases: Data Storage Systems on the Cloud - Cloud Storage Architectures - Cloud Data Models - Query Languages - Introduction to Big Data - Storage - Analysis.

List of Exercises / Experiments :

1. Distributed Database for Bookstore

2. Deadlock Detection Algorithm for distributed database using wait- for graph

3. Object Oriented Database – Extended Entity Relationship (EER)

4. Parallel Database – University Counselling for Engineering colleges

5. Parallel Database – Implementation of Parallel Join & Parallel Sort

9

9

9

6. Active Database – Implementation of Triggers & Assertions for Bank Database								
7.	Deductive	Database – Cor	nstructing Know	vledge Database	e for Kinship D	omain (Fan	nily I	Relations)
8.	Study and	Working of WI	EKA Tool					
9.	Query Pro	cessing – Imple	mentation of an	Efficient Query	y Optimizer			
10). Designing	XML Schema	for Company Da	atabase				
					Lectu	re:45, Prac	tical	:30, Total: 75
REFF	RENCES	/ MANUALS /	SOFTWARES	•				th
1. Elmasri R., Navathe S.B., "Fundamentals of Database Systems", 5 th Edition,								
Pearson Education/Addison Wesley, 2010.								
2. Thomas Cannolly and Carolyn Begg, "Database Systems, A Practical Approach to								
	Design, Imp	lementation and	Management",	^{3rd} Edition, Pea	arson Educatio	n, 2007.		<u> </u>
3. H	Henry F.	Korth, Abral	ham Silbersch	atz S., Sud	harshan, ^a Da	itabase Sy	stem	n Concepts",
	Edition,	VicGraw Hill, 20	JII.	athon C "A	n Introducti	on to Do	taba	a Sustama''
4. 1	Pale C.J., P th Edition	Kannan A.,	and Swamyr	iathan S., P	In introductio	on to Da	taba	se Systems,
5 L	Paghu	Pamakrishnan	Ull, 2000. Johannes	Gəhrlə	"Database	Managam	ont	Systems"
J. 1 2	R rd Edition	McGraw Hill 2)0/4	Ochike,	Database	wianagem	un	Systems,
~	Lattion,		007.					
COU	RSE OUT(COMES					R	T Manned
On co	mpletion of	the course, the	students will be	able to			(H	ighest Level)
CO1:	select the	appropriate hig	th performance	database like	parallel and d	listributed	A1	pplying (K3)
	database		F		F		1	FF-J8 ()
CO2:	model and	l represent the re	eal world data u	sing object orie	nted database		Ev	aluating (K4)
CO3:	design a s	emantic based d	atabase to mear	ningful data acc	ess		Ev	aluating (K4)
CO4:	embed the	e rule set in the c	latabase to impl	ement intelliger	nt databases		Ev	aluating (K4)
CO5:	represent	the data using X	ML database for	or better interop	erability		Ev	aluating (K4)
CO6:	design an	effective query	processing for p	parallel and dist	ributed databas	se	Aŗ	oplying (K3),
C07.	1						P1	$\frac{1}{2} \frac{1}{2} \frac{1}$
CO/:	design an	online system i	or various applie	cations			Aľ D.	$\frac{\text{oplying}(K3)}{(K3)},$
<u> </u>	dagign on	application usin	a advanced det	modela			۲۱ ۸ ۳	$\frac{1}{2} \frac{1}{2} \frac{1}$
000.	uesign an	application usin	ig auvanceu uata	a models			Al Di	prying (K3),
			N/	f CO	DO -	<u>I</u>	11	
					PUS			
CC	Ds/POs	PO1	PO2	PO3	PO4	PO5		PO6
(CO1	1	1	1	2	3		1
(CO2	2		2	3	2		1
(CO3	2	1	2	3	2		1
(CO4	3		2	2	1		2
(CO5	2	1	3	2	2		1
(CO6	3	1	2	3	1		1
(CO7	3	1	2	3	1		1
	CO8	3	1	2	3	1		1
1 - Sli	ight, 2 – Mo	oderate, 3 – Su	ibstantial, BT –	Bloom's Taxo	nomy			

(C	18MIC12 INTERNET OF THINGS	ering I	Branch	es)	
<u>`</u>		L	Т	P	Credit
		3	0	2	4
Preamble	This course is intended to give students a thorough understanding	g of Io	T and	its ap	plications
	and to design, develop and analyze the various tools for buildi	ng Io7	appli	cation	is also to
	develop IoT infrastructure for various real time applications.				
Prerequisites	Microprocessors/Microcontrollers/Computer Organization/Network	KS			
UNIT – I					9
Introduction to	• Internet of Things and Design Methodology: Definition and Cha	aracteri	stics o	f IoT -	- Physical
Design of IoT	- IoT Protocols - IoT Communication Models - IoT Communi	ication	APIs	- IoT	enabled
Technologies -	IoT Levels and Templates - M2M - Difference between M2M a	and lo	T - So	oftwar	e defined
networks - net	vork function virtualization - 101 Flatform design Methodologies.				
UNIT – II					9
IoT Architectu	re and Protocols: Four Pillars of IoT - DNA of IoT - Middlew	vare f	or Io	Γ: Ov	erview -
Communication	n middleware for IoT - LBS and Surveillance Middleware - Protoc	ol Sta	ndardi	zation	for IoT -
Efforts - M2M	and WSN Protocols - SCADA and RFID Protocols - Unified Data S	tandar	ds.		
IINIT _ III					0
Introduction to	Python and IoT Physical Devices. Language features of Python -	. Data t	vnes -	Data	structures
- Control of fl Exception hand PI - Interfaces external gadget	ow – Functions – Modules – Packaging - File handling - Data/ ling Python packages - JSON, XML, HTTPLib, URLLib, SMTPLib (serial, SPI, I2C)Programming - Python program with Raspberry s - Controlling output - Reading input from pins.	time o - Intr PI witl	peratio oduction focu	ons – on to F s of ir	Classes - Raspberry nterfacing
UNIT - IV			1 1	01	9
Cloud Storage	and Analysis: Various Real time applications of 101 - Connecting	lo1 to	cloud	- Clou	d Storage
101 101 - Data F	Marytics for for - Software and Management roots for for				
UNIT – V					9
Cyber Security	y and Privacy in Internet of Things : Security and Privacy issues	and cl	nalleng	ges - N	Aitigating
Security and P	rivacy Challenges - Security Assessment of an IoT Solution - At	tacks a	and Co	ounterr	measures:
Perception Lay	er - Network Layer - Transport Layer - Application Layer - IoT sec	curity r	equire	ments	based on
CIA Principles	- Security in IoT Protocols.	-	-		
List of Exercis	es / Experiments :				
1. Workin	g with Cooja Simulator				
i.	Creating an IoT scenario				
11.	Sending data between an IoT client and server				
111.	Launching an attack in RPL protocol LED Pi				
2. Control	ing things using Raspberry Pi via webpage/mobile app				
3. Data co	mmunication using MQTT Protocol via Mosquitto simulator				
4. Configu	re MQTT Mosquitto Server to secure MQTT				
5. Sensing	and Sending the sensor value via JSON/SMTP				
6. Gather,	Visualize and analyze the data in BLUEMIX				
7. Perfom	decision making with IOT data in Xively Cloud (Google Cloud)				
	Lecture	e:45, P	ractica	al:30, '	Total: 75
]

REFE	RENCES /	' MANUALS / S	SOFTWARES:							
1. A	ArshdeepBal	hga and Vijay I	Madisetti, "Inter	net of Things	- A Hands-on	Approach'	", Unive	ersities Press,		
2	2015.					· · · · · · · ·		~~ ~ ~		
2. F	Ionbo Zhou	, "The Internet	of Things in the	e Cloud: A Mic	Idleware Perspe	ective", 1 st	Edition	n, CRC Press,		
2 2	2012.	inon on /Inum	1/arabirrag/2015	Valuma 1/Dag	ag/ga annity and	muirro arr al	hallan aa	a of ist		
э. п	mabled_solu	tions aspy	u/arcmves/2015/	volume-4/Page	es/security-and-	-privacy-ci	nanenge	es-01-10t-		
4 h	ittns·//www	researchgate net	/270763270 Su	rvey of Securi	ty and Privacy					
5. h	5 http://slogix in/									
	COURSE OUTCOMES:						BI (IIia	Mapped		
	describe t	the course, the s	logical design of	of IoT and iden	tify the approp	riata IoT	(nig	liest Level)		
CO1.	level and c	le physical and levelon design n	nethodologies fo	r a given applic	ation		Ар	nying (K3)		
CO2:	explain the	he architecture.	need for mi	ddleware and	the role of	different	Under	standing (K2)		
	standardiz	ation protocols						6()		
CO3:	3: recall the basic concepts and packages of Python related to IoT for interfaci						App	olying (K3)		
	with IoT devices									
CO4:	O4: develop simple real time applications, upload the data onto the cloud and perform						App	olying (K3)		
005	data analytics						TT 1			
CO5:	identify the	he security thre	ats against a g	iven loT syste	em and sugges	t simple	Understanding (K2)			
COG	develop Io	T applications u	sing Cooia Sim	lator and Rasn	borry Di		Ann	lving (K3)		
0.00		or applications u	sing Cooja Sint	indior and Rasp	berry II		Precision (S3)			
CO7:	communic	ate to server via	application laye	er protocols			Applying (K3).			
				Ĩ			Pre	cision (S3)		
CO8:	analyse Io	T data stored in	cloud				App	lying (K3),		
ļ	<u> </u>						Pre	cision (S3)		
			Mappin	g of COs with	POs		T			
CC	Ds/POs	PO1	PO2	PO3	PO4	PO:	5	PO6		
	COI	3	2	1	1					
(CO2	2	1							
(CO3	3	2	1	1					
(CO4	3	2	1	1					
(CO5	2	1							
(CO6 3 2 1 1									
(CO7	3	2	1	1		ĺ			
(CO8	3	2	1	1					
1 – Sli	ght, $2 - Mo$	derate, 3 – Sul	ostantial, BT- Bl	oom's Taxonor	ny					

18MSC21 MACHINE LEARNING TECHNIQUES

(Common	to Computer Science and Engineering, Information Technology, In	, form	ation T	echno	logy			
	(Ir	formation Cyber Warfare) & Control and Instrumentation Enginee	ring t	oranche	es)				
			L	Т	Р	Credit			
			3	0	2	4			
Pream	nble	Provides a concise introduction to the fundamental concepts of ma	chine	learni	ng and	popular			
D	•••	machine learning algorithms.							
Prerec	Juisites	Nil							
	-I wisod I a	arning: Definition of Machine Learning Examples of Machi	ina I	aarning	T Ann	lications			
Supervised Learning: Definition of Machine Learning - Examples of Machine Learning Applications. Supervised Learning:Learning a Class from Examples - VC Dimension - PAC Learning - Noise - Learning Multiple Classes - Regression - Model Selection and Generalization - Dimensions of a Supervised Machine Learning Algorithm. Dimensionality Reduction: Introduction - Subset Selection – Principal Component Analysis- Feature Embedding - Factor Analysis.									
UNIT	- II					9			
Tree Classi Gauss	And Pro fication a sian Mixtu	babilistic Models: Learning with Trees – Decision Trees – Con and Regression Trees – Different ways to Combine Classifiers re Models – Nearest Neighbor Methods – Unsupervised Learning –	istruc – Bo – K m	ting De osting leans A	ecision – Ba Igoriti	ı Trees – gging — nm.			
UNIT	- III					9			
Multilayer Perceptrons: Introduction - The Perceptron - Training a Perceptron - Learning Boolean Functions - Multilayer Perceptrons - MLP as a Universal Approximator - Backpropagation Algorithm - Training Procedures - Tuning the Network Size - Dimensionality Reduction - Learning Time									
UNIT	-IV					9			
Kerna Kerna - One	el Machi Il Trick - class Ker	nes: Introduction - Optimal Separating Hyperplane - Soft Marg Vectorial Kernels - Defining Kernels - Multiple Kernel Learning - Methods - Methods - Kernel Dimensionality Reduction.	gin H Multio	yperpla class K	ne - v ernel l	v-SVM - Machines			
UNIT	$\mathbf{V} - \mathbf{V}$					9			
Reinf Based Mach Respo Exper	orcement Learning ine Learr onse Surfa iments.	Learning: Introduction - Single State Case-Elements of Reinforg - Temporal Difference Learning - Generalization - Partially Obing Experiments: Introduction - Factors, Response, and Stratice Design - Randomization, Replication, and Blocking - Guidel	rceme oserva egy ines t	ent Lea able Sta of Exp for Ma	rning ates. I perime chine	- Model- Design of ntation - Learning			
LISU	1 Impl	es / Experiments :							
	$\frac{1.100}{2}$	ementation of Decision tree							
	$\frac{2. \text{ Impl}}{3 \text{ Impl}}$	ementation of k-means clustering							
	$\frac{3. \text{ Impl}}{4}$	ementation of k-NN							
	5 Impl	ementation of Backpropagation algorithm							
	6 Corr	parison of linear regression and decision tree algorithm for the give	en det	acet					
	$\frac{0. \text{ Cont}}{7 \text{ Cont}}$	parison of kernel functions of Support Vector Machine for the give	$\frac{1}{2}$ n dat	aset					
	7. Com	parison of kernel functions of Support vector machine for the give	45 P	ractica	1.30 /	Total: 75			
REFI	ERENCE	S / MANUALS / SOFTWARES:		actica		10tal. 13			
1.	Ethem A	paydin, "Introduction to Machine Learning", 3 rd Edition, Prentice I	Hall c	of India	, 2014	. <u> </u>			
2.	Christopl	her Bishop, "Pattern Recognition and Machine Learning", 2 nd Edition	on, Sp	oringer,	2011				
3.	Willi Ric	hert, Luis Pedro Coelho, "Building Machine Learning Systems	with	Pythor	n", 2 nd	Edition,			

Packt Publishing Ltd., 2015.

COUH	COURSE OUTCOMES:								
On con	mpletion of	the course, the	students will be	e able to			(Highest Level)		
CO1:	illustrate t	he foundations	of machine lear	rning and apply	suitable dimens	sionality	Applying (K3)		
	reduction	techniques for	an application						
CO2:	make use	of supervised n	nethods to solve	e the given prob	lem		Applying (K3)		
CO3:	apply neu	ral networks to	solve real world	d problems			Applying (K3)		
CO4:	solve real	world problem	s using kernel n	nachines			Applying (K3)		
CO5:	summariz experimer	learning	Analyzing (K4)						
CO6:	implemen	t various super-	vised algorithm	s and evaluate t	he performance		Analyzing (K4),		
CO7:	implemen	t the unsupervis	sed algorithms a	and evaluate the	e performance		Analyzing (K4),		
							Precision (S3)		
CO8:	8: implement and compare the performance of different algorithms						Analyzing (K4),		
			Mappi	ng of COs with	n POs				
CC	Ds/POs	PO1	PO2	PO3	PO4	PO5	PO6		
(CO1	3		2					
(CO2	3		2			1		
(CO3	3			2		1		
(CO4	3			2		1		
(CO5	2		3			1		
(CO6	3	2	2					
(CO7	3	2	2					
(CO8	3	2	2]				
1 – Sli	ght, 2 – Mo	oderate, $3 - S$	ubstantial, BT	- Bloom's Taxo	nomy				

18MSE07 BIG DATA ANALYTICS

(Common to Computer Science and Engineering, Information Technology & Information Technology (ICW) branches)

		L	T	P	Credit		
		3	0	2	4		
Preamble	Provides basic knowledge about Big data, its framework an	d stor	age in	datab	ases an	d	
	prepares the students to perform various analytical operations and visualize the results						
Prerequisites	Database Management Systems						
UNIT – I						9	
Big Data: Defi	Big Data: Definition – Wholeness of big data: Understanding – Capturing –Benefits and management –						
Drganizing and analyzing – Challenges – Big data architecture – Big data sources and applications: Big data							

sources – Machine to machine Communications- Big data Applications.

UNIT – II

MapReduce Framework: Introducing Hadoop – Starting Hadoop – Components of Hadoop: Working with files in HDFS - Anatomy of a MapReduce program – Reading and writing - Writing basic MapReduce programs: Getting the patent data set-Constructing the basic template of a MapReduce program-Counting things-Adapting for Hadoop's API changes-Streaming in Hadoop- Improving performance with combiners – Hadoop Ecosystem.

UNIT – III

NoSQL Database Systems: Introduction to NoSQL – CAP theorem - MongoDB : Data types – MongoDB Query Language – Cassandra: Features of Cassandra- Data types – CRUD- Collections Alter Commands – Import and Export- Querying system tables

UNIT – IV

Mining Data Streams: Stream Data Model - Sampling Data in a Stream–Filtering Streams–Counting Distinct Elements in a Stream–Estimating Moments–Counting Ones in a Window–Decaying Window - Stream processing with SPARK and Kafka.

UNIT – IV

Case Studies: Implement using open source frameworks/tools : Time Series Analysis - Text analysis – Social Network Analysis - Data streams

List of Exercises / Experiments :

- 1. Install, configure and run Hadoop and HDFS
- 2. Implement word count / frequency programs using MapReduce
- 3. Implement an application that stores big data in MongoDB / Cassandra
- 4. Data streaming using open source frameworks/tools
- 5. Text Analysis

REFERENCES/MANUAL/SOFTWARE:

- 1. Anil Maheshwari, "Big Data". 1st Edition, McGraw Hill Education, 2017.
- 2. Chuck Lam, "Hadoop in Action", 2nd Edition, Manning Publications, 2011.
- 3. Seema Acharya and Subhashini Chellappan, "Big Data and Analytics", 1st Edition, Wiley, 2015.
- 4. List of Softwares: Hadoop, R Package, Hbase, Pig, Hive

9 DB

9

9

9

Lecture:45, Practical:30, Total: 75

COUH	RSE OUTC	COMES:					B	T Mapped
On con	npletion of	the course, the	students will b	e able to			(Hi	ghest Level)
CO1:	: identify the need for big data analytics Understanding (K2)							
CO2:	2: develop simple programs using Hadoop framework Understanding (K2) 3: explore NoSOL database system for real world problems Analyzing (K4)							rstanding (K2)
CO3:	3: explore NoSQL database system for real world problems Analyzing (K4)							alyzing (K4)
CO4:	4: recognize the need for stream processing and discuss SPARK and Kafka Analyzin						alyzing (K4)	
	architectu	re						
CO5:	discuss big	g data use cases	and implement	t using open sou	urce framework	s/tools	Ap	plying (K3)
CO6:	demonstra	te simple progr	ams using Map	Reduce, Hadoo	p and HDFS		Ap	plying (K3),
							Pre	ecision (S3)
CO7:	use Mong	oDB / Cassandi	a for storing bi	ig data in real w	orld problems		App	olying (K3),
							Pre	ecision (S3)
CO8:	O8: implement programs for data streaming and text analysis using open source Ap						App	olying (K3),
	frameworl	ks/ tools					Pre	ecision (S3)
			Mappi	ing of COs with	POs			
CC	os/POs	PO1	PO2	PO3	PO4	PO	5	PO6
(CO1	2		2				1
(CO2	3		2	3			
(203	3		1		3		
(CO4	2		2	3	2		
(CO5	1		3	2			
(CO6	3	2					
(CO7	3	2	1				
(CO8	3	2	1				1
1 - Sli	ght, $2 - Mc$	oderate, $3 - S_1$	ubstantial, BT	- Bloom's Taxo	nomy			

18MIT21 CLOUD ARCHITECTURE AND SECURITY

Γ

(Common to	Information Technology & Information Technology(Information	Cyber	Warfa	re) bra	nches)
		L	Т	Р	Credit
		3	0	0	3
Preamble	Provides knowledge about basic concepts of cloud computin	ig, typ	es of	cloud	services,
	technologies and service providers and to understand the disti	nct ba	sic clo	oud arc	chitecture
	models and advanced architecture models for complex environm	nents a	and the	secur	ity issues
D	and threats in cloud environments.				
Prerequisites	N1				
UNIT – I	ting Project Introduction to Cloud Computing Cloud computin	~ ~ ~ for		dal	9 Eccential
Cloud Compu	Basics: Introduction to Cloud Computing – Cloud computing	g refer	ence n	livery	Essential
Deployment m	- Beliefits and chaneliges of cloud computing- Koles and Boundar		Jud De	invery	Models -
	odels -Cloud computing vendors.				
UNIT – II					9
Cloud Enabli	ng Technology: Data Center Technology-Remote operation	and m	nanage	ment-I	Facilities-
Computing, S	torage, Network Hardware- Virtualization Technology-Types	of virt	ualizat	ion- C	OS based
virtualization-	Hardware based Virtualization- Virtualization Management-We	eb Tec	hnolog	gy- M	ultitenant
Technology- S	ervice Technology- Case Study.				
UNIT – III					9
Fundamental	Cloud Architecture: Work load Distribution architecture- Res	ource	Poolin	g Arcl	hitecture-
Dynamic Scal	ability-Elastic Resource Capacity-Service load balancing-Redu	ndant	Storag	e Arcl	hitecture-
Case Study.					
					0
Advanced Clo	ud Architecture: Hypervisor clustering architecture. Cloud Bala	ncing	archite	cture_	Pesource
Reservation- I	Dynamic failure detection and recovery architecture-Rapid prov	visionir	ng- Ste	orage	workload
management	architecture-Multipath resource access architecture-Cross Stor.	age de	evice	vertica	l tiering
architecture					
UNIT – V					9
Security in C	oud: Cloud security fundamentals- Basic terms and concepts- T	hreat a	gents-	Cloud	Security
Threats-Encry	otion- Hashing- Digital Signature-Public Key Infrastructure- Identi	ity and	Acces	s Man	agement-
Single Sign on	-Cloud Based Security Groups.				
				r	Total: 45
REFERENCE	S:				
1. Thomas	Erl, Zaigham Mahmood, Ricardo Puttini, "Cloud Computing:	Conce	epts, T	echno	logy and
Architect	ure", 1 ^{°°} Edition, Prentice Hall, 2013.	A 75	,• •		1 22 4 St
2. Anthony Edition	T. Velte, Toby J. Velte, Robert Elsenpeter, "Cloud Computing: AcGraw-Hill, 2010.	A Pra	actical	Appro	bach", 1"
3. George H	Reese, "Cloud Application Architectures: Building Application	s and	Infras	tructur	e in the
Cloud". 1	st Edition, O'Reilly, 2009.	~ ~ ~ ~ ~			
, _					

COU	RSE OUTC	OMES:					B	Г Mapped
On con	On completion of the course, the students will be able to (Highest Level)							
CO1:	articulate	the main conce	pts, key techn	ologies, streng	ths and limita	tions of	Under	standing (K2)
CO2:	illustrate computing	the architectur	e, infrastructu	re and delive	ery models of	f cloud	Under	standing (K2)
CO3:	analyze the technologi	e different cloud	technologies i	ncluding virtua	lization and we	b based	Ana	llyzing (K3)
CO4:	CO4: categorize the appropriate cloud architecture for distinct functional areas. Analyzing (K3)							lyzing (K3)
CO5: identify the core issues of cloud computing such as security, threats and Understanding					standing (K2)			
	privacy.							
			Марріі	ng of COs with	POs			
C	Os/POs	PO1	PO2	PO3	PO4	PC	5	PO6
	CO1	3	2	3	2	1		2
	CO2	3	2	3				1
	CO3	3	2	3				1
	CO4	3	2	3				1
	CO5	3	2	3	2	1		2
1 - S1	ight, 2 – Mo	oderate, 3 – Su	bstantial, BT -	Bloom's Taxo	onomy		i	

18MIL31 COMPUTING LABORATORY

(Co	ommon te	o Information Tec	hnology & Info	rmation Techno	logy(Informatio	n Cyber W	/arfare	e) bran	ches)
						L	Т	Р	Credit
						0	0	2	1
Preamb	ole	This course aims	s to develop si	mple web appl	ications in clou	d, to des	ign ar	nd dev	elopment
process involved in creating a cloud based application and to setup and configure web services							• services		
		and create web ap	plications						
Prerequ	uisites	Web Technologie	es, Cloud Archit	ecture					
List of Experiments:									
1.	Install V	irtual box/VMwar	e Workstation v	with different op	erating systems.				
2.	Install ar	nd configure to la	unch virtual ma	chine using trys	tack				
3.	Simulate	a cloud scenario	using CloudSim	and implement	a scheduling alg	gorithm			
4.	Configu	re Google App En	gine and create	simple web app	lications using p	vthon/java	a.		
5.	Study ex	periment on confi	guring EC2 in A	Amazon Web Se	ervice				
6.	Design a	n online examinat	ion system usin	g JaaS as servio	e				
7	Design a	n online book sho	onning cart system	em using server	less computing				
/.	7. Design an omne book snopping cart system using server less computing								
REFE	10tal; 50								
1. C	loudsim.	Trystack. Python/	Java/PHP. HTN	/II./Javascript/X	AMPP. Virtualb	ox / VMW	/are. (ioogle	App
2. La	aboratory	Manual		112, 0 a v as en ip a m	min i, v niculio		are, c	500,510	-PP
COUR	SE OUT	COMES:]	BT Ma	apped
On con	npletion of	of the course, the s	students will be	able to			(H	lighest	Level)
CO1:	configui	e various virtua	lization tools	and simulate	cloud environm	nent and	A	pplyin	g (K3),
	impleme	ent scheduling alg	orithms				P	recisio	n (S3)
CO2:	configu	re various Web Se	rvices and laund	ch virtual machi	ne		A	pplyin	g (K3),
							P	recisio	on (S3)
CO3:	develop	and deploy web a	pplications in c	loud environme	nt		A	pplyin	g (K3),
	Precision (S3)						on (S3)		
~ ~			Mappi	ng of COs with	POs				
CO	s/POs	PO1	PO2	PO3	PO4	PO5	205 PO6		
C	201	1	2						
C	202			3					
С	203			3	3	2			
1 – Slig	ght, $2 - M$	Ioderate, 3 – Sul	ostantial, BT –	Bloom's Taxon	omy				

18COT21 WIRELESS SENSOR NETWORKS

(Common to Communication Systems, Control and Instrumentation Engineering, Computer Science and Engineering & Information Technology branches)

		3	1	0	4	
Preamble	This course will cover the most recent research topics in wireles	ss sens	or net	vorks a	and IPV	6
	transition. Topics such as MAC layer and PHY layer	functi	onaliti	es, 6I	LoWPA	Ν
	fundamentals, routing, mobility and other advanced topics are pr	ecisely	cover	ed.		
Prerequisites	Wireless Networks					
UNIT – I						9

UNIT – I

IEEE 802.15.4 PHY Layer: WSN Introduction, WPAN, network topologies, superframe structure, data transfer model, frame structure, slotted CSMA, IEEE 802.15.4 PHY: frequency range, channel assignments, minimum LIFS and SIFS periods, O-OPSK PPDU format, modulation and spreading. Simulation of data transfer model using Cooja simulator.

UNIT – II

IEEE 802.15.4 MAC Layer: MAC functional description, MAC frame formats and MAC command frames, Simulation of WSN traffic model using Cooja simulator.

UNIT – III

6LoWPAN Fundamentals: 6LoWPAN-Introduction, protocol stack, addressing, L2 forwarding, L3 routing, Header Compression, Fragmentation and Reassembly, Commissioning, Neighbor Discovery. Analyzing of sensor data exchange using Wireshark.

UNIT - IV

6LoWPAN Mobility and Routing: Mobility: types, Mobile IPv6, Proxy MIPv6, NEMO, Routing: Overview, ROLL, border routing, RPL, MRPL, Edge Router Integration (Cooja simulation).

UNIT - V

IPv6 Transition and Application Protocols: IPv4 Interconnectivity: IPv6 transition, IPv6-in-IPv4 tunneling, application protocols: design issues, MQTT-S, ZigBee CAP.

Lecture:45, Tutorial:15, Total: 60

Т

L

Р

Credit

9

9

9

9

REFERENCES: 1.

- "IEEE Standard for Local and metropolitan area networks, Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs)", IEEE Computer Society, New York, 5 September 2011.
- Shelby and Zach, "6LoWPAN : The Wireless Embedded Internet", 1st Edition, John Wiley & Sons Inc., 2. Hoboken, New Jersey, 2009, ISBN 978-0-470-74799-5.
- Holger Karl and Andreas Willig, "Protocols and architectures for wireless sensor networks", John Wiley 3. & Sons Inc., Hoboken, New Jersey, 2005, ISBN 978-0-470-09510-2.

COUR	COURSE OUTCOMES: BT Mapped								
On con	On completion of the course, the students will be able to (Highest Level)								
CO1:	1:interpret the physical layer functionalities of IEEE 802.15.4 sensor devicesUnderstanding (K2)								
CO2:	ana	lyze MAC frame	e modeling of IE	EE 802.15.4 sense	or devices		Ar	nalyzing (K4)	
CO3:	ana	lyze 6LoWPAN	architecture				Ar	alyzing (K4)	
CO4:	vali	date the routing	protocol perform	nance of 6LoWPA	N devices		Ev	aluating (K5)	
CO5:	app	ly IPV6 protocol	ls for IoT applica	ations			A	pplying (K3)	
	Mapping of COs with POs								
COs/P	Os	PO1	PO2	PO3	PO4	PO5		PO6	
CO1	Ĺ				3				
CO2	2	3	3					3	
CO3 3 3 3						3			
CO4			3						
CO5 3									
1 - Slig	ght, 2	2 – Moderate,	3 – Substantial,	BT - Bloom's Ta	ixonomy				

18MSC22 NETWORK DESIGN AND TECHNOLOGIES

|--|

L	Т	Р	Credit
2	0	2	1

Preamble	This course provides insight into Network design, tools for monitoring the network and
	advanced topics in Networks such as Wireless network protocols, 4G and 5G networks,
	Software-Defined Networks.
Prerequisites	Computer Networks

UNIT – I

Network Design Fundamentals: Introduction -Cooperative communications -The OSI model -The TCP/IP model -The Internet protocols-Networking hardware-Physical connectivity-Virtual connectivity.

UNIT – II

Network monitoring and Analysis: An effective network monitoring LAN and WAN - Monitoring your network -The dedicated monitoring server – monitoring various network parameters - characteristics of monitoring tools - Types of monitoring tools-Spot check tools-Log analysers-Trending tools-Realtime tools-Benchmarking-Interpret the traffic graph - Monitoring RAM and CPU usage.

UNIT – III

Wireless Networks: IEEE802.16 and WiMAX – Security – Advanced 802.16 Functionalities – Mobile WiMAX - 802.16e – Network Infrastructure – WLAN – Configuration – Management Operation – Security – IEEE 802.11e and WMM – QoS – Comparison of WLAN and UMTS.

UNIT – IV

4G and 5G Networks: LTE – Network Architecture and Interfaces – FDD Air Interface and Radio Networks –Scheduling – Mobility Management and Power Optimization – LTE Security Architecture – Interconnection with UMTS and GSM – LTE Advanced (3GPPP Release 10)- 4G Networks and Composite Radio Environment – Protocol Boosters – Hybrid 4G Wireless Networks Protocols – Green Wireless Networks – Physical Layer and Multiple Access – Introduction to 5G.

UNIT – V

Software Defined Networks: Introduction – Centralized and Distributed Control and Data Planes – Open Flow – SDN Controllers – Data centre concepts and constructs : Introduction- The Multitenant Data Center - The Virtualized Multitenant Data Center- Orchestration - Connecting a Tenant to the Internet:VPN - Virtual Machine Migration and Elasticity - SDN Solutions for the Data Center Network – VLANs - Network Topology – Building an SDN Framework :The Juniper SDN Framework.

List of Exercises / Experiments :

1. Switches configuration – Managed and Unmanaged switches.

2. Establishing a Local Area Network (LAN).

3. VLAN Creation, adding resources and configuration.

4. DHCP Server Configuration.

5. Connecting two LANs using multi-router topology with static routes.

6. Defining access control lists and integrating centralized authentication server.

7. Firewall configuration.

8. Installing and configuring open source based packet analyzer and network management tools.

<u>9</u>

9

9

9	9. Monitoring the network and locate source of the problem with Spot check tools							
1	0. Collecting	g network activit	y data, analyzii	ng and reportin	g it with Trend	ing tools		
1	11. Monitoring a network with Realtime tools							
	Lecture: 45, Practical: 30, Total: 75							
REI	FERENCES	/ MANUALS /	SOFTWARES	5:				
1.	Martin Saut	ter, "From GSM	to LTE, An I	ntroduciton to	Mobile Networ	ks and M	Iobile E	Broadband", 1 st
	Edition, Wi	ley, 2014.					-1	
2.	Thoman D.	Nadeau, and	Ken Gray, "S	DN - Softwar	e Defined Ne	tworks",	1 st Edi	ition, O'Reilly
2	Publishers, 1	2013. D. Dalahar M	Canaga E 7	Jonnoro M "	Low To Accolo	roto Vou	n Intone	at A Drastical
э.	Guide to B	ndwidth Manag	Callessa E., Z	timisation usin	o Open Source	Softwar	e" 1 st I	Edition BMO
	Book Sprint	t Team. 2006.	gement and Op	diffisation usin	g open bouree	Soltwar	с, г I	Lattion, Divio
CO	URSE OUT	COMES:					B	Г Mapped
On o	completion of	f the course, the	students will be	e able to			(Hig	ghest Level)
CO	: identify t	he components	required for des	signing a netwo	ork		Ap	plying (K3)
CO2	apply di	fferent tools for	network monito	oring			Ap	plying (K3)
CO	: analyze v	various wireless	network techno	ologies			Ana	lyizing (K4)
CO4	CO4: summarize the features of LTE, 4G and 5G networks Understanding (K2						rstanding (K2)	
CO5: experiment with software defined networks Understanding (I						rstanding (K2)		
	CO6: configure LAN, VLAN, DHCP server and firewalls Applying (K3), Dragicion (S2)						prying (K3),	
CO	· identify	install and confi	gure open sour	ce based packet	t analyzer and r	etwork	An	nlving (K3)
00,	managen	nent tools	Bure open sour	ee oused puerie		Precision (S3)		
CO8	CO8: analyze network activity with spot check, trending and real time tools					Ana	lyzing (K4),	
						Pre	ecision (S3)	
			Mappi	ng of COs with	n POs			
(COs/POs	PO1	PO2	PO3	PO4	PC)5	PO6
	CO1			3				
	CO2			2	3			
	CO3	2	3					
	CO4	1		3				2
	CO5					3		
	CO6	2	3	3				2
	CO7	2	2	3				3
	CO8	3	3	3				2
1 - 3	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy							

18MWC21 ETHICAL HACKING

(Common to	(Common to Information Technology (Information Cyber Warfare) & Information Technology branches)								
	L T P Credit								
		3	0	2	4				
Preamble	This subject provides the fundamental knowledge about securi internet and system and how to secure from the various countermeasures for real world applications.	ty per vulner	missio abilitie	ns in c es and	computer, l provide				
Prerequisites	Nil								

UNIT – I

Casing the Establishment: What is foot printing? - Internet Foot printing- Scanning – Determining if the system is alive – Determining which services are running or Listening – Detecting the operating system – Processing and storing scan data - Enumeration - basic banner grabbing- Enumerating Common Network services- Case study- Network Security Monitoring.

UNIT – II

System Hacking: Introduction – Cracking password – Password cracking websites – Password guessing Algorithms – Password Cracking Tools – Countermeasure – Escalating Privileges- Executing Applications – Key loggers and spywares.

UNIT – III

Infrastructure and Hardware Hacking: Remote connectivity and VoIP Hacking - Preparing to dial up-War – Dialing - Brute-Force Scripting - PBX hacking - Voice mail hacking - VPN hacking – Hacking Hardware – Physical access – Hacking Devices – Default Configurations – Reverse Engineering Hardware.

UNIT – IV

Wireless and Firewall Hacking: Wireless Equipment – Discovery and monitoring - Denial of Service Attacks – Common Dos Attack Techniques - DoS Countermeasures - Encryption attacks – Authentication attacks - Firewalls - Firewalls landscape - Firewall Identification - Scanning Through firewalls - Packet Filtering - Application Proxy Vulnerabilities.

UNIT – V

Application Hacking and Countermeasures : Web and Database Hacking – Web Server Hacking - Web application Hacking - Common web application Vulnerabilities – Database Hacking – Mobile Hacking – Hacking android – iOS.

List of Exercises / Experiments :

- 1. Passive Information Gathering
- 2. Detecting Live Systems
- 3. Enumerating Systems
- 4. Defeating Malware
- 5. Securing Wireless Systems Net Stumbler
- 6. Capture Wireless Traffic
- 7. Breaking into Database using SQL Injection
- 8. OS Hacking
- 9. E-mail Bombing
- 10. Hacking android phone

Lecture: 45, Practical: 30, Total: 75

9

9

9

9

RF	EFERENCES / MANUAL / SOFTWARES:							
1.	Stu Sol	art McClur utions", 7 th	e, Joel Scambray a Edition, Tata McC	nd Goerge Kurtz, FrawHill Publisher	"Hacking Exposec s, 2012.	l 7 : Network S	ecurity Secrets and	
2.	EC	C- Council Press, "Ethical Hacking and Countermeasures: Threats and Defense Mechanisms", 1 st						
	Edi	ition, Cenga	ige Learning, 2009					
3.	EC	- Council	Press, "Ethical Ha	acking and Count	termeasures: Attac	ck Phases", 1 st	Edition, Cengage	
	Lea	arning, 2009).					
CC	COURSE OUTCOMES: BT Mapped							
On	con	npletion of t	the course, the stud	lents will be able to	0		(Highest Level)	
CC) 1:	explain the	e basic vulnerabilit	ies in any computi	ng system		Applying (K3)	
CC	02:	determine	the possible securi	ty attacks in comp	plex real time syste	ems and their	Applying (K3)	
		effective c	ountermeasures					
CC	03:	identify the	e security issues in	hardware and soft	ware		Applying (K3)	
CC) 4:	interpret th	ne vulnerabilities ir	wireless environr	nent and firewall s	ystems	Applying (K3)	
CC)5:	formulate	research problems	in the computer se	curity applications		Analyzing (K4)	
CC)6:	organize v	arious information	using passive info	ormation gathering	, live system,	Applying (K3),	
		enumeration and malware					Precision (S3)	
CC	07:	utilize vari	ous tools to break	the remote system	hardware and soft	ware	Applying (K3),	
							Precision (S3)	
CC)8:	examine	various counterme	easures for the	vulnerabilities in	real world	Analyzing (K4),	
<u> </u>		application	18				Articulation (S4)	
				Mapping of CO	Os with POs			
	CC)s/POs	PO1	PO2	PO3	PO4	PO5	
	(201	3		3	2	3	
	(CO2	3	1	3	2	3	
	(203			3	3	3	
	(CO4	2		3	3	3	
	(CO5 3 2 3				3		
	(CO <u>6</u>	3	2	3	3	2	
	(CO7	3	2	3	3	2	
	(208	3	3	3	3	3	
1 –	Slig	ght, 2 – Moo	lerate, 3 – Substa	untial, BT - Bloom	n's Taxonomy			

18MWE02 INFORMATION THEORY AND CODING

(Common to Information Technology (Information Cyber Warfare), Information Technology & Communication Systems branches)

		3	0	0	3	
Preamble	Information Theory and Coding deals with concept of information	on and	its effi	cient, o	error-fre	e
	and secure delivery of information using binary data streams.	It also	o provi	des a	complet	e
	understanding of error-control coding techniques over noisy com	munic	ation c	hannel	•	
Prerequisites	Communication Networks/Systems					
UNIT – I						9

 $\mathbf{UNIT} - \mathbf{I}$

Source Coding: Introduction to Information theory – Uncertainty and Information – Entropy and Average Mutual Information – Information Measure for Continuous Random Variables – Source coding theorem – Huffman Coding - Shannon-Fano-Elias Coding - Arithmetic Coding - Lempel - Ziv Algorithm - Run Length Encoding and the PCX Format – Rate Distortion Function

UNIT – II

Channel Capacity and Coding: Introduction - Channel Model - Channel Capacity - Channel Coding -Information Capacity Theorem - Error control coding: Introduction to Error Correction Codes - Basic Definitions - Matrix Description of Linear Block Codes - Equivalent Codes - Parity Check Matrix -Decoding of Linear Block Code - Syndrome Decoding - Error Probability after Coding - Perfect Codes -Hamming Codes - Low Density Parity Check (LDPC) Codes - Optimal Linear Codes - Maximum Distance Separable (MDS) Codes

UNIT – III

Cyclic Codes: Introduction to the Cyclic Codes - Polynomials - Division Algorithm for Polynomials - A Method for Generating Cyclic Codes - Matrix Description of Cyclic Codes - Burst Error Correction - Fire Codes - Golay Codes - Cyclic Redundancy Check (CRC) Codes - Circuit Implementation of Cyclic Codes

UNIT - IV

Bose-Chaudhuri Hocquenghem (BCH) Codes: Introduction to BCH Code - Primitive Elements - Minimal Polynomials - Generator Polynomials in Terms of Minimal Polynomials - Some Examples of BCH Codes -Decoding of BCH codes - Reed-Solomon Codes - Implementation of Reed -Solomon Encoders and Decoders - Performance of RS Codes Over Real Channels - Nested Codes

UNIT – V

Convolutional Codes: Introduction to Convolutional Codes - Tree Codes and Trellis Codes - Polynomial Description of Convolution Codes - Distance Notions for Convolutional Codes - The Generating Function -Matrix Description of Convolutional Codes - Viterbi Decoding and Convolutional Codes - Distance Bounds for Convolutional Codes - Turbo Codes

Total: 45

REFERENCES:

1.	Ranjan Bose,	"Information The	ory, Coding and	Cryptography", 2 nd	¹ Edition, Tata McGraw Hill, 2008.
----	--------------	------------------	-----------------	--------------------------------	---

Andrew J. Viterbi, Jim K. Omura, "Principles of Digital Communication and Coding", 4th Edition, 2. Courier Corporation, 2018.

John G. Proakis, Masoud Salehi, "Digital Communications", 5th Edition, McGraw Hill, 2008. 3.

9

9

9

9

Т

Р

Credit

L

COU	RSE OUTC	COMES:				BT Mapped
On coi	mpletion of	the course, the stud	ents will be able to			(Highest Level)
CO1:	outline the	e principles behind	an efficient, corre	ect and secure tra	nsmission of	Understanding (K2)
	digital data	a stream				
CO2:	recognize	the basics of error-c	coding techniques			Analyzing (K4)
CO3:	construct	the knowledge ab	out the encoding	and decoding of	digital data	Applying (K3)
	streams					
CO4:	examine th	ne performance requ	irements of various	s coding technique	es	Analyzing (K4)
CO5:	CO5: take part in to conduct research in information theory by the professionals			sionals	Evaluating (K5)	
			Mapping of C	Os with POs		
CC	Os/POs	PO1	PO2	PO3	PO4	PO5
(CO1	2		3	2	
(CO2	2		3		
(CO3			3	1	2
CO4		3	2	2		
(CO5	3		2		2
1 – Sli	ight, 2 – Mo	derate, 3 – Substa	antial, BT - Bloom'	s Taxonomy	.	

18MWE03 MULTIMEDIA COMPRESSION TECHNIQUES

(Common to Information Technology (Information and Cyber Warfare), Information Technology & Communication Systems branches)

T

L

Р

Credit

9

9

9

9

Total: 45

		3	0	0	3	
Preamble	The aims of this course are to study methods for handling and co	ompres	ssing v	various	kinds (of
	data, such as text, images, audio and video data and understand o	lata co	mpres	sion te	chniqu	es
	for multimedia and other applications, in particular to the Interne	t.				
Prerequisite	Computer Networks					
UNIT I						0

Introduction: Special features of Multimedia – Graphics and Image Data Representations – Popular File formats - Fundamental Concepts in Video - Digital Audio - Storage requirements for multimedia applications -Need for Compression - Lossy & Lossless compression techniques- Overview of Source Models - Source coding - Scalar and Vector quantization

UNIT – II

Text Compression: Compression techniques: Shannon- Fano coding –Huffman coding – Adaptive Huffman Coding – Arithmetic coding – Dictionary techniques: LZW algorithm

UNIT – III

Audio Compression: Audio compression techniques $-\mu$ - Law and A-Law companding- Differential Encoding –DPCM- ADPCM – DM – Optimal Predictors and Optimal Quantization –Application to speech coding: G.722 - Application to audio coding : MPEG audio, Speech compression techniques : Formants and **CELP** Vocoders

UNIT - IV

Image Compression : Transform Coding: JPEG Standard – Sub band coding algorithms – Design of Filter banks - Implementation using filters- Wavelet based compression: EZW- SPIHT coders - JPEG 2000 standards- JBIG- JBIG2 standards

UNIT - V

Video Compression: Video compression Based on Motion Compensation - Search for Motion Vectors -H.261 - MPEG Video Coding I: MPEG - 1 and 2 - MPEG Video Coding II: MPEG - 4: Object Based Visual Coding –Synthetic Object Coding –Object types-Profiles and Levels – MPEG 7.

REFERENCES:

Morgan Kauffman, Khalid Sayood, "Introduction to Data Compression", 2nd Edition, Harcourt India, 1. 2000.

- David Salomon, "Data Compression The Complete Reference", 2nd Edition, Springer Verlag New York 2. Inc., 2001.
- Mark S. Drew, Ze-Nian Li, "Fundamentals of Multimedia", 2nd Edition, PHI, 2005. 3.

COU	RSE OUTC	COMES:				F	BT Mapped
On con	mpletion of	the course, the stud	lents will be able to			(H	ighest Level)
CO1:	summarize	e scalar and vecto	r quantization the	ory and also to re	epresent the	Unde	erstanding (K2)
	multimedi	a data in different f	ormats for various a	applications			
CO2:	make use	of different coding	techniques and ap	ply various algorit	hms for text	A	pplying (K3)
	compressi	on					
CO3:	identify th	ne various audio a	nd speech compre	ssion techniques t	for practical	A	pplying (K3)
	application	ns					
CO4:	take part	in image comp	ression techniques	and also to imp	plement the	Ar	nalyzing (K4)
	compressi	on techniques in M	ATLAB				
CO5:	compare v	various video comp	ression algorithms t	for practical applic	ations	Ev	aluating (K5)
			Mapping of CO	Os with POs			
CC	Os/POs	PO1	PO2	PO3	PO4		PO5
(CO1	3	2	3	1		-
(CO2	3	2	3	-		1
(CO3	2	3	1	2		1
(CO4 3 2 2 1				1		_
(CO5	2	2	3	1		_
1 – Sli	ght, 2 – Mo	derate, 3 – Substa	antial, BT - Bloom	's Taxonomy			

	18MIE01 DISTRIBUTED SYSTEMS					
		L	Т	Р	Cred	lit
		3	0	0	3	
Preamble	Provide principles of distributed systems, including	desig	gn a	nd arc	hitectu	ıre,
	algorithms, locking, recovery, Replication and handling	of fa	ilures	in d	istribut	ted
	environment.					
Prerequisites	Computer Networks					
UNIT – I						9
Introduction:	Characteristics- Design goals- Types of distributed systems-	Archit	ecture	s: Arc	chitectu	ure
styles- Middley	vare organization- System architecture- Example architecture- the	networ	rk file s	system		
UNIT – II						9
Process: Threa	ds- Virtualization- Clients- Servers- Code migration. Communica	tions:	Found	ations	- Remo	ote
procedure call-	Message-oriented communication- multicast communication.					
UNIT – III						9
Naming: Nar	nes, identifiers, addresses- flat naming- Structured naming	- attri	bute	based	namii	ng.
Coordination:	Clock synchronization- Logical clocks- Mutual Exclusion- El	ection	algori	thms-	Locati	ion
systems.						
UNIT – IV						9
Consistency a	nd Replication: Introduction -Data-centric consistency models	- Clie	nt-cent	ric co	nsister	ncy
models- Replic	a management- Consistency Protocols					
UNIT – V						9
Fault Toleran	ce: Introduction- Process resilience- Reliable client-server com	nmunic	ation-	Reliat	ole gro	oup
communication	- Distributed commit- Recovery					
				,	Fotal:	45
REFERENCE	S:					
1. Maarten	van Steen and Andrew S. Tanenbaum, "Distributed Systems", 2 nd	¹ Edition	on, Pea	arson H	Educati	ion
Inc., 201	1.					
2. Brendan	Burns, "Designing Distributed Systems", 1st Edition, O'Reilly Med	dia Inc	., 2018	•		

COUF	COURSE OUTCOMES:]	BT Mapped
On con	npletion of	the course, the	students will be	able to			(E	Highest Level)
CO1:	gain know	ledge about the	technologies in	n distributed env	vironment		Und	lerstanding (K2)
CO2:	develop a	pplications in th	e area of distrib	outed systems (F	RMI, RPC)		A	Applying (K3)
CO3:	demonstra	te various nami	ng and coordin	ation mechanisr	ns		E	valuating (K5)
CO4:	demonstra	te how consi	stency and re	eplication are	handled in di	stributed	E	valuating (K5)
CO5:	CO5: explain the concept of fault tolerance			A	Applying (K3)			
			Mappi	ing of COs with	n POs			
CC	Os/POs	PO1	PO2	PO3	PO4	PO5		PO6
(201	3						1
(CO2		3	3				
CO3		3		3	1	2		
CO4					3			2
CO5 3				2				
1 - Sli	ght, $2 - Mc$	oderate, 3 – Su	ıbstantial, BT –	Bloom's Taxor	iomy			·

18MIE02 DATA VISUALIZATION TECHNIQUES

(Cor	nmon to Information Technology & Computer Science and Engir	neering	g branc	hes)		
		L	Т	Р	Credi	t
		3	0	0	3	
Preamble	Dele Data visualization techniques are used to communicate complex information in a way that is				is	
	easier to interpret by turning information into visually engagin	ng ima	ages ar	nd stor	ies. Da	ta
	visualization is a key to clear-cut reports and dashboards.					
Prerequisites	Database Management Systems and Data Mining Concepts					
UNIT – I						9
Core Skills for Visual Analysis: Information visualization - Uses – History – Effective Analysis – Traits of						
meaningful data	meaningful data – Visual Perception – Making Abstract Data Visible – Building blocks of information					

UNIT – II

visualization.

Analytical Skills: Analytical Interaction: Interaction and Navigation – Analytical Techniques And Practices: Optimal Quantitative Scales – Reference Lines and Regions – Trellises And Crosstabs – Multiple Concurrent Views – Focus And Context – Over-Plotting Reduction – Analytical Patterns – Guidelines And Pattern Examples.

UNIT – III

Time-Series, Ranking and Deviation Analysis: Time-Series Analysis: Patterns –Displays – Techniques and Best Practices – Part-To-Whole And Ranking Analysis: Patterns – Displays – Techniques and Best Practices – Deviation Analysis: Displays – Techniques and Best Practices.

UNIT – IV

Distribution, Correlation and Multivariate Analysis: Distribution Analysis : Describing Distributions – Patterns – Displays – Techniques and Best Practices – Correlation Analysis: Describing Correlations – Patterns –Displays –Techniques and Best Practices – Multivariate Analysis: Patterns – Displays –Techniques And Best Practices.

UNIT – V

Information Dashboard Design: Dashboard Design – Categorizing Dashboards – Typical Dashboard Data – Common Mistakes – Visual Perception – Limits Of Short-Term Memory – Visually Encoding Data – Gestalt Principles – Principles Of Visual Perception.

REFERENCES:

1.	Stephen Few, "Now you see it: Simple Visualization Techniques for Quantitative Analysis", 1 st Edition,
	Analytics Press, 2009.

- 2. Stephen Few, "Information Dashboard Design: The Effective Visual Communication of Data", 1st Edition, O'Reilly, 2006.
- 3. Edward R. Tufte, "The Visual Display of Quantitative Information", 2nd Edition, Graphics Press, 2001.

9

9

9

9

Total: 45

COURSE OUTCOMES: BT Ma							Г Mapped	
On con	On completion of the course, the students will be able to				(Hi	ghest Level)		
CO1:	describe th	ne core skills fo	or visual analys	sis and discuss	the importance	of data	Under	rstanding (K2)
	visualizati	on						
CO2:	outline the	general technic	ques and practic	ces that enhance	visual analysis		Under	rstanding (K2)
CO3:	apply tim	e-series, rankii	ng, and deviat	tion analysis t	echniques and	design	Ap	plying (K3)
	practices f	or data visualiza	ation					
CO4:	apply the	various techn	iques of distr	ibution, correla	ation and mult	ivariate	Ap	plying (K3)
	analysis in	data visualizati	ion					
CO5:	examine th	ne fundamental	concept of how	to design the ir	formation dash	boards	Ana	alyzing (K4)
			Mappir	ng of COs with	POs			
CC	Os/POs	PO1	PO2	PO3	PO4	PO)5	PO6
(CO1			2				
(CO2			2	3	1		
(CO3			3	2	2		
(CO4		2	3	3	3		
(CO5			3		2		2
1 - Sli	ght, 2 – Mo	derate, 3 – Su	bstantial, BT –	Bloom's Taxor	iomy			

18MIE03 WEB ANALYTICS AND DEVELOPMENT

		3	0	0	3
Preamble	Explore the role of web data and analysis tools to perform we web search as well as for information retrieval.	eb ana	lysis to	make	efficient
Prerequisites	Nil				

UNIT – I

Web Analytics: Introduction to Social media and network - Social Media: New Technologies of Collaboration - Social Network Analysis Measuring - Mapping - Modeling Collections of Connections - Search Engine Optimization.

UNIT – II

NodeXL: Getting Started with NodeXL - Layout - Visual Design - Labeling - Calculating and Visualizing Network – Metrics.

UNIT – III

Social Media Network Analysis: Email - Twitter: Nuts and Bolts - Networks - Acquiring Data - Discovery - Visualizing and Interpreting - Facebook - YouTube - Wiki Networks.

UNIT – IV

Web Analytics 2.0: Introduction - Optimal Strategy: Steps to Predetermining Your Future Success - Click streamanalysis: Introduction- Metrics - Practical Solutions.

UNIT – V

Competitive Intelligence Analysis: CI Data Sources, Types, and Secrets - Website Traffic Analysis - Search and Keyword Analysis - Audience Identification and Segmentation Analysis - Emerging Analytics: Analyzing Offline Customer Experiences - Measuring the Success of Blogs - Optimal Solutions for Hidden Web Analytics.

Total: 45

Т

 \mathbf{L}

Р

Credit

9

9

9

9

RE	REFERENCES:							
1.	Derek Hansen, Ben Shneiderman, Marc Smith, "Analyzing Social Media Networks with NodeXL:							
	Insights from a Connected World", 1 st Edition, Morgan Kaufmann, 2010,							
2.	Avinash Kaushik, "Web Analytics 2.0: The Art of Online Accountability", 1 st Edition, Sybex, 2009.							

COUR	B	ST Mapped								
On cor	npletion of	the course, the	students will b	e able to			(H	ighest Level)		
CO1:	gain know	wledge about we	eb analytics				Understanding (K2)			
CO2:	elaborate	the process of	node xl				Und	erstanding(K2)		
CO3:	demonstrate the social media analysis Applying(K3)									
CO4:	outline the fundamental conceptsof web analytics 2.0 Understanding(K2)									
CO5:	apply the competitive intelligence techniques to perform web analysis							Applying(K3)		
	Mapping of COs with POs									
CO	os/POs	PO1	PO2	PO3	PO4	PC)5	PO6		
(201	2		2						
(CO2	2		2	1					
CO3 3		3	2	3	2	2				
CO4 2		2		2	1					
(CO5	3	2	3	2	2	,			
1 - Sli	ght, $2 - Mo$	oderate, 3 – Sub	stantial, BT – I	Bloom's Taxono	omy					

18MIE04 MOBILE AND WIRELESS SECURITY

(Common to Information Technology &

Information Technology(Information Cyber Warfare) branches)

		3	0	0	3	
Preamble	The objective of this course is to have better knowledge on se attacks and security issues in wireless and mobile communications	ecurity s.	issue	s, app	lications	,
Prerequisites	Computer Networks					
UNIT – I					•)

Introduction to Mobile and Wireless Networks: Cellular Networks, 1G through 3G, IEEE Networks -WLAN IEEE 802.11, WPAN IEEE 802.15, WMAN IEEE 802.16, IEEE 802.20, MIH IEEE 802.21, WRAN IEEE 802.22, Mobile Internet Networks – Macro and Micro mobility – Personal mobility – SIP – Identity based mobility, NEMO and MANETs - Vulnerabilities in wireless communications -security basics symmetric and asymmetric cryptography, Hash functions - Electronic signatures - MAC - PKI and electronic certificate - IPSec - AAA protocol - Firewalls - Intrusion detection.

UNIT – II

Wi-Fi Security Architectures: Hot Spot architecture - WIDS - Rogue AP detection - IEEE 802.11 geolocation techniques - Honeypots -Bluetooth Security - Protocol architecture - Radio physical layer -Device addressing - SCO and ACL logical transports - Security mode - Authentication and pairing - Attacks - BlueSmack - WiFi Security-Passive and Active attacks - DOS attacks - Trojan attack - Dictionary Attack.

UNIT – III

IEEE 802.11 and WiMaX Security: Security in IEEE 802.11 - WEP - WEP2 - IV collisions - RC4 weakness – 802.1x authentication - 802.11i security architecture – policy negotiation – radio security policies - RADIUS - EAP - PKI - WiMAX security - TEK - KEK - IEEE 802.16e - PKMv2-RSA - Security Association – 3 way handshake – role of smart cards in WiMAX.

UNIT - IV

Security in Adhoc Networks: Attacks to routing protocols – Security mechanisms – Auto-configuration – Key management - Self-managed PKI - Resurrecting Duckling - Group key management - Wireless Sensor Networks - Attacks - Preventive mechanisms - Intrusion tolerance - SNEP - µTELSA - TinySec - key management in WSNs.

UNIT - V

Security in Mobile Telecommunication Networks: Signaling system 7 (SS7) – GSM security – GRPS security - UMTS infrastructure and security - H.323 - SIP - Megaco - VoIP security flaws and countermeasure - IMS architecture - security flaws - 4G security - Protection of interception - Security issues in Mobile IP – HIP – NetLMM.

REFERENCES:

- Hakima Chaouchi and Maryline Laurent-Maknavicius, "Wireless and Mobile Network Security: Security 1. basics, Security in On-the-shelf and Emerging Technologies", 2nd Edition, John Wiley & Sons, 2009.
- Pallapa Venkataram and Sathish Babu, "Wireless and Mobile Network Security", 1st Edition, Tata 2. McGraw Hill, 2010.
- Amitabh Mishra, "Security and Quality of Service in Ad Hoc and Wireless Networks", 1st Edition, 3. Cambridge University Press, 2008.

9

Total: 45

9

9

9

T P Credit

L

COUH	DURSE OUTCOMES:						BT Mapped		
On con	mpletion of	the course, the s	tudents will be	able to			(Highest Level)		
CO1:	describe th	ne physical and I	logical design o	f IoT and identi	fy the appropria	te IoT	App	olying (K3)	
	level and o	develop design n	nethodologies fo	or a given applic	ation				
CO2:	explain th standardiz	ne architecture, ation protocols	need for mic	Idleware and t	the role of di	fferent	Unders	standing (K2)	
CO3:	O3: recall the basic concepts and packages of Python related to IoT for interfacing Applying (K3) with IoT devices								
CO4:	CO4: develop simple real time applications, upload the data onto the cloud and Applying (K3) perform data analytics								
CO5:	CO5: identify the security threats against a given IoT system and suggest simple countermeasures						Understanding (K2)		
			Марріі	ng of COs with	POs				
CC	Ds/POs	PO1	PO2	PO3	PO4	P	05	PO6	
(CO1	2		3					
(CO2	1	2						
(CO3			3					
CO4				3	3		2		
CO5 2				3			2		
1 - Sli	ght, 2 – Mo	derate, 3 – Sul	ostantial, BT – I	Bloom's Taxono	omy				

18COE13 DIGITAL IMAGE PROCESSING AND MULTI RESOLUTION ANALYSIS

(Common to Communication Systems, Mechatronics, Information Technology & Applied Electronics branches)

ТР

L

Credit

9

9

9

9

Total: 45

		3	0	0	3	
Preamble	To analyze the images in frequency domain and to perfo	rm va	arious	operati	ons lik	e
	enhancement, Restoration, Compression, Registration and Multi	resolu	tion an	alysis.		
Prerequisites	Digital Signal Processing					
UNIT – I						9

Image Transforms: Orthogonal transforms - FT, DST, DCT, Hartley, Walsh hadamard, Haar, Radon, Slant Wavelet, KL, SVD and their properties.

UNIT – II

Image Enhancement and Restoration: Image enhancement - Point operations - contrast stretching clipping and thresholding - digital negative intensity level slicing - bit extraction. Histogram processing histogram equalisation -modification. Spatial operations – smoothing spatial filters, sharpening spatial filters. Transform operations. Color image enhancement. Image Restoration - degradation model, Noise models, Unconstrained and Constrained restoration, Inverse filtering - removal of blur caused by uniform linear motion, Wiener filtering, Restoration by SVD and Homomorphic filtering

UNIT – III

Image Compression: Image Compression – Need for data compression – Run length encoding – Huffman coding – Arithmetic coding – predictive coding- transform based compression, - vector quantization – block truncation coding. Image Segmentation: Point, Edge and line detection -thresholding-Region based approach Image Representation: boundary based – region based and intensity based description

UNIT - IV

Registration and Multivalued Image Processing: Registration – geometric transformation – registration by mutual information Mutivalued image processing - colour image processing - colour image enhancementsatellite image processing- radiometric correction – other errors- multi spectral image enhancement- medical image processing – image fusion.

UNIT - V

Wavelets and Multiresolution Processing: Image Pyramids – Subband coding – The Haar Transform – Multiresolution Expansion - Series Expansion - Scaling Function - Wavelet Function - Wavelet Transform in One Dimension- The Wavelet Series Expansion - The Discrete Wavelet Transform - The Continuous Wavelet Transform - The Fast Wavelet Transform - Wavelet transform in two dimensions- Applications in image denoising and compression.

	10tal. 45
REI	FERENCES:
1.	Gonzalez Rafel C. and Woods Richard E., "Digital Image Processing", 4 th Edition, Prentice Hall, New
	York, 2017.
2.	Chanda B., Dutta Majumder D., "Digital Image Processing and Analysis", 2 nd Edition, PHI Learning,
	2011.
3.	Abdeljalil Ouahabi, "Signal and Image Multiresolution Analysis", John Wiley & Sons, 2012.
4.	Rosenfield Azriel and Kak Avinash C., "Digital Picture Processing", 2 nd Edition, Academic Press Inc.,
	New York, 1982.

COUH	RSE OUTC		BT Mapped						
On con	mpletion of	the course, the	students will be	e able to			(H	ighest Level)	
CO1:	implemen	t the image enha	incement and in	mage restoration	n techniques		A	oplying (K3)	
CO2:	D2: model the systems to enhance and restore the image optimally Applying (K3)								
CO3:	O3: apply the coding technique to perform compression of images Applying (K3								
CO4:	O4: apply the concepts of registration to fuse images of various modalities Applying (K3)								
CO5: analyze the images in one dimension and two dimension simultaneously							Analyzing (K4)		
	Mapping of COs with POs								
CC	Os/POs	PO1	PO2	PO3	PO4	PO5		PO6	
(CO1	3	1					1	
(CO2	3	2	2	1	2		1	
(CO3	3	2	2		2			
CO4 3		2	1	1	2		1		
CO5 3			2	1		2		1	
1 - Sli	ght, 2 – Mo	oderate, 3 – Su	bstantial, BT	– Blooms Taxo	nomy				

	18MST11 MULTICORE ARCHITECTURES				
(Common to Computer Science and Engineering & Information Technol	ogy Bi	ranches)	1
			T	<u>P</u>	Credit
Due e vela la	This second will introduce the students to the second of the students	3	1	0	4
Preamble	I his course will introduce the students to the world of multi-core	comp	uter ar	chitec	tures and
	focuses on derivering an in-depth exposure in memory-subsystems	s and	interco	nnects	and rew
Droroquisitos	Computer Architecture and Organization				
	Computer Architecture and Organization				
UNIT – I					9
Energy and C Principles of C CMP Architect Architectures. UNIT – II Memory Hier Optimizations Studies	ost - Dependability - Measuring, Reporting and Summarizing I omputer Design - Classes of Parallelism - ILP, DLP, TLP and RLP - ures - Limitations of Single Core Processors - The MultiCore era - archy Design: Introduction - Optimizations of Cache Performance - Protection: Virtual Memory and Virtual Machines - Design of I	Perform Multi Case - Men Memo	mance Thread Studies mory 7 ry Hie	- Qu ding - s of M Sechno rarchie	antitative SMT and Julti Core 9 Jology and es - Case
UNIT – III DLP in Vector Multimedia - C	r, SIMD and GPU Architectures: Vector Architectures - SIMD In raphics Processing Units - Detecting and Enhancing Loop Level Para	structi allelisi	ion Set n - Cas	Exter se Stud	9 nsions for lies.
UNIT – IV					9
TLP and Mu Issues - Perfor Networks - Bus	tiprocessors: Symmetric and Distributed Shared Memory Archit mance Issues - Synchronization Issues - Models of Memory Conses, Crossbar and Multi-stage Interconnection Networks.	ecture sistend	s - Ca cy - In	che C iter Co	oherence onnection
UNIT – V					9
RLP and DLP Computers - A Guidelines for interface Data	in Warehouse Scale Architectures: Programming Models and Wo Architecture for Warehouse scale computing - Domain Specific A DSAs- Example Domain: Deep Neural Network - Google's Te Center Accelerator.	rkload Archite nsor I	s for W ctures: Process	Vareho Intro Sing U	ouse scale duction - Init - An
	Lecture	e:45, 7	Futori a	al:15, '	Total: 60
REFERENCE	S:				
1. John L. I Edition, N	Iennessey and David A. Patterson, "Computer Architecture – A Gorgan Kaufmann, Elsevier, 2017.	Quanti	itative	Appro	bach", 6 th
2. Kai Hwar	g, "Advanced Computer Architecture", Tata McGraw-Hill Education	n, 2003	3.		
3. Richard Y	7. Kain, "Advanced Computer Architecture: A Systems Design Appro	oach",	Prenti	ce Hal	1, 2011.
4. David E.	Culler, Jaswinder Pal Singh, "Parallel Computing Architectur	e: A	Hardy	vare/	Software
Approach	", Morgan Kaufmann, Elsevier, 2013.				

COUI	COURSE OUTCOMES: BT Mapped									
On co	mpletion of	the course, the s	students will be	able to			(Hi	ghest Level)		
CO1:	investigate	e the limitations	of ILP and the r	need for multi co	ore architectures	5	Analyzing (K4)			
CO2:	describe th	ne hierarchical n	nemory system				Under	rstanding (K2)		
CO3:	summarize	e the salient feat	tures of differen	t multi core arc	hitectures and h	now they	Under	rstanding (K2)		
	exploit parallelism									
CO4:	4: critically analyze the different types of inter connection networks Analyzing (K4)									
CO5:	D5: compare the architectures of GPUs, Warehouse scale computers and Domain Analyzing (K4							alyzing (K4)		
	specific architecture									
			Mappir	ng of COs with	POs					
PE	Os/POs	PO1	PO2	PO3	PO4	PO	5	PO6		
(CO1	1		1						
(CO2	1	1	1						
(CO3	2	1	2						
CO4 2		1	2							
CO5 3 1 3										
1 – Sli	ght, 2 – Mo	oderate, 3 – Su	bstantial, BT - l	Bloom's Taxono	omy		-			

	18MSE12 DEEP LEARNING TECHNIQUES				
(C	ommon to Computer Science and Engineering & Information Techno	ology l	branch	es)	
		L	Т	Р	Credit
D 11		3	0	2	4
Preamble	Deep Learning is a subfield of machine learning concerned with attractive and function of the brain called artificial neural network	algor	ithms	inspire	ed by the
	fundamentals concepts in the design of deep neural networks and i	(S. 111 te vari	ous ar	se exp	ures such
	as convolutional neural networks, recurrent neural networks etc.	to vari	ous ar	meet	ures such
Prerequisites	Fundamental concepts of Algorithms and computer programming				
UNIT – I					9
Foundations o	f Deep Learning: Introduction – Math behind machine learning – I	Linear	Algeb	ra – S	tatistics –
How does Mac	hine Learning works – Logistic regression – Evaluating Models –	Neural	Netw	orks –	Training
Ineural Network	rs – Activation functions – Loss functions – Hyper parameters.				
UNIT – II					9
Architectural	Design: Defining Deep Learning – Common Architectural Prin	nciples	s of D	eep N	Vetworks:
Parameters – I	ayers - Activation functions - Loss functions - Optimization Algo	orithms	s – Hy	per pa	rameters.
Building blocks	of Deep Networks: RBMS-Auto encoders-Variational encoders.				
$\frac{\text{UNIT} - \text{III}}{\text{Types of Deep}}$	Notworks Unsurgerized protected Networks Convolutional	Naural	Natur	ordra ((\mathbf{CNN}_{c})
Recurrent Neur	al Networks – Recursive Neural Networks – Applications	Neurai	netw	orks (CININS) –
Recuirent ivea	a retworks Recursive return retworks Applications.				
UNIT – IV					9
Convolutional	Neural Networks: Pooling layers – Batch Normalization – padding	and st	rides –	Diffe	rent types
of initialization	n – implementing a convolutional auto encoder - 1D to CNN	to tex	t. Rec	urren	t Neural
Networks: Imp	lementing a simple RNN – Adding LSTM – GRUs – Bidirectional	RNNS	– Cha	racter-	level text
generation.					
UNIT – V					9
Case Studies:	Large scale deep learning – Computer vision – speech recognition –	natura	al lang	lage p	rocessing
– implementati	on.				
List of Exercis	es:				
1. Impleme	ntation of linear regression technique.				
2. Program	to create a multi-layer neural network.				
3.Program	to test the performance of multi-layer neural network with various action	tivatio	n and l	oss fu	nctions
4.Tuning th	e neural network performance with hyper parameters				
5.Implemer	tation of convolutional neural networks				
6. Impleme	ntation of Recurrent neural networks				
7. Impleme	ntation of Recursive neural networks				
8. Developi	ng a simple image recognition application				
9. Developi	ng a simple speech recognition application				
10. Develop	bing a Chatbot				
	Lecture:	45, Pr	actica	l: 30, '	Total: 75

REFE	RENCES	/ MANUALS /	SOFTWARES	:				
1. J	osh Patters	on and Adam C	ibson, "Deep I	Learning – A P	ractitioner's Approa	ach", 1 st Edi	tion, O'Reilly	
S	beries, Augu	ıst 2017.						
2. I	ndra den Ba	ıkker, ''Python I	Deep Learning (Cookbook", 1 st	Edition, Packt Publ	ishing, Octol	per 2017.	
3. Ia	an Goodfell	low, Yoshua Be	ngio and Aaron	Courville, "De	ep Learning", 1 st Ec	lition, MIT I	Press, 2016.	
COUH	RSE OUTC	COMES:				BT N	/Iapped	
On cor	mpletion of	the course, the	students will be	able to		(Highest Level)		
CO1:	outline the	e basic concepts	in the design of	f neural networ	ks	Understa	unding (K2)	
CO2:	demonstra	te the signification	nt functionalitie	es of various co	omponents present	Understa	unding (K2)	
	in the deep	p networks						
CO3:	design and	d explore the arc	hitecture of var	rious types of d	eep networks	Apply	ring (K3)	
CO4:	build dif	ferent kinds	of deep net	works using	Tensorflow/keras	Apply	ring (K3)	
	framewor	KS						
CO5: relate the use of deep networks in different practical applications						Analyzing (K4)		
CO6:	CO6: implement the regression technique and variants of deep neural networks				Applying (K3),			
						Precision (S3)		
CO7:	analyze th	e performance of	of artificial neur	al network		Analyzing (K4),		
						Precision (S3)		
CO8:	develop th	e simple deep l	earning applicat	tions		Evaluating (K5),		
						Precis	sion (S3)	
			Mappir	ng of COs with	POs			
CC	Os/POs	PO1	PO2	PO3	PO4	PO5	PO6	
(CO1	1		1				
(CO2	1	1	1				
(CO3	2	1	2				
(CO4	2	1	2				
(CO5 3 1 3							
(CO6	2	3	3			2	
(CO7	2	3	3	1		2	
(CO8	2	3	3			2	
1 - Sli	ght, 2 – Mo	oderate, 3 – Su	bstantial, BT -	Bloom's Taxo	nomy			

	18MIE05 SOFTWARE QUALITY AND TESTIN	G				
		L	Τ	Р	Credi	t
		3	0	0	3	
Preamble	Software Testing and Quality Assurance is predominant for th	ie sma	rtness	of the	Softwa	re
	system. Software testing is a critical element of software qual	ity ass	surance	and r	epresen	ts
	the ultimate review of specification, design and coding.					
Prerequisites	Software Engineering					
UNIT – I						9
Introduction: Ba	sic concepts and Preliminaries – Theory of Program Testing-	Unit T	esting	– Con	trol Flo	w
Testing –Data Flo	w Testing– System Integration Testing.					
UNIT – II						9
Software Testing	Methodology: Software Test Plan–Components of Plan - Ty	pes of	f Techı	nical F	Reviews	; -
Static and Dynam	ic Testing Software Testing in Spiral Manner - Information	Gathe	ering -	Test P	lanning	5 –
Test Coverage -	Test Evaluation -Prepare for Next Spiral - Conduct System	1 Test	- Acc	eptan	e Test	-
Summarize Testin	g Results.			-		
UNIT – III						9
Emerging Specia	lized Areas in Testing: Test Process Assessment - Test Au	tomati	on Ass	sessme	ent - Te	st
Automation Fran	nework - Nonfunctional Testing - SOA Testing - Agile T	esting	– Tes	sting (Center	of
Excellence - Or	site/Offshore Model - Modern Software Testing Tools -	Softwa	are Tes	sting '	Trends	_
Methodology to d	evelop Software Testing Tool.					
UNIT – IV						9
Software Qualit	y Models: Software quality -Verification versus Validation	n– Co	mpone	ents of	f Quali	ty
Assurance – SQA	Plan - Quality Standards - CMM - PCMM - CMMI - Malcol	m Bal	drige N	Vationa	ıl Quali	ty
Award.						
UNIT – V						9
Quality through	Continuous Improvement Process: Role of Statistical Met	hods i	n Soft	ware (Quality	—
Transforming Re	quirements intoTest Cases - Deming's Quality Principles -	– Con	tinuou	s Imp	roveme	nt
through Plan Do (Check Act (PDCA).			_		
				,	Total: 4	15
REFERENCES:						
1. William E.	Lewis, "Software Testing and Continuous Quality Improvem	ent",	3 rd Edi	tion,	Auerba	ch
Publications.	2011.	,		,		
2. Kshirasagar	Naik and Priyadarshi Tripathy. "Software Testing and Oua	lity A	ssuran	ce Th	eorv ai	ıd
Practice", 2 nd	Edition, John Wiley & Sons Publication, 2011.	5			5	
3. Ron Patton, "	Software Testing", 2 nd Edition, Pearson Education, 2007.					

COUR	SE OUTC	COMES:					BT Mapped			
On con	npletion of	the course, the	students will be	e able to			(Highest Level)			
CO1:	illustrate	with various so	oftware testing s	strategies			Understanding (K2			
CO2:	discrimin	ate the softwa	are testing tech	iniques to cater	to the needs	of the	Ana	lyzing (K4)		
	project									
CO3:	experiment the Emerging Specialized Areas in Testing Applying (K3)									
CO4:	classify the components of software quality assurance systems Analyzing (K4)									
CO5:	: show the Quality through Continuous Improvement Process							Applying (K3)		
			Mappi	ng of COs with	POs					
CO	s/POs	PO1	PO2	PO3	PO4	P	PO 5	PO6		
C	201	2		3			2			
C	202	2		3	2		2			
C	CO3	2		3	2		2			
CO4 2			3			2				
CO5 2 3 2							2			
1 – Slig	ght, 2 – Mo	oderate, 3 – Su	ubstantial, BT	– Bloom's Taxe	onomy					

18MIE06 MODERN HIGH SPEED NETWORKING

			-	-	orean
		3	0	0	3
Preamble	Will gain a knowledge on traditional methods like packet switch	ning a	nd cii	cuit s	witching
	techniques and its advancements that helps in achieving high sp	eed n	etwor	k acc	ess, high
	speed LANs technologies, constraint based routing techniques, pro	otocol	s for (QoS s	upport in
	fast networks and recent advancements in networks like SONET, S	DN a	nd WI	DM	
Prerequisites	Basics of Networking				
UNIT – I					9

High Speed Networks: Frame Relay Networks – Asynchronous transfer mode – ATM Protocol Architecture, ATM logical Connection, ATM Cell – ATM Service Categories – AAL- High Speed LANs: Fast Ethernet, Gigabit Ethernet, Fibre Channel – Wireless LANs: applications, requirements – Architecture of 802.11

UNIT – II

Integrated and Differentiated Services: Services- Integrated Services Architecture – Approach, Components, Services- Queuing Discipline, FQ, PS, BRFQ, GPS, WFQ, Differentiated Services

UNIT – III

QOS Support and Optical Networks: Protocols for QoS Support : RSVP –Multiprotocol Label Switching – RTP, RTCP. Optical Networking: Synchronous Optical Networking (SONET), Wavelength Division Multiplexing (WDM)

UNIT – IV

Software Defined Networks: SDN Approach, Standards, SDN Data plane and Open Flow, Control Plane and Application Plane, SDN Security

UNIT – V

Virtualization in Networks: Virtualization: Network Function Virtualization Concepts and architecture, NFV Functionality, Network Virtualization, Quality of Experience, NFV Security

Total: 45

9

9

9

9

REFERENCES:

1.	William Stallings, "High Speed Networks and Internet", 2 nd Edition, Pearson Education, New Delhi,
	2002.
2.	William Stallings, "Foundations of Modern Networking", 1 st Edition, Pearson Education, New Delhi,

2015.

3. Steven Shepard, "SONET/SDH Demystified", McGraw Hill Telecom, New York, 2002.

COUR	SE OUTC	BT	BT Mapped						
On con	npletion of	the course, the	students will be	e able to		(High	(Highest Level)		
CO1:	describe t	he packet and s	witching techni	ques		Underst	Understanding (K2)		
CO2:	make an a	analysis on High	N Speed LAN T	echnologies		Analy	zing (K4)		
CO3:	suggest a	suitable archite	cture for constr	ain based routin	g in Networks	Analy	Analyzing (K4)		
CO4:	describe t	he importance of	of QoS in high s	speed Networkii	ng	Underst	BT Mapped Highest Level) derstanding (K2) analyzing (K4) derstanding (K2) derstanding (K2) PO6 2 2 2		
CO5:	5: describe recent advancements in optical Networking				Underst	anding (K2)			
			Марріі	ng of COs with	POs				
CO	s/POs	PO1	PO2	PO3	PO4	PO5	PO6		
C	201			3		3			
C	202	3		3	2		2		
C	203	2	2	3	1	3			
CO4		1		2	2	2			
CO5				3	3	3	2		
1 – Slig	ght, 2 – Mo	derate, 3 – Su	bstantial, BT	- Bloom's Taxe	onomy		-		

	18MIE07 FORECASTING AND OPTIMIZATION TECH	INIQU	JES						
		L	Т	Р	Cred	lit			
		3	0	0	3				
Preamble Forecasting is a process used to predict future trend from past and present data. Optimization is used to select the best element that meets specified criteria from some set of available alternatives. This course provides a comprehensive introduction to forecasting methods and optimization techniques and help the students to build an optimized forecasting model									
Prerequisites	Basic concepts of probability and statistics			0					
UNIT – I						9			
Introduction to	• Forecasting: The Nature and Uses of Forecasts- The Forecast	sting F	rocess	- Reso	ources	for			
Forecasting- Ty	pes of Forecasting Techniques - Graphical Displays- Time Series	ies Plo	ts- Plo	tting S	Smooth	hed			
Data- Numeric	al Description of Time Series Data- Stationary Time Series	ries-	Auto d	covaria	ance a	and			
Autocorrelation	Functions- Use of Data Transformations and Adjustments-	Transf	ormatio	ons- T	rend a	and			
Seasonal Adjus	stments- General Approach to Time Series Modeling and F	Forecas	sting-	Evalua	ating a	and			
Monitoring For	ecasting Model Performance- Forecasting Model Evaluation- C	hoosin	g betw	een C	ompet	ing			
Models- Monitoring a Forecasting Model									
UNIT – II	UNIT – II								
Regression Analysis and Forecasting: Least Squares Estimation in Linear Regression Models, Statistical									

Inference in Linear Regression. Test for Significance of Regression- Tests on Individual Regression Coefficients and Groups of Coefficients- Confidence Intervals on Individual Regression Coefficients. Confidence Intervals on the Mean Response. Prediction of New Observations. Model Adequacy Checking-Residual Plots- Scaled Residuals and PRESS. Measures of Leverage and Influence- Variable Selection Methods in Regression- Generalized and Weighted Least Squares. Generalized Least Squares. Weighted Least Squares- Discounted Least Squares. Regression Models for General Time Series Data- Detecting Autocorrelation: The Durbin-Watson Test- Outliers- Multicollinearity- Hetrosckedasticity- Autocorrelation and Structural Breaks- Estimating the Parameters in Time Series Regression Models

UNIT – III

Autoregressive Integrated Moving Average (ARIMA) and Other Models: First Order Exponential Smoothing- Second Order Exponential Smoothing- Higher Order Exponential Smoothing- Exponential Smoothing for Seasonal Data- Linear Models for Stationary Time Series- Finite Order Moving Average (MA) Processes- Finite Order Autoregressive Processes- Mixed Autoregressive-Moving Average Processes-Nonstationary Processes- Time Series Model Building- Forecasting ARIMA Processes- Seasonal Processes-Exponential Smoothers and ARIMA Models- Multivariate Stationary Process- Vector ARIMA Models-Vector AR (VAR) Models- State Space Models- ARCH and GARCH Models- Direct Forecasting of Percentiles-Neural Networks and Forecasting

UNIT - IV

Numerical Methods of Optimization: What is optimization? -Linear programming- Integer programming-Quadratic programming- Nonlinear programming- Stochastic programming- Dynamic programming-Combinatorial optimization- Infinite-dimensional optimization- Constraint satisfaction.

UNIT – V

Advanced Optimization Techniques and Aspects of Optimization: Hill climbing- simulated annealinggenetic algorithm- Ant colony- Optimization of Fuzzy Systems- Neural-Network-Based Optimization-Reduction of Size of an Optimization Problem- Fast Reanalysis Techniques- Derivatives of Static Displacements and Stresses- Derivatives of Eigenvalues and Eigenvectors- Derivatives of Transient Response- Sensitivity of Optimum Solution to Problem Parameters- Multilevel Optimization- Parallel Processing- Multiobjective Optimization.

Total: 45

9

9

RE	FERENCES	:							
1.	Hyndman, H	R.J. and Athanas	opoulos, G. (20	18) Forecasting	principles and p	ractice, 2nd e	dition, OTexts:		
	Melbourne,	Australia. Onlin	e: www.OTexts	.com/fpp2.					
2.	Gupta C.	B., "Optimization	on Techniques	in Operation	Research", 2 nd	Edition, I.K	. International		
	Publishing l	House, Pvt Ltd.,	2012.						
3.	Hamdy A. 7	Taha, "Operation	s Research: An	Introduction", 9	th Edition, Pearso	on, 2010.			
CO	URSE OUT	COMES:				BT	Mapped		
On	completion c	f the course, the	students will be	e able to		(High	est Level)		
CO	1: explain	forecasting meth	ods used in tim	e series modelin	ng	Underst	anding (K2)		
CO	2: apply re	gression analysis	using different	regression mod	lels	Appl	ying (K3)		
CO	3: distingu	ish the variants	of autoregressiv	e model		Analy	Analyzing (K4)		
CO	4: illustrate	e the numerical n	nethods of optir	nization		Underst	Understanding (K2)		
CO	5: apply t	he concept of	advanced opti	mization techn	iques using sof	t Appl	Applying (K3)		
	computi	ng techniques to	various probler	ns					
			Mappi	ng of COs with	POs				
	COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
	CO1	3		3	3	3			
	CO2	3		3	3	3			
CO3 3		3		3	3	3			
CO4 3 3 3 3			•						
	CO5	3	2	3	3	3	2		
1 –	Slight, 2 – M	loderate, $3 - Su$	ıbstantial, BT	– Bloom's Tax	onomy		•		

L T P Credit Preamble Provide an insight of basic of quantum physics from a computer scientist's perspective, and how it describes reality and understand the philosophical implications of quantum computing Pre-requisites Linear Algebra, Theory of Computation UNIT - I 9 Qubit and Quantum States: The Qubit- Vector Spaces - Linear Combination Of Vectors - Uniqueness of a spanning set - basis & dimensions - inner Products – orthonormality - gram-schmidt orthogonalization - bra-ket formalism - the Cauchy-schwarez and triangle Inequalities. UNIT - II 9 Matrices and Operators: Observables - The Pauli Operators - Outer Products - The Closure Relation of operators using matrices - outer products & matrix representation of operator - Eigen values and Eigen Vectors - Spectral Decomposition - Trace of an operator - important properties of Trace - Tensor Products: Representing Composite States in Quantum Mechanics - Computing inner products - Tensor products of column vectors - operators and tensor products of Matrices. 9 UNIT - IV 9 Density Operator: Density Operator of Pure and Mix state - Key Properties - Characterizing Mixed State - Practical Trace and Reduce Density Operator - Density Operator and Bloch Vector. 9 Quantum Measurement Theory: Distinguishing Quantum states and Measures - Projective Measurements - Measurements - Residendandon, "Quantum Computing Explaned", John Wiley & Sons Inc., 2008. 9 Quantum Measurement Theory: Distinguishing Quantum Magic Devices", The MIT Press, 2008.	18MIE08 QUANTUM COMPUTING									
Image: Second Se			L	Т	Р	Credit				
Preamble Provide an insight of basic of quantum physics from a computer scientist's perspective, and how it describes reality and understand the philosophical implications of quantum computing Pre-requisites Linear Algebra, Theory of Computation 9 Qubit and Quantum States: The Qubit- Vector Spaces - Linear Combination Of Vectors - Uniqueness of a spanning set - basis & dimensions - inner Products - orthonormality - gram-schmidt orthogonalization - bra-ket formalism - the Cauchy-schwarez and triangle Inequalities. 9 Matrices and Operators: Observables - The Pauli Operators - Outer Products - The Closure Relation - Representation of operators using matrices - outer products & matrix representation - matrix representation of operators in two dimensional spaces - Pauli Matrix - Hermitian unitary and normal operator - Eigen values and Eigen Vectors - Spectral Decomposition - Trace of an operator - importantproperties of Trace - Expectation Value of Operator - Projection Operator - Positive Operators. 9 UNIT - III 9 Tensor Products: Representing Composite States in Quantum Mechanics - Computing inner products - Tensor products of column vectors - operators and tensor products of Matrices. 9 UNIT - IV 9 Quantum Measurement Theory: Distinguishing Quantum states and Measures - Projective Measurements - Measurements - Oscilive Operator - Solitive Operator-Valued Measures. 9 UNIT - IV 9 Quantum Measurement Theory: Distinguishing Quantum states and Measures - Projective Measurements - Measurement on composite systems - Generalized Measurements			3	0	0	3				
and how it describes reality and understand the philosophical implications of quantum computing Pre-requisites Linear Algebra, Theory of Computation UNIT - I 9 Qubit and Quantum States: The Qubit- Vector Spaces - Linear Combination Of Vectors - Uniqueness of a spanning set - basis & dimensions - inner Products - orthonormality - gram-schmidt orthogonalization - bra-ket formalism - the Cauchy-schwarez and triangle Inequalities. UNIT - II 9 Matrices and Operators: Observables - The Pauli Operators - Outer Products - The Closure Relation - Representation of operators using matrices - outer products & matrix representation - matrix representation or operators using matrices - outer products & matrix representation - Representation of Operator - Projection Operator - Inportant properties of Trace - Expectation Value of Operator - Projection Operator - Positive Operators. UNIT - III 9 Tensor Products: Representing Composite States in Quantum Mechanics - Computing inner products - Tensor products of column vectors - operators and tensor products of Matrices. 9 UNIT - IV 9 Quantum Measurement Theory: Distinguishing Quantum states and Measures - Projective Measurements - Measurement or Composite systems - Generalized Measurements - Positive Operator-Valued Measures. 9 Quitt - V 9 Quantum Measurement Theory: Distinguishing Quantum states and Measures - Projective Measurements - Measurements - Measurements - Measurements - Measurements - Positive Operator-Valued Measures. Z	Preamble	Provide an insight of basic of quantum physics from a com	puter s	scientis	t's pei	spective,				
computing Pre-requisites Linear Algebra, Theory of Computation UNIT - I 9 Qubit and Quantum States: The Qubit- Vector Spaces - Linear Combination Of Vectors - Uniqueness of a spanning set - basis & dimensions - inner Products – orthonormality - gram-schmidt orthogonalization - bra-ket formalism - the Cauchy-schwarez and triangle Inequalities. UNIT - II 9 Matrices and Operators: Observables - The Pauli Operators - Outer Products - The Closure Relation - Representation of operators using matrices - outer products & matrix representation - matrix representation of operators in two dimensional spaces - Pauli Matrix - Hermitian unitary and normal operator - Eigen values and Eigen Vectors - Spectral Decomposition - Trace of an operator - importantproperties of Trace - Expectation Value of Operator - Projection Operator - Positive Operators. UNIT - III 9 Tensor Products: Representing Composite States in Quantum Mechanics - Computing inner products - Tensor products of column vectors - operators and tensor products of Matrices. 9 UNIT - IV 9 Quantum Measurement Theory: Distinguishing Quantum states and Measures - Projective Measurements - Measurement on Composite systems - Generalized Measurements - Positive Operator-Valued Measures - Measurement - Measurement - Measurement - Compositing Without Magic: Devices", The MIT Press, 2008. 1. David McMahon, "Quantum Computing Explained", John Wiley & Sons Inc., 2008. 2. Zdzislaw Meglicki, "Quantum Computing Without Magic: Devices", The MIT Press, 2008.		and how it describes reality and understand the philosophic	cal im	plicatio	ons of	quantum				
Pre-requisites Linear Algebra, Theory of Computation 9 Qubit and Quantum States: The Qubit-Vector Spaces - Linear Combination Of Vectors - Uniqueness of a spanning set - basis & dimensions - inner Products – orthonormality - gram-schmidt orthogonalization - bra-ket formalism - the Cauchy-schwarez and triangle Inequalities. 9 UNIT - II 9 Matrices and Operators: Observables - The Pauli Operators - Outer Products - The Closure Relation - Representation of operators using matrices - outer products & matrix representation - matrix representation of operators using matrices - outer products & matrix representation - matrix representation of operators - Spectral Decomposition - Trace of an operator - importantproperties of Trace - Expectation Value of Operator - Projection Operator - Positive Operators. 9 UNIT - III 9 UNIT - IV 9 Density Operator: Density Operator of Pure and Mix state - Key Properties - Characterizing Mixed State - Practical Trace and Reduce Density Operator - Density Operator and Bloch Vector. 9 Quantum Measurement Theory: Distinguishing Quantum states and Measures - Projective Measurements - Measurements - Generalized Measurements - Positive Operator-Valued Measures. 9 REFERENCES: 1 9 1 9 9 Quantum Measurement Theory: Distinguishing Quantum states and Measures - Projective Measurements - Measurements - Composite systems - Generalized Measurements - Positive Operator-Valued Measures. 9 Quantum Me		computing								
UNIT - I 9 Qubit and Quantum States: The Qubit- Vector Spaces - Linear Combination Of Vectors - Uniqueness of a spanning set - basis & dimensions - inner Products – orthonormality - gram-schmidt orthogonalization - bra-ket formalism - the Cauchy-schwarez and triangle Inequalities. UNIT - II 9 Matrices and Operators: Observables - The Pauli Operators - Outer Products - The Closure Relation of operators in two dimensional spaces - Pauli Matrix - Hermitian unitary and normal operator - Eigen values and Eigen Vectors - Spectral Decomposition - Trace of an operator - importantproperties of Trace - Expectation Value of Operator - Projection Operator - Positive Operators. UNIT - III 9 Tensor Products: Representing Composite States in Quantum Mechanics - Computing inner products - Tensor products of column vectors - operators and tensor products of Matrices. UNIT - IV 9 Density Operator: Density Operator of Pure and Mix state - Key Properties - Characterizing Mixed State - Practical Trace and Reduce Density Operator - Density Operator and Bloch Vector. UNIT - V 9 Quantum Measurement Theory: Distinguishing Quantum states and Measures - Projective Measurements - Measurement on Composite systems - Generalized Measurements - Positive Operator-Valued Measures. I David McMahon, "Quantum Computing Explained", John Wiley & Sons Inc., 2008. 2. Zdzislaw Meglicki, "Quantum Computing Without Magic: Devices", The MIT Press, 2008. 3. Marco Lanzagorta, Jeffrey Uhlmann, "Quantum Compute	Pre-requisites	Linear Algebra, Theory of Computation								
Qubit and Quantum States: The Qubit- Vector Spaces - Linear Combination Of Vectors - Uniqueness of a spanning set - basis & dimensions - inner Products - orthonormality - gram-schmidt orthogonalization - bra-ket formalism - the Cauchy-schwarez and triangle Inequalities. UNIT - II 9 Matrices and Operators: Observables - The Pauli Operators - Outer Products - The Closure Relation - operators in two dimensional spaces - Pauli Matrix - Hermitian unitary and normal operator - Eigen values and Eigen Vectors - Spectral Decomposition - Trace of an operator - importantproperties of Trace - Expectation Value of Operator - Projection Operator - Positive Operators. UNIT - III 9 Tensor Products: Representing Composite States in Quantum Mechanics - Computing inner products - Tensor products of column vectors - operators and tensor products of Matrices. UNIT - IV 9 Density Operator: Density Operator of Pure and Mix state - Key Properties - Characterizing Mixed State - Practical Trace and Reduce Density Operator - Density Operator and Bloch Vector. 9 Quantum Measurement Theory: Distinguishing Quantum states and Measures - Projective Measurements - Measurement on Composite systems - Generalized Measurements - Positive Operator-Valued Measures. 9 2 Zdzislaw Meglicki, "Quantum Computing Without Magic: Devices", The MIT Press, 2008. 2 3. Marco Lanzagorta, Jeffrey Uhlmann, "Quantum Computer Science", Morgan & Claypool Publishers, 2012. 4. Phillip Kaye, Raymond Laflamme, Michele Mosca , "An Introduction to Quantum Computing", Oxford Uni	UNIT – I					9				
spanning set - basis & dimensions - inner Products – orthonormality - gram-schmidt orthogonalization - bra-ket formalism - the Cauchy-schwarez and triangle Inequalities. UNIT - II 9 Matrices and Operators: Observables - The Pauli Operators - Outer Products - The Closure Relation - Representation of operators using matrices - outer products & matrix representation - matrix representation of operators in two dimensional spaces - Pauli Matrix - Hermitian unitary and normal operator - Eigen values and Eigen Vectors - Spectral Decomposition - Trace of an operator - importantproperties of Trace - Expectation Value of Operator - Projection Operator - Positive Operators. 9 UNIT - III 9 Tensor Products: Representing Composite States in Quantum Mechanics - Computing inner products - Tensor products of column vectors - operators and tensor products of Matrices. 9 UNIT - IV 9 Density Operator: Density Operator of Pure and Mix state - Key Properties - Characterizing Mixed State - Practical Trace and Reduce Density Operator - Density Operator and Bloch Vector. 9 UNIT - V 9 Quantum Measurement Theory: Distinguishing Quantum states and Measures - Projective Measurements - Measurement on Composite systems - Generalized Measurements - Positive Operator-Valued Measures. 9 I David McMahon, "Quantum Computing Explained", John Wiley & Sons Inc., 2008. 2 2. Zdzislaw Meglicki, "Quantum Computing Without Magic: Devices", The MIT Press, 2008. 3 3.	Qubit and Quant	tum States: The Qubit- Vector Spaces - Linear Combination (Of Vec	tors - I	Jnique	eness of a				
bra-ket formalism - the Cauchy-schwarez and triangle Inequalities. UNIT - II 9 Matrices and Operators: Observables - The Pauli Operators - Outer Products - The Closure Relation - Representation of operators using matrices - outer products & matrix representation - matrix representation of operators in two dimensional spaces - Pauli Matrix - Hermitian unitary and normal operator - Eigen values and Eigen Vectors - Spectral Decomposition - Trace of an operator - importantproperties of Trace - Expectation Value of Operator - Projection Operator - Positive Operators. UNIT - III 9 Tensor Products: Representing Composite States in Quantum Mechanics - Computing inner products - Tensor products of column vectors - operators and tensor products of Matrices. 9 UNIT - IV 9 Density Operator: Density Operator of Pure and Mix state - Key Properties - Characterizing Mixed State - Practical Trace and Reduce Density Operator - Density Operator and Bloch Vector. 9 Quantum Measurement Theory: Distinguishing Quantum states and Measures - Projective Measurements - Measurements on Composite systems - Generalized Measurements - Positive Operator-Valued Measures. 9 1 David McMahon, "Quantum Computing Explained", John Wiley & Sons Inc., 2008. 2 2 Zdzislaw Meglicki, "Quantum Computing Without Magic: Devices", The MIT Press, 2008. 3 3 Marco Lanzagorta, Jeffrey Uhlmann, "Quantum Computer Science", Morgan & Claypool Publishers, 2012. 4 4 Phillip Kaye, Raymond Laflamme, Michele Mosca ,	spanning set - ba	sis & dimensions - inner Products - orthonormality - gram-	-schmi	dt orth	ogona	lization -				
UNIT - II 9 Matrices and Operators: Observables - The Pauli Operators - Outer Products - The Closure Relation - Representation of operators using matrices - outer products & matrix representation - matrix representation of operators in two dimensional spaces - Pauli Matrix - Hermitian unitary and normal operator - Eigen values and Eigen Vectors - Spectral Decomposition - Trace of an operator - importantproperties of Trace - Expectation Value of Operator - Projection Operator - Positive Operators. 9 UNIT - III 9 Tensor Products: Representing Composite States in Quantum Mechanics - Computing inner products - Tensor products of column vectors - operators and tensor products of Matrices. 9 UNIT - IV 9 Density Operator: Density Operator of Pure and Mix state - Key Properties - Characterizing Mixed State - Practical Trace and Reduce Density Operator - Density Operator and Bloch Vector. 9 Quantum Measurement Theory: Distinguishing Quantum states and Measures - Projective Measurements - Measurement on Composite systems - Generalized Measurements - Positive Operator-Valued Measures. 9 1 David McMahon, "Quantum Computing Explained", John Wiley & Sons Inc., 2008. 2 2. Zdzislaw Meglicki, "Quantum Computing Without Magic: Devices", The MIT Press, 2008. 3. Marco Lanzagorta, Jeffrey Uhlmann, "Quantum Computer Science", Morgan & Claypool Publishers, 2012. 4. Phillip Kaye, Raymond Laflamme, Michele Mosca , "An Introduction to Quantum Computing", Oxford University Press, 2007. </td <td>bra-ket formalism</td> <td>- the Cauchy-schwarez and triangle Inequalities.</td> <th></th> <th></th> <th></th> <td></td>	bra-ket formalism	- the Cauchy-schwarez and triangle Inequalities.								
UNIT - II 9 Matrices and Operators: Observables - The Pauli Operators - Outer Products - The Closure Relation - Representation of operators using matrices - outer products & matrix representation - matrix representation of operators in two dimensional spaces - Pauli Matrix - Hermitian unitary and normal operator - Eigen values and Eigen Vectors - Spectral Decomposition - Trace of an operator - important portator - Projection Operator - Positive Operators. UNIT - III 9 Tensor Products: Representing Composite States in Quantum Mechanics - Computing inner products - Tensor products of column vectors - operators and tensor products of Matrices. 9 UNIT - IV 9 Density Operator: Density Operator of Pure and Mix state - Key Properties - Characterizing Mixed State - Practical Trace and Reduce Density Operator - Density Operator and Bloch Vector. 9 Quantum Measurement Theory: Distinguishing Quantum states and Measures - Projective Measurements - Measurement on Composite systems - Generalized Measurements - Positive Operator-Valued Measures. 9 REFERENCES: 1 David McMahon, "Quantum Computing Explained", John Wiley & Sons Inc., 2008. 2 2 Zdzislaw Meglicki, "Quantum Computing Without Magic: Devices", The MIT Press, 2008. 3 Marco Lanzagorta, Jeffrey Uhlmann, "Quantum Computer Science", Morgan & Claypool Publishers, 2012. 4. Phillip Kaye, Raymond Laflamme, Michele Mosca , "An Introduction to Quantum Computing", Oxford University Press, 2007.										
Matrices and Operators: Observables - The Pauli Operators - Outer Products - The Closure Relation - Representation of operators using matrices - outer products & matrix representation natrix representation of operators in two dimensional spaces - Pauli Matrix - Hermitian unitary and normal operator - Eigen values and Eigen Vectors - Spectral Decomposition - Trace of an operator - important properties of Trace - Expectation Value of Operator - Projection Operator - Positive Operators. UNIT - III 9 Tensor Products: Representing Composite States in Quantum Mechanics - Computing inner products - Tensor products of column vectors - operators and tensor products of Matrices. 9 UNIT - IV 9 Density Operator: Density Operator of Pure and Mix state - Key Properties - Characterizing Mixed State - Practical Trace and Reduce Density Operator - Density Operator and Bloch Vector. 9 Quantum Measurement Theory: Distinguishing Quantum states and Measures - Projective Measurements - Measurement on Composite systems - Generalized Measurements - Positive Operator-Valued Measures. 9 REFERENCES: 1 David McMahon, "Quantum Computing Explained", John Wiley & Sons Inc., 2008. 2 2 Zdzislaw Meglicki, "Quantum Computing Without Magic: Devices", The MIT Press, 2008. 3 3 3 Macto Lanzagorta, Jeffrey Uhlmann, "Quantum Computer Science", Morgan & Claypool Publishers, 2012. 2012. 4 4. Phillip Kaye, Raymond Laflamme, Michele Mosc	UNIT – II					9				
Representation of operators using matrices - outer products & matrix representation - matrix representation of operators in two dimensional spaces - Pauli Matrix - Hermitian unitary and normal operator - Eigen values and Eigen Vectors - Spectral Decomposition - Trace of an operator - importantproperties of Trace - Expectation Value of Operator - Projection Operator - Positive Operators. UNIT - III 9 Tensor Products: Representing Composite States in Quantum Mechanics - Computing inner products - Tensor products of column vectors - operators and tensor products of Matrices. 9 UNIT - IV 9 Density Operator: Density Operator of Pure and Mix state - Key Properties - Characterizing Mixed State - Practical Trace and Reduce Density Operator - Density Operator and Bloch Vector. 9 Quantum Measurement Theory: Distinguishing Quantum states and Measures - Projective Measurements - Measurement on Composite systems - Generalized Measurements - Positive Operator-Valued Measures. 9 REFERENCES: 1 David McMahon, "Quantum Computing Explained", John Wiley & Sons Inc., 2008. 2 2 Zdzislaw Meglicki, "Quantum Computing Without Magic: Devices", The MIT Press, 2008. 3 Marco Lanzagorta, Jeffrey Uhlmann, "Quantum Computer Science", Morgan & Claypool Publishers, 2012. 4. Phillip Kaye, Raymond Laflamme, Michele Mosca , "An Introduction to Quantum Computing", Oxford University Press, 2007. 1	Matrices and O	perators: Observables - The Pauli Operators - Outer Produc	ts - T	he Clo	sure R	Relation -				
operators in two dimensional spaces - Pauli Matrix - Hermitian unitary and normal operator - Eigen values and Eigen Vectors - Spectral Decomposition - Trace of an operator - importantproperties of Trace - Expectation Value of Operator - Projection Operator - Positive Operators. UNIT - III 9 Tensor Products: Representing Composite States in Quantum Mechanics - Computing inner products - Tensor products of column vectors - operators and tensor products of Matrices. UNIT - IV 9 Density Operator: Density Operator of Pure and Mix state - Key Properties - Characterizing Mixed State - Practical Trace and Reduce Density Operator - Density Operator and Bloch Vector. UNIT - V 9 Quantum Measurement Theory: Distinguishing Quantum states and Measures - Projective Measurements - Measurement on Composite systems - Generalized Measurements - Positive Operator-Valued Measures. Total: 45 REFERENCES: 1. David McMahon, "Quantum Computing Explained", John Wiley & Sons Inc., 2008. 2. Zdzisław Meglicki, "Quantum Computing Without Magic: Devices", The MIT Press, 2008. 3. Marco Lanzagorta, Jeffrey Uhlmann, "Quantum Computer Science", Morgan & Claypool Publishers, 2012. 4. Phillip Kaye, Raymond Laflamme, Michele Mosca , "An Introduction to Quantum Computing", Oxford University Press, 2007.	Representation of	operators using matrices - outer products & matrix representati	on - m	atrix re	epresei	ntation of				
and Eigen Vectors - Spectral Decomposition - Trace of an operator - importantproperties of Trace - Expectation Value of Operator - Projection Operator - Positive Operators. UNIT - III 9 Tensor Products: Representing Composite States in Quantum Mechanics - Computing inner products - Tensor products of column vectors - operators and tensor products of Matrices. 9 UNIT - IV 9 Density Operator: Density Operator of Pure and Mix state - Key Properties - Characterizing Mixed State - Practical Trace and Reduce Density Operator - Density Operator and Bloch Vector. 9 Quantum Measurement Theory: Distinguishing Quantum states and Measures - Projective Measurements - Measurement on Composite systems - Generalized Measurements - Positive Operator-Valued Measures. 9 REFERENCES: 1 David McMahon, "Quantum Computing Explained", John Wiley & Sons Inc., 2008. 2 2. Zdzislaw Meglicki, "Quantum Computing Without Magic: Devices", The MIT Press, 2008. 3 3. Marco Lanzagorta, Jeffrey Uhlmann, "Quantum Computer Science", Morgan & Claypool Publishers, 2012. 2012. 4. Phillip Kaye, Raymond Laflamme, Michele Mosca , "An Introduction to Quantum Computing", Oxford University Press, 2007. 9	operators in two c	limensional spaces - Pauli Matrix - Hermitian unitary and nor	mal o	perator	- Eige	en values				
Expectation Value of Operator - Projection Operator - Positive Operators. VINIT – III 9 Tensor Products: Representing Composite States in Quantum Mechanics - Computing inner products - Tensor products of column vectors - operators and tensor products of Matrices. UNIT – IV 9 Density Operator: Density Operator of Pure and Mix state - Key Properties - Characterizing Mixed State - Practical Trace and Reduce Density Operator - Density Operator and Bloch Vector. UNIT – V 9 Quantum Measurement Theory: Distinguishing Quantum states and Measures - Projective Measurements - Measurement on Composite systems - Generalized Measurements - Positive Operator-Valued Measures. Total: 45 REFERENCES: 1. David McMahon, "Quantum Computing Explained", John Wiley & Sons Inc., 2008. 1 2. Zdzislaw Meglicki, "Quantum Computing Without Magic: Devices", The MIT Press, 2008. 3 3. Marco Lanzagorta, Jeffrey Uhlmann, "Quantum Computer Science", Morgan & Claypool Publishers, 2012. 2012. 4. Phillip Kaye, Raymond Laflamme, Michele Mosca , "An Introduction to Quantum Computing", Oxford University Press, 2007.	and Eigen Vecto	rs - Spectral Decomposition - Trace of an operator - imp	ortant	propert	ies of	Trace -				
UNIT - III 9 Tensor Products: Representing Composite States in Quantum Mechanics - Computing inner products - Tensor products of column vectors - operators and tensor products of Matrices. 9 UNIT - IV 9 Density Operator: Density Operator of Pure and Mix state - Key Properties - Characterizing Mixed State - Practical Trace and Reduce Density Operator - Density Operator and Bloch Vector. 9 UNIT - V 9 Quantum Measurement Theory: Distinguishing Quantum states and Measures - Projective Measurements - Measurement on Composite systems - Generalized Measurements - Positive Operator-Valued Measures. 9 REFERENCES: 1 David McMahon, "Quantum Computing Explained", John Wiley & Sons Inc., 2008. 1 2 Zdzisław Meglicki, "Quantum Computing Without Magic: Devices", The MIT Press, 2008. 2 2 3. Marco Lanzagorta, Jeffrey Uhlmann, "Quantum Computer Science", Morgan & Claypool Publishers, 2012. 2012. 4 4. Phillip Kaye, Raymond Laflamme, Michele Mosca , "An Introduction to Quantum Computing", Oxford University Press, 2007. 1	Expectation Value	of Operator - Projection Operator - Positive Operators.								
UNIT - III 9 Tensor Products: Representing Composite States in Quantum Mechanics - Computing inner products - Tensor products of column vectors - operators and tensor products of Matrices. 9 UNIT - IV 9 Density Operator: Density Operator of Pure and Mix state - Key Properties - Characterizing Mixed State - Practical Trace and Reduce Density Operator - Density Operator and Bloch Vector. 9 UNIT - V 9 Quantum Measurement Theory: Distinguishing Quantum states and Measures - Projective Measurements - Measurement on Composite systems - Generalized Measurements - Positive Operator-Valued Measures. 9 REFERENCES: 1 David McMahon, "Quantum Computing Explained", John Wiley & Sons Inc., 2008. 2 2. Zdzislaw Meglicki, "Quantum Computing Without Magic: Devices", The MIT Press, 2008. 3. Marco Lanzagorta, Jeffrey Uhlmann, "Quantum Computer Science", Morgan & Claypool Publishers, 2012. 4. Phillip Kaye, Raymond Laflamme, Michele Mosca , "An Introduction to Quantum Computing", Oxford University Press, 2007.						,				
Tensor Products: Representing Composite States in Quantum Mechanics - Computing inner products - Tensor products of column vectors - operators and tensor products of Matrices. UNIT - IV 9 Density Operator: Density Operator of Pure and Mix state - Key Properties - Characterizing Mixed State - Practical Trace and Reduce Density Operator - Density Operator and Bloch Vector. 9 UNIT - V 9 Quantum Measurement Theory: Distinguishing Quantum states and Measures - Projective Measurements - Measurement on Composite systems - Generalized Measurements - Positive Operator-Valued Measures. 9 REFERENCES: 1 David McMahon, "Quantum Computing Explained", John Wiley & Sons Inc., 2008. 2 2. Zdzislaw Meglicki, "Quantum Computing Without Magic: Devices", The MIT Press, 2008. 3 Marco Lanzagorta, Jeffrey Uhlmann, "Quantum Computer Science", Morgan & Claypool Publishers, 2012. 4. Phillip Kaye, Raymond Laflamme, Michele Mosca , "An Introduction to Quantum Computing", Oxford University Press, 2007.	UNIT – III					9				
Tensor products of column vectors - operators and tensor products of Matrices. VNIT – IV 9 Density Operator: Density Operator of Pure and Mix state - Key Properties - Characterizing Mixed State - Practical Trace and Reduce Density Operator - Density Operator and Bloch Vector. VINIT – V Quantum Measurement Theory: Distinguishing Quantum states and Measures - Projective Measurements - Measurement on Composite systems - Generalized Measurements - Positive Operator-Valued Measures. Total: 45 REFERENCES: 1. David McMahon, "Quantum Computing Explained", John Wiley & Sons Inc., 2008. 7 2. Zdzislaw Meglicki, "Quantum Computing Without Magic: Devices", The MIT Press, 2008. 8 3. Marco Lanzagorta, Jeffrey Uhlmann, "Quantum Computer Science", Morgan & Claypool Publishers, 2012. 2012. 4. Phillip Kaye, Raymond Laflamme, Michele Mosca , "An Introduction to Quantum Computing", Oxford University Press, 2007.	Tensor Products	Representing Composite States in Quantum Mechanics -	Comp	ating in	nner p	roducts -				
UNIT - IV 9 Density Operator: Density Operator of Pure and Mix state - Key Properties - Characterizing Mixed State - Practical Trace and Reduce Density Operator - Density Operator and Bloch Vector. 9 VINT - V 9 Quantum Measurement Theory: Distinguishing Quantum states and Measures - Projective Measurements - Measurement on Composite systems - Generalized Measurements - Positive Operator-Valued Measures. 9 REFERENCES: 1. 1. David McMahon, "Quantum Computing Explained", John Wiley & Sons Inc., 2008. 2. 2. Zdzislaw Meglicki, "Quantum Computing Without Magic: Devices", The MIT Press, 2008. 3. 3. Marco Lanzagorta, Jeffrey Uhlmann, "Quantum Computer Science", Morgan & Claypool Publishers, 2012. 2012. 4. Phillip Kaye, Raymond Laflamme, Michele Mosca , "An Introduction to Quantum Computing", Oxford University Press, 2007.	Tensor products of	f column vectors - operators and tensor products of Matrices.								
UNIT – IV 9 Density Operator: Density Operator of Pure and Mix state - Key Properties - Characterizing Mixed State - Practical Trace and Reduce Density Operator - Density Operator and Bloch Vector. 9 UNIT – V 9 Quantum Measurement Theory: Distinguishing Quantum states and Measures - Projective Measurements - Measurement on Composite systems - Generalized Measurements - Positive Operator-Valued Measures. 9 REFERENCES: 1. David McMahon, "Quantum Computing Explained", John Wiley & Sons Inc., 2008. 1. 2. Zdzisław Meglicki, "Quantum Computing Without Magic: Devices", The MIT Press, 2008. 3. 3. Marco Lanzagorta, Jeffrey Uhlmann, "Quantum Computer Science", Morgan & Claypool Publishers, 2012. 2012. 4. Phillip Kaye, Raymond Laflamme, Michele Mosca , "An Introduction to Quantum Computing", Oxford University Press, 2007.										
Density Operator : Density Operator of Pure and Mix state - Key Properties - Characterizing Mixed State - Practical Trace and Reduce Density Operator - Density Operator and Bloch Vector. Practical Trace and Reduce Density Operator - Density Operator and Bloch Vector. UNIT - V Quantum Measurement Theory: Distinguishing Quantum states and Measures - Projective Measurements - Measurement on Composite systems - Generalized Measurements - Positive Operator-Valued Measures. Total: 45 REFERENCES: 1. David McMahon, "Quantum Computing Explained", John Wiley & Sons Inc., 2008. 2. Zdzislaw Meglicki, "Quantum Computing Without Magic: Devices", The MIT Press, 2008. 3. Marco Lanzagorta, Jeffrey Uhlmann, "Quantum Computer Science", Morgan & Claypool Publishers, 2012. 4. Phillip Kaye, Raymond Laflamme, Michele Mosca , "An Introduction to Quantum Computing", Oxford University Press, 2007.	UNIT – IV					9				
Practical Trace and Reduce Density Operator - Density Operator and Bloch Vector. Valuation of the problem of the	Density Operator	: Density Operator of Pure and Mix state - Key Properties - (Charac	terizing	g Mixe	ed State -				
UNIT - V 9 Quantum Measurement Theory: Distinguishing Quantum states and Measures - Projective Measurements - Measurement on Composite systems - Generalized Measurements - Positive Operator-Valued Measures. 9 Measurement on Composite systems - Generalized Measurements - Positive Operator-Valued Measures. Total: 45 REFERENCES: 1. David McMahon, "Quantum Computing Explained", John Wiley & Sons Inc., 2008. 2008. 2. Zdzislaw Meglicki, "Quantum Computing Without Magic: Devices", The MIT Press, 2008. 3. Marco Lanzagorta, Jeffrey Uhlmann, "Quantum Computer Science", Morgan & Claypool Publishers, 2012. 4. Phillip Kaye, Raymond Laflamme, Michele Mosca , "An Introduction to Quantum Computing", Oxford University Press, 2007.	Practical Trace an	d Reduce Density Operator - Density Operator and Bloch Vector	or.							
UNIT - V 9 Quantum Measurement Theory: Distinguishing Quantum states and Measures - Projective Measurements - Measurement on Composite systems - Generalized Measurements - Positive Operator-Valued Measures. - Measurement on Composite systems - Generalized Measurements - Positive Operator-Valued Measures. - Total: 45 REFERENCES: 1. David McMahon, "Quantum Computing Explained", John Wiley & Sons Inc., 2008. - 2. Zdzislaw Meglicki, "Quantum Computing Without Magic: Devices", The MIT Press, 2008. - 3. Marco Lanzagorta, Jeffrey Uhlmann, "Quantum Computer Science", Morgan & Claypool Publishers, 2012. - 4. Phillip Kaye, Raymond Laflamme, Michele Mosca , "An Introduction to Quantum Computing", Oxford University Press, 2007. -										
Quantum Measurement Theory: Distinguishing Quantum states and Measures - Projective Measurements - Measurement on Composite systems - Generalized Measurements - Positive Operator-Valued Measures. Total: 45 REFERENCES: 1. David McMahon, "Quantum Computing Explained", John Wiley & Sons Inc., 2008. 2. Zdzislaw Meglicki, "Quantum Computing Without Magic: Devices", The MIT Press, 2008. 3. Marco Lanzagorta, Jeffrey Uhlmann, "Quantum Computer Science", Morgan & Claypool Publishers, 2012. 4. Phillip Kaye, Raymond Laflamme, Michele Mosca , "An Introduction to Quantum Computing", Oxford University Press, 2007.	UNIT – V					9				
Measurement on Composite systems - Generalized Measurements - Positive Operator-Valued Measures. Total: 45 REFERENCES: 1. David McMahon, "Quantum Computing Explained", John Wiley & Sons Inc., 2008. 2. Zdzislaw Meglicki, "Quantum Computing Without Magic: Devices", The MIT Press, 2008. 3. Marco Lanzagorta, Jeffrey Uhlmann, "Quantum Computer Science", Morgan & Claypool Publishers, 2012. 4. Phillip Kaye, Raymond Laflamme, Michele Mosca , "An Introduction to Quantum Computing", Oxford University Press, 2007.	Quantum Measu	rement Theory: Distinguishing Quantum states and Measures	- Proj	ective l	Measu	rements -				
Total: 45 REFERENCES: 1. David McMahon, "Quantum Computing Explained", John Wiley & Sons Inc., 2008. 2. Zdzislaw Meglicki, "Quantum Computing Without Magic: Devices", The MIT Press, 2008. 3. Marco Lanzagorta, Jeffrey Uhlmann, "Quantum Computer Science", Morgan & Claypool Publishers, 2012. 4. Phillip Kaye, Raymond Laflamme, Michele Mosca , "An Introduction to Quantum Computing", Oxford University Press, 2007.	Measurement on C	Composite systems - Generalized Measurements - Positive Oper	rator-V	alued a	Measu	res.				
REFERENCES: 1. David McMahon, "Quantum Computing Explained", John Wiley & Sons Inc., 2008. 2. Zdzislaw Meglicki, "Quantum Computing Without Magic: Devices", The MIT Press, 2008. 3. Marco Lanzagorta, Jeffrey Uhlmann, "Quantum Computer Science", Morgan & Claypool Publishers, 2012. 4. Phillip Kaye, Raymond Laflamme, Michele Mosca , "An Introduction to Quantum Computing", Oxford University Press, 2007.					r	Fotal: 45				
 David McMahon, "Quantum Computing Explained", John Wiley & Sons Inc., 2008. Zdzislaw Meglicki, "Quantum Computing Without Magic: Devices", The MIT Press, 2008. Marco Lanzagorta, Jeffrey Uhlmann, "Quantum Computer Science", Morgan & Claypool Publishers, 2012. Phillip Kaye, Raymond Laflamme, Michele Mosca, "An Introduction to Quantum Computing", Oxford University Press, 2007. 	REFERENCES:									
 Zdzislaw Meglicki, "Quantum Computing Without Magic: Devices", The MIT Press, 2008. Marco Lanzagorta, Jeffrey Uhlmann, "Quantum Computer Science", Morgan & Claypool Publishers, 2012. Phillip Kaye, Raymond Laflamme, Michele Mosca, "An Introduction to Quantum Computing", Oxford University Press, 2007. 	1. David McM	ahon, "Quantum Computing Explained", John Wiley & Sons In	nc., 200)8.						
 Marco Lanzagorta, Jeffrey Uhlmann, "Quantum Computer Science", Morgan & Claypool Publishers, 2012. Phillip Kaye, Raymond Laflamme, Michele Mosca, "An Introduction to Quantum Computing", Oxford University Press, 2007. 	2. Zdzislaw Me	eglicki, "Quantum Computing Without Magic: Devices", The M	AIT Pr	ess, 20	08.					
 2012. 4. Phillip Kaye, Raymond Laflamme, Michele Mosca, "An Introduction to Quantum Computing", Oxford University Press, 2007. 	3. Marco Lanz	agorta, Jeffrey Uhlmann, "Quantum Computer Science", Mor	gan &	c Clayp	ool Pi	ublishers,				
4. Phillip Kaye, Raymond Laflamme, Michele Mosca, "An Introduction to Quantum Computing", Oxford University Press, 2007.	2012.									
University Press, 2007.	4. Phillip Kaye	, Raymond Laflamme, Michele Mosca , "An Introduction to Q	uantun	n Comj	outing	', Oxford				
	University P	ress, 2007.								

COURS	COURSE OUTCOMES: BT Mapped									
On com	pletion of	the course, the s	students will be	e able to			(Hig	(Highest Level)		
CO1:	explain o	qubit and quantu	m states				Understanding (K2)			
CO2:	identify	dentify various operation that can be done using operators and matrices						Understanding (K2)		
CO3:	apply Te	ensor product an	d density opera	ator to various o	peration		App	lying (K3)		
CO4:	impleme	ent the principles	s of density ope	erator for solving	g problems		App	lying (K3)		
CO5:	summarize quantum measurement theory				Understanding (K2)					
			Mappi	ng of COs with	POs					
COs	/POs	PO1	PO2	PO3	PO4		PO5	PO6		
C	D1	1		3	2			2		
C	D2	1	2	2			1	3		
C	D3	2		3	1		2	2		
CO4 2		2	1	3			2	2		
CO5 1				3			2			
1 – Sligl	ht, 2 – Mo	oderate, 3 – Su	bstantial, BT	– Bloom's Tax	onomy					

18MIE09 SOCIAL NETWORK ANALYSIS (Common to Information Technology & Computer Science and Engineering branches)

(001	$\frac{1}{2}$	leering	, or une	nesy		
		L	Т	Р	Credit	l
		3	0	2	4	
Preamble	The study of graphs and revelation of their properties with the Social Network Analysis. Some of the surprising and beautifu Social Network Analysis are 6 degrees of separation, the algor Link prediction, Viral marketing, etc.,	ir tools 11 disc rithm l	s have overies oehind	been t achie Goog	termed as eved with le search,	
Prerequisites	Nil					
TINITT I					0	1

Graph Theory and Social Networks: Graphs: Basic Definitions- Paths and Connectivity- Distance and Breadth First Search-Network Dataset: An overview. Strong and Weak Ties: Triadic Closure- The Strength of Weak Ties- Tie Strength and Network Structure in Large Scale Data- Tie Strength, Social Media, and Passive Engagement- Closure, Structural Holes, and Social Capital. Networks in their Surrounding Contexts: Homophily – Mechanism Underlying Homophily-Selection and Social Influence- Affiliation. Positive and Negative Relationships: Structural Balance- Characterizing the Structure of Balanced Networks – Application of Structural Balance – A Weaker Form of Structural Balance

UNIT – II

Game Theory and Interaction in Networks: Games: What is Game?- Reasoning about Behavior in Game-Best Responses and Dominant Strategies- Nash Equilibrium- Multiple Equilibria- Coordination Games, The Hawk-Dove Game-Mixed Strategies-Examples and Empirical Analysis- Pareto Optimality and Social Optimality. Evolutionary Game Theory: Fitness as a Result of interaction- Evolutionarily Stable Strategies- A General Description of Evolutionarily Stable Strategies- Relationship between Evolutionarily and Nash Equilibria- Evolutionarily Stable Mixed Strategies. Modeling Network Traffic using Game Theory: Traffic at Equilibrium- Braess's Paradox. Matching Markets: Bipartite Graphs and Perfect Matchings-Valuations and Optimal Assignments.

UNIT – III

Information Networks and the World Wide Web: The Structure of the Web: The World Wide Web-Information Networks, Hypertext, and Associative Memory- The Web as a Directed Graph- The Bow-Tie Structure of the Web. Link Analysis and Web Search: Searching the Web: The problem of Ranking- Link Analysis using Hubs and Authorities- Page Rank- Applying Link Analysis in Modern Web Search.

UNIT – IV

Network Dynamics - Population Models: Information Cascades: Following the Crowd- A Simple Herding Experiment- Bayes Rule: A model of Decision Making-Making under Uncertainty- Baye's Rule in the Herding Experiment- A Simple, General Cascade Model- Sequential Decision Making and Cascades. Network Effects: The Economy Without Network Effects- The Economy with Network Effects- Stability, Instability and Tipping Points- A Dynamic View of the Market- Industries with Network Goods- Mixing Individual Effects with Population-Level Effects. Power Laws and Rich-Get-Richer Phenomena: Popularity as Network Phenomenon-Power Laws- Rich-Get-Richer Models-The Unpredictability of Rich-Get-Richer Model-The Long Tail-The Effect of Search Tools and Recommendation Systems.

9

9

UNIT ·	- V							9
Netwo	rk Dynan	nics – Structu	ral Models: (Cascading Beha	avior in Netwo	orks: I	Diffusion	in Network-
Modeli	ing diffusio	on through a Ne	twork- Cascade	s and Clusters-	Diffusion, Thre	esholds,	, and the	Role of Weak
Ties- E	Extensions	of the Basic C	ascade Model-	Knowledge, Th	resholds and C	Collecti	ve Actio	n. The Small-
World	Phenomen	on: Six Degrees	s of Separation-	Structure and R	andomness- De	ecentral	lized Sea	rch- Modeling
the pro	cess of De	centralized Sea	rch- Empirical A	Analysis and Ge	eneralized Mode	els- Co	re Periph	nery Structures
and D	ifficulties	in Decentraliz	ed Search. Epi	demics: Diseas	ses and the N	etwork	s that the	ransmit them-
Branch	ing Proces	sses- The SIR	Epidemic Mod	el- The SIS E	pidemic Model	l- Sync	chronizat	ion- Transient
Contac	ts and the l	Danger of Conc	urrency.					
List of	Exercises							
<u>l</u> .	Exploring	face book Grap	h API	1 4 51				
2.	Implement	ting access toke	en using face bo	ok API				
3.	Implement	ting FQL(Face	book Query Lar	iguage)				
4.	Implement	tation using Op	enGraph API					
5.	Use Dialo	gs API to imple	ement login, pos	ting on time line	e and sending r	equest		
					Lecture	e: 45, P	ractical	: 30, Total: 75
REFE	RENCES /	MANUALS /	SOFTWARE:	<u> </u>	1			
1. D	David Easle Vorld" Car	y, Jon Klienbe nbridge Univer	rg, "Networks, (sity Press 2010	Crowds, and Ma	arkets: Reasoni	ng abo	ut a H1g	hly Connected
2. S	tanley Wa	asserman, Kath	nerine Faust, "	'Social Networ	ks Analysis:	Method	ls and	Applications",
C	Cambridge	University Pres	s, 2010.		-			
3. C	Charles Ka	dushin, "Unde	rstanding Socia	al Networks: T	Theories, Conce	epts, a	nd Find	ings", Oxford
U	Iniversity F	Press, 2012.						
COUR	RSE OUTC	COMES:					BT	Mapped
On con	npletion of	the course, the	students will be	able to			(Hig	hest Level)
CO1:	apply the distribution	e concepts of on	graph theory	for analysis	of social net	works	Unders	standing (K2)
CO2:	utilize ga	me theory for d	ecision making	in the context of	f social network	king	App	olying (K3)
CO3:	compare	and contrast dif	ferent link analy	sis and web sea	rch techniques		Unders	standing (K2)
CO4:	analyze n	etwork behavio	r based on popu	lation model			App	olying (K3)
CO5:	investigat model	te the aggregate	behavior of the	e social network	s based on stru	ctural	App	olying (K3)
CO6:	demonstr	ate APIs for dif	ferent social net	works			Арр	lying (K3),
							Prec	cision (S3)
CO7:	implemer	nt Face book Qu	iery Language				App	lying (K3),
							Pre	cision (S3)
CO8:	use Dialo	gs API to send	posts online				App	lying (K3),
							Pre	cision (S3)
			Mappir	ng of COs with	POs			
CO	s/POs	PO1	PO2	PO3	PO4	P	05	PO6
C	201	2		2	3			
C	CO2	2		2	3			
C	CO3	2		2	3			
C	CO4 2 2 3							
C	CO5			2	2			
C	CO6			2			3	
C	CO7 2							
C	CO8				2		2	1
1 - Slig	1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy							

18MIE10 KNOWLEDGE ENGINEERING

L Т Р Credit 3 0 0 3 Preamble A comprehensive understanding of Artificial Intelligence and build intelligent behavior to show how this knowledge can be represented symbolically, and how automated reasoning procedures can make Intelligent Systems in the context of Knowledge Engineering. Prerequisites Discrete Mathematics, Artificial Intelligence UNIT – I 9

Introduction: Intelligent Agents - Problem Solving - Solving Problems by Searching - Beyond Classical Search - Adversarial Search - Constraint Satisfaction Problems.

UNIT – II

Knowledge and Reasoning: Logical Agents - First Order Logic - Inference in First Order Logic - Knowledge Representation.

9

9

9

9

Total: 45

UNIT – III

Uncertain Knowledge and Reasoning: Quantifying Uncertainty-Probabilistic Reasoning - Probabilistic Reasoning over Time - Making Simple Decisions - Making Complex Decisions.

UNIT – IV

Object Oriented Representation: Object-Oriented Representation - Frame Formalism - Structured Descriptions - Meaning and Entailment - Taxonomies and Classification - Inheritance

$\mathbf{UNIT} - \mathbf{V}$

Actions and Planning: Actions - The Situation Calculus - Frame Problem - Complex Actions - Planning - The STRIPS Representation - Planning as a Reasoning Task - Hierarchical and Conditional Planning

REFERENCES:

1.	Russell Stuart and Norvig Peter, "Artificial Intelligence: A Modern Approach", 3 rd Edition, Pearson
	Education / Prentice Hall of India, New Delhi, 2009.
2.	Ronald Brachman and Hector Levesque, "Knowledge Representation and Reasoning", 1 st Edition, The
	Morgan Kaufmann Series in Artificial Intelligence, 2004.
3.	Arthur B. Markman, "Knowledge Representation", 1 st Edition, Lawrence Erlbaum Associates, Reprint
	2008.

COUH	COURSE OUTCOMES:							BT Mapped	
On con	mpletion of	the course, the	students will be	able to			(Hi	(Highest Level)	
CO1:	CO1: provide a strong foundation of fundamental concepts in Artificial Intelligence							rstanding (K2)	
CO2:	discover d	lifferent search s	strategies for a p	problem			Unde	rstanding (K2)	
CO3:	get famili	iar with the v	arious applicat	ions of AI tec	hniques in In	telligent	Ар	plying (K3)	
	Systems								
CO4:	analyze di	fferent knowled	lge representation	on schemes for	typical AI prob	ems	Ana	Analyzing (K4)	
CO5:	evaluate a	typical AI prob	lem to be solve	d using machine	e learning techn	iques	Evaluating (K5)		
			Mappir	ng of COs with	POs				
CC	Os/POs	PO1	PO2	PO3	PO4	PO	5	PO6	
(CO1	2	2	3	3	3		3	
(CO2	3		3	2	3		2	
(CO3	3		3	3	3		2	
CO4		3		3	2	2		3	
CO5 3			3	3	2		3		
1 – Sli	ight, 2 – Mo	oderate, 3 – Su	ıbstantial, BT	– Bloom's Tax	onomy	-			

	18MIE11 DATA SCIENCES				
		L	Т	Р	Credit
		3	0	0	3
Preamble	Give students a thorough understanding of data science, its life	cycle a	ind app	licatio	ons and to
	enable them to design, develop and apply various technique	s for	analyz	ing bi	g data in
	different scenarios		-	-	-
Pre-requise	ites Nil				
UNIT – I					9
Introducti Data Analy results – O	ion: Big Data Overview- Practice in Analytics – Key Roles of Big dat ytics life cycle: Discovery – Data Preparation – Model Planning – Mod perationalize – Case study: Global Innovation Network and Analysis.	ta Eco lel Bu	syster ilding	n – Ex – Con	kamples – nmunicate
UNIT _ I	ſ				9
Data Ana	lytical Methods: Linear Regression: Use Cases – Model description	n – T	Diagnos	stics -	- Logistic
Regression	: Use Cases – Model description – Diagnostics – Reasons to choose	e and	cautio	ns - A	Additional
regression	al models – Case studies.				
UNIT – II	Ι				9
Big Data '	Technologies: Big data - Types of Data – Characteristics – Evolution	– Def	inition	– Cha	allenges –
Other Cha	racteristics - Business Intelligence Vs Big Data – Big Data Analytics:	Classi	ficatio	n of A	nalytics –
Top Chall	enges and importance – Data Science – Data Scientist - Termin	nologi	es use	ed in	Big data
environme	nts – Big data Technology landscape: NoSQL – Hadoop.	U			U
UNIT – IV	7				9
Hadoop: 1	Introduction – RDBMS Vs Hadoop – Distributed Computing Challer	nges -	- Hado	op Hi	story and
Overview	- Hadoop Distributed File System - Processing Data with Hadoop	– Ma	naging	Reso	urces and
Applicatio	ns with Hadoop - Interacting with Hadoop Ecosystem.				
UNIT – V					9
MongoDB	and Cassandra: MongoDB : Introduction to MongoDB – RDBMS a	and M	ongoD	B - D	ata Types
in Mongol	DB – MongoDB Query Language. Cassandra: Introduction – Features	s of C	lassand	ra – (CQL Data
Types – O	perations – Collections – Alter Commands – Import and Export – Quer	ying S	ystem	Table	s.
					Total: 45
REFERE	NCES:				
1. EMC and	C Education Services, "Data Science and Big Data Analytics: Discover Presenting Data", John Wiley and Sons, 2015.	ring, A	Analyzi	ng, V	isualizing
2. Seen	na Acharya and Subhashini Chellappan, "Big Data and Analytics", 1st E	dition	, Wile	y, 201	5.
3. Fran Serie	k J. Ohlhorst, "Big Data Analytics: Turning Big Data into Big Money	", Wi	ley and	l SAS	Business
4. Hold Bool	len Kararu, Andy Konwinski, Padtrick Wendell and Matei Zaharia, ks, 2015.	"Lear	ning Sj	park",	O'Reilly

COURSE OUTCOMES: On completion of the course, the students will be able to							BT Mapped (Highest Level)		
CO1:	: acquire basic knowledge of big data and data analytics lifecycle Understanding (K								
CO2:	apply analytical methods to manipulate data Applying (K3)								
CO3:	: recall the concepts of big data technologies Understanding (K2)								
CO4:	demonstrate the application of Hadoop framework Applying (K3)								
CO5:	implement MongoDB and Cassandra to manage and retrieve data from data Applying (K3)								
	stores								
Mapping of COs with POs									
CC	COs/POs PO1 PO2 PO3 PO4						PO5	PO6	
(CO1	3		3	2		3		
CO2 3			3	2		2			
CO3		3		2	1			2	
CO4		3		3					
CO5		3		2	3		2	1	
1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy									

18MIE12 GPU ARCHITECTURE AND PROGRAMMING									
		L	Т	Р	Credit				
		3	0	0	3				
Preamble	Provide principles of GPU computer architecture with prog	rammi	ng env	vironm	ents and				
	architectural aspects of modern GPUs, with a special focus on their streaming parallel								
	nature, writing programs on the GPU using high level languages like CUDA.								
Prerequisites	es Computer Architecture, C Programming								
UNIT – I					9				
Introduction	n: Overview of supercomputing - Understanding parallelism with	n GPU	Js - C	UDA	hardware				
overview- Se	etting up CUDA								
UNIT – II					9				
Memory ha	ndling with CUDA: Introduction - caches - shared memory -	Consta	ant me	mory	- Global				
memory - Te	exture Memory								
UNIT – III					9				
CUDA in P	ractice: Introduction -Serial and Parallel code - Processing dataset	ts – Pi	rofiling	g - An	example				
using AES -	Multi-CPU and Multi-GPU solutions								
UNIT – IV					9				
Optimizing	Application: Parallel/Serial GPU/CPU - Memory considerations -	-Trans	fers -	Thread	ł usage -				
Calculations	and Divergence – Algorithms								
UNIT – V					9				
Designing GPU-Based Systems: Introduction - CPU Processor - GPU Device - Mass storage - Power									
Consideration									
Total: 45									
REFERENCES:									
1. Shane Kaufm	Cook, "CUDA Programming: A Developers guide to parallel comp ann 2013	outing	with C	BPUs"	, Morgan				
2. John C	Cheng and Max Grossman and Ty McKercher, "Professional CU	DA C	Progra	ammir	ıg", John				

Wiley & Sons Inc., 2014.

COURSE OUTCOMES:							BT Mapped			
On completion of the course, the students will be able to								(Highest Level)		
CO1:	describe a	Understanding (K2)								
CO2:	explain about CUDA memory handling techniques Applying (K3)									
CO3:	write programs using CUDA Applying (K3)									
CO4:	implement the optimized application using CUDA Applying (K3)									
CO5:	explain the GPU based system and its issues and solutions							Understanding (K2)		
	Mapping of COs with POs									
COs/POs		PO1	PO2	PO3	PO4	PO5		PO6		
C	201	3		2	2					
C	202	2		3						
CO3 1			2	3	2					
CO4		1		2	3		3	3		
CO5				2	2		3			
1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy										

18MIE13 MOBILE APPLICATIONS AND SERVICES								
		L	Т	Р	Credit			
		3	0	0	3			
Preamble To understand system requirements for mobile applications and Generate suitable design using specific mobile development frameworks, mobile application design and to Implement the design using specific mobile development frameworks and deploy the mobile applications in marketplace for distribution.								
Prerequisites	Mobile Computing							
UNIT – I					9			
Introduction: 1 mobile application for mobile appli	Introduction to mobile applications – Embedded systems - Mar ons – Publishing and delivery of mobile applications – Requirem cations.	ket an ents ga	d busin athering	ness dig and v	rivers for validation			
UNIT – II					9			
Basic Design: mobile application for mobile application security, available	Introduction – Basics of embedded systems design – Embedded ons, both hardware and software related – Architecting mobile a cations – touch events and gestures – Achieving quality constrai- pility and modifiability.	OS - pplica nts – p	Design tions – perform	Const User i nance,	raints for interfaces usability,			
UNIT – III					9			
Advanced Desi GPS and socia environment – I	gn: Designing applications with multimedia and web access call media networking applications – Accessing applications ho Design patterns for mobile applications.	pabilit sted i	ies – I n a cl	ntegra oud c	tion with omputing			
					0			
Android: Intro	luction Establishing the development environment Android	archite	otura	Activ	yitigs and			
views – Interac server side appl	ting with UI – Persisting data using SQLite – Packaging and de acations – Using Google Maps, GPS and Wifi – Integration with s	ploym ocial r	ent – 1 nedia a	nterac pplica	tion with tions.			
UNIT – V IOS: Introduction using Core Data calendar and add	on to Objective C – iOS features – UI implementation – Touch fra a and SQLite – Location aware applications using Core Locatio dress book with social media application – Using Wifi - iPhone m	amewo n and arketp	orks – I Map K lace.	Data pe it – Ir	9 ersistence ntegrating			
Total: 45								
REFERENCES:								
1. Charlie Collins, Michael Galpin and Matthias Kappler, "Android in Practice", DreamTech, 2012.								
2. David Mark, Jack Nutting, Jeff LaMarche and Frederic Olsson, "Beginning iOS 6 Development: Exploring the iOS SDK", Apress, 2013.								
3. http://developer.android.com/develop/index.html.								
4. James Dovey and Ash Furrow, "Beginning Objective C", Apress, 2012.								
5. Jeff McWherter and Scott Gowell, "Professional Mobile Application Development", Wrox, 2012.								
6. Reto Meier	, "Professional android Development", Wiley-India Edition, 2012	2.						

COURSE OUTCOMES:								BT Mapped		
On completion of the course, the students will be able to								(Highest Level)		
CO1:	summarize the requirements for mobile applications							Remembering (K1)		
CO2:	explain the challenges in mobile application design and development Understanding (K2)									
CO3:	develop design for mobile applications for specific requirements Creating (K6)							eating (K6)		
CO4:	implement the design using Objective C and iOS Applying (K3)									
CO5:	deploy mobile applications in Android and iPhone marketplace for Creating (K6)							eating (K6)		
distribution										
Mapping of COs with POs										
COs/POs		PO1	PO2	PO3	PO4	PC)5	PO6		
C	201	3								
CO2 3										
CO3		2	3			1	-			
CO4		1		3	2			2		
CO5			1			3	3			
1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy										