VISION

To be a centre of excellence for development and dissemination of knowledge in Applied Sciences, Technology, Engineering and Management for the Nation and beyond.

MISSION

We are committed to value based Education, Research and Consultancy in Engineering and Management and to bring out technically competent, ethically strong and quality professionals to keep our Nation ahead in the competitive knowledge intensive world.

QUALITY POLICY

We are committed to

- Provide value based quality education for the development of students as competent and responsible citizens.
- Contribute to the nation and beyond through research and development
- Continuously improve our services

DEPARTMENT OF FOOD TECHNOLOGY

VISION

To be a centre of excellence for development and dissemination of knowledge in the field of Food Technology for the nation and beyond.

MISSION

Department of Food Technology is committed to:

- MS1: Develop vibrant, competent and ethical food engineers who can promote technical advancements in the field of Food Technology
- MS2: Foster the research activities of faculty and students to explore the state-of- the-art techniques to meet the industrial and societal needs.
- MS3: Endeavour for constant upgradation of technical expertise to support continuous learning.

2018 REGULATIONS

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

Post Graduates of Food Technology will

- PEO1: Apply Knowledge and Skills to improve Technological Practices in core and allied domains of Food Technology
- PEO2: Contribute with high level of technical competency to Research and Development to generate innovative solutions for societal and industrial needs.
- PEO3: Exhibit professionalism, ethics, team work, communication and interpersonal skills within organization and society.

MAPPING OF MISSION STATEMENTS (MS) WITH PEOS

MS\PEO	PEO PEO1 PEO2		PEO3
MS1	3	3	2
MS2	3	3	2
MS3	2	2	2

1 – Slight, 2 – Moderate, 3 – Substantial

	PROGRAM OUTCOMES (POs)							
Engine	Engineering Post Graduates will be able to:							
PO1:	Develop an ability to apply, integrate, analyze and disseminate the acquired knowledge in the							
	field of Food Technology to fulfill national and global needs							
PO2:	Contribute independently towards multidisciplinary scientific research and provide feasible							
	technical solutions to solve real time problems							
PO3:	Communicate effectively on technological activities and exhibit the capacity for self management							
	and teamwork along with leadership quality with open mindedness to achieve common goals							
PO4:	Demonstrate awareness on societal, safety, health, legal and cultural issues relevant to							
	engineering practice midst of commitment to professional ethics							
PO5:	Exhibit the high level of enthusiasm and commitment in recognizing the need for life-long							
	learning in the broadest context of technological change							

MAPPING OF PEOs WITH POs

PEO\PO	PO1	PO2	PO3	PO4	PO5
PEO1	3	3	2	2	2
PEO2	3	3	2	2	3
PEO3	2	2	3	3	2
4 011 1			•	~ 1	

1 -Slight, 2 -Moderate, 3 -Substantial

CURRICULUM BREAKDOWN STRUCTURE UNDER REGULATIONS 2018

Curriculum Breakdown System	Curriculum content (% of total number of credits of the program)	Total number of contact hours	Total number of credits
Program Core(PC)	37.50	30	27
Program Electives(PE)	25.00	18	18
Humanities and Social Sciences and Management Studies (HSMS)	9.72	7	7
Project(s)/Internships(PR)/Others	27.78	40	20
		Total credits	72

KEC R2018: SCHEDULING OF COURSES – M Tech (Food Technology)

Semes ter			Th	eory/ Theory cum Pr	actical / Practical				Internship & Projects	Special Courses	Cre dits
	1	2	3	4	5	6	7	8	10	11	
I	18AMT17 Applied Statistics for Food Technology (HS-3-1-0-4)	18MFT11 Unit operations in Food Process Engineeirng / 18MFT12 Food Chemistry and Microbiology (PC- 3-0-0-3)	18MFT12 Lipid Science and Technology (PC-3-0-0-3)	18MFT14 Advanced Drying Technology (PC-3-1-0-4)	18MFT15 Instrumental Techniques and Methods for Food Analysis (PC-3-1-0-4)	18GET01 Introduction to Research (HS-3-0-0-3)	18MFL11 Drying Technology Laboratory (PC-0-0-2-1)	18MFL12 Instrumental Food Analysis Laboratory (PC- 0-0-2-1)			23
II	18MFT21 Advanced Refrigeration and Cold Chain Management (PC-3-1-0-4)	18MFT22 Novel Technologies in Food Processing (PC-3-0-0-3)	18MFT23 Food Safety and Quality Control (PC-3-0-0-3)	Elective-I (Professional) (PE-3-0-0-3)	Elective-II (Professional) (PE-3-0-0-3)	Elective-III (Professional) (PE-3-0-0-3)	18MFL21 Food Analysis and Quality Control Laboratory (PC-0-0-3-1)		18MFP21 Mini Project (PR-0-0-4-2)		22
111	Elective-IV (Professional) (PE-3-0-0-3)	Elective-V (Professional) (PE-3-0-0-3)	Elective-VI (Professional) (PE-3-0-0-3)						18MFP31 Project Work – Phase I (PR-0-0-12-6)		15
IV									18MFP41 Project Work – Phase II (PR-0-0-24-12)		12

Total Credits: 72

M.Tech. DEGREE IN FOOD TECHNOLOGY

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

SEMESTER – I

Course	Course Title		lours Weel		Credit	Maximum Marks			CBS	
Code	Course Thie	L	Т	Р	creat	CA	ESE	Total		
	Theory/Theory with Practical									
18AMT17	Applied Statistics for Food Technology	3	1	0	4	50	50	100	HS	
18MFT11	Unit operations in Food Process Engineering (For Science Graduates)	- 3	0	0	3	50	50	100	PC	
18MFT12	Food Chemistry and Microbiology (For Engineering Graduates	5	U	U	5	50	50	100	re	
18MFT13	Lipid Science and Technology	3	0	0	3	50	50	100	PC	
18MFT14	Advanced Drying Technology	3	1	0	4	50	50	100	PC	
18MFT15	Instrumental Techniques and Methods for Food Analysis	3	1	0	4	50	50	100	PC	
18GET01	Introduction to Research	3	0	0	3	50	50	100	HS	
	Practical									
18MFL11	Drying Technology Laboratory	0	0	2	1	100	0	100	PC	
18MFL12	2Instrumental Food Analysis Laboratory0		0	2	1	100	0	100	PC	
	Total	23								

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

M.Tech. DEGREE IN FOOD TECHNOLOGY

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

SEMESTER – II

Course	Course Title		lours Weel		Credit	Maximum Marks			CBS	
Code	Course The	L	Т	Р	creat	CA	ESE	Total		
	Theory/Theory with Practical									
18MFT21	Advanced Refrigeration and Cold Chain Management	3	1	0	4	50	50	100	PC	
18MFT22	Novel Technologies in Food Processing	3	0	0	3	50	50	100	PC	
18MFT23	Food Safety and Quality Control	3	0	0	3	50	50	100	PC	
	Elective - I	3	0	0	3	50	50	100	PE	
	Elective - II	3	0	0	3	50	50	100	PE	
	Elective - III	3	0	0	3	50	50	100	PE	
	Practical									
18MFL21	Food Analysis and Quality Control Laboratory	0	0	3	1	100	0	100	PC	
18MFP21	Mini Project		0	4	2	100	0	100	PR	
	Total				22					

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

M.Tech. DEGREE IN FOOD TECHNOLOGY

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

Course	Course Title	Hours / Week			Credit	Maximum Marks			CBS
Code	Course Thie	L	Т	Р	Cituit	CA	ESE	Total	CDS
	Theory/Theory with Practical								
	Elective - IV	3	0	0	3	50	50	100	PE
	Elective - V	3	0	0	3	50	50	100	PE
	Elective - VI	3	0	0	3	50	50	100	PE
	Practical								
18MFP31	Project Work Phase I	0	0	12	6	50	50	100	PR
	Total	15							

SEMESTER – III

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

M.Tech. DEGREE IN FOOD TECHNOLOGY

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

SEMESTER – IV

Course Code	Course Title	Hours / Week			Credit	Maximum Marks			CBS
	course rue		Т	Р	Creuit	CA	ESE	Total	CDS
	Practical								
18MFP41	Project Work Phase II	0	0	24	12	50	50	100	PR
	Total	•	•	•	12				

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

Total Credits: 72

Course	LIST OF PROFESSIONAL ELECTIV	1	urs/W	/eek		
Code	Course Title	L	Т	Р	Credit	CBS
	SEMESTER II					
18MHE05	Computational Fluids Dynamics	3	0	0	3	PE
18MFE01	Advanced Fruit and Vegetable Processing Technology	3	0	0	3	PE
18MFE02	Advanced Food Processing Technology	3	0	0	3	PE
18MFE03	Advanced Separation Techniques in Food Processing	3	0	0	3	PE
18MFE04	Enzyme Engineering and Technology	3	0	0	3	PE
18MFE05	Operational Research	3	0	0	3	PE
18MFE06	Heat and Mass Transfer Operations in Food Processing	3	0	0	3	PE
18MFE07	Food Additives, Nutraceuticals and Functional Foods	3	0	0	3	PE
18MFE08	Food Packaging and Storage Engineering	3	0	0	3	PE
18MFE09	Industrial Waste Management	3	0	0	3	PE
18MFE10	Advanced Baking and Confectionery Technology	3	0	0	3	PE
18MFE11	Advanced Grain Science and Technology	3	0	0	3	PE
18MFE12	Transport Phenomena in Food Processing	3	0	0	3	PE
18MFE13	Industrial Engineering	3	0	0	3	PE
18MFE14	Food Product Design and Development	3	0	0	3	PE
	SEMESTER III	•	•			
18MHE18	Design and Analysis of Experiments	3	0	0	3	PE
18MFE15	Project Engineering and Management	3	0	0	3	PE
18MFE16	Sensory Evaluation of Foods	3	0	0	3	PE
18MFE17	Food Supply Chain Management	3	0	0	3	PE
18MFE18	Food Process Plant Layout and Design	3	0	0	3	PE
18MFE19	Scale up Methods in Process Engineering	3	0	0	3	PE
18MFE20	Food Rheology	3	0	0	3	PE
18MFE21	Plantation Crops and Spices Technology	3	0	0	3	PE
18MFE22	Industrial Process Automation	3	0	0	3	PE
18MFE23	Advanced Meat Processing Technology	3	0	0	3	PE
18MFE24	Advanced Dairy Technology	3	0	0	3	PE
18MFE25	Technology of Food Colours and Flavours	3	0	0	3	PE
18MFE26	Internet of Things in Food and Agriculture	3	0	0	3	PE
18MFE27	Machine Vision for Food Technology	3	0	0	3	PE

	18AMT17 APPLIED STATISTICS FOR FOOD TECHNO)LO(GΥ		
		L	Т	P	Credit
		3	1	0	4
Preamble	This course will help the students to identify, formulate and	-	mize j	process	ses using
	statistical tools in order to achieve the best products in food indus	try.			
Prerequisites	Basic knowledge of probability				
UNIT – I					9
	nd Regression Analysis: Curve fitting by method of Least Squ	are -	Corre	lation	- Linear,
multiple and pa	artial correlation - Linear regression - Multiple regression.				
UNIT – II					9
•	pothesis: Sampling Distributions - Large sample tests - Testing	-	0		0
	fference of proportions - Single mean - Difference of means - Sma				
-	f means (student's t-test) - Testing the significance of Varian	ices ((F-test)) - Te	sting the
significance of	goodness of fit - Independence of attributes (χ2-test).				
	·				
UNIT – III					9
•	eriments: Analysis of variance - One-way classification - Comple				U
•	sification - Randomized block design - Latin Square Design - Fa	actori	al exp	erimer	its - Two
factor factorial	experiments - 2k Factorial design.				
	T				0
UNIT – IV				C1	9
	nalysis: Significance of time series analysis - Components of Ti				
	hod - Semi-average method - Method of Moving Averages - N ions - Method of Simple Averages - Ratio to trend method - Ratio t				
Seasonal varia	ions - Method of Simple Averages - Katlo to trend method - Katlo t		ving av	verage	methou.
UNIT – V					9
	ality Control: Introduction to statistical quality control - Control	1 cha	rts - C	ontrol	iiiiiii
-	- R chart - s chart - Control charts for attributes: np chart - p chart			onuor	churt for
vanaores. enar				al·15	Total: 60
REFERENCE			Lutorn	un.10,	10001000
	vore, "Probability and Statistics for Engineering and the Sciences",	Thor	mson A	Asia 2	002
	C. and Kapoor V.K., "Fundamentals of Mathematical Statistics", 1				
	w Delhi, 2018.			5 arturi	Chund &
	.W., Montogomery D.G., Goldsman D.M. and Borror C.M., "P	robał	oilitv a	nd Sta	itistics in
	ng", 4 th Edition, John Wiley & Sons Inc., UK, 2009.	10040	u u		
	n_{2} , n_{2} , n_{3} , n_{1} , n_{2} , n_{3} , n_{1} , n_{2} , n_{3} , n				

	RSE OUTCO					BT Mapped
On cor	npletion of th	e course, tl	ne students will be a	able to		(Highest Level)
CO1:	measure the	relationshi	p between variable	S		Understanding (K2)
CO2:	apply statist	ical tests in	testing hypotheses	on data		Evaluating (K5)
CO3:	adopt design	n of experin	ns	Evaluating (K5)		
CO4:	apply ideas	to real time	e series data and inte	erpret outcomes of a	nalyses	Applying (K3)
CO5:	establish co	ntrol charts	for monitoring pro	cesses		Evaluating (K5)
~~~~~	~ ~ ~			g of COs with POs	201	
COs/P	Os P	01	PO2	PO3	PO4	PO5
CO1		1	2	<b>*</b>		
CO2	2	1	2			
CO3	3	1	2			
CO4	ŀ					
CO5	5					
1 - Sli	ght, 2 – Mode	erate, 3 –	Substantial, BT - B	loom's Taxonomy		

		18MFT11 UNIT OPERATIONS IN FOOD PROCESS ENGIN				
			L	Т	Р	Credit
			3	0	0	3
Prea	amble	The subject will help the students to have knowledge on balance, fluid properties, mechanical operations, heat and mass tran				d energy
Prer	requisites	Nil	10101 01			
	IT – I					
		<b>Energy Balance:</b> Stoichiometric principles - Material balance wit	hout c	hemic	al read	
disti solu	illation – E	vaporation – Crystallization - Drying and extraction - Heat capacity on dard heat of reaction - Heats of formation - Combustion - Energy	of solid	s - Liq	uids,	gases an
UN]	IT – II					
Flui	i <b>d flow:</b> Pri	nciples of fluid flow - Properties of liquids - Fluid dynamics - Potent	ial ene	rgy - F	Kinetic	c energy
		y - Friction loss - Mechanical energy - Newtonian and non-Newton		<b>U</b> .		
		- Flow measurement and measurement of viscosity - Kinematics				
		- Basic equation of fluid flow: Equation of continuity and Bernou				
		tion for fluid friction - Application of Bernoulli equation for pump we	-	ation	- Con	
Dell	llouin equa	ton for nuite metion - Application of Bernoulli equation for pullip we	JIK.			
<b>T T N T</b> 1						
	$\mathbf{IT} - \mathbf{III}$			0	•,	
		peration: Screening - Screening equipment - Effectiveness of se				
Sedi	imentation					
••••••	mentation	- Thickening - Clarifier - Floatation - Filtration Principle - Types of f	iltratio	n - equ	iipmei	nt.
		- Thickening - Clarifier - Floatation - Filtration Principle - Types of fi	iltratio	n - equ	iipmei	
UNI	IT – IV					
UNI Hea	IT – IV It Transfer	Concept of heat conduction - Fourier's law of heat conduction - O	One din	nensio	nal ste	eady stat
UNI Hea heat	IT – IV It Transfer	Concept of heat conduction - Fourier's law of heat conduction - On equation for flat plate - Concept of heat convection - Natural and for	One din rced co	nensio	nal ste ion - I	eady stat
UNI Hea heat and	<b>IT – IV</b> <b>at Transfer</b> conduction overall hea	Concept of heat conduction - Fourier's law of heat conduction - On equation for flat plate - Concept of heat convection - Natural and for at transfer coefficient - Concept of radiations - Black body and gre	One din rced co ey body	nensio onvect	nal ste ion - I ept - ]	eady stat ndividua Radiatio
UNI Hea heat and	<b>IT – IV</b> <b>at Transfer</b> conduction overall hea	Concept of heat conduction - Fourier's law of heat conduction - On equation for flat plate - Concept of heat convection - Natural and for	One din rced co ey body	nensio onvect	nal ste ion - I ept - ]	eady stat ndividua Radiatio
UNI Hea heat and Prop	<b>IT – IV</b> <b>t Transfer</b> conduction overall hea perties - St	Concept of heat conduction - Fourier's law of heat conduction - On equation for flat plate - Concept of heat convection - Natural and for at transfer coefficient - Concept of radiations - Black body and gre	One din rced co ey body	nensio onvect	nal ste ion - I ept - ]	eady stat ndividua Radiatio
UNI Heat heat and Prop exch	<b>IT – IV</b> <b>at Transfer</b> conduction overall hea perties - St hanger and	Concept of heat conduction - Fourier's law of heat conduction - On equation for flat plate - Concept of heat convection - Natural and for at transfer coefficient - Concept of radiations - Black body and gree fan Boltzmann's law - Emissivity and absorptivity - Kirchhoff's	One din rced co ey body	nensio onvect	nal ste ion - I ept - ]	eady stat ndividua Radiatio
UNI Heat heat and Prop exch	<b>IT – IV</b> <b>t Transfer</b> conduction overall hea perties - St	Concept of heat conduction - Fourier's law of heat conduction - On equation for flat plate - Concept of heat convection - Natural and for at transfer coefficient - Concept of radiations - Black body and gree fan Boltzmann's law - Emissivity and absorptivity - Kirchhoff's	One din rced co ey body	nensio onvect	nal ste ion - I ept - ]	eady stat ndividua Radiatio
UNI Heat heat and Prop exch	IT - IV at <b>Transfer</b> conduction overall heaperties - St panger and IT - V	Concept of heat conduction - Fourier's law of heat conduction - On equation for flat plate - Concept of heat convection - Natural and for at transfer coefficient - Concept of radiations - Black body and gree fan Boltzmann's law - Emissivity and absorptivity - Kirchhoff's	One din rced co ey body Law -	nensio onvect y conc Introc	nal ste ion - I ept - I luction	eady stat ndividua Radiatio n to Hea
UNI Heat and Prop exch UNI Mas	<b>IT – IV</b> at <b>Transfer</b> conduction overall hea perties - St hanger and <b>IT – V</b> ss <b>Transfe</b>	: Concept of heat conduction - Fourier's law of heat conduction - On equation for flat plate - Concept of heat convection - Natural and for at transfer coefficient - Concept of radiations - Black body and greefan Boltzmann's law - Emissivity and absorptivity - Kirchhoff's Evaporator equipment.	One din rced co y body Law -	nensio onvect y conc Introc diffus	nal ste ion - I ept - I luction	eady stat ndividua Radiatio n to Hea
UNI Heat heat and Prop exch UNI Mas liqui	IT - IV at Transfer conduction overall head perties - St hanger and IT - V as Transfer ids - Stead	: Concept of heat conduction - Fourier's law of heat conduction - On equation for flat plate - Concept of heat convection - Natural and for at transfer coefficient - Concept of radiations - Black body and greefan Boltzmann's law - Emissivity and absorptivity - Kirchhoff's Evaporator equipment.	One din rced co y body Law -	nensio onvect y conc Introc diffus measu	nal ste ion - I ept - I luction sion in	eady stat ndividua Radiatio n to Hea n to Hea n gas an nt - Loca
UNI Heat heat and Prop exch UNI Mas liqui and	IT - IV at Transfer conduction overall heavies - St conduction overall heavies - St conduction overall heavies - St conduction overall heavies - St anger and IT - V as Transfer ids - Stead overall mathematical	Concept of heat conduction - Fourier's law of heat conduction - On equation for flat plate - Concept of heat convection - Natural and for at transfer coefficient - Concept of radiations - Black body and gre efan Boltzmann's law - Emissivity and absorptivity - Kirchhoff's Evaporator equipment.	One din rced co y body Law -	nensio onvect y conc Introc diffus measu	nal ste ion - I ept - I luction sion in	eady stat ndividua Radiatio n to Hea n to Hea n gas an nt - Loca
UNI Heat heat and Prop exch UNI Mas liqui and	IT - IV at Transfer conduction overall heavies - St conduction overall heavies - St conduction overall heavies - St conduction overall heavies - St anger and IT - V as Transfer ids - Stead overall mathematical	: Concept of heat conduction - Fourier's law of heat conduction - On equation for flat plate - Concept of heat convection - Natural and for at transfer coefficient - Concept of radiations - Black body and greefan Boltzmann's law - Emissivity and absorptivity - Kirchhoff's Evaporator equipment.	One din rced co y body Law -	nensio onvect y conc Introc diffus measu	nal ste ion - I ept - I luction sion in remer - dist	eady stat ndividua Radiatio n to Hea n gas an nt - Loca tillation
UNI Heat and Prop exch UNI Mas liqui and extra	IT - IV at Transfer conduction overall heavies perties - St hanger and IT - V ss Transfer ids - Stead overall mathematical	: Concept of heat conduction - Fourier's law of heat conduction - On equation for flat plate - Concept of heat convection - Natural and for at transfer coefficient - Concept of radiations - Black body and greefan Boltzmann's law - Emissivity and absorptivity - Kirchhoff's Evaporator equipment. r: Types of mass transfer operations - Fick's law - Molecular and y state diffusion under stagnant and laminar flow conditions - Diffuses transfer coefficients - Introduction to mass transfer operation aching - Humidification.	One din rced co y body Law -	nensio onvect y conc Introc diffus measu	nal ste ion - I ept - I luction sion in remer - dist	eady stat ndividua Radiatio n to Hea n to Hea n gas an n gas an nt - Loca
UNI Heat and Prop exch UNI Mas liqui and extra REI	IT - IV at Transfer conduction overall head perties - St hanger and IT - V as Transfer ids - Stead overall matrix action - Lead FERENCE	: Concept of heat conduction - Fourier's law of heat conduction - On equation for flat plate - Concept of heat convection - Natural and for at transfer coefficient - Concept of radiations - Black body and greefan Boltzmann's law - Emissivity and absorptivity - Kirchhoff's Evaporator equipment. r: Types of mass transfer operations - Fick's law - Molecular and y state diffusion under stagnant and laminar flow conditions - Diffuses transfer coefficients - Introduction to mass transfer operation aching - Humidification.	One din rced co y body Law - l eddy isivity : absor	nensio onvect y conc Introc diffus measu rption	nal ste ion - I ept - I luction sion in remer - dist	eady stat ndividua Radiatio n to Hea n gas an nt - Loca tillation <b>Total: 4</b>
UNI Heat and Prop exch UNI Mas liqui and extra	IT – IV at Transfer conduction overall hea perties - St hanger and IT – V ss Transfe ids - Stead overall ma action - Lea FERENCE McCabe	<ul> <li>Concept of heat conduction - Fourier's law of heat conduction - On equation for flat plate - Concept of heat convection - Natural and for at transfer coefficient - Concept of radiations - Black body and greefan Boltzmann's law - Emissivity and absorptivity - Kirchhoff's Evaporator equipment.</li> <li>r: Types of mass transfer operations - Fick's law - Molecular and y state diffusion under stagnant and laminar flow conditions - Diffuses transfer coefficients - Introduction to mass transfer operation aching - Humidification.</li> <li>S:</li> <li>W.L., Smith J.C. and Harriot P., "Unit Operations of Chemical</li> </ul>	One din rced co y body Law - l eddy isivity : absor	nensio onvect y conc Introc diffus measu rption	nal ste ion - I ept - I luction sion in remer - dist	eady stat ndividua Radiatio n to Hea n gas an nt - Loca tillation <b>Total: 4</b>
UNI Heat heat and Prop exch UNI Mas liqui and extra REI 1.	IT - IV at Transfer conduction overall heavies perties - St hanger and IT - V as Transfer ids - Stead overall matching action - Leavies FERENCE McCabe McGraw-	<ul> <li>Concept of heat conduction - Fourier's law of heat conduction - On equation for flat plate - Concept of heat convection - Natural and for at transfer coefficient - Concept of radiations - Black body and greefan Boltzmann's law - Emissivity and absorptivity - Kirchhoff's Evaporator equipment.</li> <li>r: Types of mass transfer operations - Fick's law - Molecular and y state diffusion under stagnant and laminar flow conditions - Diffuses transfer coefficients - Introduction to mass transfer operation aching - Humidification.</li> <li>S:</li> <li>W.L., Smith J.C. and Harriot P., "Unit Operations of Chemical Hill, New York, 2005.</li> </ul>	One din rced co y body Law - l eddy isivity : absor Engir	nensio onvect y conc Introc diffus measu rption	nal ste ion - I ept - I luction sion in remer - dist g ² ² , 7 th	eady stat ndividua Radiatio n to Hea n gas an nt - Loca tillation <b>Total: 4</b>
UNI Heat heat and Prop exch UNI Mas liqui and extra <b>REI</b> 1.	IT - IV at Transfer conduction overall hea- perties - St hanger and IT - V as Transfer ids - Stead overall ma- action - Lea- FERENCE McCabe McGraw- DuttaBina	<ul> <li>Concept of heat conduction - Fourier's law of heat conduction - On equation for flat plate - Concept of heat convection - Natural and for at transfer coefficient - Concept of radiations - Black body and greefan Boltzmann's law - Emissivity and absorptivity - Kirchhoff's Evaporator equipment.</li> <li>r: Types of mass transfer operations - Fick's law - Molecular and y state diffusion under stagnant and laminar flow conditions - Diffu ass transfer coefficients - Introduction to mass transfer operation aching - Humidification.</li> <li>S:</li> <li>W.L., Smith J.C. and Harriot P., "Unit Operations of Chemical Hill, New York, 2005.</li> <li>wy K., "Heat Transfer: Principles and Applications", Prentice Hall of Law Principles and Applications", Prentice Hall of Law Principles and Principles Princ</li></ul>	Dne din rced co y body Law - l eddy isivity : absor Engir India, l	nensio onvect y conc Introc diffus measu rption neering	nal ste ion - I ept - I luction sion in remer - dist g ² ² , 7 th	eady stat ndividua Radiatio n to Hea n gas an nt - Loca tillation <b>Total: 4</b>
UNI Heat heat and Prop exch UNI Mas liqui and extra REI 1.	IT – IV at Transfer conduction overall hea- perties - St hanger and IT – V ss Transfe ids - Stead overall ma- action - Lea FERENCE McCabe McGraw- DuttaBina Treybal R	<ul> <li>Concept of heat conduction - Fourier's law of heat conduction - On equation for flat plate - Concept of heat convection - Natural and for at transfer coefficient - Concept of radiations - Black body and greefan Boltzmann's law - Emissivity and absorptivity - Kirchhoff's Evaporator equipment.</li> <li>r: Types of mass transfer operations - Fick's law - Molecular and y state diffusion under stagnant and laminar flow conditions - Diffuses transfer coefficients - Introduction to mass transfer operation aching - Humidification.</li> <li>S:</li> <li>W.L., Smith J.C. and Harriot P., "Unit Operations of Chemical Hill, New York, 2005.</li> </ul>	One din rced co y body Law - l eddy isivity : absor Engir India, I rk, 201	nensio onvect y conc Introc diffus measu rption neering New D 2.	nal ste ion - I ept - I luction sion in remer - dist g", 7 th Delhi, 2	eady stat ndividua Radiatio n to Hea n gas an nt - Loca tillation <b>Total: 4</b>

COURS	E OUTCOMES:				BT Mapped
On com	pletion of the course,	the students will be	able to		(Highest Level)
CO1:	make use of materia	l and energy balance	in food processing	operations	Applying (K3)
CO2:	Understanding (K2)				
CO3:	outline the various n	nechanical operations	s carried in food pro	ocessing	Understanding (K2)
CO4:	apply heat transfer c	oncepts in food proce	essing		Applying (K3)
CO5:	summarize the vario	us mass transfer oper	rations		Understanding (K2)
		Mapping	g of COs with POs		
COs/POs	s PO1	PO2	PO3	PO4	PO5
CO1	3	1			1
CO2	3	2			1
CO3	3	3			1
CO4	3	2			1
CO5	3	2			1
1 – Sligh	t, 2 – Moderate, 3 -	– Substantial, BT - B	loom's Taxonomy		

	18MFT12 FOOD CHEMISTRY AND MICROBIOLOGY	[ 			
			T	<u>P</u>	Credit
Draambla		<b>3</b>	0	$\frac{0}{0}$	3
Preamble	This course provides knowledge about water activity, influence of bio and understanding the microbial spoilage and food infection and the and hygiene while handling foods				•
Prerequisites	Nil				
UNIT – I					9
transitions ar and propertie maltodextring	<b>ionships in Food:</b> Water activity and its relevance to deteriorative prind molecular mobility - their relevance to quality and stability of foods. (es of simple and complex food carbohydrates - Modified starch and ces and corn syrup - Cyclodextrins - Chemistry and food applications - Poles as fat substitutes.	C <b>ar</b> l ellul	bohyd lose - 1	<b>rates:</b> Manu	Structure of acture of
UNIT – II					9
-	sifications - Structure and roles of fatty acids - Processing of oils and fats cation and winterization. Deterioration of oils - hydrolytic rancidity - ox		-	-	-
UNIT – III	otein structure and conformation - Properties and reactions of pro		• •	. 1	9
Dissociation	- Optical activity - solubility - hydration - swelling - foam formation - sta g effect - Denaturation of proteins - Food sources - functional role in foods	ıbili	ization	- gel	formation
UNIT – IV					9
	rowth: Types of microorganism normally associated with food-mold, yea				- Physica
their control standards for Principles ar vegetables -	I factors influencing destruction of microorganisms - Microorganisms in - Biochemical changes caused by microorganisms - Microbial food ferme different foods - Food poisoning and microbial toxins. <b>Microbial Spo</b> d types of spoilage - Microbial spoilage of different types of foods Fresh and processed meats, poultry, sea foods, cereals products, bakery ods and canned foods.	enta <b>lag</b> - S	tion - I e: Spoi spoilag	Micro ilage e of	biological of foods - fruits and
their control standards for Principles ar vegetables - fermented for	- Biochemical changes caused by microorganisms - Microbial food ferme different foods - Food poisoning and microbial toxins. <b>Microbial Spo</b> ad types of spoilage - Microbial spoilage of different types of foods Fresh and processed meats, poultry, sea foods, cereals products, bakery	enta <b>lag</b> - S	tion - I e: Spoi spoilag	Micro ilage e of	biological of foods - fruits and products,
their control standards for Principles ar vegetables - fermented for <b>UNIT – V</b> <b>Microbiolog</b> concept - Ca	<ul> <li>Biochemical changes caused by microorganisms - Microbial food fermer different foods - Food poisoning and microbial toxins. Microbial Spot and types of spoilage - Microbial spoilage of different types of foods Fresh and processed meats, poultry, sea foods, cereals products, bakery ods and canned foods.</li> <li>y and Food Preservation: Effect of high temperature on microbes - TE alculation of process time. Effect of low temperature, radiation, drying</li> </ul>	enta lag - S pro T, I g or	tion - l e: Spoilag oducts, D value	Micro ilage e of dairy e, Z v	biological of foods - fruits and products g alue, 12D
their control standards for Principles ar vegetables - fermented for <b>UNIT – V</b> <b>Microbiolog</b> concept - Ca	<ul> <li>Biochemical changes caused by microorganisms - Microbial food fermer different foods - Food poisoning and microbial toxins. Microbial Spot and types of spoilage - Microbial spoilage of different types of foods Fresh and processed meats, poultry, sea foods, cereals products, bakery ods and canned foods.</li> <li>y and Food Preservation: Effect of high temperature on microbes - TD</li> </ul>	enta lag - S pro T, I g or	tion - l e: Spoilag oducts, D value	Micro ilage e of dairy e, Z v	biological of foods fruits and products groducts galue, 12D
their control standards for Principles ar vegetables - fermented fo UNIT – V Microbiolog concept - Ca preservatives REFERENC	- Biochemical changes caused by microorganisms - Microbial food ferme different foods - Food poisoning and microbial toxins. <b>Microbial Spot</b> ad types of spoilage - Microbial spoilage of different types of foods Fresh and processed meats, poultry, sea foods, cereals products, bakery ods and canned foods. y and Food Preservation: Effect of high temperature on microbes - TD alculation of process time. Effect of low temperature, radiation, drying Advances in preservation of food by various biotechnological processes CES:	enta lag - S pro T, I g or	tion - l e: Spoilag oducts, D value n micre	Micro ilage e of dairy e, Z v obes.	biologica of foods fruits and products alue, 12D Chemica Total: 45
their control standards for Principles ar vegetables - fermented for UNIT – V Microbiolog concept - Ca preservatives REFERENC 1.   Belitz F	<ul> <li>Biochemical changes caused by microorganisms - Microbial food fermer different foods - Food poisoning and microbial toxins. Microbial Spot and types of spoilage - Microbial spoilage of different types of foods Fresh and processed meats, poultry, sea foods, cereals products, bakery ods and canned foods.</li> <li>y and Food Preservation: Effect of high temperature on microbes - TE alculation of process time. Effect of low temperature, radiation, drying Advances in preservation of food by various biotechnological processes</li> <li>CES:</li> <li>I. D., Grosch W. and Schieberle P., "Food Chemistry", 3rd Edition, Spring</li> </ul>	enta lag - S pro T, I g or	tion - l e: Spoi poilag ducts, D value n micre Verley	Micro ilage e of dairy e, Z v obes.	biologica of foods fruits and products alue, 12D Chemica <b>Total: 4</b> 5
their control standards for Principles ar vegetables - fermented for <b>UNIT – V</b> <b>Microbiolog</b> concept - Ca preservatives <b>REFERENC</b> 1. Belitz F 2. Vaclavi	<ul> <li>Biochemical changes caused by microorganisms - Microbial food fermer different foods - Food poisoning and microbial toxins. Microbial Spot and types of spoilage - Microbial spoilage of different types of foods Fresh and processed meats, poultry, sea foods, cereals products, bakery ods and canned foods.</li> <li>y and Food Preservation: Effect of high temperature on microbes - TD alculation of process time. Effect of low temperature, radiation, drying Advances in preservation of food by various biotechnological processes</li> <li>CES:</li> <li>I. D., Grosch W. and Schieberle P., "Food Chemistry", 3rd Edition, Spring k V.A. and Christian E.W., "Essential of Food Science", 2nd Edition, Spring</li> </ul>	enta lag - S pro T, I g or ger- nge	tion - l e: Spo poilag oducts, D value n micre Verley r, 2005	Micro ilage e of dairy e, Z v obes. , Berl	biologica of foods fruits and products alue, 12I Chemica <b>Total: 4</b> in, 2004.
their control standards for Principles ar vegetables - fermented for <b>UNIT – V</b> <b>Microbiolog</b> concept - Ca preservatives <b>REFERENC</b> 1. Belitz H 2. Vaclavi 3. Frazier	<ul> <li>Biochemical changes caused by microorganisms - Microbial food fermer different foods - Food poisoning and microbial toxins. Microbial Spot and types of spoilage - Microbial spoilage of different types of foods Fresh and processed meats, poultry, sea foods, cereals products, bakery ods and canned foods.</li> <li>y and Food Preservation: Effect of high temperature on microbes - TE alculation of process time. Effect of low temperature, radiation, drying Advances in preservation of food by various biotechnological processes</li> <li>CES:</li> <li>I. D., Grosch W. and Schieberle P., "Food Chemistry", 3rd Edition, Spring</li> </ul>	enta lag - S pro T, I g or ger- nge	tion - l e: Spo poilag oducts, D value n micre Verley r, 2005	Micro ilage e of dairy e, Z v obes. , Berl	biologica of foods fruits and products alue, 12I Chemica <b>Total: 4</b> in, 2004.

COU	RSE	<b>OUTCOMES:</b>				BT Mapped
On con	mple	tion of the course, t	he students will be	able to		(Highest Level)
CO1:	ana	lyze the role of wat	er in food stability			Analyzing (K4)
CO2:	exa	Analyzing (K4)				
CO3:	illu	strate the modification	on of biomolecule	S		Understanding (K2)
CO4:	out	line the significanc	e and role of mic	crobes in fermentati	on, spoilage and	Understanding (K2)
	foo	d borne infectious d	iseases			
CO5:	app	braise the importance	e of preservation te	echniques in microbi	al control	Analyzing (K4)
			Mappin	g of COs with POs		
COs/P	<b>O</b> s	PO1	PO2	PO3	PO4	PO5
CO	1	3	3	2	2	1
CO2	2	3	3	2	2	1
COS	3	3	3	2	2	1
CO	4	3	3	2	3	1
COS	5	3	3	2	3	1
1 – Sli	ight,	2 – Moderate, 3 –	Substantial, BT -	Bloom's Taxonomy		

	18MFT13 LIPID SCIENCE AND TECHNOLOGY	<u> </u>	
		P	Credit
		0	3
Preamble	Course is designed to conceive an idea about the different techniques of oil	proces	sing and
D · · ·	lipid based products.		
Prerequisites	Nil		I .
UNIT – I			9
-	Classification, composition, Sources - Nutritional profile and is significance in		
• • •	perties - Color, odour, specific gravity - Chemical constants - Iodine value	-	
	de Value - Polenske Number - Reichert Meissl Value - Acetyl Value - Opt	-	1
	ex - Absorption spectra - Rheological and Thermal properties - Importance of t		emulsion
and its stability	in food systems - Measurement of lipid degradation parameters during storag	e.	
UNIT – II			ļ
	Oils and Fats: Extraction and refining of oils and fats - Traditional M		
Extraction - M	echanical Extraction - Modern trends in extraction of oils and fats - Supercrit	ical tec	hnology
Membrane tech	hnology - Liquid-liquid extraction - Wipe film evaporation - Application of en	ncapsu	lation and
nano-encapsula	ation - Bioactive lipids extraction and stabilization - Basic Processing steps	of refi	ning -oil
degumming, no	eutralization, bleaching and deodorization - Chemical adjuncts - lecithin, mon	o-glyc	erides and
its derivatives -	- Applications in food industries.		
	of Oils and its Applications in Food Industries: Modification of oil - Rece		elopment
<b>Modification</b> in plant and part Types of Intere- - Fat mimetics	rocesses – Hydrogenation – Fractionation – Blending – Winterization – Int esterification - Applications of Interesterification - Cocoa butter alternatives - G and substitutes - Dairy Imitation Products - Enzymatic Modification - Str	erester CBR, C	elopment ification CBS, CBI
Modification of in plant and particular Types of Intere- Fat mimetics Speciality fats	rocesses – Hydrogenation – Fractionation – Blending – Winterization – Int esterification - Applications of Interesterification - Cocoa butter alternatives - G	erester CBR, C	ification CBS, CBE
Modification of in plant and pu Types of Intere - Fat mimetics Speciality fats UNIT – IV	rocesses – Hydrogenation – Fractionation – Blending – Winterization – Int esterification - Applications of Interesterification - Cocoa butter alternatives - G and substitutes - Dairy Imitation Products - Enzymatic Modification - Str - Lipid as micronutrients and nutraceuticals.	erester CBR, C uctured	elopment ification CBS, CBI d Lipids
Modification of in plant and pr Types of Intere - Fat mimetics Speciality fats UNIT – IV Formulation	rocesses – Hydrogenation – Fractionation – Blending – Winterization – Int esterification - Applications of Interesterification - Cocoa butter alternatives - O s and substitutes - Dairy Imitation Products - Enzymatic Modification - Str - Lipid as micronutrients and nutraceuticals. and Characterization: Margarines - Low-fat spreads - Peanut butter - V	erester CBR, C uctured egetab	elopment ification CBS, CBI 1 Lipids le ghee -
Modification of in plant and pr Types of Intere - Fat mimetics Speciality fats UNIT – IV Formulation a mayonnaise –	rocesses – Hydrogenation – Fractionation – Blending – Winterization – Int esterification - Applications of Interesterification - Cocoa butter alternatives - G s and substitutes - Dairy Imitation Products - Enzymatic Modification - Str - Lipid as micronutrients and nutraceuticals. and Characterization: Margarines - Low-fat spreads - Peanut butter - V whipped creams - salad oils and dressings - cooking oils - Fat powders - cr	erester CBR, C uctured egetab eam, b	elopment ification CBS, CBI d Lipids d Lipids
Modification of in plant and pr Types of Intere - Fat mimetics Speciality fats UNIT – IV Formulation mayonnaise – liver - Formula	rocesses – Hydrogenation – Fractionation – Blending – Winterization – Int esterification - Applications of Interesterification - Cocoa butter alternatives - O s and substitutes - Dairy Imitation Products - Enzymatic Modification - Str - Lipid as micronutrients and nutraceuticals. and Characterization: Margarines - Low-fat spreads - Peanut butter - V	erester CBR, C uctured egetab eam, b	elopment ification CBS, CBF d Lipids d Lipids
Modification of in plant and pr Types of Intere - Fat mimetics Speciality fats UNIT – IV Formulation mayonnaise – liver - Formula	rocesses – Hydrogenation – Fractionation – Blending – Winterization – Intesterification - Applications of Interesterification - Cocoa butter alternatives - G and substitutes - Dairy Imitation Products - Enzymatic Modification - Str - Lipid as micronutrients and nutraceuticals. and Characterization: Margarines - Low-fat spreads - Peanut butter - V whipped creams - salad oils and dressings - cooking oils - Fat powders - cr ation and technological aspects of bakery and confectionery shortenings – Rer	erester CBR, C uctured egetab eam, b	elopment ification CBS, CBF d Lipids d Lipids
Modification of in plant and pr Types of Intere - Fat mimetics Speciality fats UNIT – IV Formulation mayonnaise – liver - Formula	rocesses – Hydrogenation – Fractionation – Blending – Winterization – Intesterification - Applications of Interesterification - Cocoa butter alternatives - G and substitutes - Dairy Imitation Products - Enzymatic Modification - Str - Lipid as micronutrients and nutraceuticals. and Characterization: Margarines - Low-fat spreads - Peanut butter - V whipped creams - salad oils and dressings - cooking oils - Fat powders - cr ation and technological aspects of bakery and confectionery shortenings – Rer	erester CBR, C uctured egetab eam, b	elopment ification CBS, CBF d Lipids d Lipids
Modification of in plant and pr Types of Intere- - Fat mimetics Speciality fats UNIT – IV Formulation a mayonnaise – liver - Formula wet methods -	rocesses – Hydrogenation – Fractionation – Blending – Winterization – Int esterification - Applications of Interesterification - Cocoa butter alternatives - G and substitutes - Dairy Imitation Products - Enzymatic Modification - Str - Lipid as micronutrients and nutraceuticals. and Characterization: Margarines - Low-fat spreads - Peanut butter - V whipped creams - salad oils and dressings - cooking oils - Fat powders - cr ation and technological aspects of bakery and confectionery shortenings – Rer lard and tallow.	erester CBR, C uctured egetab eam, b idering	elopment ification CBS, CBI d Lipids le ghee - outter, coo
Modification of in plant and pr Types of Intere- - Fat mimetics Speciality fats UNIT – IV Formulation a mayonnaise – liver - Formula wet methods – UNIT – V Frying and S	rocesses – Hydrogenation – Fractionation – Blending – Winterization – Int esterification - Applications of Interesterification - Cocoa butter alternatives - G s and substitutes - Dairy Imitation Products - Enzymatic Modification - Str - Lipid as micronutrients and nutraceuticals. and Characterization: Margarines - Low-fat spreads - Peanut butter - V whipped creams - salad oils and dressings - cooking oils - Fat powders - cr ation and technological aspects of bakery and confectionery shortenings – Rer lard and tallow.	erester CBR, C uctured egetab eam, b idering	elopment ification CBS, CBI 1 Lipids le ghee outter, co - dry and ying oil
Modification of in plant and pr Types of Intere - Fat mimetics Speciality fats UNIT – IV Formulation a mayonnaise – liver - Formula wet methods – UNIT – V Frying and S Selection of fr	rocesses – Hydrogenation – Fractionation – Blending – Winterization – Int esterification - Applications of Interesterification - Cocoa butter alternatives - G s and substitutes - Dairy Imitation Products - Enzymatic Modification - Str - Lipid as micronutrients and nutraceuticals. and Characterization: Margarines - Low-fat spreads - Peanut butter - V whipped creams - salad oils and dressings - cooking oils - Fat powders - cr ation and technological aspects of bakery and confectionery shortenings – Rer lard and tallow.	erester CBR, C uctured egetable eam, b idering s of fr 'ypes -	elopment ification CBS, CBI d Lipids le ghee outter, co - dry and ying oil Causes
Modification of in plant and pr Types of Intere- - Fat mimetics Speciality fats UNIT – IV Formulation a mayonnaise – liver - Formula wet methods - UNIT – V Frying and S Selection of fr Prevention - Q	rocesses – Hydrogenation – Fractionation – Blending – Winterization – Int esterification - Applications of Interesterification - Cocoa butter alternatives - G s and substitutes - Dairy Imitation Products - Enzymatic Modification - Str - Lipid as micronutrients and nutraceuticals. and Characterization: Margarines - Low-fat spreads - Peanut butter - V whipped creams - salad oils and dressings - cooking oils - Fat powders - cr ation and technological aspects of bakery and confectionery shortenings – Rer lard and tallow.	erester CBR, C uctured egetable eam, b idering s of fr 'ypes -	elopment ification CBS, CBI d Lipids le ghee outter, co - dry and ying oil Causes
Modification of in plant and pr Types of Intere - Fat mimetics Speciality fats UNIT – IV Formulation a mayonnaise – liver - Formula wet methods – UNIT – V Frying and S Selection of fr	rocesses – Hydrogenation – Fractionation – Blending – Winterization – Int esterification - Applications of Interesterification - Cocoa butter alternatives - G s and substitutes - Dairy Imitation Products - Enzymatic Modification - Str - Lipid as micronutrients and nutraceuticals. and Characterization: Margarines - Low-fat spreads - Peanut butter - V whipped creams - salad oils and dressings - cooking oils - Fat powders - cr ation and technological aspects of bakery and confectionery shortenings – Rer lard and tallow.	erester CBR, C uctured egetable eam, b idering s of fr ypes - uireme	elopment ification CBS, CBI 1 Lipids le ghee outter, co - dry and ying oil Causes nts of fat
Modification of in plant and pr Types of Intere- - Fat mimetics Speciality fats UNIT – IV Formulation a mayonnaise – liver - Formula wet methods – UNIT – V Frying and S Selection of fr Prevention - Q and oils.	rocesses – Hydrogenation – Fractionation – Blending – Winterization – Intesterification - Applications of Interesterification - Cocoa butter alternatives - G and substitutes - Dairy Imitation Products - Enzymatic Modification - Str - Lipid as micronutrients and nutraceuticals. and Characterization: Margarines - Low-fat spreads - Peanut butter - V whipped creams - salad oils and dressings - cooking oils - Fat powders - cr ation and technological aspects of bakery and confectionery shortenings – Rer lard and tallow. torage of Oils: Frying of oil - Role of fat and oil in frying - Application rying oil - Changes occurring in food and oil during frying - Rancidity - T uality standards of oil - Shortenings - Cooking oils - Salad oils. Packaging req	erester CBR, C uctured egetable eam, b idering s of fr ypes - uireme	elopment ification CBS, CBI 1 Lipids le ghee outter, co - dry and ying oil Causes nts of fat
Modification of in plant and pr Types of Interest - Fat mimetics Speciality fats UNIT – IV Formulation at mayonnaise – V liver - Formula wet methods - UNIT – V Frying and S Selection of fr Prevention - Q and oils.	rocesses – Hydrogenation – Fractionation – Blending – Winterization – Intesterification - Applications of Interesterification - Cocoa butter alternatives - Geometry and substitutes - Dairy Imitation Products - Enzymatic Modification - Str - Lipid as micronutrients and nutraceuticals.  and Characterization: Margarines - Low-fat spreads - Peanut butter - V whipped creams - salad oils and dressings - cooking oils - Fat powders - cr tion and technological aspects of bakery and confectionery shortenings – Rer lard and tallow.  torage of Oils: Frying of oil - Role of fat and oil in frying - Application ying oil - Changes occurring in food and oil during frying - Rancidity - T uality standards of oil - Shortenings - Cooking oils - Salad oils. Packaging req	erester CBR, C uctured egetab eam, b idering s of fr ypes - uireme	elopment ification CBS, CBI 1 Lipids le ghee outter, cou - dry and ying oil Causes nts of fat <b>Total: 4</b>
Modificationin plant and prTypes of Intered- Fat mimeticsSpeciality fats $UNIT - IV$ Formulationmayonnaise -liver - Formulawet methods -UNIT - VFrying and SSelection of frPrevention - Qand oils.REFERENCE1.Chakraba	rocesses – Hydrogenation – Fractionation – Blending – Winterization – Intesterification - Applications of Interesterification - Cocoa butter alternatives - Os and substitutes - Dairy Imitation Products - Enzymatic Modification - Str - Lipid as micronutrients and nutraceuticals. and Characterization: Margarines - Low-fat spreads - Peanut butter - V whipped creams - salad oils and dressings - cooking oils - Fat powders - creation and technological aspects of bakery and confectionery shortenings – Rer lard and tallow. torage of Oils: Frying of oil - Role of fat and oil in frying - Application rying oil - Changes occurring in food and oil during frying - Rancidity - T uality standards of oil - Shortenings - Cooking oils - Salad oils. Packaging req ES: thy M.M., "Chemistry and Technology of Oils and Fats", Allied Publishers Py	erester CBR, C uctured egetable eam, b idering s of fr 'ypes - uireme	elopment ification CBS, CBI 1 Lipids le ghee outter, co - dry and ying oil Causes nts of fat <b>Total: 4</b> , 2003.
Modificationin plant and prTypes of Interest- Fat mimeticsSpeciality fats $UNIT - IV$ Formulationmayonnaiseliver- Formulationwet methodsUNIT - VFrying and SSelection of frPrevention - Qand oils.REFERENCE1.Chakraba2.Bailey, "I	rocesses – Hydrogenation – Fractionation – Blending – Winterization – Intesterification - Applications of Interesterification - Cocoa butter alternatives - G s and substitutes - Dairy Imitation Products - Enzymatic Modification - Str - Lipid as micronutrients and nutraceuticals. and Characterization: Margarines - Low-fat spreads - Peanut butter - V whipped creams - salad oils and dressings - cooking oils - Fat powders - cr ation and technological aspects of bakery and confectionery shortenings – Rer lard and tallow. torage of Oils: Frying of oil - Role of fat and oil in frying - Application ying oil - Changes occurring in food and oil during frying - Rancidity - T uality standards of oil - Shortenings - Cooking oils - Salad oils. Packaging req ES: thy M.M., "Chemistry and Technology of Oils and Fats", Allied Publishers Py Bailey's Industrial Oil and Fat Products", 6 th Edition, Volume 1- 6, John Wiley	erester CBR, C uctured egetab eam, b dering s of fr ypes - uireme 't. Ltd. & Son	elopment ification CBS, CBI d Lipids le ghee outter, coo e dry and ying oil Causes nts of fat <b>Total: 4</b> , 2003. us, 2005.
Modificationin plant and prTypes of Intered- Fat mimeticsSpeciality fats $UNIT - IV$ Formulationmayonnaiseliver- Formulawet methodsUNIT - VFrying and SSelection of frPrevention - Qand oils.REFERENCE1.Chakraba2.Bailey, "I3.Wolf Har	rocesses – Hydrogenation – Fractionation – Blending – Winterization – Intesterification - Applications of Interesterification - Cocoa butter alternatives - Os and substitutes - Dairy Imitation Products - Enzymatic Modification - Str - Lipid as micronutrients and nutraceuticals. and Characterization: Margarines - Low-fat spreads - Peanut butter - V whipped creams - salad oils and dressings - cooking oils - Fat powders - creation and technological aspects of bakery and confectionery shortenings – Rer lard and tallow. torage of Oils: Frying of oil - Role of fat and oil in frying - Application rying oil - Changes occurring in food and oil during frying - Rancidity - T uality standards of oil - Shortenings - Cooking oils - Salad oils. Packaging req ES: thy M.M., "Chemistry and Technology of Oils and Fats", Allied Publishers Py	erester CBR, C uctured egetable eam, b idering s of fr ypes - uireme 't. Ltd. & Son , 2004.	elopment ification CBS, CBI 1 Lipids le ghee outter, co - dry an ying oil Causes nts of fat <b>Total: 4</b> , 2003. Is, 2005.

COURS	SE OUTCOMES:				BT Mapped			
On com	pletion of the course,	(Highest Level)						
CO1:	explain the different during storage	Understanding (K2)						
CO2:	assess the different to	echnologies for proc	cessing of fats and o	bil	Applying (K3)			
CO3:	analyze the techniqu	es of modifying oil	and its application	in food industries	Analyzing (K4)			
CO4:	identify the formulat	ions and characteriz	ation of different for	ood lipids	Applying (K3)			
CO5:	identify the type of f	rying and storage for	or lipid foods		Applying (K3)			
		Mappin	g of COs with POs	5				
COs/POs	s PO1	PO2	PO3	PO4	PO5			
CO1	3	3	1	1	1			
CO2	3	3	1	2	1			
CO3	3	3	1	2	1			
CO4	3	3		1	1			
CO5	3	3	1	1	1			
1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy								

	18MFT14 ADVANCED DRYING TECHNOLOGY	L	Т	Р	Credit
		<u>L</u> 3	1 1	0	4
Preamble	To gain insight on various advanced drying concepts in order to based on the food product	-	-	-	-
Prerequisites	Nil				
UNIT – I					9
	to Drying: Drying and dehydration - Principles - Mechanism of dryin	g - D	rying c	urves	- Interna
Water activity	onditions of drying - Diffusion theories of drying - Effective Fickian d predictive models – Hysteresis - Determination of sorption isothern the predictive models – Hysteresis - Determination of sorption isothern the predictive models – Hysteresis - Determination of sorption isothern				
UNIT – II					9
Spray drying	: Spray drying - Concept - Components of spray drier - Spray dry	yer no	ozzle -	Mech	nanism of
atomization -	Drop size and drop distribution. Drying of droplets - Fundamentals,	, resid	lence t	ime -	Heat and
	- New developments in Spray drying - Spray freeze drying. Freez				
	ciple. Stages in freeze drying - Heat and mass transfer, types, design	n cons	iderati	ons -	Industria
freeze dryers -	Advances in freeze drying.				
	··				
					9
Drying on inc	ert particles: Principle, Mechanism and process considerations. Pne				h drying
Principles - W	Vorking and its applications. Fluidized bed drying: Introduction -	Princ	iples o	of flui	h drying dization
<b>Drying on in</b> Principles - W		Princ	iples o	of flui	h drying dization
<b>Drying on in</b> Principles - W	Vorking and its applications. Fluidized bed drying: Introduction -	Princ	iples o	of flui	h drying dization ed FBD.
Drying on ind Principles - W Components o UNIT – IV	Vorking and its applications. Fluidized bed drying: Introduction -	Princ ntiona	iples o al and r	of flui nodifi	h drying dization ed FBD.
Drying on ind Principles - W Components o UNIT – IV Novel drying	Vorking and its applications. <b>Fluidized bed drying:</b> Introduction - f fluidized bed system - Classification of fluidized bed dryers - Conver	Princ ntiona - Apj	iples o al and r plicatic	of fluid nodifi ons. H	h drying dization ed FBD.
Drying on ind Principles - W Components o UNIT – IV Novel drying: drying (HPD)	Vorking and its applications. Fluidized bed drying: Introduction - f fluidized bed system - Classification of fluidized bed dryers - Conver Super-heated steam drying - Principles - Classification - Selection	Princ ntiona - App nents	iples o al and r plicatic	of fluid nodifi ons. H	h drying dization ed FBD.
Drying on ind Principles - W Components o UNIT – IV Novel drying drying (HPD) Sorption dryin	Vorking and its applications. Fluidized bed drying: Introduction - f fluidized bed system - Classification of fluidized bed dryers - Conver Super-heated steam drying - Principles - Classification - Selection - Principle - Low temperature HPD - Chemical HPD - Developm	Princ ntiona - App nents	iples o al and r plicatic	of fluid nodifi ons. H	h drying dization ed FBD. eat pump Contact
Drying on ine Principles - W Components o UNIT – IV Novel drying drying (HPD) Sorption dryin UNIT – V	<ul> <li>Vorking and its applications. Fluidized bed drying: Introduction - f fluidized bed system - Classification of fluidized bed dryers - Conver</li> <li>Super-heated steam drying - Principles - Classification - Selection - Principle - Low temperature HPD - Chemical HPD - Developm g - Mechanism - Characteristics of sorbents/carriers - Conveyor dryers</li> </ul>	Princ ntiona - Apj nents 3.	iples o al and r plicatic and tr	of fluio nodifi ons. H rends.	h drying dization ed FBD. eat pump Contact
Drying on ind Principles - W Components o UNIT – IV Novel drying: drying (HPD) Sorption dryin UNIT – V Advanced dry	Vorking and its applications. Fluidized bed drying: Introduction - f fluidized bed system - Classification of fluidized bed dryers - Conver Super-heated steam drying - Principles - Classification - Selection - Principle - Low temperature HPD - Chemical HPD - Developm g - Mechanism - Characteristics of sorbents/carriers - Conveyor dryers yers: Microwave dryers - Basic concepts - Industrial applications - I	Princ ntiona - Apj nents s. Hybri	iples o al and r plicatic and tr	of fluid modifi ons. H rends.	h drying dization ed FBD. eat pump Contact e dryers
Drying on ind Principles - W Components o UNIT – IV Novel drying drying (HPD) Sorption dryin UNIT – V Advanced dry Infra-red dryin	Vorking and its applications. Fluidized bed drying: Introduction - f fluidized bed system - Classification of fluidized bed dryers - Conver super-heated steam drying - Principles - Classification - Selection - Principle - Low temperature HPD - Chemical HPD - Developm g - Mechanism - Characteristics of sorbents/carriers - Conveyor dryers wers: Microwave dryers - Basic concepts - Industrial applications - In g - Principles - Industrial dryers - Applications - Sonic drying - S	Princ ntiona - Apj nents s. Hybri	iples o al and r plicatic and tr	of fluid modifi ons. H rends.	h drying dization ed FBD. eat pump Contact e dryers
Drying on ind Principles - W Components o UNIT – IV Novel drying: drying (HPD) Sorption dryin UNIT – V Advanced dry	Vorking and its applications. Fluidized bed drying: Introduction - f fluidized bed system - Classification of fluidized bed dryers - Conver super-heated steam drying - Principles - Classification - Selection - Principle - Low temperature HPD - Chemical HPD - Developm g - Mechanism - Characteristics of sorbents/carriers - Conveyor dryers yers: Microwave dryers - Basic concepts - Industrial applications - In g - Principles - Industrial dryers - Applications - Sonic drying - S g.	Princ ntiona - Apj ments s. Hybri Slush	iples o al and r plicatic and tr d micr drying	of fluid nodifi ons. H rends.	h drying dization ed FBD. leat pump Contact e dryers efractance
Drying on ind Principles - W Components o UNIT – IV Novel drying: drying (HPD) Sorption dryin UNIT – V Advanced dry Infra-red dryin Window dryin	Vorking and its applications. Fluidized bed drying: Introduction - f fluidized bed system - Classification of fluidized bed dryers - Conver Super-heated steam drying - Principles - Classification - Selection - Principle - Low temperature HPD - Chemical HPD - Developm g - Mechanism - Characteristics of sorbents/carriers - Conveyor dryers wers: Microwave dryers - Basic concepts - Industrial applications - Ing - Principles - Industrial dryers - Applications - Sonic drying - S g. Lecture:	Princ ntiona - Apj ments s. Hybri Slush	iples o al and r plicatic and tr d micr drying	of fluid nodifi ons. H rends.	h drying dization ed FBD. leat pump Contact e dryers efractance
Drying on ind Principles - W Components o UNIT – IV Novel drying: drying (HPD) Sorption dryin UNIT – V Advanced dry Infra-red dryin Window dryin	Vorking and its applications. Fluidized bed drying: Introduction - f fluidized bed system - Classification of fluidized bed dryers - Conver Super-heated steam drying - Principles - Classification - Selection - Principle - Low temperature HPD - Chemical HPD - Developm g - Mechanism - Characteristics of sorbents/carriers - Conveyor dryers wers: Microwave dryers - Basic concepts - Industrial applications - Ing - Principles - Industrial dryers - Applications - Sonic drying - S g. Lecture:	Princ ntiona - Apj nents s. Hybri Slush :45, T	iples o al and r plicatic and tr d micr drying	of fluid modifi ons. H rends. cowave g - Re l: 15,	h drying dization ed FBD. (eat pump Contact e dryers efractance <b>Total: 6</b>
Drying on ind Principles - W Components o UNIT – IV Novel drying: drying (HPD) Sorption dryin UNIT – V Advanced dryin Window dryin REFERENCI 1. Mujumdar 2007.	Vorking and its applications. Fluidized bed drying: Introduction - f fluidized bed system - Classification of fluidized bed dryers - Conver Super-heated steam drying - Principles - Classification - Selection - Principle - Low temperature HPD - Chemical HPD - Developing g - Mechanism - Characteristics of sorbents/carriers - Conveyor dryers wers: Microwave dryers - Basic concepts - Industrial applications - In ng - Principles - Industrial dryers - Applications - Sonic drying - S g. Lecture: ES:	Princ ntiona - Apj ments s. Hybri Slush :45, T	iples o al and r plicatic and tr d micr drying <b>'utoria</b>	of fluid modifi ons. H rends. rowava g - Re l: 15, ncis gr	h drying dization ed FBD. (eat pump Contact (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (
Drying on ind Principles - W Components o UNIT – IV Novel drying: drying (HPD) Sorption dryin UNIT – V Advanced dryin Window dryin REFERENCI 1. Mujumdar 2007.	Vorking and its applications. Fluidized bed drying: Introduction - f fluidized bed system - Classification of fluidized bed dryers - Conver Super-heated steam drying - Principles - Classification - Selection - Principle - Low temperature HPD - Chemical HPD - Developm g - Mechanism - Characteristics of sorbents/carriers - Conveyor dryers wers: Microwave dryers - Basic concepts - Industrial applications - In g - Principles - Industrial dryers - Applications - Sonic drying - S g. Lecture: S: A.S., "Handbook of Industrial Drying", 3 rd Edition, CRC Press, Tay g Chen and Mujumdar A.S., "Drying Technologies in Food Proce	Princ ntiona - Apj ments s. Hybri Slush :45, T	iples o al and r plicatic and tr d micr drying <b>'utoria</b>	of fluid modifi ons. H rends. rowava g - Re l: 15, ncis gr	h drying dization ed FBD. (eat pump Contact (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (contact) (
Drying on ind Principles - W Components o UNIT – IV Novel drying: drying (HPD) Sorption dryin UNIT – V Advanced dry Infra-red dryin Window dryin REFERENCI 1. Mujumdar 2007. 2. Xiao Don Blackwell 3. Kudra T.	Vorking and its applications. Fluidized bed drying: Introduction - f fluidized bed system - Classification of fluidized bed dryers - Conver Super-heated steam drying - Principles - Classification - Selection - Principle - Low temperature HPD - Chemical HPD - Developing g - Mechanism - Characteristics of sorbents/carriers - Conveyor dryers wers: Microwave dryers - Basic concepts - Industrial applications - Ing - Principles - Industrial dryers - Applications - Sonic drying - S g. Lecture: S: A.S., "Handbook of Industrial Drying", 3 rd Edition, CRC Press, Tay g Chen and Mujumdar A.S., "Drying Technologies in Food Proce ,2008. and Mujumdar A.S., "Advanced Drying Technologies", 2 nd Edition	Princ ntiona - App nents s. Hybri Slush :45, T dor ar	iples o al and r plicatic and tr d micr drying ' <b>utoria</b> nd Fran	of fluid modifi ons. H rends. cowave g - Re l: 15, ncis gr Edition	h drying dization ed FBD. ed FBD. feat pump Contact contact e dryers efractance <b>Total: 6</b> coup, UK n, Wiley
Drying on ind Principles - W Components o UNIT – IV Novel drying: drying (HPD) Sorption dryin Sorption dryin UNIT – V Advanced dryin Window dryin REFERENCI 1. Mujumdar 2007. 2. Xiao Don Blackwell 3. Kudra T. Francis Gr	Vorking and its applications. Fluidized bed drying: Introduction - f fluidized bed system - Classification of fluidized bed dryers - Conver Super-heated steam drying - Principles - Classification - Selection - Principle - Low temperature HPD - Chemical HPD - Developm g - Mechanism - Characteristics of sorbents/carriers - Conveyor dryers wers: Microwave dryers - Basic concepts - Industrial applications - Ing - Principles - Industrial dryers - Applications - Sonic drying - S g. Lecture: ES: A.S., "Handbook of Industrial Drying", 3 rd Edition, CRC Press, Tay g Chen and Mujumdar A.S., "Drying Technologies in Food Proce , 2008.	Princ ntiona - Apj ments s. Hybri Slush <b>:45, T</b> vlor ar essing	iples o al and r plicatic and tr d micr drying ' <b>utoria</b> nd Fran ", 1 st I RC Pre	of fluid modifi ons. H rends. cowave g - Re l: 15, ncis gr Editio	h drying dization ed FBD. eat pump Contact contact e dryers efractance <b>Total: 60</b> coup, UK n, Wiley aylor and

COURSE OUTCOMES: BT Mapped								
On comp	(Highest Level)							
CO1:	explain the mechanism	Evaluating (K5)						
CO2:	make use of spray and	d freeze dryers and a	pply the techniques	for food materials	Evaluating (K5)			
CO3:	apply the concepts of	drying using inert pa	articles, pneumatic a	nd fluidized drying	Applying (K3)			
CO4:	select appropriate nov	el drying technique f	for drying of comple	ex food materials	Applying (K3)			
CO5:	make use of suitable a	dvanced dryers depe	ending on the raw m	aterials	Applying (K3)			
		Mapping	g COs with POs					
COs/PO	s PO1	PO2	PO3	PO4	PO5			
CO1	3	2	1	1	2			
CO2	3	3	1	1	2			
CO3	3	3	1	1	2			
CO4	3	2	1	1	2			
CO5	3	2	1	1	2			
1 – Slight	t, $2 - Moderate$ , $3 - S$	ubstantial, BT - Blo	om's Taxonomy					

		<u>r foo</u>			
		L	Т	Р	Credit
		3	1	0	4
Preamble	To gain knowledge about the principle and applications of different	ent inst	trumen	tal tec	hniques
<b>D</b> • • •	used in food analysis				
Prerequisites	Nil				
UNIT – I	Methods: Introduction - Classification of instrumental methods b				9
The Electroma violet and Visi Single beam a Fluorimetry: 7 spectrometry: 7	gnetic spectrum - Interaction of photons with matter - Absorban ble spectrometry: Theory - Types of Transitions - Red and ble and double beam spectrophotometers and applications - Spec Theory - Factors affecting fluorescence - Instrumentation Requirements for IR absorption - Modes of vibrations - Selec Position and Intensity of bands - Finger print region.	ce and ue shif ctropho and a	transn ts - In tometr pplicat	nittan strum ic Ti ions.	ce - Ultra entation - trations - <b>Infrared</b>
UNIT – II					9
Applications - Saccharimetry Differential sc <b>Morphology</b>	<ul> <li>ption - Non-disperative Method - Diffraction - Rotating and Flame photometer, Polarimetry and Refractometry - Princ</li> <li>Analysis of sugar. Thermal Methods: Thermogravimetry - Difference and the results - Instrumental Science - Scien</li></ul>	iple a ferenti nentati	nd ins al The on an	trume rmal 4 d app	entation - Analysis - plications.
-					
and 2D electro e-tongue instr	<b>is:</b> Basic Principle of paper - Starch gel, agarose, native, SDS-PA ues - Radio Assay Electrophoresis and applications. Isoelectric for phoresis. <b>Rapid Techniques</b> : Recent Development of Rapid Techniques and working principles - Flow cylindrication - Applications and working principles - Flow cylindrications.	cusing hnique	; capilla s - E se	ary - I ensors	Microchip - e-nose,
and 2D electro e-tongue instr	ues - Radio Assay Electrophoresis and applications. Isoelectric for phoresis. <b>Rapid Techniques</b> : Recent Development of Rapid Tech umentation - Applications and working principles - Flow c	cusing hnique	; capilla s - E se	ary - I ensors	s Immuno Microchip s - e-nose,
and 2D electro e-tongue instr microscopy - P UNIT – IV Atomic Absor Interference an nucleus - Equi chemical shift spectroscopy -	ues - Radio Assay Electrophoresis and applications. Isoelectric for phoresis. <b>Rapid Techniques</b> : Recent Development of Rapid Tech umentation - Applications and working principles - Flow c	er FES o NM g - TM only) -	s - E se ry - I S - Ins R - Er IS - Fa Appl	ary - 1 ensors Epiflu strume nergy actors icatio	s Immuno Microchip s - e-nose, orescence 9 entation - levels of affecting ns. Mass
and 2D electro e-tongue instru- microscopy - P UNIT – IV Atomic Absor Interference an nucleus - Equi chemical shift spectroscopy - mass spectrom	ues - Radio Assay Electrophoresis and applications. Isoelectric for phoresis. <b>Rapid Techniques</b> : Recent Development of Rapid Tech umentation - Applications and working principles - Flow cy rinciple and Applications. <b>Perform Spectrophotometer:</b> Principle, Advantages of ASS over ad applications. <b>Nuclear Magnetic Resonance:</b> Introduction to valent and non-equivalent protons - Chemical shift - Shielding - Splitting of signals and instrumentation (proton NMR of Theory - Types of ions produced - Rules for Interpretation of m	er FES o NM g - TM only) -	s - E se ry - I S - Ins R - Er IS - Fa Appl	ary - 1 ensors Epiflu strume nergy actors icatio	s Immuno Microchip s - e-nose, orescence 9 entation - levels of affecting ns. Mass
and 2D electro e-tongue instru- microscopy - P UNIT – IV Atomic Absor Interference an nucleus - Equi chemical shift spectroscopy - mass spectrom UNIT – V Chromatograj Layer, Paper, C applications. H	ues - Radio Assay Electrophoresis and applications. Isoelectric for phoresis. <b>Rapid Techniques</b> : Recent Development of Rapid Tech umentation - Applications and working principles - Flow cy rinciple and Applications. <b>Perform Spectrophotometer:</b> Principle, Advantages of ASS over ad applications. <b>Nuclear Magnetic Resonance:</b> Introduction to valent and non-equivalent protons - Chemical shift - Shielding - Splitting of signals and instrumentation (proton NMR of Theory - Types of ions produced - Rules for Interpretation of m	er FES o NM g - TM only) - ass spo hic me	s - E se ry - I S - Ins R - Er IS - Fa Appl ectra -	ary - 1 ensors Epiflu strume nergy actors icatio Comp	s Immuno Microchip s - e-nose, orescence 9 entation - levels of affecting ns. Mass ponents of 9 mn, Thin ration and

REF	ERE	NCES:				
1.		val Gurdeep R. and cations, Bombay, 20		Instrumentation M	ethods of Chemical	Analysis", Himalaya
2.	Willa	rd H.H., Merritt L.I	., Dean J.A., and S		mental Methods of A	Analysis", 7 th Edition,
2		S Publishers & Distr				
3.	r esna 1996.	-	Clifton E. Meloan	i, "Food Analysis"	, CBS Publishers &	& Distributors, Delhi,
	1990.					
COU	JRSE	<b>OUTCOMES:</b>				BT Mapped
On c	omple	etion of the course, the	ne students will be	able to		(Highest Level)
CO1	: inte	erpret the application	n of UV-Visible and	d IR spectroscopy i	n food analysis	Understanding (K2)
CO2		bly X-ray diffractior food analysis	n, flame photometer	rs, polarimetry and	thermal methods	Applying (K3)
CO3		pose the usage of mponents	electrophoresis an	d rapid technique	s for analysis of	Remembering (K1)
CO4	: ma	ke use of AAS, N terials	MR and mass spe	ctroscopy to analy	yze different food	Applying (K3)
CO5		er the chromatograp lyze materials	hic principles to se	parate and hyphen	ated techniques to	Understanding (K2)
		·	Mapping	g of COs with POs	5	
COs	/POs	PO1	PO2	PO3	PO4	PO5
CO	D1	3	3	2		2
CO	02	3	3	1		2
CO	03	3	3	2		2
CO	D4	3	3	1		2
C	D5	3	3	2		2
1 - S	Slight,	2 - Moderate, 3 -	Substantial, BT - E	Bloom's Taxonomy	7	

# 18GET01 INTRODUCTION TO RESEARCH

(Common to Engineering and Technology Branches)
-------------------------------------------------

		3	0	0	3
Preamble	To familiarize the fundamental concepts/techniques adopted in	researd	ch, pro	blem f	ormulation
	and patenting.				
	To disseminate the process involved in collection, consolidation	on of j	publisł	ned lite	rature and
	rewriting them in a presentable form using latest tools.				
Durana and initia	NT'1				

Prerequisites Nil UNIT – I

9

9

9

Р

Credit

**Concept of Research:** Meaning and Significance of Research: Skills, Habits and Attitudes for Research -Time Management - Status of Research in India. Why, How and What a Research is? - Types and Process of Research - Outcome of Research - Sources of Research Problem - Characteristics of a Good Research Problem - Errors in Selecting a Research Problem - Importance of Keywords - Literature Collection – Analysis - Citation Study - Gap Analysis - Problem Formulation Techniques.

# UNIT – II

**Research Methods and Journals:** Interdisciplinary Research - Need for Experimental Investigations - Data Collection Methods - Appropriate Choice of Algorithms / Methodologies / Methods - Measurement and Result Analysis - Investigation of Solutions for Research Problem - Interpretation - Research Limitations. Journals in Science/Engineering - Indexing and Impact factor of Journals - Citations - h Index - i10 Index - Journal Policies - How to Read a Published Paper - Ethical issues Related to Publishing - Plagiarism and Self-Plagiarism.

# UNIT – III

**Paper Writing and Research Tools:** Types of Research Papers - Original Article/Review Paper/Short Communication/Case Study - When and Where to Publish? - Journal Selection Methods. Layout of a Research Paper - Guidelines for Submitting the Research Paper - Review Process - Addressing Reviewer Comments. Use of tools / Techniques for Research - Hands on Training related to Reference Management Software - EndNote, Software for Paper Formatting like LaTeX/MS Office. Introduction to Origin, SPSS, ANOVA etc., Software for detection of Plagiarism.

# UNIT – IV

**Effective Technical Thesis Writing/Presentation:** How to Write a Report - Language and Style - Format of Project Report - Use of Quotations - Method of Transcription Special Elements: Title Page - Abstract - Table of Contents - Headings and Sub-Headings - Footnotes - Tables and Figures - Appendix - Bibliography etc. - Different Reference Formats. Presentation using PPTs.

### UNIT – V

DEEDENICES

**Nature of Intellectual Property:** Patents - Designs - Trade and Copyright. Process of Patenting and Development: Technological research - Innovation - Patenting – Development - International Scenario: International cooperation on Intellectual Property - Procedure for grants of patents.

# Total: 45

KEI	ERENCES:
1.	DePoy, Elizabeth, and Laura N. Gitlin, "Introduction to Research-E-Book: Understanding and Applying
	Multiple Strategies", Elsevier Health Sciences, 2015.
2.	Walliman, Nicholas, "Research Methods: The Basics", Routledge, 2017.
3.	Bettig Ronald V., "Copyrighting culture: The political economy of intellectual property", Routledge,
	2018.

9

9

	COURSE OUTCOMES: On completion of the course, the students will be able to									
CO1:	list	various stages in research/patenti	ng and categorize the quality of j	ournals	Analyzing (K4)					
CO2:	forn	nulate a research problem from p	ublished literature/journal papers		Evaluating (K5)					
CO3:	writ	e, present a journal paper/ projec	t report using latest tools in prope	er format	Creating (K6)					
CO4:	sele	ct suitable journal and submit a r	esearch paper		Applying (K3)					
		Map	oping of COs with POs							
COs/PC	Os	PO1	PO2		PO3					
CO	1	3	2		1					
CO2	2	3	2	3						
CO	CO3 3 3									
CO	CO4 3 2									
1 – Slig	ght, 2	I – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy								

18MFL11 DRYING TECHNOLOGY LABORATORY										
				-	Ĺ	T	Р	Credit		
Duesault	T		1:66		0	0	2	1		
Preamble	1 1	actical exposure to	different drying exp	eriments						
Prerequisites List of Experi	Nil									
		ig rate, moisture rati	0							
		tive moisture diffus		riala						
			•							
		ination of best fitting		nodel using	MAT	LAB				
4. Experir	nent on moistu	re sorption isotherm	1							
5. Experir	nent on spray d	ryer								
6. Experir	nent on freeze o	lryer								
7. Experir	nent on drying	characteristics of fo	od materials using f	luidized bed	l dryer	Ś				
8. Experir	nent on microw	vave and vacuum dry	yer							
9. Experir	nent on rehydra	tion characteristics	of dried products							
10. Study o	n characteristic	s of dried food mate	erials							
								Total: 30		
		S / SOFTWARES:	t t t t							
1. Majumda UK, 2007		ook of Industrial D	rying", 3 th Edition,	CRC Press	, Tayl	or and	Franc	eis Group,		
2. Xiao Dor	ng Chen and M	ajumdar A.S., "Dry	ving Technologies i	n Food Proo	cessing	g", 1 st	Editio	n, Wiley-		
Blackwel	,									
COURSE OU		he students will be	able to					apped t Level)		
-		d materials and deter		rameters			0	ng (K5)		
		echnique based on t		runeters				ng (K3)		
		cs of dried food ma						ng (K5)		
		Mapping	g of COs with POs							
COs/POs	PO1	PO2	PO3	PO4			PC	)5		
CO1	3	3	1				1	-		
CO2	3	3	1				1			
CO3	3	3	1				1	-		
1 – Slight, 2 –	Moderate, 3 –	Substantial, BT – B	loom's Taxonomy							

18MFL12 INSTRUMENTAL FOOD ANALYSIS LABORATORY								
	L T P Credit							
	1			0	0	2	1	
Preamble		actical exposure to d	ifferent equipment for	or food analysis				
Prerequisites List of Expe								
		a alon procent in fac	d motoriala by UV V	Visible spectrop	hotomo	ton		
		•	d materials by UV-V	1 1		ter		
2. Estin	ation of sodium a	and potassium preser	nt in fruit juice by Fla	ame photometer	•			
3. Estin	ation of lead and	chromium present in	n industrial waste wa	ter by AAS				
4. Sepa	ation of Amino A	cids by Thin Layer	Chromatography					
5. Estin	ation of curcumin	n present in Turmerio	c by HPLC					
6. Estin	ation of natural c	olor present in food	materials by Spectro	photometer				
7. Estin	ation of calcium	present in beverage l	by FES					
8. Anal	sis of sugars pres	sent in food material	s by HPLC					
9. Deter	mination of calor	ific value of food ma	aterials by Bomb Cal	orimeter				
10. Deter	mination of antio	xidant value of mate	rials by spectrophoto	ometer				
						,	Total: 30	
		S / SOFTWARES:						
	l Gurdeep R. and tions, Bombay, 20		nstrumentation Meth	ods of Chemic	al Anal	ysis", I	Himalaya	
2. Willard	H.H., Merritt L.	L., Dean J.A. and Se	ettle F.A., "Instrume	ntal Methods of	Analy	sis", 7 ^t	^h Edition,	
		ibutors, Delhi, 1988						
	UTCOMES:	h a atu dan ta wi11 h a a	h1a 4a		0		(apped	
		he students will be a	ethods for food anal	usis based on r		0	st Level) ng (K3)	
mate		ientar teeninques me	unous for food anar	ysis based on i	aw	трргуг	ing (IK3)	
CO2: ident	ify the componen	ts present in food ma	aterial by molecular	spectroscopy		Applyi	ng (K3)	
000.	1	v 1	t present in the f	food material	by E	Evaluat	ing (K5)	
Chro	matography Tech	*						
COs/POs	PO1	PO2	of COs with POs PO3	PO4		D	05	
CO3/103	3	3	105	104		1	1	
CO1 CO2	3	3		1			1	
CO2	3	3		1			1	
		Substantial, BT – Bl	oom's Taxonomy	L			-	
i Siigiii, 2	110001ate, 5 = 1	Substantial, DI – Di	som s ravonomy					

# 18MFT21 ADVANCED REFRIGERATION AND COLD CHAIN MANAGEMENT

$\mathbf{L}$	Т	Р	Credit
1	1	•	4

		3	1	U	-	
Preamble	To impart the knowledge on concepts of refrigeration, cold and f	rozen	storage	e and c	old chai	in
	management					
Prerequisites	Nil					
UNIT – I						9

**Refrigeration System:** Refrigeration, ton of refrigeration, refrigeration capacity, Single vapour compression and vapour absorption system, Refrigerants - characteristics of different refrigerants, ozone depletion potentials, pressure enthalpy charts.

### UNIT – II

**Components of a Refrigeration System:** Different types of Compressors - positive displacement and rotodynamic type and performance, Evaporators and their functional aspects, Condensing units and cooling towers, expansion valves, humidifying systems, piping and different controls, Ice manufacture.

# UNIT – III

**Cold and Frozen Storage:** Types of storage rooms, Design and requirements of cold store and frozen store, maintenance, total refrigeration load calculation, Automated cold store, Frozen retail display – Classification and design, temperature requirements in frozen storage, packaging, energy conservation.

## UNIT – IV

**Low Temperature Storage of Foods:** Effect of temperature on food spoilage - Evaporative cooling and its applications, novel freezing methods and freezer types, Freezing rates, growth rate of ice crystals, crystal size and its effect of texture and quality of foods.

# UNIT – V

Cold Chain Management: Scope and importance of cold chain in food processing industry and retail chain, Cold chain – overview, planning and designing, transport of frozen foods – different modes, Time temperature indicators, safety aspects, Flexibility storage systems, cold chain transportation inland and export, retail and supermarket cold chain. Lecture:45, Tutorial:15, Total: 60

### **REFERENCES:**

Rajput R.K., "Refrigeration and Air-conditioning", S.K. Kataria & Sons, Delhi, 2012.
 Dellino C.V.J., "Cold and Chilled Storage Technology", 2nd Edition, Springer, 2011.
 Kennedy C.J., "Managing Frozen Foods", Woodhead Publishing Ltd., 2000.

9

9

9

9

COU	RSE	BT Mapped					
On con	On completion of the course, the students will be able to						
CO1:	inte	erpret the concepts	and principles of ref	frigeration systems		Applying (K3)	
CO2:	illu	strate the working	and function of	various components	of refrigeration	Understanding (K2)	
	sys	tems					
CO3:	des	sign a cold storage u	init and classify its	types		Applying (K3)	
CO4:	ins	pect the quality asp	ects of frozen foods			Evaluating (K5)	
CO5:	pla	n and design a cold	chain system for tra	insporting food produ	icts	Applying (K3)	
			Mapping	g of COs with POs			
COs/P	Os	PO1	PO2	PO3	PO4	PO5	
COI	1	3	2		1	3	
CO2	2	3	1			1	
CO3	3	3	1			1	
CO4 3		3	2		2		
CO5 3 3					2	2	
1 - Sli	ight,	2 - Moderate, 3 -	Substantial, BT - B	loom's Taxonomy		·	

	18MFT22 NOVEL TECHNOLOGIES IN FOOD PROCESSING	
	L T P Cree	dit
	3 0 0 3	
Preamble	To educate the students about recent and advanced processing techniques available in	the
	field of food technology	
Prerequisites	Nil	
UNIT – I		9
technology – c Pressure Proc	<b>chnologies:</b> Emerging technologies in food processing – necessity and advantages –hu concepts and applications - super critical fluid extraction processes in food materials. He sessing of Foods: High Pressure Processing – Principles – applications to food systems – ef agh Pressure Freezing, High Pressure non-frozen storage.	ligh
UNIT – II		9
	<b>ic Field Processing:</b> Principle - Mechanism of action. PEF treatment systems -process	-
-	<b>y Pulsed Light Technology:</b> Principles of pulsed light technology, Effect of pulsed la food products and food properties.	ight
UNIT – III		9
Irradiation: Ir	radiation preservation of food- ionizing radiation- dosimetry- lethal effects on microorganis	sms
	Principle of ultrasound – Fundamentals – Ultrasound as a processing and preservation	
Effects on food	l quality.	
UNIT – IV		9
	ng: Fundamentals of Ohmic Heating – Basic Principles, electrical heat generation -electr	ical
	Generic Configurations - Product suitability for thermal treatments. Cold Plasma: Plas	
Chemistry – Fu	unctionality - Limitations and Toxicology – Environment impact.	
UNIT – V		9
	ing: Principles – Process – Equipment – Application – Fruits and Vegetables, Bakery, Fish	erv.
	ds, ready meals. Advantages and Disadvantages – Process Parameters. Osmotic Membr	
	Fundamentals – OMD membranes – Process parameters – Osmotic agent, Concentrat	
	Membrane. Direct osmosis. Applications	
	Total	: 45
REFERENCE	LS:	
1. Da-wen Su	un, "Emerging Technologies for Food Processing", Elsevier Academic Press, 2005.	
2. Howard Q	2. Zhang, Gustavo V. Barbosa-Canovas, Bala Balasubramaniam V.M., Patrick Dunne	C.
Daniel F. I	Farkas, James T.C. Yuan, "Non Thermal Processing Technologies for Food", Wiley-Blacky	wel
IFT Press,		
3. Tadeusz K	udra, Arun S. Mujumdar, "Advanced Drying Technologies", Eastern Hemisphere Distribut	ion

New York, 2002.

COU	COURSE OUTCOMES: BT Mapped							
On con	On completion of the course, the students will be able to							
CO1:		bly the concepts of h essure processing in	traction and high	Applying (K3)				
CO2:	out	tline the basics of pu	lsed electric field an	d light technology f	or food materials	Understanding (K2)		
CO3:	der	nonstrate the concep	ot of irradiation and	ultrasound for food t	reatments	Understanding (K2)		
CO4:	-	plain the concepts oblications	of ohmic heating ar	nd cold plasma tech	nniques for food	Understanding (K2)		
CO5:		bly the concepts of processing	vacuum cooling an	nd osmotic membra	ne distillation in	Applying (K3)		
			Mapping	of COs with POs				
COs/P	Os	PO1	PO2	PO3	PO4	PO5		
CO	l	3	1		1	2		
CO2	2	2	1		1	2		
COS	CO3 2 1				1	2		
CO4 2		2	1	1		2		
COS	CO5 3 1 1 2							
1 - Sli	ght,	2 – Moderate, 3 –	Substantial, BT - Bl	loom's Taxonomy				

	18MFT23 FOOD SAFETY AND QUALITY CONTR	OL			
		L	Τ	Р	Credit
		3	0	0	3
Preamble	This course delivers the knowledge of food hazards, food safety, audits to ensure food safety so that the product complies wis standards.	-	•		
Prerequisites	Nil				
UNIT – I					9
criteria for fo	<b>y Food Safety Strategies:</b> Principles and need for quality cont of safety. Consumer lifestyle and demand, issues in food safety, ood biotechnology and irradiation. Case studies in food safety.				
					0
UNIT – II	s and Contaminants: Characterization of food hazards. Food borr	1.		1.1	9
processing. N	nants and their control. Naturally available toxins in foods, to: fanagement of food allergens. <b>Sampling:</b> Purpose of sampling atistical design for sampling, sampling procedure.				
UNIT – III					9
detection of fo	wth modeling. Applications of predictive microbial modeling. A od safety.				9
<b>National an</b> Organizationa Food Safety In Safety Author	<b>d International Food Agencies and Quality Practices:</b> I structure and functions of United States Food and Drug Adminitiative (GFSI), International Consultative Group on Food Irradiat ity (EFSA), British Retail Consortium (BRC) global standards, C itary measures (SPS), Plant Quarantine Act.	nistrat ion (IC	ion (U CGFI),	SFDA Europ	FSSAI, .), Global ean Food
UNIT – V					9
Food Quality food safety and food safety m	Management System: FSSAI functions, duties and responsibilities and standards for food products, implementation, validation, verificanagement systems. Good Manufacturing Practices (GMP), Good bory Practices (GLP), ISO 22000, FSSC 22000, Food Safety Audit.	ication	n and i	mprov	egulators, rement of
					Total: 45
REFERENC					
	Sun, "Handbook of Food Safety Engineering", John Wiley & Sons,				
		****	& Soi	ЪT	
2005.	I. Schmidt and Gary E. Rodrick, "Food Safety Handbook", John	Wiley	<b>a</b> 50	1s, Ne	

COUR	COURSE OUTCOMES: BT Mapped							
On con	On completion of the course, the students will be able to							
CO1:	explain importance		Understanding (K2)					
CO2:	classify food haza	rds and identify the risl	ks associated with	the processing of	Applying (K3)			
	foods and their pre	ventive measures						
CO3:	apply food process	engineering concepts of	n microbial growth	n modeling	Applying (K3)			
CO4:	examine the functi	ons of various National	and International for	ood agencies	Understanding (K2)			
CO5:	apply food safety r	nanagement system			Applying (K3)			
		Mapping	g of COs with POs					
COs/P	Os PO1	PO2	PO3	PO4	PO5			
CO1	3			2	1			
CO2	2 2	3		3	1			
CO3	3 3	3			1			
CO4 2				2	1			
CO5	5 3	1						
1 - Slig	ght, 2 – Moderate,	3 – Substantial, BT - B	loom's Taxonomy					

18MFL21 FOOD ANALYSIS AND QUALITY CONTROL LABORATORY										
	L T P Credit									
<b>D</b>			1 1 1 1		0	0	3	1		
Preamble		nparts the technical l	knowledge on analy	sis of differ	ent food	proc	lucts.			
Prerequisites	Food Chemist	ry								
List of Exper		s in food samples								
		Ĩ								
-	sis of Tea/Coffee									
	sis of cereal and	-								
4. Analys	sis of refined can	ne sugar / jaggery								
5. Analys	sis of spices									
6. Analys	sis of edible oil									
7. Analys	sis of water									
8. Analys	sis of dairy produ	icts								
-	sis of non alcoho									
10. Analys	sis of pasta									
11. Sensor	y analysis of foc	d products by different	ence tests							
12. Analys	sis of Food Com	ponents by HPLC								
		•					,	Total: 45		
		S / SOFTWARES:								
New Dell	ni, 2011.	Standards Regulati		-			-			
2. Sadasivar 1996.	n, S., and Manio	ckam, A., "Biochem	ical Methods", 3 rd	Edition, Ne	ew Age	Interi	nation	al, Delhi,		
		he Analysis of Food	s", Ministry of Hea	lth and Fan	nily Wel	fare,	Gover	mment of		
	w Delhi, 2005.					1				
COURSE OU		he students will be a	hle to					apped t Level)		
		of food products					-	ng (K4)		
	•1	s present in the give	ven food materials	and also t	he food			ng (K3)		
	onents by HPLC						11 2	U 、 /		
CO3: assess	the sensory prop	perties of food produ	cts			Ev	valuati	ing (K5)		
		Mapping	of COs with POs					_		
COs/POs	PO1	PO2	PO3	PC	94		Р	05		
CO1	3		1	2				1		
CO2	3	2	1	2				1		
CO3	3	1	1					1		
1 – Slight, 2 –	Moderate, 3 –	Substantial, BT - Bl	oom's Taxonomy	·		•				

# 18MHE05 COMPUTATIONAL FLUID DYNAMICS

(Common to Chemical Engineering and Food Technology branches)

L

Т

Р

Credit

9

9

9

		3	0	0	3	
Preamble:	With the advent of high speed computing, CFD has become an	n integ	ral par	t of en	gineering	5
	design, simulation and performance analysis. This course dea	ls with	h the f	undam	ientals of	f
	CFD, grid generation, meshing and solution techniques using Fi	nite V	olume	Metho	d.	
Prerequisites:	Nil					
						_

UNIT – I

**Conservation Laws of Fluid Motion and Boundary Conditions:** Governing equations of fluid flow and heat transfer, equations of state, Navier-Stokes equations for Newtonian fluid, conservative form of governing equations of flow, differential and integral forms of general transport equations, classification of physical behavior.

# UNIT – II

**Finite Volume Method for Diffusion and Convective- Diffusion Problems:** Finite volume method for onedimensional, two-dimensional and three-dimensional steady state diffusion, steady one-dimensional convection and diffusion, the central differencing scheme. Properties of discretization schemes, assessment of the central differencing scheme for convection-diffusion problems, the upwind differencing scheme, the hybrid differencing scheme, the power-law scheme, higher order differencing schemes for convectiondiffusion problems – QUICK scheme.

# UNIT – III

**Solution Algorithms for Pressure-Velocity Coupling in Steady Flows:** Staggered grid, momentum equations, SIMPLE algorithm, assembly of a complete method, SIMPLER, SIMPLEC, and PISO algorithms; Solution of discretised equations: tri-diagonal matrix algorithm, application of TDMA to two-dimensional and three-dimensional problems.

# UNIT – IV

**Finite Volume Method for Unsteady Flows:** One-dimensional unsteady state heat conduction, implicit method for two-and three-dimensional problems, discretisation of transient convection-diffusion equation, transient convection-diffusion using QUICK differencing scheme, solution procedures for unsteady flow calculations, steady state calculations using pseudo-transient approach.

# UNIT – V

**Turbulence and its Modeling:** Transition from laminar to turbulent flow, effect of turbulence on properties of the mean flow, Reynolds-averaged Navier-Stokes equations and classical turbulence models, mixing length model, k- $\epsilon$  model, Reynolds Stress model and Algebraic Stress model.

# **REFERENCES:**

- Versteeg H.K. and Malalasekara W., "An Introduction to Computational Fluid Dynamics: The Finite Volume Method", 2nd Edition, Pearson Education Ltd., 2007.
   Anderson John D., "Computational Fluid Dynamics - The Basics with Applications", 1st Edition, Tata-
- 2. Anderson John D., "Computational Fluid Dynamics The Basics with Applications", 1st Edition, Tata-McGraw Hill Publisher, 2012.

9

Total: 45

COURSE OUTCOMES: BT N							
On completion of the course, the students will be able to					(Highest Level)		
CO1:	O1: apply the knowledge of C.F.D techniques in developing fluid flow models					Applying (K3)	
CO2:		te volume method n diffusion problem	for developing sol	ution of steady st	ate diffusion and	Applying (K3)	
CO3:	D3: demonstrate the application of SIMPLER, SIMPLEC and PISO algorithms for solution of industrial and R & D problems			Analyzing (K4)			
CO4:	CO4: apply the knowledge of algorithms in solving unsteady flow heat conduction and convection diffusion processes				Applying (K3)		
CO5:	demonstra	te the application of	of turbulent flows an	nd models in simu	lation packages	Applying (K3)	
	Mapping of COs with POs						
COs/POs PO1 PO2 PO3 PO4					PO5		
CO1		2		1	2	2	
(	CO2	2		2	3	3	
CO3		2		1	3	3	
CO4		2		2	3	3	
(	CO5 1 1 2		2				
1 – Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy						

18MFE01 ADVANCED FRUIT AND VEGETABLE PROCESSING TECHNOLOGY						
	L	Т	Р	Credit		
	3	0	0	3		

#### To study about the recent techniques in fruit and vegetable processing and its effects on Preamble quality of finished products Nil

### Prerequisites UNIT – I

Post-harvest Processing: Pre-harvest factors on postharvest life, Maturity index, Harvesting and handling methods, Precooling, Post-harvest treatments- curing, sprout suppressants, degreening. Storage - Refrigerated storage, Hypobaric storage. Controlled atmosphere stores. MAP. Fruit ripening - changes during ripening, ripening rooms. Ethylene – sources, alternatives.

# UNIT – II

Edible Coatings: Introduction, Principle, selection of edible coatings, Polysaccharide, protein and lipid based coatings. Gas permeation properties, Wettability, coating effectiveness, Diffusivities of fruits - determination. Measuring internal gas composition. Future trends. Vacuum Technology: introduction, principles - mass transfer and product behaviour. Applications and future trends.

# UNIT – III

Minimal Processing: introduction, quality changes, Processing - physiological and microbiological impacts, Fresh cut products - Fresh produces quality and safety. Strategies for minimizing quality loss improving quality, bio-control agents, browning inhibition. Storage and packaging. Fresh-cut chain - harvest to market. Equipment requirements. Traceability of fresh cut products. Layout of a fresh cut processing facility.

# UNIT - IV

Fruit and Vegetable Product Manufacturing: Jams and Jellies - Gelling agent, sweetening agent, acidulants, coloring and flavoring agents, method of manufacturing. Fruit Beverages - Classification, Production of filtered and cloudy fruit drinks – preparation steps, Juice extraction, clarification, concentrate production. Production of fruit nectars – preparation steps.

# UNIT - V

1.

**Ozone:** Introduction, ozone properties, ozone generation methods – electrical, electrochemical, radiochemical and ultraviolet method. Ozone in fruit juice processing – gaseous and aqueous applications, factors affecting efficacy of ozone processing - Extrinsic and intrinsic parameters. Mechanism of microbial inactivation. Effect on food quality. Industrial health and safety.

# **REFERENCES:**

- Jongen W., "Fruit and Vegetable Processing: Improving Quality", Woodhead Publishing Series in Food Science, Technology and Nutrition, 2002.
- Hui Y.H., József Barta, Pilar Cano M., Todd W. Gusek, Jiwan S. Sidhu and Nirmal K. Sinha, 2. "Handbook of Fruits and Fruit Processing", Blackwell Publishing, 2006.
- Rodrigues Sueli, and Fabiano Andre Narciso Fernandes, (Eds), "Advances in Fruit Processing 3.. Technologies", 1st Edition, CRC Press, 2012.

9

9

Total: 45

9

9

9

COU	COURSE OUTCOMES: BT Mapped						
On completion of the course, the students will be able to					(Highest Level)		
CO1:	ma	ke use of suitable po	produce	Understanding (K2)			
CO2:	CO2: select suitable edible coatings for fruits and vegetables and outline the Applying (K3) applications of vacuum technology on fruit processing						
CO3:		oly minimal process getables	ing techniques for th	ne production of free	sh cut fruits and	Applying (K3)	
CO4:	CO4: develop fruit and vegetable based jam, jelly and juice products Applying (K3)						
CO5:	CO5: interpret the usage and effect of ozone in fruit processing				Analyzing (K4)		
	Mapping of COs with POs						
COs/P	Os	PO1	PO2	PO3	PO4	PO5	
COI	CO1 3		1		2	1	
CO2 3		3	2		2	1	
CO3 3		3	2		2	1	
CO4 3		3	3		2	1	
CO5 3 2			2	1			
1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy							

	18MFE02 ADVANCED FOOD PROCESSING TECHNO	LOGY	7		
		L	Т	Р	Credit
		3	0	0	3
Preamble	To learn few selected food processes techniques such as extract	tion m	ethods	enca	psulation,
	instantization and agglomeration, cold plasma and 3d food printing	•			-
Prerequisites	Nil				
UNIT – I					9
	Processes: Introduction, Extraction of bioactive compounds. Conver				
	enzyme assisted extraction, ultrasound assisted extraction, microwa				
	action, supercritical fluid extraction and pressurized liquid extraction.	Challe	enges a	nd fut	ure trends
in extraction	techniques				
UNIT – II					9
-	on: Introduction, wall materials used for encapsulation, Methods of e	-		-	
	ncapsulation – physical and chemical methods. Bioavailability. Con	trolled	releas	e tech	iniques in
food industr	Applications and current trends.				
					0
UNIT – III	on and Agglomeration: Introduction, Instantization and Agglom				9
-	trusion, tumbling of powders, straight through, spray bed dryer agon by heating. Characteristics of agglomerated products, Applications –				•
UNIT – IV					9
	a: Plasma, properties of plasma, chemistry of plasma, plasma generati	ion me	thods,	Appli	cations of
plasma in f	bod processing, Effect of plasma on microbial cells and enzymes, compounds, seed germination, packaging materials, Limitations and	effec	t on s	arch,	phenolic,
UNIT – V					9
<b>3D Food Pr</b> printable fo Extrusion/R	<b>inting:</b> Introduction, Food printing platform, food printing materials - ods, 3D food printing technologies - Selective Laser Sintering/H oom Temperature Extrusion, Binder Jetting, Inkjet Printing. Multi m noologies Applicable to Food Printing, impacts from 3D Food Printing	lot Ai aterial	r Sinte	ring,	and non- Hot-Melt
					Total: 45
REFEREN	CES:				
	atindra Kumar, (Eds), "Introduction to Advanced Food Process Engine	ering"	, CRC	Press.	2014.
	harya, Suvendu, (Eds), "Conventional and Advanced Food Processing				
	N.N., Oliver Schlüter and Patrick J. Cullen, (Eds), "Cold plasma	a in F	ood a	nd A	priculture.
	1 1 1 1	~ 111 I	Jou u	18	Silvaiture.

Fundamentals and Applications", Academic Press, 2016.

COUR	RSE OUTCOMES:		BT Mapped				
On cor	On completion of the course, the students will be able to						
CO1:	select appropriate tech	niques for extraction	of active compone	nts	Applying (K3)		
CO2:	make use of suitable e	I I	6		Applying (K3)		
CO3:	utilize agglomeration	process for the produc	ction of instant foo	d products	Applying (K3)		
CO4:	summerize the effect of	of cold plasma on food	d products		Understanding (K2)		
CO5:	outline the application	s of 3D food printing			Understanding (K2)		
		Mapping	of COs with POs				
COs/P	POs PO1	PO2	PO3	PO4	PO5		
CO1	1 3	2		2	1		
CO2	2 3	2		2	1		
CO3	3 3	2		2	1		
CO4	4 3	2		2	1		
CO5 3		2		2	1		
1 - Sli	ght, 2 – Moderate, 3 -	- Substantial, BT - Blo	oom's Taxonomy				

18M	FE03 ADVANCED SEPARATION TECHNIQUES IN FOOI	D PR(	CESS	SING	
		L	Т	P	Credit
		3	0	0	3
Preamble	To impart knowledge of type of equipment's / separation method	ods th	at are	requi	red for a
	particular type of separation process in a food process industry	7			
Prerequisites	Nil				
UNIT – I					9
<b>Recent Advan</b>	cements in Separation Techniques: Recent advances in separati	on tec	hnique	s base	d on size,
surface property	ies, ionic properties and other special characteristics of substand	ces. Pi	rocess	conce	pt, theory
	used in cross flow filtration, cross flow electro filtration and de	ual fui	nctiona	l filte	r. Surface
based solid - li	quid separations involving a second liquid, Sirofloc filter.				
UNIT – II					9
-	on Process: Concept of size, Shape, Magnetic separation, Eddy		-		
<b>-</b>	or separation, Wet Separation Process, liquid-solid and liquid-	-	-		• •
cyclones, Sur	ace velocity classifier, Elutriators, Impingement separator,	Elec	trostati	c pre	cipitation
membrane.					
UNIT – III					9
Food Applicat	atography and immuno chromatography. Foam separation, Sup ion. <b>Powder Technology:</b> Classification of powder, separati nd its factors affecting, air separation, Particle size distribution.				
UNIT – IV					9
	chnology: Membrane modules, Mechanism and equipment's en	nnlove	d for	micro.	-
	Nanofiltration, Reverse osmosis, Concentration polarization, Perv				
	nology in food industry.	aporai	ion and	a rippi	
	nology in lood maasary.				
UNIT – V					9
	tion Processes: Working principle, controlling factors,	equip	ment	emplo	-
-	Dielectrophoresis, ion exchange chromatography, electrodialysis			-	•
for solids, liqui		, und	permet		connques
ior sonas, nqui	do una Subosi				Total: 45
REFERENCE	S:				I Utuli 73
	A.S., and Lewis M.J., "Separation process in the food and	l biote	chnol	Jov in	dustries"
	Pulication, England, 1996.	. 0100		<i>5</i> 57 III	
2. King C.J.	"Separation Processes", 2 nd Edition, Tata McGraw–Hill Publishe	rs Ne	w Delh	i 198	2
3. RonaldW	Rousseau, "Handbook of Separation Process Technology", Wiley	7 India	Pvt I	$\frac{1}{10}$ $\frac{1}{20}$	<u>-</u> . )09
J. Konalu W	Rousseau, mandolok of Separation Process Teenhology, whey	, mula	. 1 VI. L	, 20	

COUR	RSE OUTCOMES:	BT Mapped					
On cor	On completion of the course, the students will be able to						
CO1:	infer the concepts of se	eparation techniques			Understanding (K2)		
CO2:	choose different solid	liquid separation pro	cess		Applying (K3)		
CO3:	outline the adsorption	and other separation	process in food proc	cessing	Understanding (K2)		
CO4:	categorize separation b	based on membranes			Analyzing (K4)		
CO5:	apply the ionic separat	ion and other comm	ercial processes		Applying (K3)		
		Mapping	g of COs with POs				
COs/P	Os PO1	PO2	PO3	PO4	PO5		
CO1	3	1			1		
CO2	2 3	2			1		
CO3	3 3	2			1		
CO4	4 3	2			1		
CO5 3		1			1		
1 - Sli	ght, 2 – Moderate, 3 –	- Substantial, BT - B	loom's Taxonomy				

	18MFE04 ENZYME ENGINEERING AND TECHNOI	LOGY	7		
		L	Т	Р	Credit
		3	0	0	3
Preamble	This course give an insight about the properties of enzyme	s, kin	etics,	produ	ction and
	purification, biosensors and application of enzymes in food indus	stry		-	
Prerequisites	Nil				
UNIT – I					9
<b>Enzymes:</b> Intr	oduction, Classification and Nomenclature of enzymes according	ng to	IUB.	Mecha	anisms of
enzyme action.	concept of active site and energetic of enzyme substrate compl	lex for	matio	n, spec	cificity of
	Mechanism of enzyme catalysis- electrostatic proximity and orien				
	o-enzyme, cofactor and prosthetic group – reaction involving				
	Flavin Nucleotides, Co-A, Biotin and Vitamin K dependen				
abzymes, synzy			5		5 ,
UNIT – II					9
Kinetics of Er	zyme Action: Order of reaction, Activation energy, Kinetics o	f sing	le sub	strate	reactions,
	Aichelis-Menten parameters, Lineweaver Burk plot, multisubstrat	0			
	ver number, pH and temperature effect on enzymes and deactivation				
,					
UNIT – III					9
	ition: Reversible inhibition - Kinetics of competitive, non-con	npetiti	ve and	unco	mpetitive
	eversible inhibition – suicide inhibition. Allosteric regulat				
	n model. Enzyme Immobilization - Physical and chemic				
•	-adsorption, matrix entrapment, encapsulation, cross-linking, co		-		•
advantages and				0	······································
8-=					
UNIT – IV					9
	E Enzyme Extracts: Plant, animal and microbial sources, met	hods	of cha	racteri	-
	opment of enzymatic assays. Enzyme application in food process				
	try, dairy industry, health care and environment.			,	
· egetusie maa					
UNIT – V					9
	eering and Biosensor: Enzyme engineering- design and constru	ction of	of nove	el enzy	-
• •	enesis, artificial enzymes. Design of enzyme electrodes and their			-	
industry.		TPIL			
					Total: 45
DEPENDING	a				10tal. 75

#### **REFERENCES:**

1								
1.	Trevor Palmer, "Enzymes: Biochemistry, Biotechnology and Clinical Chemistry", Horwood Publishing,							
	2007.							
2.	Parmjit S. Panesar, Satwinder S. Marwaha, Harish K. Chopra, "Enzymes in Food Processing:							
	Fundamentals & Potential Applications", I.K. International Publishing House, 2010.							
3.	Whitehurst R. and Law B., "Enzymes in Food Technology", Blackwell Publishing, 2002.							

COUR	RSE OUTCOMES:		BT Mapped				
On con	On completion of the course, the students will be able to						
CO1:	outline enzyme classif	ication and understa	and the influence of	of environmental	Understanding (K2)		
	factors on enzyme activ	vity					
CO2:	interpret enzyme kineti	cs and enzyme inhib	oition		Understanding (K2)		
CO3:	apply suitable methods	for enzyme immobi	lization		Applying (K3)		
CO4:	employ suitable enzym	1	0		Applying (K3)		
CO5:	understand the concept	s of enzyme enginee	ering and biosensor		Understanding (K2)		
		Mapping	of COs with POs				
COs/P	Os PO1	PO2	PO3	PO4	PO5		
CO1	3	3	2		1		
CO2	2 3	3	2		1		
CO3	3 3	3	2		1		
CO4 3		3	2		1		
CO5 3		3	2		1		
1 - Slig	ght, 2 – Moderate, 3 –	Substantial, BT - Bl	loom's Taxonomy				

#### **18MFE05 OPERATIONAL RESEARCH**

		3	0	0	3	
Preamble	Operation Research is a discipline to aid decision making and	impro	ving e	fficien	cy of the	;
	system by applying advanced analytical methods. It should offer	a unic	ue ble	nd of tr	aditional	l
	course work, practical skills and real-world problem-solving exp	perienc	e for st	tudent'	s success	3
	in today's competitive world					
Prerequisites	Nil					
UNIT – I					9	)

Introduction to Operation Research: History of Operations Research- Stages of Development of Operations Research- Relationship Between Manager and OR Specialist- OR Tools and Techniques- Scope and Applications of Operations Research- Limitations of Operations Research

#### UNIT – II

Linear Programming: Introduction to Linear Programming. Graphical Method: Linear Programming Problem Formulation, Formulation with Different Types of Constraints, Graphical Analysis of Linear Programming, Graphical Linear Programming Solution, Multiple Optimal Solutions- Unbounded Solution, Infeasible Solution. Simplex Method: Basics of Simplex Method, Simplex Method Computation, Simplex Method with More Than Two Variables, Two Phase and M Method, Multiple Optimal Solutions- Unbounded Solution, Infeasible Solution

#### UNIT – III

Non - Linear Programming: Constrained problems- Equality constraints- Lagrangean method- In equality Constraints- Karush- Kuhn- Tucker (KKT) Conditions- Quaradic Programming.

#### UNIT – IV

Game Theory and Queuing Theory: Introduction to the theory of games- The definition of a game, Competitive game, Managerial applications of the theory of games, Key concepts in the theory of games, Types of games. Queuing Theory: Introduction, Mathematical Analysis of Queuing Process, Properties of Queuing System, Notations, Service System, Single Channel Models, Multiple Service Channels, Erlang Family of Distribution of Service Times, Applications of Queuing Theory, Limitations of Queuing Theory.

#### UNIT - V

Simulation, Project Scheduling and PERT-CPM: Simulation: Basic Concepts, Simulation Procedure, Application of Simulation. Project Scheduling and PERT-CPM: Introduction, Basic Difference between PERT and CPM, PERT/CPM Network Components and Precedence Relationship, Project Management -PERT

#### **REFERENCES:**

Tiwari N.K., and Shishir K. Shandilya, "Operations Research", Prentice Hall, New Delhi, 2006. 1.

- Sharma, "Operations Research: Theory and Applications", Macmillan Publishers, New Delhi, 2009. 2. Gupta C.B., "Optimization Techniques In Operation Research", I.K. International Publishing House, 3.
  - New Delhi, 2008.

#### Total: 45

9

9

9

P Credit

9

COUR	RSE OUTCOMES:				BT Mapped		
On cor	On completion of the course, the students will be able to						
CO1:	outline the basics of op	peration research			Understanding (K2)		
CO2:	develop a complete pro	ocedure for solving o	different kinds of pro	ogramming	Applying (K3)		
	problems						
CO3:	apply non-linear progr	amming for solving	problems		Applying (K3)		
CO4:	relate Game and Queu	ing Theory			Understanding (K2)		
CO5:	analyze network sched	uling using CPM an	d PERT		Analyzing (K4)		
		Mapping	g of COs with POs				
COs/P	Os PO1	PO2	PO3	PO4	PO5		
CO1	-	3		1	1		
CO2	2 2	3	2	1	1		
CO3	3	3		1	1		
CO4	Ļ			1	1		
CO5	5	1					
1 - Sli	ght, 2 – Moderate, 3 –	Substantial, BT - E	Bloom's Taxonomy				

18MI	FE06 HEAT AND MASS TRANSFER OPERATIONS IN FOO	D PR	OCES	SSING	
		L	Т	P	Credit
		3	0	0	3
Preamble	This course provides in-depth knowledge on selected hea				
	condensation, boiling, evaporation, distillation, extraction a				
	analysis / design aspects / Equipment for the above mentioned op	eratio	ns are	also in	cluded.
Prerequisites	Nil				
UNIT – I					9
	and Boiling: Condensation number - Film condensation - Boilin	0			-
-	porators: Single and multiple effect evaporators – Performance	of ev	vapora	tors an	d boiling
point elevation	- capacity - economy and heat balance - Types of evaporators.				
UNIT – II		TT / T	7 1		9
0	ers: Overall heat transfer coefficients – Fouling factor - Types of			0	
Heat exchange	r effectiveness by NTU method- Compact Heat Exchangers – Anal	ysis fo	or vari	able Pr	operties
UNIT – III		. D.	·		9
	atch Distillation – Flash Vaporization – Continuous fractionation		-		
towers for bi multicomponer		n me	tnoa.	Introd	uction to
municomponer					
UNIT – IV					9
	ngle stage, multistage cross current and multi stage counter curre	nt ope	ration	s - Int	roduction
	action techniques: Super critical extraction, pulsed electric f				
	asound assisted extraction, subcritical water extraction, High press			,	
UNIT – V					9
Leaching: Sol	d liquid equilibria, single stage leaching, multistage crosscurrent a	ind co	unter o	current	leaching,
Calculations for	r number of stages - leaching equipment. Batch percolators – Fix	ed bed	d mult	istage	systems –
continuous con	tactors.			-	
					Total: 45
REFERENCE					
1. Holman J	.P., "Heat Transfer", 6 th Edition, McGraw-Hill, New York, 1986.				
2. Treybal R	E., "Mass Transfer Operations", 3 rd Edition, McGraw-Hill, New	York,	1981.		
	urz, "Unit Operations in Food Engineering", CRC Press, 2003.	,			
	, <u>r</u>				

COURSE	COURSE OUTCOMES:							
On comple	On completion of the course, the students will be able to							
CO1: exp	plain condensation a	nd evaporative heat	transfer phenomena		Understanding (K2)			
CO2: ana	alyze the heat exchar	nger performance			Analyzing (K4)			
CO3: des	sign multistage distil	lation towers			Creating (K6)			
	pose and apply extra				Applying (K3)			
CO5: exp	plain leaching proces	ss and estimate num	ber of stages		Understanding (K2)			
	Mapping of COs with POs							
COs/POs	PO1	PO2	PO3	PO4	PO5			
CO1	3	2			1			
CO2	3	2			1			
CO3	3	2			1			
CO4	3	2			1			
CO5 3		2			1			
1 – Slight,	2 - Moderate, 3 -	Substantial, BT - B	loom's Taxonomy					

18MFE07 FOOD ADDITIVES, NUTRACEUTICALS AND FUNCTIONAL FOODS								
		L	Т	Р	Credit			
		3	0	0	3			
Preamble	This course provides the availability of food additives, various	nutrace	euticals	and f	unctional			
	foods and their health benefits							
Prerequisites	Nil							

UNIT – I

**Food Additives:** Introduction, classification and functions; Role of additives in foods - preservatives, antioxidants, sequestrants, emulsifiers -selection of emulsifier based on Hydrophilic and Lipophilic balance (HLB) and its application, stabilizers and thickeners, bleaching and maturing agents, starch modifiers, food colourants and colour retention agents, sweeteners, humectants, flavorants and flavor enhancers, leavening agents, pH control agents, fat substitutes and replacers, anti-foaming agents. International Product Code.

UNIT – II

**Nutraceuticals:** Introduction, sources, understanding benefits of nutraceuticals. Scope involved in industry, Indian and global scenario. **Eye, Heart and Digestive Health Ingredients:** Eye health ingredients – lutein, zeaxanthin, astaxanthin, beta-carotene, bilberry extracts; Heart health ingredients - omega-3, omega-6, omega-9, beta-glucan, soy protein, phytosterols; Digestive Health Ingredients – prebiotics, probiotics, synbiotics, digestive enzymes, zinc carnosine.

# UNIT – III

**Women and Bone and Joint Health Ingredients:** Women health ingredients - Vitamin D, iron, calcium, soy isoflavones, folic acid, cranberry extract, lycopene, phytoestrogens; Bone and Joint health ingredients - prebiotic fiber, glucosamine, chondroitin, collagen peptide, hyaluronic acid, devils claw, olive polyphenols, Boswelia Serrata, horsetail extract.

#### UNIT – IV

**Dietary Supplements:** Introduction to dietary supplements, functional food and beverages; Agnuscastus, Aloe vera, Bee products, Chitosan, Echinacea, Garlic, Ginger, Ginkgo biloba, Ginseng, Guarana, Kelp, Milk thistle, Saw palmetto, Spirulina, Chlorella, Hypericumperforatum, Tea extracts. Dietary supplements – Need for dietary supplements, supplements forms-tablets, capsules, powders, softgels, gelcaps, liquids.

# UNIT – V

**Asian Functional Food:** Functional Foods from Meat, Fruit, Fermented Vegetable Products: Kimchi, Sugarcane, Garlic, Onion, Date Fruits, Japanese Green Tea, Miso, Fermented Soybean Products. Cereal based Functional food and their health effects.

#### **REFERENCES:**

Belitz H. D., Grosch W., Schieberle P., "Food Chemistry", 3rd Edition, Springer-Verley, Berlin, 2004.
 John Shi, Chi-Tang Ho and Fereidoon Shahidi, "Asian Functional Foods", 1st Edition, CRC Press, 2005.
 Wildman, Robert E.C., "Handbook of Nutraceuticals and Functional Foods", CRC Press, New York,

2001.

9

9

9

9

9

Total: 45

COU	COURSE OUTCOMES: BT Mapped								
On con	On completion of the course, the students will be able to								
CO1:	classi	fy and choose var	ious food additives			Applying (K3)			
CO2:	appra	ise the different ty	ypes of eye, heart an	d digestive health in	gredients	Applying (K3)			
CO3:	exam	ine the types of w	omen and bone and	joint health ingredie	nts	Evaluating (K5)			
CO4:	outlin	ne various function	nal foods and nutrace	euticals in the marke	et	Understanding (K2)			
CO5:	infer	the significance o	f Asian functional fo	oods		Understanding (K2)			
			Mapping	of COs with POs					
COs/P	POs	PO1	PO2	PO3	PO4	PO5			
COI	1	3	3	2	3	1			
CO2	2	3	3	2	3	1			
CO3	3	3	3	2	3	1			
CO4	4	3	3	2	3	1			
CO5 3		3	2	3	1				
1 - Sli	ight, 2 -	– Moderate, 3 –	Substantial, BT - Bl	loom's Taxonomy					

#### 18MFE08 FOOD PACKAGING AND STORAGE ENGINEERING

# L T P Credit 3 0 0 3

 Preamble
 The knowledge about packaging and storage materials and methods will be delivered by this course. The recent developments and trends in labelling and packaging are also covered in the subject.

 Prerequisites
 Nil

UNIT – I

**Packaging Materials and Selection of Package:** Functions of packaging, Type of packaging materials, Selection of packaging materials and methods for different foods solid, semi–solid and liquid food. Optimizing packaging. advances in sealing, seaming and methods to detect defects, improving the performance of retortable pouches, testing consumer responses to new packaging concepts.

#### UNIT – II

**Developments in Active Packaging:** Controlled release packaging – process, structure, property and food variables, target release rate, active antimicrobial packaging – manufacturing, measurement of antimicrobial activity, active nanocomposites packaging – free radical scavenging nanocomposites, oxygen scavenging nanocomposites, antimicrobial nanocomposites, edible chitosan coatings – properties of chitosan, application of chitosan based coatings, flavor-release packaging – mechanism of flavor release, practical applications.

#### UNIT – III

**Trends in Packaging, Labelling and Shelf life Studies:** MAP - novel gases, high oxygen MAP, applications, Natural non-toxic insect repellent packaging materials, Interactive packaging using internet, Smart Labelling - Labelling to detect changes in temperature, monitor freshness, detect changes in oxygen and carbon dioxide concentration. Shelf life studies - Testing under normal and accelerated conditions, Shelf life models – constant H₂O and O₂ driving forces, variable H₂O driving force, variable O₂ driving force.

# UNIT – IV

**Storage Engineering:** Storage of grains-biochemical changes during storage- production, distribution and storage capacity estimate models-storage capacity models-ecology, storage factors affecting losses, storage requirements, bag and bulk storage- pressure distribution- theories-rodent control- method of stacking-preventive method, function structural and thermal design of structures.

# UNIT – V

**Grain Storage and Handling:** Bag Storage - Advantages and Disadvantages - Bag Storage structure design. Parameters of good storage structure, Controlled atmospheric storage. Cover Plinth Storage Structures, CAP storage (Ceiling and Plinth Storage), Plans for Bag storage, layouts, Dunnage, Materials for Dunnage, Protection against Rodents, Fungi, Pests and Mites, Bulk Storage in silos and large bins - Physical load and mechanical strength of Silos, Silo flow problems.

#### **REFERENCES:**

1.	Dong Sun Lee, Kit L. Yam and Luciano Piergiovanni, "Food Packaging Science and Technology", 1 st
	Edition, CRC Press, USA, 2008.
2.	Raia Ahvenainen, "Novel Food Packaging Techniques", 1 st Edition, CRC Press, UK, 2003.
3.	Jerry Heeps, "Insect Management for Food Storage and Processing", 2 nd Edition, Elsevier, USA, 2017.

9

9

Total: 45

9

9

9

COU	RSE	<b>OUTCOMES:</b>				BT Mapped	
On con	mple	(Highest Level)					
CO1:							
CO2:	ma	ke use of suitable no	Applying (K3)				
CO3:	app	ply the knowledge to	design new labels a	and predict shelf life		Applying (K3)	
CO4:	sur	nmarize the concept	s in food storage			Understanding (K2)	
CO5:	dev	velop plans for grain	storage and handlin	ıg		Applying (K3)	
			Mapping	of COs with POs			
COs/P	Os	PO1	PO2	PO3	PO4	PO5	
CO	1	2		1	2	1	
CO2	2	2	2	1		1	
COS	3	3	3	1	2	1	
CO4	4			1	1	1	
COS	5	1					
1 – Sli	ight,	2 - Moderate, 3 -	Substantial, BT - B	loom's Taxonomy	-		

#### 18MFE09 INDUSTRIAL WASTE MANAGEMENT

Т

L

Р

Credit

9

9

9

		3	0	0	3	
Preamble	To educate the students on complete management principles relat	ted to	waste	water	and sol	id
	waste, starting from source identification up to reuse concepts.					
Prerequisites	Nil					
UNIT – I						9

**Industries and Environment:** Industrial scenario in India – Industrial activity and Environment – Uses of water by industry – Sources and types of industrial wastewater – Industrial wastewater and environmental impacts – Regulatory requirements for treatment of industrial wastewater – Industrial waste survey – Industrial wastewater generation rates, characterization and variables – Population equivalent – Toxicity of industrial effluents and Bioassay tests.

#### UNIT – II

**Management of Industrial Waste Water:** Treatments: Aerobic and anaerobic biological treatment – batch and high rate reactors – Chemical oxidation –Ozonation – Photo catalysis – Wet Air Oxidation – Evaporation – Ion Exchange – Membrane Technologies. **Treatment Plants:** Individual and common Effluent Treatment plants – Joint treatment of industrial wastewater – Zero effluent discharge systems – Quality requirements for wastewater reuse – Industrial reuse – Disposal on water and land – Residuals of Industrial wastewater treatment.

#### UNIT – III

**Solid Waste Sources and Segregation:** Sources: Types and Sources of solid wastes – Need for solid waste management – Elements of integrated waste management and roles of stakeholders – Salient features of Indian legislations on management and handling of municipal solid wastes, plastics and fly ash. **Segregation:** Handling and segregation of wastes at sources – storage and collection of municipal solid wastes – Analysis of collection systems – Need for transfer and transport – Transfer stations - Optimizing waste allocation – compatibility, storage, labeling wastes

#### UNIT – IV

**Energy Recovery and Disposal: Energy Recovery:** Objectives of waste processing – material separation and processing technologies – biological and chemical conversion technologies – methods and controls of composting – energy recovery and other modern techniques in managing solid waste – case studies. **Disposal:** Waste disposal options – Disposal in landfills – Landfill classification, types and methods – site selection – design and operation of sanitary landfills, secure landfills – leachate and landfill gas management – landfill closure of landfills – landfill remediation

#### UNIT – V

**Practical Applications in Industries:** Industrial manufacturing process description, wastewater and solid waste characteristics, source reduction options and waste treatment flow sheet for Textiles – Tanneries – pulp and paper – petroleum refining – pharmaceuticals – sugar and distilleries – Food processing – fertilizers – Thermal power plants and Industrial Estates.

	10tal. 45
RE	FERENCES:
1.	Eckenfelder W.W., "Industrial Water Pollution Control", McGraw-Hill, 2001.
2.	Arceivals S.J., "Wastewater Treatment for Pollution Control", Tata McGraw-Hill, 2008.
3.	Landreth R.E. and Rebers P.A., "Municipal Solid Wastes - Problems and Solutions", Lewis Publishers,
	2002.

9

Total· 45

COURS	SE OUTCOMES:				BT Mapped		
On com	On completion of the course, the students will be able to						
CO1: s	Understanding (K2)						
CO2: i	CO2: identify the waste water management and reuse						
CO3: 0	outline the sources of s		Understanding (K2)				
CO4: 1	utilize of solid waste an		Applying (K3)				
CO5: a	apply the waste manag	ement in industries			Applying (K3)		
		Mapping	g of COs with POs				
COs/PO	s PO1	PO2	PO3	PO4	PO5		
CO1	3	3		3	1		
CO2	3	3		2	2		
CO3	2	2		2	1		
CO4 3 3				3	2		
CO5	3	3		2	2		
1 – Sligl	nt, 2 – Moderate, 3 –	Substantial, BT - E	Bloom's Taxonomy	l			

1	8MFE10 ADVANCED BAKING AND CONFECTIONERY TE	CHN	OLOG	Y	
		L	Т	Р	Credit
		3	0	0	3
Preamble	This course will help students to get well equipped with science a confectionery products, ingredient functionality, and significance product development. In depth knowledge of engineering machinery as well as new technology used in bakery and con	e of an princip	alytica	l tech quipm	niques ir ents and
	obtained.				
Prerequisites	Nil				
UNIT – I					
Other ingredie Shortenings, E industry with	<b>dients and Equipments:</b> Essential bakery ingredients: Flour, yeast nts: Sugar, color, flavor, fat, milk, milk powder and bread improvers mulsifiers and Antioxidants. Equipments- Introduction to utensils and their purpose. Bulk handling of ingredients- Dough mixing and aminating- Fermentation enclosures and brew equipment - Ovens and	s. Leav id equi mixers	eners a pments 5, Divi	ind yes	ast foods in baker
UNIT – II	I I I I I I I I I I I I I I I I I I I		15.		
methods, Dou profile analysi	<b>Properties of Dough and Batter:</b> Rheological methods, Funda gh testing equipments – Farinograph, Amylograph. Alveograph s, compression, penetration, modified penetrometers, transient tests ct of ingredients, mixing, dosing and temperature on rheological prop	and E s, dyna	xtensio mic te	graph sts, ex	. Texture tensiona
UNIT – III					
Cakes: Formul mass transfer r	le stage, creaming and blending methods. Center filled cookies. ation and mixing methods - Baking of cake - Cake characteristics nechanism in bakery products.				heat and
UNIT – IV					9
of ingredient, a boiled Confect Chewing and	<b>Its in Bakery Products:</b> Foam to sponge conversion and the collap recipe and product interactions. <b>Confectionery:</b> Classification, ingrionery – Candies – Liquid and Powder center filled, Toffee chews – Bubble Gum, Compressed Tablets. Chocolate Confectionery – C – Candies – Chewing Gum	edients plain a	s and th and mil	heir ro k base	le: Suga d, Jellies
UNIT – V					9
Batch and comprocessing. Cl conching, tem free candies and	<b>Technology:</b> Technology for manufacture of Candies, Toffee cher inuous process for production of plain and center filled candies – Te nocolate confectionery - cocoa bean processing, Chocolate manu- pering, molding and enrobing. Chewing and Bubble Gum – Ingred ad chewing gum – Ingredients and processing. Sugar free chewing products. Packaging and shelf life of Confectionery products.	offee cl ufactur dients	hew pro e – m and pro	ocessin ixing, ocessin ity sta	ng – Jelly refining ng. Suga ndards o
	20.				Total: 4
REFERENCE		<b>n</b> or d ¹		andar	2005
	Matz, "Bakery Technology and Engineering", 3 rd Edition, Chapma Stanley P. and Young Linda S., "Technology of Bread Making", 2 nd				
	, 1999. Ilum Sumnu and Serpil Sahin, "Food Engineering Aspects of Bakin				

COUR	SE OUTCOMES:	BT Mapped					
On com	On completion of the course, the students will be able to						
CO1:	CO1: summarize the function of ingredients in bakery products						
CO2:							
CO3:	apply the knowledge of	f ingredients in new	product developmen	ıt	Applying (K3)		
CO4:	outline the technical	defects observed in	bakery products a	nd the types of	Understanding (K2)		
	confectionery products	including the role o	f raw materials				
CO5:	apply the process techn	ology for developm	ent of confectionery	products	Applying (K3)		
		Mapping	of COs with POs				
COs/PC	Os PO1	PO2	PO3	PO4	PO5		
CO1	3	2	3	1	1		
CO2	3	2	2	1	1		
CO3	3	3	3	2	1		
CO4	3	3	3	2	2		
CO5	3	2	3	3	2		
1 - Slig	ght, 2 – Moderate, 3 –	Substantial, BT - B	loom's Taxonomy				

	18MFE11 ADVANCED GRAIN SCIENCE AND TECHN	OLOO	GΥ			
		L	Т	Р	Cree	dit
		3	0	0	3	
Preamble	To learn about the milling of various cereals along with the rec	ent ad	vancen	nents i	n mil	ling
	and various cereal based products					•
Prerequisites	Nil					
UNIT – I						9
Grains: Introd	uction, structural components of cereal grains, physical proper	ties. H	Iarvest	ing, T	hresh	ing,
grain cleaning	, grading, drying, storage, aeration and stored grain manag	ement	, cont	rol of	inse	ects,
microorganism	s and rodents during storage.					
UNIT – II						9
<b>Rice Milling:</b>	Structure. Rice milling - flowsheet. Improving nutritional pro	perties	s of ri	ce by	diffe	rent
methods. Chan	ges in physico-chemical, pasting and milling properties during	g agin	g of 1	rice. W	later r	mist
polishing, rice	moisture conditioning, Instruments for rice quality control -	rice	analyz	er, br	oken	rice
analyzer, FWM	analyzer, rice taste analyzer.					
UNIT – III						9
Wheat Millin	g: Morphology of wheat. Classification. Wheat milling - Flow	v shee	et. Tur	bo mi	illing,	air
classifiers. Crit	eria of wheat and flour quality, structure and functional p	ropert	ies of	glute	n, wł	heat
grain protein, s	tarch, phytochemcials, dough chemistry, rheology, evaluation of f	lour q	uality ł	oy Far	inogra	aph,
Mixograph, Ex	tensogram, rapid visco analyzer, dynamic rheometry.					
UNIT – IV						9
	ling: Barley - Processing, finishes products and end uses. Co					
	f value added products such as zein from corn. Oat milling and t	-		•	bre fi	rom
barley and oat	s: $\beta$ glucan structure, extraction, physiological effects and fun	ctiona	l prope	rties		
UNIT - V						9

Cereal Products: Rice snack foods, Rice noodles, quick cooking rice, canned and frozen rice, Baby foods, extruded rice, puffed rice cake, pasta, instant noodles, breakfast cereals, cereal enrichment, malted cereals, special food ingredients from cereals, future trends.

#### **REFERENCES:**

KarelKulp, "Handbook of Cereal Science and Technology", 2nd Edition, CRC Press, 2000. 1. Amalendu Chakraverty, Arun S. Mujumdar, Hosahalli S. Ramaswamy, "Handbook of Postharvest 2. Technology: Cereals, Fruits, Vegetables, Tea, and Spices", CRC Press, 2003. Serna-Saldivar, Sergio O., "Cereal grains: Properties, Processing and Nutritional Attributes", CRC 3. Press, 2016.

Total: 45

COUR	RSE		BT Mapped				
On con	mple	(Highest Level)					
CO1:							
CO2:	ma	ke use of suitable m	Applying (K3)				
CO3:	out	line wheat milling p	process and suggest s	suitable flour treatme	ent methods and	Understanding (K2)	
	by	product utilization					
CO4:	rec	ommend various mi	lling method suitabl	e for different cereal	S	Evaluating (K5)	
CO5:	dev	velop different cerea	l based products			Creating (K6)	
			Mapping	of COs with POs			
COs/P	Os	PO1	PO2	PO3	PO4	PO5	
CO1	1	3				1	
CO2	2	3	1		2	1	
CO3	3	3	2		2	1	
CO4 3		3	2		2	1	
COS	5	1					
1 - Sli	ight,	2 - Moderate, 3 -	Substantial, BT - B	loom's Taxonomy			

	18MFE12 TRANSPORT PHENOMENA IN FOOD PROC	LESSI	NG		
		L	Т	Р	Credit
		3	0	0	3
Preamble	This course deals with the movement of different physical qu describes the basic principles and laws of transport. It also similarities among different types of transport (Momentum, Ener any system.	descri	bes the	e relat	tions and
Prerequisites	Fluid Mechanics, Heat Transfer, Mass Transfer				
UNIT – I					9
fluids, rheolog	<b>Transport:</b> Phenomenological laws of transport properties, New ical models, theories of transport properties of low density gases are. Shell momentum balances – boundary conditions and flow of fal	nd liqu	ids, ef		
UNIT – II					9
	pipes, Formulation of bubbles and drops and their size distribu on stagnant and moving solids, Flow through porous medium, C				•
UNIT – III					9
	<b>port:</b> Fourier's law of heat conduction, theory of thermal conduction alances- boundary conditions, heat conduction with an electrical heat conduction.				
shell energy bay viscous heat s	alances- boundary conditions, heat conduction with an electrical he				ite walls,
shell energy by viscous heat s UNIT – IV Interphase Th around subme	alances- boundary conditions, heat conduction with an electrical he	eat sou	arce, co	ompos	ite walls, 9 in tubes,
shell energy by viscous heat s UNIT – IV Interphase Th around subme equations for h	alances- boundary conditions, heat conduction with an electrical heat ource. <b>Cansport in Non-Isothermal System:</b> Heat Transfer coefficient, Traged objects, Heat Transfer by free convection, film type and d	eat sou	arce, co	ompos	ite walls, 9 in tubes, ation and
shell energy by viscous heat s UNIT – IV Interphase Tr around subme equations for h UNIT – V Mass Transpo gases and lique reaction – effe	alances- boundary conditions, heat conduction with an electrical heat ource. <b>Cansport in Non-Isothermal System:</b> Heat Transfer coefficient, Traged objects, Heat Transfer by free convection, film type and d	Forcectory w	arce, co d conve vise con f ordina ous and	ection ndensa ary dif	ite walls, 9 in tubes, ation and 9 ffusion in ogeneous
shell energy by viscous heat s UNIT – IV Interphase Tr around subme equations for h UNIT – V Mass Transpe gases and liqui reaction – effe transfer rates.	alances- boundary conditions, heat conduction with an electrical hebric. ransport in Non-Isothermal System: Heat Transfer coefficient, Treed objects, Heat Transfer by free convection, film type and deat transfer, Heat transfer in boiling liquids. ort and Interphase Mass Transfer: Ficks law of diffusion, Theorem destruction destructions, diffusion with heter ctiveness factor. Mass Transfer co-efficient in single and multiple phacroscopic balance to solve steady and Unsteady state problems.	Forcectory w	arce, co d conve vise con f ordina ous and	ection ndensa ary dif d hom	ite walls, 9 in tubes, ation and 9 ffusion in ogeneous
shell energy by viscous heat s UNIT – IV Interphase Tr around subme equations for h UNIT – V Mass Transpo gases and liqu reaction – effe transfer rates. REFERENCI	alances- boundary conditions, heat conduction with an electrical hebric.  ransport in Non-Isothermal System: Heat Transfer coefficient, figed objects, Heat Transfer by free convection, film type and d eat transfer, Heat transfer in boiling liquids.  ort and Interphase Mass Transfer: Ficks law of diffusion, Theo ds, shell mass balances- boundary conditions, diffusion with heter ctiveness factor. Mass Transfer co-efficient in single and multiple pMacroscopic balance to solve steady and Unsteady state problems.	Forcec lrop w ries of ogenee phases	arce, co d conve vise con f ordina ous anc at low	ection ndensa ary dif d hom	ite walls, 9 in tubes, ation and 9 ffusion in ogeneous high mass Total: 45
shell energy by viscous heat s UNIT – IV Interphase Transperent equations for h UNIT – V Mass Transperent gases and lique reaction – effet transfer rates. REFERENCI 1. Bird R.B.,	alances- boundary conditions, heat conduction with an electrical hebric. ransport in Non-Isothermal System: Heat Transfer coefficient, Treed objects, Heat Transfer by free convection, film type and deat transfer, Heat transfer in boiling liquids. ort and Interphase Mass Transfer: Ficks law of diffusion, Theorem destruction destructions, diffusion with heter ctiveness factor. Mass Transfer co-efficient in single and multiple phacroscopic balance to solve steady and Unsteady state problems.	Forcec lrop w ries of ogenee phases	arce, co d conve vise con f ordina ous anc at low	ection ndensa ary dif d hom	ite walls, 9 in tubes, ation and 9 ffusion in ogeneous high mass Total: 45
shell energy by viscous heat s UNIT – IV Interphase Transperent equations for h UNIT – V Mass Transperent gases and lique reaction – effet transfer rates. REFERENCI 1. Bird R.B., 2002. 2. Theodore Heat and N	alances- boundary conditions, heat conduction with an electrical hebric.  ransport in Non-Isothermal System: Heat Transfer coefficient, figed objects, Heat Transfer by free convection, film type and d eat transfer, Heat transfer in boiling liquids.  ort and Interphase Mass Transfer: Ficks law of diffusion, Theo ds, shell mass balances- boundary conditions, diffusion with heter ctiveness factor. Mass Transfer co-efficient in single and multiple pMacroscopic balance to solve steady and Unsteady state problems.	Forced Forced rop w ries of ogenee phases	Irce, co I conve vise con F ordina ous and at low John W Vitt, "Fi	ection ndensa ary dif d hom v and h Viley a undan	ite walls, 9 in tubes, ation and 9 ffusion in ogeneous high mass Total: 45 and Sons, hentals of

COU	RSE	BT Mapped					
On con	COURSE OUTCOMES: On completion of the course, the students will be able to						
CO1:	CO1: explain the phenomena behind the transport of momentum, mass and energy						
CO2:	ma	ke use of the shell	balance approach to	solve momentum,	mass and energy	Applying (K3)	
	trai	nsport problems					
CO3:	exp	plain and apply the c	oncept of interphase	e transport in isother	mal systems	Applying (K3)	
CO4:	exp	plain and apply th	e concept of inter	phase transport in	non-isothermal	Applying (K3)	
	sys	stems					
CO5:	ana	alyze unsteady state	problems			Analyzing (K4)	
			Mapping	of COs with POs	1		
COs/P	Os	PO1	PO2	PO3	PO4	PO5	
COI	l	2	2			1	
CO2	2	3	3			1	
CO3	3	3	2			1	
CO4	1	3	2			1	
COS	5	3	2			1	
1 - Sli	ght,	2 - Moderate, 3 -	Substantial, BT - B	loom's Taxonomy			

#### **18MFE13 INDUSTRIAL ENGINEERING**

		3	0	0	3
Preamble	This course gives deep insight in Industrial Engineering, produc	tivity	as well	as sig	gnificance
	of forecasting and planning. This in turn helps them to apply	the pr	inciple	s in la	yout and
	design of facility and understanding on the importance of	cost	analysi	is in	Industrial
	engineering.				
Prerequisites	Nil				
UNIT – I					q

Productivity: Industrial Engineering-Role of Industrial Engineering - System concept of production-Types of production system-flow, job, batch and project- Productivity-Factors affecting productivity-Productivity measures-Productivity improvement techniques-Business Process Reengineering (BPR).

# UNIT – II

Work Study: Method, basic procedure-Selection-Recording of process -Critical analysis, Development -Implementation -Micro motion and memo motion study -Principles of motion economy-Work measurement -Techniques of work measurement -Time study -computation of standard time-Work sampling -Synthetic data -Predetermined motion time standards-Job Evaluation, Merit Rating-Ergonomics and Safety.

#### UNIT – III

Forecasting: Need for forecasting -demand patterns-Forecasting models -Judgmental Techniques, Time series analysis, moving average, exponential smoothing, Regression and correlation method-Forecast errorcosts and accuracy of forecasts.

#### UNIT - IV

Facility Planning: Facility location-factors influencing plant location-single and multi facility location problems-Minimax, Gravity and Euclidean -Distance location problem. Capacity planning, Plant layout-Layout classification-Layout Design Procedures-CRAFT, ALDEP, CORELAP-Material handling systemsunit load concept-material handling principles- Types of material handling equipments and its selection.

#### UNIT - V

Value Engineering: Value engineering–Function, aims, procedure. Make or buy decision, Interest formulae and their applications -Time value of money, Single payment compound amount factor, Single payment present worth factor, Equal payment series sinking fund factor, Equal payment series payment Present worth factor-equal payment series capital recovery factor-Uniform gradient series annual equivalent factor, Effective interest rate, Methods of comparison of alternatives -present worth method, Future worth method, Annual equivalent method, rate of return method.

#### **REFERENCES:**

1.	Telsang M., "Industrial Engineering and Production Management", S. Chand and Company, New Delhi,
	2006.
•	

- Panneerselvam R., "Production and Operations Management", Prentice Hall of India, 2007. 2.
- Buffa Elwood S. and Sarin Rakesh K., "Modern Production and Operations Management", 8th Edition, 3. John Wiley and Sons, New York, 2003.

9

9

Total: 45

9

9

L T P Credit

COU	RSE	<b>OUTCOMES:</b>				BT Mapped
On con	mple	etion of the course, the	he students will be a	ble to		(Highest Level)
CO1:	rela	ate Industrial Engine	ering with production	on and productivity		Remembering (K1)
CO2:	inte	erpret the concepts of	of work study			Understanding (K2)
CO3:	exp	plain the significance	e of forecasting & va	arious models		Understanding (K2)
CO4:	app	oly the knowledge o	f facility planning a	nd layout design pro	ocedures design	Applying (K3)
	of a	a facility				
CO5:	ide	ntify the importance	of Industrial Engine	eering in cost analys	is	Applying (K3)
			Mapping	of COs with POs		
COs/P	Os	PO1	PO2	PO3	PO4	PO5
COI	1	3	2	3	2	1
CO2	2	3	2	3	2	1
CO3	3	2	2	3	2	1
CO4	4	3	3	2	3	2
COS	5	3	2	3	3	2
1 - Sli	ight,	2 - Moderate, 3 - S	ubstantial, BT - Blo	oom's Taxonomy		

	18MFE14 FOOD PRODUCT DESIGN AND DEVELOP	MEN	Т			
		L	Т	Р	Crea	lit
		3	0	0	3	
Preamble	To understand the process involved in idea generation, develop	ment	of new	food	produ	cts,
	quality control and market study					
Prerequisites	Nil					
UNIT – I						9
	nd Consumer Preference: Market survey and its importance -	0	<u> </u>	•		
find consumer	needs for a product or a concept - advantages of processed foods in	n urba	nized N	/lodern	Socie	ety,
Product develo	pment to meet the requirements, Generation of new product idea	s, Proc	luct co	ncepts	, Prod	luct
design.						
UNIT – II						9
0 0	v Products: New Food Product Development (NPD) process and					
case studies, m	arket-oriented NPD methodologies - organization for successful	NPD,	Recipe	devel	opme	nt -
	consumers, chefs and recipe experts, selection of materials/ingre			repla	cers –	fat
replacers – glut	en free ingredients - cost effectiveness - nutritional needs or uniqu	ieness.				
UNIT – III						9
establishing pr techniques and	<b>on and Large Scale Production:</b> Process design - equipmocess parameters for optimum quality, Sensory Evaluation, L tests, statistical analysis - application in product development of the integration of market and sensory analysis.	ab red	quirem	ents -	differ	ent

#### UNIT – IV

**Quality, Safety and Regulatory Aspects**: Product Stability, evaluation of shelf life- accelerated shelf life determination - changes in sensory attributes and effects of environmental conditions, developing packaging systems for maximum stability and cost effectiveness - interaction of package with food, clean labelling, Regulatory aspects - Approval for proprietary product.

9

9

Total: 45

#### UNIT – V

Advertisement, Marketing and Case Studies: Product performance testing - consumer testing - market positioning -Marketing - developing test market strategies, tools and methodologies to evaluate consumer attitudes, preferences and market acceptance factors, Case Studies of some successes and failures- Factors that influence NPD success, innovation case studies - integration of technological and marketing approaches to NPD, food choice models and new product trends.

#### **REFERENCES:**

1.	Brody A.L., and John B.L., "Developing New Food Products for a Changing Marketplace", 2 nd Edition,
	CRC / Taylor and Francis, 2008.
2.	Fuller G.W., "New Food Product Development: From Concept to Marketplace", CRC, 2004.
3	Gunta R "Food Retailing: Emerging Trends" ICEALUniversity Press 2005

COUR	RSE	OUTCOMES:				BT Mapped
On con	mplet	tion of the course, the	ne students will be al	ble to		(Highest Level)
CO1:		ly the concepts of c product	onsumer preference	and idea generation	n for developing	Applying (K3)
CO2:		egorize the different food product	stages in new prod	uct development ar	d able to design	Creating (K6)
CO3:		ly the knowledge of ducts	f standardization and	large scale produc	tion of new food	Applying (K3)
CO4:		er the quality, sat elopment	ety and regulatory	aspects for nev	v food product	Applying (K3)
CO5:	ana	lyze the marketing	strategies of new foo	d products		Evaluating (K5)
			Mapping	of COs with POs		
COs/P	Os	PO1	PO2	PO3	PO4	PO5
COI	l	3	3	2	2	2
CO2	2	3	3			1
CO3	3	3	3			2
CO4	1	3	2		2	2
COS	5	3	3		1	2
1 – Sli	ght, 2	2 - Moderate, 3 -	Substantial, BT - Bl	oom's Taxonomy		

# 18MHE18 DESIGN AND ANALYSIS OF EXPERIMENTS

l

		Category	L	Т	Р	Credit
		PC	3	0	0	3
Preamble:	This course highlights various techniques for	designing	and	optimizi	ng er	gineering
	experiments			-	-	
Prerequisites	Nil					
UNIT – I						9
Introduction	to Experimental Design: Introduction – Principles a	and application	ions of	Design	of Exp	periments,
Design of a	process and product, Guidelines for designing exp	periments, U	Jsing s	tatistica	l techi	niques for
experimentat	ion, Case studies		_			-
UNIT – II						9
Foundations	of Statistics: Sampling and Sampling Distribution	s, Inference	es on l	Random	ized a	nd paired
	lesigns, Analysis of Variables, Regression Analysis					
lack of fit		,	1	U	,	U
UNIT – III						9
	Complete Block Design: Framing RCBD experim	nents, Latin	Squar	e Desin	g, Gra	eco-Latin
	n,Central Composite Design, Balanced Incomplete		-		0	
	estimation, regression, Case Studies in Chemical Engin				1 2	U,
1		0				
UNIT – IV						9
	periments: Principles and Merits of Factorial desig	gn, Analysis	of tw	o factor	ial exp	periments,
Analysis of	two level Fractional factorial experiments, Three level	vel Factoria	l expe	riments,	Intro	luction to
•	n regular factorial designs, Case Studies in Chemical		-	,		
UNIT – V						9
	urface Methodology using Software Tools: Introd	uction to R	SM. S	teepest	Ascen	t method.
	econd order response surface, Designs for Fitting Res					
	emical Engineering Introduction to software tools – N		,		I.	,
						Total: 45
REFERENC	ES:					
	C. Montgomery, "Design and Analysis of Experiment	nts", 8 th Edit	ion. W	ilev. 20	17.	
	Dean and Daniel Voss "Design and Analysis of Expe					

2. Angela Dean and Daniel Voss, "Design and Analysis of Experiments", Springer, 2013.

COUR	RSE OUTO	COMES:				BT Mapped
On cor	npletion of	the course, the stu	dents will be able	to		(Highest Level)
CO1:	apply the experime		nd strategies of exp	erimental design t	o real time	Applying (K3)
CO2:	apply fun	damental concepts	of statistics for tes	sting a hypothesis		Applying (K3)
CO3:	formulate	e and analyze Rand	lomized complete b	olock experiments		Analyzing (K4)
CO4:	analyze F	Factorial experimer	nts for deriving con	clusions		Analyzing (K4)
CO5:	perform r	esponse surface ar	alysis using softwa	are tools and inter	oret the	Analyzing (K4)
	results					
			Mapping of (	COs with POs		
CO	s/POs	PO1	PO2	PO3	PO4	PO5
(	201	2		2	2	1
(	CO2	2		2	2	1
(	CO3	1		2	2	1
(	CO4	1		2	2	1
(	CO5	2		2	2	1
1 - Sli	ght, 2 – Mo	oderate, 3 – Subs	tantial, BT - Bloon	n's Taxonomy		

#### 18MFE15 PROJECT ENGINEERING AND MANAGEMENT

L	Т	Р	Credit
3	0	0	3

Preamble This course is useful to students to have knowledge of management principles followed in Industrial establishments, as well as in integrating the process engineering principles with management principles. Significance of financial management as well as marketing or sales is also dealt in depth.

Prerequisites Nil

UNIT – I

**Principles of Management:** Management, functions of management: Planning, organizing, coordination and control, Human relations and performance in organization, Human and cultural variables in global organizations. Industrial relations and disputes. **Legal Aspects of Business Enterprise:** Importance and necessity of industrial legislation, Export – Import regulations. Labour laws, Social welfare legal measurements, Factory Act.

#### UNIT – II

**Project Identification and Process Planning:** Project definition, Project Profile and standards, Feedback information (MIS), Evaluation and Modification, Selection, Criteria. Planning the process, Strategic and Managerial Planning, Organizing the process planning.

#### UNIT – III

**Project Engineering:** Economic Balancing, Network Planning, Methods (PERT/CPM), Engineering Flow Diagrams, Cost requirements, Analysis and Estimation of Process Feasibilities (Technical/Economical) Analysis, Application of reliability theory.

#### UNIT – IV

**Engineering Management:** Plant Engineering Management, Objectives, Programme, Control, Plant Location and Site Selection, Layout diagrams, Selection and procurement of equipment and machineries, Installation, Recommissioning, Commissioning and performance appraisal, Strategies choice and Influence, Product planning and development, Provision and maintenance of service facilities.

#### UNIT – V

**Financial Management:** Finance: Important, ledger, Journal, Profit and Loss Account, Balance Sheet, Interpretation of Statements, Ration Analysis, Project financing, Project appraisal, return on investments. **Marketing and Sales:** New Issues in Marketing : Basic information on Globalization, Consumerization, Green Marketing and Event Marketing-Sellers and Buyers markets, monopoly, oligraphy, perfect competition, Cost - Elements of Cost, Contribution, Break even analysis, Budgets, Pricing Policies.

#### **REFERENCES:**

- Banga T.R., Agarwal N.K., and Sharma S.C., "Industrial Engineering and Management Science", Khanna Publishers, New Delhi, 2007.
   Bagad V.S., "Industrial Management", Technical Publications, Pune, 2008.
- 3. Pathi P.K., "Labour and Industrial Laws", 2nd Edition, Prentice Hall India, 2012.

9

9

9

9

9

Total: 45

COURS	SE OUTCOMES:				BT Mapped
On comp	pletion of the course, the	he students will be a	ble to		(Highest Level)
	summarize the function			rganization and	Understanding (K2)
a	apply the legal aspects	of business enterpris	ses		
CO2: i	dentify the projects an	d meticulously plan	the process		Applying (K3)
CO3: e	explain the significance	e of forecasting and	various models		Understanding (K2)
CO4: c	outline the importance	of project engineering	ng and management		Understanding (K2)
CO5: a	apply the basic knowle	dge of financial, ma	rketing and sales in t	heir carrier	Applying (K3)
		Mapping	of COs with POs		
COs/PO	s PO1	PO2	PO3	PO4	PO5
CO1	2	1	3	3	3
CO2	3	3	3	2	2
CO3	3	3	3	2	3
CO4	3	3	3	2	3
CO5	3	2	3	3	2
1 – Sligh	nt, $2 - Moderate$ , $3 - $	Substantial, BT - B	loom's Taxonomy		·

		TOMLETO	SENSOR			<u>01 100</u> D				
							L	Т	Р	Credit
							3	0	0	3
Preamble	This cours	e aims at e	nriching the	e knowledg	ge of planr	ning and ex	ecutin	g a sen	sory e	evaluation
	by adoptin	g discrimir	ative, descr	iptive and	other rapid	d test meth	ods.	C		
Prerequisites	Nil	0		•	•					
UNIT – I										9
Introduction	to Sensory	<b>Evaluati</b>	on: Sensor	y evaluati	ion – def	inition, Se	ensory	perce	otion	- vision,
Gustation, olfa	ction, touch	n, audition,	multimodal	l perceptio	on, Factors	affecting	sensor	y meas	ureme	ents, Role
of sensory eval								-		
<b>`</b>					•					
UNIT – II										9
Planning a Se	nsory Proj	ect: Requi	rements for	sensory t	testing - P	rofessional	l cond	uct in	sensor	y testing:
health, safety,										
Resources need	ed for sens	sory testing	, Product ty	pe, Assess	sors, Budg	et, Timing	s, Sele	cting t	he tes	t method,
Setting action s			-	-	-			C		
UNIT – III										
										9
Discriminativ	Test Meth	ods: Overa	all Differenc	ce tests - T	riangle tes	t, Duo-trio	test, D	oifferen	ice fro	-
					•					m control
<b>Discriminativ</b> test, Same and choice, Rankin	different te	st, 'A' 'not	A' test, At	tribute spe	ecific test -	- Paired co	mparis	on, Al		m control
test, Same and	different te	st, 'A' 'not	A' test, At	tribute spe	ecific test -	- Paired co	mparis	on, Al		m control
	different te	st, 'A' 'not	A' test, At	tribute spe	ecific test -	- Paired co	mparis	on, Al		m control
test, Same and choice, Rankin UNIT – IV	different te g test, Simil	st, 'A' 'not arity test -	A' test, At The power of	tribute spe of the test,	ecific test - Proportion	- Paired co n of true di	mparis scrimit	on, Al nators	ternati	m control ve forced
test, Same and choice, Rankin UNIT – IV Descriptive at	different te g test, Simil od Affirma	st, 'A' 'not arity test - ative Tests	A' test, At The power of Descriptiv	tribute spe of the test, ve analysi	ecific test - Proportion	- Paired co n of true di Consensus	mparis scrimin profil	on, Al nators ing, F	ternati	m control ve forced 9 Profiling,
test, Same and choice, Rankin UNIT – IV Descriptive at Texture Profil	different te g test, Simil ad Affirma ng, Quant	st, 'A' 'not larity test - ' <b>ative Tests</b> itative Des	A' test, At The power of Descriptive	tribute spe of the test, ve analysi nalysis, S	Proportion Proportion is tests - 0 pectrum 1	- Paired co n of true di Consensus method, F	mparis scrimin profil ree ch	on, Alanators	ternati lavor profilii	m control ve forced 9 Profiling,
test, Same and choice, Rankin UNIT – IV Descriptive at Texture Profil	different te g test, Simil ad Affirma ng, Quant	st, 'A' 'not larity test - ' <b>ative Tests</b> itative Des	A' test, At The power of Descriptive	tribute spe of the test, ve analysi nalysis, S	Proportion Proportion is tests - 0 pectrum 1	- Paired co n of true di Consensus method, F	mparis scrimin profil ree ch	on, Alanators	ternati lavor profilii	m control ve forced 9 Profiling,
test, Same and choice, Rankin UNIT – IV Descriptive at Texture Profil profiling. Affe	different te g test, Simil ad Affirma ng, Quant	st, 'A' 'not larity test - ' <b>ative Tests</b> itative Des	A' test, At The power of Descriptive	tribute spe of the test, ve analysi nalysis, S	Proportion Proportion is tests - 0 pectrum 1	- Paired co n of true di Consensus method, F	mparis scrimin profil ree ch	on, Alanators	ternati lavor profilii	m control ve forced Profiling, ng, Flash
test, Same and choice, Rankin UNIT – IV Descriptive at Texture Profil profiling. Affect UNIT – V	different te g test, Simil ad Affirmang, Quant tive tests -	st, 'A' 'not larity test - ' <b>ative Tests</b> itative Des Focus grou	A' test, At The power of Descriptive Scriptive An ps, Preferen	tribute spectribute spectribute spectribute spectric definition of the test, where analysis analysis, Since tests, A	ecific test - Proportion is tests - pectrum r acceptance	- Paired con of true di Consensus method, F tests, Attri	mparis scrimin profil ree ch bute di	on, Al nators ing, F oice p agnost	ternati lavor profilin ics	m control ve forced 9 Profiling, ng, Flash 9
test, Same and choice, Rankin UNIT – IV Descriptive at Texture Profil profiling. Affect UNIT – V Rapid Sensor	different te g test, Simil d Affirma ng, Quant tive tests - Profiling	st, 'A' 'not larity test - <b>ative Tests</b> itative Des Focus grou <b>Methods:</b> 1	A' test, At The power of Descriptive Scriptive Au ps, Preferen Ranking des	tribute spectribute spectribute spectribute spectric definition of the test, we analysis analysis, Since tests, A scriptive ar	ecific test - Proportion is tests - pectrum r acceptance	- Paired co n of true di Consensus method, F tests, Attri ee multiple	mparis scrimin profil ree ch bute di	on, Al nators ing, F oice p agnost g, proje	lavor profilin ics ective	m control ve forced 9 Profiling, ng, Flash 9 mapping,
test, Same and choice, Rankin UNIT – IV Descriptive at Texture Profil profiling. Affect UNIT – V Rapid Sensory rapid profiling	different te g test, Simil od Affirma ng, Quant tive tests - <b>Profiling</b> using refe	st, 'A' 'not larity test - ' <b>ative Tests</b> itative Des Focus grou <b>Methods:</b> I erences, ch	A' test, At The power of Descriptive Scriptive An ps, Preferen Ranking des neck all tha	tribute spe of the test, ve analysi nalysis, S ice tests, A scriptive ar at apply,	ecific test - Proportion is tests - pectrum r acceptance	- Paired co n of true di Consensus method, F tests, Attri ee multiple	mparis scrimin profil ree ch bute di	on, Al nators ing, F oice p agnost g, proje	lavor profilin ics ective	m control ve forced 9 Profiling, ng, Flash 9 mapping,
test, Same and choice, Rankin UNIT – IV Descriptive at Texture Profil profiling. Affect UNIT – V Rapid Sensory rapid profiling	different te g test, Simil od Affirma ng, Quant tive tests - <b>Profiling</b> using refe	st, 'A' 'not larity test - ' <b>ative Tests</b> itative Des Focus grou <b>Methods:</b> I erences, ch	A' test, At The power of Descriptive Scriptive An ps, Preferen Ranking des neck all tha	tribute spe of the test, ve analysi nalysis, S ice tests, A scriptive ar at apply,	ecific test - Proportion is tests - pectrum r acceptance	- Paired co n of true di Consensus method, F tests, Attri ee multiple	mparis scrimin profil ree ch bute di	on, Al nators ing, F oice p agnost g, proje	lavor profilin ics ective domi	m control ve forced <b>9</b> Profiling, ng, Flash <b>9</b> mapping, inance of
test, Same and choice, Rankin UNIT – IV Descriptive at Texture Profil profiling. Affec UNIT – V Rapid Sensory rapid profiling sensations, idea	different te g test, Simil ad Affirma ng, Quant tive tests - <b>Profiling</b> using refu l profiling,	st, 'A' 'not larity test - ' <b>ative Tests</b> itative Des Focus grou <b>Methods:</b> I erences, ch	A' test, At The power of Descriptive Scriptive An ps, Preferen Ranking des neck all tha	tribute spe of the test, ve analysi nalysis, S ice tests, A scriptive ar at apply,	ecific test - Proportion is tests - pectrum r acceptance	- Paired co n of true di Consensus method, F tests, Attri ee multiple	mparis scrimin profil ree ch bute di	on, Al nators ing, F oice p agnost g, proje	lavor profilin ics ective domi	m control ve forced 9 Profiling, ng, Flash 9 mapping,
test, Same and choice, Rankin UNIT – IV Descriptive at Texture Profil profiling. Affer UNIT – V Rapid Sensory rapid profiling sensations, idea	different te g test, Simil ad Affirma ng, Quant tive tests - Profiling using refe l profiling, S:	st, 'A' 'not larity test - <b>ntive Tests</b> itative Des Focus grou <b>Methods:</b> I erences, ch just above	A' test, At The power of Descriptive Scriptive An ps, Preferen Ranking des neck all tha right scales.	tribute spe of the test, ve analysi nalysis, S ice tests, A scriptive ar at apply,	ecific test - Proportion is tests - pectrum r acceptance nalysis, Fre open ende	- Paired co n of true di Consensus method, F tests, Attri ee multiple ed questio	mparis scrimin profil ree ch bute di sortin ns, ten	on, Al nators ing, F oice p agnost g, proje nporal	lavor profilin ics ective domi	m control ve forced <b>9</b> Profiling, ng, Flash <b>9</b> mapping, inance of <b>Total: 45</b>
test, Same and choice, Rankin UNIT – IV Descriptive at Texture Profil profiling. Affect UNIT – V Rapid Sensory rapid profiling sensations, idea REFERENCE 1. Harry T.	different te g test, Simil od Affirma ng, Quant tive tests - <b>Profiling</b> using refe l profiling, S: Lawless and	st, 'A' 'not larity test - <b>ative Tests</b> itative Des Focus grou <b>Methods:</b> I erences, ch just above	A' test, At The power of Descriptive Scriptive An ps, Preferen Ranking des neck all tha	tribute spe of the test, ve analysi nalysis, S ice tests, A scriptive ar at apply,	ecific test - Proportion is tests - pectrum r acceptance nalysis, Fre open ende	- Paired co n of true di Consensus method, F tests, Attri ee multiple ed questio	mparis scrimin profil ree ch bute di sortin ns, ten	on, Al nators ing, F oice p agnost g, proje nporal	lavor profilin ics ective domi	m control ve forced <b>9</b> Profiling, ng, Flash <b>9</b> mapping, inance of <b>Total: 45</b>
test, Same and choice, Rankin UNIT – IV Descriptive at Texture Profil profiling. Affect UNIT – V Rapid Sensory rapid profiling sensations, idea REFERENCE 1. Harry T. Edition, S	different te g test, Simil d Affirma ng, Quant tive tests - Profiling using refu l profiling, S: Lawless and pringer, Uk	st, 'A' 'not larity test - <b>ative Tests</b> itative Des Focus grou <b>Methods:</b> I erences, ch just above	A' test, At The power of Descriptive Scriptive An ps, Preferen Ranking des neck all tha right scales.	tribute spectribute spectribute spectribute spectribute spectric spectres spectric spectric spectric spectres spectres s	ecific test - Proportion is tests - pectrum r acceptance nalysis, Fre open ende	- Paired co n of true di Consensus method, F tests, Attri ee multiple ed questio	mparis scrimin profil ree ch bute di sortin ns, ten Princi	on, Al nators ing, F oice p agnost g, projo nporal ple and	lavor profilin ics ective domi	m control ve forced <b>9</b> Profiling, ng, Flash <b>9</b> mapping, inance of <b>Total: 45</b> tices", 2 nd
test, Same and choice, Rankin UNIT – IV Descriptive an Texture Profil profiling. Affect UNIT – V Rapid Sensory rapid profiling sensations, idea REFERENCE 1. Harry T. Edition, S 2. Morten C	different te g test, Simil od Affirma ng, Quant tive tests - <b>Profiling</b> using refe l profiling, S: Lawless and pringer, Uk	st, 'A' 'not larity test - <b>itive Tests</b> itative Des Focus grou <b>Methods:</b> I erences, ch just above I Hildegard X, 2010.	A' test, At The power of Descriptive Scriptive An ps, Preferen Ranking des neck all tha right scales. e Heymann, ce Civille a	tribute spectribute spectribute spectribute spectribute spectric spectres spectric spectric spectric spectres spectres s	ecific test - Proportion is tests - pectrum r acceptance nalysis, Fre open ende	- Paired co n of true di Consensus method, F tests, Attri ee multiple ed questio	mparis scrimin profil ree ch bute di sortin ns, ten Princi	on, Al nators ing, F oice p agnost g, projo nporal ple and	lavor profilin ics ective domi	m control ve forced <b>9</b> Profiling, ng, Flash <b>9</b> mapping, inance of <b>Total: 45</b> tices", 2 nd
test, Same and choice, Rankin UNIT – IV Descriptive an Texture Profil profiling. Affect UNIT – V Rapid Sensory rapid profiling sensations, idea REFERENCE 1. Harry T. Edition, S 2. Morten C Edition, C	different te g test, Simil od Affirma ng, Quant tive tests - <b>Profiling</b> using refe l profiling, <b>S:</b> Lawless and pringer, Uk Meilgaard RC Press, I	st, 'A' 'not larity test - <b>ntive Tests</b> itative Des Focus grou <b>Methods:</b> I erences, ch just above I Hildegard (, 2010. I, Gail Van USA, 2010.	A' test, At The power of Descriptive Scriptive An ps, Preferen Ranking des neck all tha right scales. e Heymann, ce Civille a	tribute spectribute spectribute spectribute spectric definition of the test, which is a spectric definition of the tests, A spectric definition of the test of tes	ecific test - Proportion is tests - ( pectrum r acceptance nalysis, Fre open ende	- Paired con n of true di Consensus method, F tests, Attri ee multiple ed questio n of Food: , "Sensory	mparis scrimin profil ree ch bute di sortin ns, ten Princi Evalu	on, Al nators ing, F oice p agnost g, proje nporal ple and ation T	lavor profilin ics ective domi	m control ve forced <b>9</b> Profiling, ng, Flash <b>9</b> mapping, inance of <b>Total: 45</b> tices", 2 nd ques", 4 th
test, Same and choice, Rankin UNIT – IV Descriptive at Texture Profil profiling. Affect UNIT – V Rapid Sensory rapid profiling sensations, idea REFERENCE 1. Harry T. Edition, S 2. Morten C Edition, C 3. Sarah Ke	different te g test, Simil ad Affirma ng, Quant tive tests - <b>Profiling</b> using refe l profiling, S: Lawless and pringer, Uk Meilgaard RC Press, I np, Tracey	st, 'A' 'not larity test - <b>ative Tests</b> itative Des Focus grou <b>Methods:</b> I erences, ch just above I Hildegard X, 2010. I, Gail Van USA, 2010. Hollowoo	A' test, At The power of Descriptive Scriptive An ps, Preferen Ranking des neck all tha right scales. e Heymann, ce Civille a	tribute spectribute spectribute spectribute spectric spectres spectric spectric spectric spectres spectres spectres spec	ecific test - Proportion is tests - ( pectrum r acceptance nalysis, Fre open ende	- Paired con n of true di Consensus method, F tests, Attri ee multiple ed questio n of Food: , "Sensory	mparis scrimin profil ree ch bute di sortin ns, ten Princi Evalu	on, Al nators ing, F oice p agnost g, proje nporal ple and ation T	lavor profilin ics ective domi	m control ve forced 9 Profiling, ng, Flash 9 mapping, inance of <b>Total: 45</b> tices", 2 nd ques", 4 th

COUR	RSE O	OUTCOMES:				BT Mapped
On con	npleti	on of the course, the	he students will be a	ible to		(Highest Level)
CO1:	inter	pret the concepts in	n sensory evaluatior	1		Understanding (K2)
CO2:	plan	a sensory evaluation	on session			Applying (K3)
CO3:	recor	mmend suitable dis	scriminative test me	thod for sensory ev	aluation	Evaluating (K5)
CO4:	selec	t suitable descripti	ve and affirmative t	ests for sensory eva	luation	Applying (K3)
CO5:	choo	se and use approp	riate rapid sensory p	profiling methods d	epending on the	Applying (K3)
	prod	uct				
			Mapping	g of COs with POs		
COs/P	Os	PO1	PO2	PO3	PO4	PO5
CO1		1	1			1
CO2	2	1	3	3	2	1
CO3	3	2	2	1		1
CO4		2	2	1		1
CO5	5	2	2	1		1
1 - Slig	ght, 2	– Moderate, 3 –	Substantial, BT - B	loom's Taxonomy	- <u>-</u>	

	18MFE17 FOOD SUPPLY CHAIN MANAGEMEN				
		L	Т	Р	Credit
		3	0	0	3
Preamble	This course aims at enriching the minds of those students who transportation and logistics within the company and learning th				0
	and logistics activities with the vendors and buyers				
Prerequisites	Nil				
UNIT – I					9
consumer and Networks, Foo	<b>to Food Supply Chain:</b> Types of food chain, Decision Phas supply chain, International Food Supply Chains, Impact of Glo od supply chain in India, Factors affecting food supply chain bod supply chains, Temperature-controlled supply chains.	baliza	tion or	Supp	oly Chain
	I				
UNIT – II	within Food Supply Chain: Current relationship models within f	·			9
in food and dri supply chain n	nks supply chain, Perceived risk and product safety in food supply nanagement, Food inventory management, Designing food supply hain Management, Future of Food Supply Chain Management.	chain	s, Food	l packa	aging and
choice, Online	<b>Challenges:</b> Food retail environment, Food routes to consumer, Im grocery retailing, Future of food retailing. Food Sourcing as	-	-	0	
models, Purch procurement.	asing models, Supplier segmentation, Supplier development, Str				
procurement.					ıstainable
procurement. UNIT – IV Development technology in chains, Innova		ategic ndards levelop	sourci	ng, Su of tr in foc	aceability od supply
procurement. <b>UNIT – IV</b> <b>Development</b> technology in chains, Innova in food supply	asing models, Supplier segmentation, Supplier development, Stra in Food Supply Chains: Traceability - legislations and star food supply chains, Design of Traceability systems, Product d tions within food supply chains. Risk Management: Risk manage	ategic ndards levelop	sourci	ng, Su of tr in foc	aceability od supply
procurement. UNIT – IV Development technology in chains, Innova in food supply UNIT – V Sustainability sustainability	asing models, Supplier segmentation, Supplier development, Str in Food Supply Chains: Traceability - legislations and stat food supply chains, Design of Traceability systems, Product d tions within food supply chains. Risk Management: Risk manage chain, Managing risks in food supply chains. Challenges in Food Supply Chains: Sustainable food within food supply chains, Developing sustainability within food food supply chains, Carbon Footprint of food supply chains, Qual	ategic ndards levelop ement supply supply	sourci s, Use oment and un y chai	ng, Su of tr in foc certain ns, M ns, In: ent Sc	aceability od supply nty, Risks 9 Measuring formation chemes in
procurement. UNIT – IV Development technology in chains, Innova in food supply UNIT – V Sustainability sustainability Technology in food supply ch	asing models, Supplier segmentation, Supplier development, Str in Food Supply Chains: Traceability - legislations and stat food supply chains, Design of Traceability systems, Product d tions within food supply chains. Risk Management: Risk manage chain, Managing risks in food supply chains. Challenges in Food Supply Chains: Sustainable food within food supply chains, Developing sustainability within food food supply chain, Carbon Footprint of food supply chains, Qual- ain.	ategic ndards levelop ement supply supply	sourci s, Use oment and un y chai	ng, Su of tr in foc certain ns, M ns, In: ent Sc	aceability od supply nty, Risks 9 Measuring formation
procurement. UNIT – IV Development technology in chains, Innova in food supply UNIT – V Sustainability sustainability v Technology in food supply ch REFERENCE 1. Iakovou Networks	asing models, Supplier segmentation, Supplier development, Str in Food Supply Chains: Traceability - legislations and stat food supply chains, Design of Traceability systems, Product d tions within food supply chains. Risk Management: Risk manage chain, Managing risks in food supply chains. Challenges in Food Supply Chains: Sustainable food within food supply chains, Developing sustainability within food food supply chain, Carbon Footprint of food supply chains, Qual ain. S: E., Bochtis D., Vlachos D. and Aidonis D., "Supply Chain Manag ", John Wiley and Sons, 2016.	ategic ndards levelop ement supply supply ity Ma	sourci s, Use oment and un y chai ly chai inagem t for St	ng, Su of tr in foc certain ns, In ent Sc ustaina	ustainable 9 aceability od supply nty, Risks 9 Measuring formation chemes in Total: 45 able Food
procurement. UNIT – IV Development technology in chains, Innova in food supply UNIT – V Sustainability sustainability Technology in food supply ch REFERENCE 1. Iakovou Networks 2. Chopra S Education	asing models, Supplier segmentation, Supplier development, Str in Food Supply Chains: Traceability - legislations and stat food supply chains, Design of Traceability systems, Product d tions within food supply chains. Risk Management: Risk manage chain, Managing risks in food supply chains. Challenges in Food Supply Chains: Sustainable food within food supply chains, Developing sustainability within food food supply chain, Carbon Footprint of food supply chains, Qual ain. S: E., Bochtis D., Vlachos D. and Aidonis D., "Supply Chain Manag ", John Wiley and Sons, 2016. and Meindl P., "Supply Chain Management Strategy, Plannin	ategic ndards levelop ement supply supply ity Ma gemen	sourci s, Use oment and un y chai ly chai unagem t for St l Oper	ng, Su of tr in foc certain ns, M ns, In ent Sc ustaina ation"	Aceability aceability od supply nty, Risks 9 Measuring formation chemes in Total: 45 able Food , Pearson

COURSE OUTCOMES:					<b>BT Mapped</b>		
On completion of the course, the students will be able to					(Highest Level)		
CO1:	explain the process view of supply chain and identify the challenges in				Understanding (K2)		
	supply chain	apply chain					
CO2:	utilize the appropriate	Applying (K3)					
	consumer demand						
CO3:	assess beliefs held by	Evaluating (K5)					
	explain sourcing proces						
CO4:	appraise overview on i	Analyzing (K4)					
	traceability and to ide						
	supply chain						
CO5:		ntify sustainability performance expected from sustainability practice			Applying (K3)		
	implemented in different supply chain stages						
		Mapping	of COs with POs				
COs/P	Os PO1	PO2	PO3	PO4	PO5		
CO	L 2	1	1		1		
CO2	2 1	2	1		1		
COS	3 1	1			1		
CO	1 1	1		1	1		
COS	5 1				1		
1 - Sli	ght, $2 - Moderate$ , $3 - $	Substantial, BT - Bl	oom's Taxonomy				

#### **18MFE18 FOOD PROCESS PLANT LAYOUT AND DESIGN** Т Р Credit L 3 0 0 3 Preamble To impart knowledge on designing the food process and plant and to enhance the knowledge of designing food processing equipments. Prerequisites Nil UNIT – I 9 Process and Plant Design: Overview of plant design- Process Flow sheets, Types of process design, Material and energy balances, Design of equipment, plant layout and buildings, Economic analysis in process/plant design, Manufacturing cost and profitability, Computer aided process/plant design. UNIT – II 9 Food Plant Design: Elements of Food Plant Design- General aspects, new food plants, plant improvement, plant expansion, mobile food plants, advanced food plants. Good Manufacturing Practices, Food Plant Economics UNIT – III 9 Selection of Food Processing Equipment: Construction characteristics. Operational characteristicsreliability, convenience, safety, instrumentation, ergonomics, efficiency, accuracy, environmental impact. Testing of equipments. Equipment specifications. UNIT – IV 9 Design of Food Processing Equipment: Sizing and costing of Equipment, materials of construction, Fabrication of equipment- Strength of Construction, Fabrication and Installation of Equipment, Hygienic Design of Food Processing Equipment. UNIT – V 9 Heat Transfer Equipment: Heat exchangers- Heat transfer factor. Baking Oven- Load of baking chamber, Load by products, Load by heat loss, Total thermal load, types of heating source. Mass Transfer Equipment: Reactors- process operation, design considerations, location, support and elevation, nozzle location, platform and piping arrangements. Total: 45 **REFERENCES:** George D. Saravacos and Athanasios E. Kostaropoulos, "Handbook of Food Processing Equipment", 1. Springer Science & Business Media, New York, 2002. 2. Georgina Calderón-Domínguez, Gustavo F. Gutiérrez-López, and Keshavan Niranjan, "Advances in Heat Transfer Unit Operations", CRC/Taylor & Francis, 2016.

3. Ed Bausbacher and Roger Hunt, "Process plant layout and piping design", P T R Prentice Hall, Englewood Cliffs, New Jersey, 1993.

COURSE OUTCOMES: BT Mapped								
On com	pletion of the course, the	(Highest Level)						
CO1:	explain process and pla	Understanding (K2)						
CO2:	construct food plant de	Evaluating (K5)						
CO3:	identify and interpret d	Applying (K3)						
CO4:	select suitable criteria f	Analyzing (K4)						
CO5:	design heat and mass tr	Evaluating (K5)						
Mapping of COs with POs								
COs/PC	Ds PO1	PO2	PO3	PO4	PO5			
CO1	3	2	1	1	1			
CO2	3	1	1					
CO3	2	1	1	1	1			
CO4	2	1	1					
CO5	3	2	1	1	1			
1 – Slig	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy							

	18MFE19 SCALE UP METHODS IN PROCESS ENGIN	EERI	NG		
		L	Т	Р	Credit
		3	0	0	3
Preamble	This course introduces the aspects of taking the process from be				
	Similarity criterion, pilot plant models and Dimensional analysis				
	and Mass transfer equipments, Mixers and other selected of	equipr	nents	useful	in food
	processing are covered.				
Prerequisites	Fluid Mechanics, Heat Transfer, Mass Transfer				
UNIT – I					9
	Scale Up: Need and challenges - Scale up of formulations - Produced Production - Pr		-	0	
	versus continuous processing - Product transfers and facilit				
	ot Plants and Models: Introduction to scale-up methods, pilot a	nd mo	dels a	nd pri	nciples of
similarity					
					0
UNIT – II				•1 •4	<u> </u>
	<b>Analysis and Scale–Up Criterion:</b> Dimensional analysis, regime ethods used in process Engineering.	conce	pt, sin	illarity	criterion
and scale up in	ethods used in process Engineering.				
UNIT – III					9
	Mixing and Heat Transfer Equipment: Typical problems in	scale	up o	f mix	
Exchangers and			"P o		
0					
UNIT – IV					9
Scale-Up of M	ass Transfer Equipments: Scale-up of distillation columns and p	acked	towers	s for c	ontinuous
and batch proc	esses.				
UNIT – V					9
	ner Selected Processes: Supercritical Fluid Extraction - Screw Ex	truder	s - Spr	ay dri	ers - Ball
Mill - Furnace	s and Kilns. Limitations of scale up techniques.				
					Total: 45
REFERENCE					
	J. Valentas, J. Peter Clark, Leon Levin, "Food Processing Open	rations	and S	Scale-1	ıp", CRC
Press, 199					
	okarnik, "Dimensional Analysis and Scale-Up in Chemical Eng	gineeri	ng", S	pringe	r–Verlag,
Berlin G	ermany, 1986.				
	. Jordan, "Chemical Process Development" (Part 1 and 2), Intersci				

COU	RSE (	OUTCOMES:				BT Mapped
On completion of the course, the students will be able to						(Highest Level)
CO1:	infe	r the importance an	Understanding (K2)			
CO2:	reca	all fundamentals of	scale up, dimension	al analysis and scale	e up criterion	Remembering (K1)
CO3:	app	ly the similarity and	l scale up principles	s in the scale-up of 1	nixing and heat	Applying (K3)
	tran	sfer equipments				
CO4:	app	ly acquire knowled	ge in the scale-up of	f mass transfer equi	pments	Applying (K3)
CO5:	und	erstand the scale u	p of miscellaneous	equipment and limit	tations of scale	Understanding (K2)
	up t	echniques				
			Mapping	g of COs with POs		
COs/P	Os	PO1	PO2	PO3	PO4	PO5
COI	l	2	1			
CO2	2	2	2			
COS	3	3	2			1
CO	1	3	2			1
COS	CO5         3         2					1
1 - Sli	ght, 2	2 - Moderate, 3 -	Substantial, BT - B	loom's Taxonomy		

		L	Т	Р	Credit
	-	3	0	0	3
Preamble	This course explains the basics of food rheology and to familiarize t	the stu	idents v	with rh	neologica
	instruments and their use in relation to food products.				U
Prerequisites	Nil				
UNIT – I					
Food Rheolog	gy and Structure: Stress and Strain tensors, viscometric propert	ties, s	shear s	tress-s	shear rat
relationships,	units in rheological measurements, types of fluid flow behaviour,	appare	ent vise	cosity	, intrinsi
viscosity, stres	ss-strain behaviour of solid foods, linear viscoelasticity, phase transitio	ons in	foods.		
UNIT – II					
	nctional Models for Rheological Properties of Fluid Foods: Time i	-			
	me dependent flow behavior- Newtonion model, Power law mode				•
	l, Quemada Model. Apparent viscosity- shear rate relationships of sh				
	n in rheology of dispersions, Effect of soluble and Insoluble solids				
	ect of temperature on viscosity, Mixing rules for two components blen	ds, Tr	eatmen	t of rh	neologica
data using moo	dels.				
		••••••			
UNIT – III					
	t of Flow and Viscoelastic Properties: Rotational Viscometers, T	orsior	n Geloi	meter	
Measurement					for Soli
<b>Measurement</b> Foods, Pressur	re-Driven Flow Viscometers, Extensional flow Viscometry, Measuren	nent o	f visco	elastic	for Soli
<b>Measurement</b> Foods, Pressur		nent o	f visco	elastic	for Soli
<b>Measurement</b> Foods, Pressur of Fluid Foods	re-Driven Flow Viscometers, Extensional flow Viscometry, Measuren	nent o	f visco	elastic	for Soli behavio
Measurement Foods, Pressur of Fluid Foods UNIT – IV	re-Driven Flow Viscometers, Extensional flow Viscometry, Measuren s, Viscosity measurement at high temperature, In-Plant measurement o	nent o of Flov	f visco w behav	elastic vior.	for Soli
Measurement Foods, Pressur of Fluid Foods UNIT – IV Rheology of 1	re-Driven Flow Viscometers, Extensional flow Viscometry, Measuren s, Viscosity measurement at high temperature, In-Plant measurement o Food Gum and Starch Dispersions: Rheology of Food Gum Dispe	nent o of Flow	f visco w behav s, Rheo	elastic vior.	for Soli behavio
Measurement Foods, Pressur of Fluid Foods UNIT – IV Rheology of I Starch Dispers	re-Driven Flow Viscometers, Extensional flow Viscometry, Measuren s, Viscosity measurement at high temperature, In-Plant measurement o Food Gum and Starch Dispersions: Rheology of Food Gum Dispersions, Dynamic Rheological Behavior of Starch Dispersions, Role of	nent o of Flov ersions f Con	f visco w behav s, Rheo tinuous	elastic vior.	for Solie behavio of Heate Disperse
Measurement Foods, Pressur of Fluid Foods UNIT – IV Rheology of I Starch Dispers Phases on Vis	re-Driven Flow Viscometers, Extensional flow Viscometry, Measuren s, Viscosity measurement at high temperature, In-Plant measurement o <b>Food Gum and Starch Dispersions:</b> Rheology of Food Gum Dispersions, Dynamic Rheological Behavior of Starch Dispersions, Role of scoelastic Properties of Starch Dispersions, Effect of Sugar on Rheo	nent o of Flow ersions f Con ology	f visco w behav s, Rheo tinuous of Star	elastic vior.	for Soli behavio of Heate Disperse
Measurement Foods, Pressur of Fluid Foods UNIT – IV Rheology of I Starch Dispers Phases on Vis	re-Driven Flow Viscometers, Extensional flow Viscometry, Measuren s, Viscosity measurement at high temperature, In-Plant measurement o Food Gum and Starch Dispersions: Rheology of Food Gum Dispersions, Dynamic Rheological Behavior of Starch Dispersions, Role of	nent o of Flow ersions f Con ology	f visco w behav s, Rheo tinuous of Star	elastic vior.	behavio
Measurement Foods, Pressur of Fluid Foods UNIT – IV Rheology of I Starch Dispers Phases on Vis Rheological B	re-Driven Flow Viscometers, Extensional flow Viscometry, Measuren s, Viscosity measurement at high temperature, In-Plant measurement o <b>Food Gum and Starch Dispersions:</b> Rheology of Food Gum Dispersions, Dynamic Rheological Behavior of Starch Dispersions, Role of scoelastic Properties of Starch Dispersions, Effect of Sugar on Rheo	nent o of Flow ersions f Con ology	f visco w behav s, Rheo tinuous of Star	elastic vior.	for Soli behavio of Heate Disperse spersion
Measurement Foods, Pressur of Fluid Foods UNIT – IV Rheology of I Starch Dispers Phases on Vis Rheological B UNIT – V	re-Driven Flow Viscometers, Extensional flow Viscometry, Measuren s, Viscosity measurement at high temperature, In-Plant measurement o <b>Food Gum and Starch Dispersions:</b> Rheology of Food Gum Dispersions, Dynamic Rheological Behavior of Starch Dispersions, Role of scoelastic Properties of Starch Dispersions, Effect of Sugar on Rheological Dispersions, Rheology of Starch-Gum Dispersions, Rheology dispersions, Rheology disper	nent o of Flow ersions f Con blogy ersion	f visco w behav s, Rheo tinuous of Star s	elastic vior.	for Soli behavio of Heate Disperse spersion
Measurement Foods, Pressur of Fluid Foods UNIT – IV Rheology of I Starch Dispers Phases on Vis Rheological B UNIT – V Rheological B	re-Driven Flow Viscometers, Extensional flow Viscometry, Measuren s, Viscosity measurement at high temperature, In-Plant measurement of Food Gum and Starch Dispersions: Rheology of Food Gum Dispersions, Dynamic Rheological Behavior of Starch Dispersions, Role of scoelastic Properties of Starch Dispersions, Effect of Sugar on Rheo ehavior of Starch-Protein Dispersions, Rheology of Starch-Gum Dispersions Behavior of Processed Fluid and Semi solid Foods: Fruit Juices and	nent o of Flov ersions f Con ology ersion Puree	f visco w behav s, Rheo tinuous of Star s es: Role	elastic vior. ology of and i ch Dis e of Sc	for Solie behavio of Heate Disperse spersion
Foods, Pressur of Fluid Foods <b>UNIT – IV</b> <b>Rheology of I</b> Starch Dispers Phases on Vis Rheological B <b>UNIT – V</b> <b>Rheological B</b> Insoluble Solie	re-Driven Flow Viscometers, Extensional flow Viscometry, Measurem s, Viscosity measurement at high temperature, In-Plant measurement of Food Gum and Starch Dispersions: Rheology of Food Gum Dispersions, Dynamic Rheological Behavior of Starch Dispersions, Role of scoelastic Properties of Starch Dispersions, Effect of Sugar on Rheolehavior of Starch-Protein Dispersions, Rheology of Starch-Gum Dispersions Behavior of Processed Fluid and Semi solid Foods: Fruit Juices and ds, Rheological Properties of Chocolate, Rheology of Milk and Mill	ersions f Con ology ersion Puree k Con	f visco w behav s, Rheo tinuous of Star s es: Role	elastic vior. ology of and 1 ch Dis ch Dis co of Sc ae, Rh	for Soli behavio of Heate Disperse spersion
Measurement Foods, Pressur of Fluid Foods UNIT – IV Rheology of I Starch Dispers Phases on Vis Rheological B UNIT – V Rheological B Insoluble Solie Mayonnaise, S	re-Driven Flow Viscometers, Extensional flow Viscometry, Measuren s, Viscosity measurement at high temperature, In-Plant measurement of Food Gum and Starch Dispersions: Rheology of Food Gum Dispersions, Dynamic Rheological Behavior of Starch Dispersions, Role of scoelastic Properties of Starch Dispersions, Effect of Sugar on Rheo ehavior of Starch-Protein Dispersions, Rheology of Starch-Gum Dispersions Behavior of Processed Fluid and Semi solid Foods: Fruit Juices and	ersions f Con ology ersion Puree k Con	f visco w behav s, Rheo tinuous of Star s es: Role	elastic vior. ology of and 1 ch Dis ch Dis co of Sc ae, Rh	for Soli behavio of Heate Disperse spersion
Measurement Foods, Pressur of Fluid Foods UNIT – IV Rheology of I Starch Dispers Phases on Vis Rheological B UNIT – V Rheological B Insoluble Solie Mayonnaise, S	re-Driven Flow Viscometers, Extensional flow Viscometry, Measurem s, Viscosity measurement at high temperature, In-Plant measurement of Food Gum and Starch Dispersions: Rheology of Food Gum Dispersions, Dynamic Rheological Behavior of Starch Dispersions, Role of scoelastic Properties of Starch Dispersions, Effect of Sugar on Rheolehavior of Starch-Protein Dispersions, Rheology of Starch-Gum Dispersions Behavior of Processed Fluid and Semi solid Foods: Fruit Juices and ds, Rheological Properties of Chocolate, Rheology of Milk and Mill	ersions f Con ology ersion Puree k Con	f visco w behav s, Rheo tinuous of Star s es: Role	elastic vior. ology of and i ch Dis e of Sc e, Rh alyses	for Soli behavio of Heate Disperse spersion oluble an eology of of Foo
Measurement Foods, Pressur of Fluid Foods UNIT – IV Rheology of I Starch Dispers Phases on Vis Rheological B UNIT – V Rheological B Insoluble Solid Mayonnaise, S Dispersions	re-Driven Flow Viscometers, Extensional flow Viscometry, Measurem s, Viscosity measurement at high temperature, In-Plant measurement of Food Gum and Starch Dispersions: Rheology of Food Gum Dispersions, Dynamic Rheological Behavior of Starch Dispersions, Role of scoelastic Properties of Starch Dispersions, Effect of Sugar on Rheo ehavior of Starch-Protein Dispersions, Rheology of Starch-Gum Dispersions Behavior of Processed Fluid and Semi solid Foods: Fruit Juices and ds, Rheological Properties of Chocolate, Rheology of Milk and Mill Salad Dressing, and Margarine, Rheology of Salad Dressings, St	ersions f Con ology ersion Puree k Con	f visco w behav s, Rheo tinuous of Star s es: Role	elastic vior. ology of and i ch Dis e of Sc e, Rh alyses	for Soli behavio
Measurement Foods, Pressur of Fluid Foods UNIT – IV Rheology of I Starch Dispers Phases on Vis Rheological B UNIT – V Rheological B Insoluble Solio Mayonnaise, S Dispersions	re-Driven Flow Viscometers, Extensional flow Viscometry, Measuren s, Viscosity measurement at high temperature, In-Plant measurement of Food Gum and Starch Dispersions: Rheology of Food Gum Dispersions, Dynamic Rheological Behavior of Starch Dispersions, Role of scoelastic Properties of Starch Dispersions, Effect of Sugar on Rheo behavior of Starch-Protein Dispersions, Rheology of Starch-Gum Dispersions Behavior of Processed Fluid and Semi solid Foods: Fruit Juices and ds, Rheological Properties of Chocolate, Rheology of Milk and Mill Salad Dressing, and Margarine, Rheology of Salad Dressings, St ES:	nent o of Flow ersions f Con ology ersion Puree k Con tructu	f visco w behav s, Rheo tinuous of Star s es: Role centrat	elastic vior.	for Soli behavio of Heate Disperse spersion oluble an eology of of Foo Total: 4
Measurement Foods, Pressur of Fluid Foods UNIT – IV Rheology of I Starch Dispers Phases on Vis Rheological B UNIT – V Rheological B Insoluble Solio Mayonnaise, S Dispersions REFERENCI 1. Rao M.A	re-Driven Flow Viscometers, Extensional flow Viscometry, Measurem s, Viscosity measurement at high temperature, In-Plant measurement of Food Gum and Starch Dispersions: Rheology of Food Gum Dispersions, Dynamic Rheological Behavior of Starch Dispersions, Role of scoelastic Properties of Starch Dispersions, Effect of Sugar on Rheo ehavior of Starch-Protein Dispersions, Rheology of Starch-Gum Dispersions Behavior of Processed Fluid and Semi solid Foods: Fruit Juices and ds, Rheological Properties of Chocolate, Rheology of Milk and Mill Salad Dressing, and Margarine, Rheology of Salad Dressings, St	nent o of Flow ersions f Con ology ersion Puree k Con tructu	f visco w behav s, Rheo tinuous of Star s es: Role centrat	elastic vior.	for Soli behavio of Heate Disperse spersion oluble an eology of of Foo Total: 4
Measurement Foods, Pressur of Fluid Foods UNIT – IV Rheology of I Starch Dispers Phases on Vis Rheological B UNIT – V Rheological B Insoluble Solio Mayonnaise, S Dispersions REFERENCI 1. Rao M.A 2007.	re-Driven Flow Viscometers, Extensional flow Viscometry, Measuren s, Viscosity measurement at high temperature, In-Plant measurement of Food Gum and Starch Dispersions: Rheology of Food Gum Dispersions, Dynamic Rheological Behavior of Starch Dispersions, Role of scoelastic Properties of Starch Dispersions, Effect of Sugar on Rheolehavior of Starch-Protein Dispersions, Rheology of Starch-Gum Dispersions Behavior of Processed Fluid and Semi solid Foods: Fruit Juices and ds, Rheological Properties of Chocolate, Rheology of Milk and Mill Salad Dressing, and Margarine, Rheology of Salad Dressings, St ES: A., "Rheology of Fluid and Semi solid Foods: Principles and Applicat	nent o of Flov ersions f Con ology ersion Puree k Con tructur	f visco w behav s, Rheo tinuous of Star s es: Role centrat ral Ana	elastic vior. logy of and t ch Dis e of Sc e, Rh alyses	for Soli behavio of Heate Disperse spersion oluble an eology of of Foo Total: 4
MeasurementFoods, Pressurof Fluid FoodsUNIT – IVRheology of IStarch DispersPhases on VisRheological BUNIT – VRheological BInsoluble SolidMayonnaise, SDispersionsREFERENCI1.Rao M.A2007.2.Bourne N	re-Driven Flow Viscometers, Extensional flow Viscometry, Measuren s, Viscosity measurement at high temperature, In-Plant measurement of Food Gum and Starch Dispersions: Rheology of Food Gum Dispersions, Dynamic Rheological Behavior of Starch Dispersions, Role of scoelastic Properties of Starch Dispersions, Effect of Sugar on Rheo behavior of Starch-Protein Dispersions, Rheology of Starch-Gum Dispersions Behavior of Processed Fluid and Semi solid Foods: Fruit Juices and ds, Rheological Properties of Chocolate, Rheology of Milk and Mill Salad Dressing, and Margarine, Rheology of Salad Dressings, St ES:	nent o of Flov ersions f Con ology ersion Puree k Con tructur	f visco w behav s, Rheo tinuous of Star s es: Role centrat cal Ana , 2 nd Ec	elastic vior. ology of and 1 ch Dia ch Dia e of Sc ce, Rh alyses lition, 2002.	for Soli behavio of Heate Disperse spersion oluble an eology of of Foo <b>Total: 4</b>

COU	RSE OUTCO	MES:				BT Mapped
On co	mpletion of th	(Highest Level)				
CO1:	explain the f	Understanding (K2)				
CO2:	interpret the	flow behavio	r and functiona	l models		Understanding (K2)
CO3:	illustrate th	e principle	of working	of various flow	and viscoelastic	Understanding (K2)
	measuremen	t devices				
CO4:	evaluate the	behavior of fe	ood gum and st	arch dispersions		Analyzing (K4)
CO5:	infer the rhe	ological beha	vior of processe	ed fluids and semi-	solid foods	Applying (K3)
			Mappi	ng of COs with PO	Ds	
COs/P	Os Po	O1	PO2	PO3	PO4	PO5
COI	l		3	1	1	1
CO2	2		3	1	1	1
COS	3		3	1	1	1
CO ²	1		3	1	1	1
COS	5		3	1	1	1
1 - Sli	ght, 2 – Mode	erate, 3 – Su	bstantial, BT -	Bloom's Taxonom	ny	

		OGY		
		, T	P	Credit
	3	0	0	3
Preamble	To educate the students about processing of plantation crop	os and	spices	products
D · · ·	manufacturing			
Prerequisites	Nil			
UNIT – I	ops: Description of various types of Plantation crops. Processing of			9
black tea, CTC of coffee powe Processing and	tea Green tea, Oolong tea, flavoured tea. Grading of Tea. Coffee – Oc er, instant coffee. Cocoa Processing – Cocoa liquor, cocoa powder m by products. Cashew nut and Oil palm Processing. <b>Processing o</b> otatoes- processed potato products.	currenc nanufact	e, Manı uring. (	ufacturing Coconut -
UNIT – II				ļ
-	<b>ondiments:</b> Description of various types of spices and condimenties, flavoring agents. Nutritive value of spices and their health ations.			-
	bices Products – Liquid products and Solid Products. Importance o ils – Concept and importance. Extraction methods - Solvent extraction			
UNIT – IV				_
				-
handling.	<b>vour:</b> Description of various types of herbs. Basil, Cilantro, Dill, Co, bilva leaves, Safflower. Nutritive value and health benefits. Proce			
				Oregano
handling. UNIT – V Flavoring Mar spices. Microb Extraction. Dis and Applicatio		ng mate t treatm ins - Ez	rials – I nent, Di	Oregano - harves Herbs and istillation n, Quality
handling. UNIT – V Flavoring Ma spices. Microb Extraction. Dis	e, bilva leaves, Safflower. Nutritive value and health benefits. Proce erials of Natural Origin: Natural flavors, sources of natural flavorin ology of spices, gas sterilization of spices, gamma irradiation, Hea tillation of volatile oils, Application of spice essential oils. Oleores	ng mate t treatm ins - Ez	rials – I nent, Di straction Plant s	Oregano - harves Herbs and istillation n, Quality
handling. UNIT – V Flavoring Mar spices. Microb Extraction. Dis and Applicatio cultures. REFERENCE	e, bilva leaves, Safflower. Nutritive value and health benefits. Proce erials of Natural Origin: Natural flavors, sources of natural flavorin ology of spices, gas sterilization of spices, gamma irradiation, Hea tillation of volatile oils, Application of spice essential oils. Oleores n of oleoresins. Biosynthesis of flavours – Microorganisms, Enz S:	ng mate ng mate nt treatm ins - Ex zymes,	rials – I nent, Di straction Plant s	Oregano - harves Herbs and istillation n, Quality uspension
handling. UNIT – V Flavoring Mat spices. Microb Extraction. Dis and Application cultures. REFERENCE 1. Peter K.V.	e, bilva leaves, Safflower. Nutritive value and health benefits. Proce erials of Natural Origin: Natural flavors, sources of natural flavorin ology of spices, gas sterilization of spices, gamma irradiation, Hea tillation of volatile oils, Application of spice essential oils. Oleores n of oleoresins. Biosynthesis of flavours – Microorganisms, Enz S: "Handbook of Herbs and Spices", 2 nd Edition, Woodhead Publishing.	ng mate ng mate at treatn ins - Ez cymes, 1 , 2012.	rials – I nent, Di straction Plant s	Oregano - harves Herbs and istillation n, Quality uspensior <b>Total: 45</b>
handling. UNIT – V Flavoring Mat spices. Microb Extraction. Dis and Application cultures. REFERENCE 1. Peter K.V. 2. Kumar N.,	e, bilva leaves, Safflower. Nutritive value and health benefits. Proce erials of Natural Origin: Natural flavors, sources of natural flavorin ology of spices, gas sterilization of spices, gamma irradiation, Hea tillation of volatile oils, Application of spice essential oils. Oleores n of oleoresins. Biosynthesis of flavours – Microorganisms, Enz S:	ng mate ng mate at treatn ins - Ez cymes, 1 , 2012.	rials – I nent, Di straction Plant s	Oregano - harves Herbs and istillation n, Quality uspension <b>Total: 4</b>

COURS	SE OUTCOMES:				BT Mapped		
On com	pletion of the course, the	(Highest Level)					
CO1: 0							
CO2: 1	utilize functional prope	erties of spices and h	erbs in product devel	opment	Applying (K3)		
CO3: 9	select processing steps	required for spices p	processing		Applying (K3)		
CO4: 9	select processing steps	required for herbs p	rocessing		Applying (K3)		
CO5: a	apply technologies for	essential oil and oled	presin extraction		Applying (K3)		
		Mapping	of COs with POs				
COs/PO	Os PO1	PO2	PO3	PO4	PO5		
CO1	3	1			1		
CO2	3	2		1	2		
CO3	3	1			1		
CO4	3	1			1		
CO5	3	2			2		
1 - Slight	ht, $2 - Moderate$ , $3 - $	Substantial, BT - B	loom's Taxonomy				

	18MFE22 INDUSTRIAL PROCESS AUTOMATION	1	1	
	L	Т	P	Credit
	3	0	0	3
Preamble	To have thorough knowledge on data acquisition, data analysis, me	odeling	g and	computer
	based automation in process industries			
Prerequisites	Nil			
UNIT – I				9
Introduction:	Food quality, automated evaluation of food quality, food quality qua	antizati	on and	d process
control, proble	ms associated in food quality evaluation			
UNIT – II				9
Data Acquisit	ion: Sampling, concepts and systems for data acquisition: Ultrasonic A	mode,	electro	onic nose,
data acquisition	n for food quality process control, Image acquisition: Ultrasonic B mode,	, Elasto	graphy	у.
<b>^</b>				
UNIT – III				9
	: Data pre-processing. Static data analysis. Dynamic data analysis. Im-	age pro	ocessir	
Data Analysis	<b>:</b> Data pre-processing, Static data analysis, Dynamic data analysis, Image feature extraction <b>Modeling</b> : Modeling strategies: Theoretical an	<b>U</b> 1		ig: Image
segmentation,	Image feature extraction. Modeling: Modeling strategies: Theoretical ar	<b>U</b> 1		ig: Image
Data Analysis segmentation,		<b>U</b> 1		ig: Image
Data Analysis segmentation, Static and dyna	Image feature extraction. Modeling: Modeling strategies: Theoretical ar	<b>U</b> 1		ig: Image nodeling,
Data Analysis segmentation, Static and dyna UNIT – IV	Image feature extraction. <b>Modeling:</b> Modeling strategies: Theoretical ar amic modeling, Linear statistical modeling, ANN modeling	nd emp	irical 1	ng: Image nodeling,
Data Analysis segmentation, Static and dyna UNIT – IV Computer Ba	Image feature extraction. <b>Modeling:</b> Modeling strategies: Theoretical ar amic modeling, Linear statistical modeling, ANN modeling <b>sed Controls:</b> Computer based measurement and control system- ro	le, bas	irical 1	ng: Image nodeling, <b>9</b> nponents,
Data Analysis segmentation, Static and dyna UNIT – IV Computer Ba architecture- H	Image feature extraction. <b>Modeling:</b> Modeling strategies: Theoretical ar amic modeling, Linear statistical modeling, ANN modeling sed Controls: Computer based measurement and control system- ro Human machine Interface, Hardware for computer based process com	le, bas	irical 1	ng: Image nodeling, <b>9</b> nponents,
Data Analysis segmentation, Static and dyna UNIT – IV Computer Ba architecture- H	Image feature extraction. <b>Modeling:</b> Modeling strategies: Theoretical ar amic modeling, Linear statistical modeling, ANN modeling <b>sed Controls:</b> Computer based measurement and control system- ro	le, bas	irical 1	ng: Image nodeling, <b>9</b> nponents,
Data Analysis segmentation, Static and dyna UNIT – IV Computer Ba architecture- F computer syste	Image feature extraction. <b>Modeling:</b> Modeling strategies: Theoretical ar amic modeling, Linear statistical modeling, ANN modeling sed Controls: Computer based measurement and control system- ro Human machine Interface, Hardware for computer based process com	le, bas	irical 1	ng: Image nodeling, <b>9</b> nponents, Interface
Data Analysis segmentation, Static and dyna UNIT – IV Computer Ba architecture- H computer syste UNIT – V	Image feature extraction. <b>Modeling:</b> Modeling strategies: Theoretical ar amic modeling, Linear statistical modeling, ANN modeling  sed Controls: Computer based measurement and control system- ro Human machine Interface, Hardware for computer based process con em with process, Industrial Applications.	le, bas	irical 1 ic cor ystem,	ng: Image nodeling, 9 nponents, Interface 9
Data Analysis segmentation, Static and dyna UNIT – IV Computer Ba architecture- F computer syste UNIT – V Automation	Image feature extraction. <b>Modeling:</b> Modeling strategies: Theoretical ar amic modeling, Linear statistical modeling, ANN modeling <b>sed Controls:</b> Computer based measurement and control system- ro Human machine Interface, Hardware for computer based process con em with process, Industrial Applications. <b>in Food Processing:</b> General considerations, Packaging, palletizing	le, bas ntrol sy	irical 1 ic cor /stem, 1 mix	ng: Image nodeling, 9 nponents, Interface 9 ed pallet
Data Analysis segmentation, Static and dyna UNIT – IV Computer Ba architecture- F computer syste UNIT – V Automation	Image feature extraction. <b>Modeling:</b> Modeling strategies: Theoretical ar amic modeling, Linear statistical modeling, ANN modeling  sed Controls: Computer based measurement and control system- ro Human machine Interface, Hardware for computer based process con em with process, Industrial Applications.	le, bas ntrol sy	irical 1 ic cor /stem, 1 mix matior	ng: Image nodeling, <b>9</b> nponents, Interface <b>9</b> ed pallet
Data Analysis segmentation, Static and dyna UNIT – IV Computer Ba architecture- H computer syste UNIT – V Automation in automation, rav	Image feature extraction. <b>Modeling:</b> Modeling strategies: Theoretical ar amic modeling, Linear statistical modeling, ANN modeling <b>sed Controls:</b> Computer based measurement and control system- ro Human machine Interface, Hardware for computer based process con em with process, Industrial Applications. <b>in Food Processing:</b> General considerations, Packaging, palletizing w product handling and assembly, Decorative product finishing, integrate	le, bas ntrol sy	irical 1 ic cor /stem, 1 mix matior	ng: Image nodeling, 9 nponents, Interface 9 ed pallet
Data Analysis segmentation, Static and dyna UNIT – IV Computer Ba architecture- F computer syste UNIT – V Automation fa automation, ray	Image feature extraction. <b>Modeling:</b> Modeling strategies: Theoretical ar amic modeling, Linear statistical modeling, ANN modeling <b>sed Controls:</b> Computer based measurement and control system- ro Human machine Interface, Hardware for computer based process content with process, Industrial Applications. <b>in Food Processing:</b> General considerations, Packaging, palletizing w product handling and assembly, Decorative product finishing, integrate <b>ES:</b>	le, bas ntrol sy	irical 1 ic cor /stem, 1 mix matior	ng: Image nodeling, <b>9</b> nponents, Interface <b>9</b> ed pallet
Data Analysis         segmentation,         Static and dyna         Static and dyna         UNIT – IV         Computer Ba         architecture- H         computer syste         UNIT – V         Automation H         automation, rav         REFERENCE         1.       Nof Y.S.,	Image feature extraction. <b>Modeling:</b> Modeling strategies: Theoretical ar amic modeling, Linear statistical modeling, ANN modeling <b>used Controls:</b> Computer based measurement and control system- ro- Human machine Interface, Hardware for computer based process con- em with process, Industrial Applications. <b>In Food Processing:</b> General considerations, Packaging, palletizing w product handling and assembly, Decorative product finishing, integrate <b>ES:</b> , "Handbook of Automation", Springer Publications, New York, 2009.	nd emp ele, bas ntrol sy ng, and ed auto	irical 1 ic cor ystem, 1 mix matior	ng: Image nodeling, 9 nponents, Interface 9 ed pallet t. Total: 45
Data Analysissegmentation,Static and dynaStatic and dynaUNIT – IVComputer Baarchitecture- Hcomputer systeUNIT – VAutomation isautomation, ravREFERENCE1.Nof Y.S.,2.Huang Y	Image feature extraction. <b>Modeling:</b> Modeling strategies: Theoretical ar amic modeling, Linear statistical modeling, ANN modeling <b>sed Controls:</b> Computer based measurement and control system- ro- Human machine Interface, Hardware for computer based process con- em with process, Industrial Applications. <b>in Food Processing:</b> General considerations, Packaging, palletizing w product handling and assembly, Decorative product finishing, integrate <b>ES:</b> , "Handbook of Automation", Springer Publications, New York, 2009. Y., Whittaker A.D. and Lacey R.E., "Automation for Food Engine	nd emp ele, bas ntrol sy ng, and ed auto	irical 1 ic cor ystem, 1 mix matior	ng: Image nodeling, 9 nponents, Interface 9 ed pallet t. <b>Total: 45</b>
Data Analysis         segmentation,         Static and dyna         Static and dyna         UNIT – IV         Computer Ba         architecture- H         computer system         UNIT – V         Automation H         automation, rav         REFERENCE         1.       Nof Y.S.,         2.       Huang Y         Quantization	Image feature extraction. <b>Modeling:</b> Modeling strategies: Theoretical ar amic modeling, Linear statistical modeling, ANN modeling sed Controls: Computer based measurement and control system- ro Human machine Interface, Hardware for computer based process content with process, Industrial Applications. <b>Food Processing:</b> General considerations, Packaging, palletizing w product handling and assembly, Decorative product finishing, integrate <b>ES:</b> , "Handbook of Automation", Springer Publications, New York, 2009. A., Whittaker A.D. and Lacey R.E., "Automation for Food Engine- tion and Process Control", CRC Press, Florida, 2000.	ering -	irical 1 ic cor stem, 1 mix matior - Food	ng: Image nodeling, 9 nponents, Interface 9 ed pallet 1. <b>Total: 45</b>
Data Analysis         segmentation,         Static and dyna         Static and dyna         UNIT – IV         Computer Ba         architecture- H         computer system         UNIT – V         Automation H         automation, rav         REFERENCE         1.       Nof Y.S.,         2.       Huang Y         Quantization	Image feature extraction. <b>Modeling:</b> Modeling strategies: Theoretical ar amic modeling, Linear statistical modeling, ANN modeling <b>sed Controls:</b> Computer based measurement and control system- ro- Human machine Interface, Hardware for computer based process con- em with process, Industrial Applications. <b>in Food Processing:</b> General considerations, Packaging, palletizing w product handling and assembly, Decorative product finishing, integrate <b>ES:</b> , "Handbook of Automation", Springer Publications, New York, 2009. Y., Whittaker A.D. and Lacey R.E., "Automation for Food Engine	ering -	irical 1 ic cor stem, 1 mix matior - Food	ng: Image nodeling, 9 nponents, Interface 9 ed pallet 1. <b>Total: 45</b>

COUR	RSE	<b>OUTCOMES:</b>				BT Mapped
On cor	nple	(Highest Level)				
CO1:	exp	plain the fundamenta	ocessing	Understanding (K2)		
CO2:	out	line the importance	of Data acquisition	in quality process con	ntrol	Understanding (K2)
CO3:	inte	erpret the data analy	sis and modeling in	automation		Evaluating (K5)
CO4:	sun	nmarize the concept	of computer based	controls in automatio	n	Understanding (K2)
CO5:	exa	amine the role of aut	omation in food pro	cessing		Analyzing (K4)
			Mapping	g of COs with POs		
COs/P	Os	PO1	PO2	PO3	PO4	PO5
CO1	L	3	3			1
CO2	2	3	2			1
CO3	3	3	3			1
CO4	ŀ	3	2			1
CO5	5	3	1			1
1 - Sli	ght,	2 - Moderate, 3 -	Substantial, BT - E	Bloom's Taxonomy		

18MFE23 ADVANCED MEAT PROCESSING TECHNOLOGY								
		L	Т	P	Credit			
		3	0	0	3			
Preamble	This course educates the student about the advances in processi development of meat, fish and poultry. The course also provide meat quality and originality.	0 1			-			
Prerequisites	Nil							

# UNIT – I

**Meat:** Chemical composition and structure of meat, Scientific slaughter – Stunning techniques - mechanical, electrical, chemical methods; Pre- and post-slaughter operations, Factors affecting post-mortem changes, Meat tenderization by high hydrostatic pressure, high hydrodynamic pressure, Gene technology for meat traceability and safety, Online monitoring of meat quality by NIR spectroscopy and Fluorescence spectroscopy, New sources of animal protein – cultured meat, edible insect.

# UNIT – II

**Poultry Meat:** Pre-slaughter care and handling, Dressing of poultry birds, Grading of dressed chicken, Edible co-products. **Egg:** Structure, composition, Measures of egg quality, Preservation methods of eggs, Designer eggs, Speciality egg products, Egg pasteurization by microwave, gas plasma and pulsed light.

# UNIT – III

**Fish:** Marine processing industries in India, Types and composition of fish, On board processing and its advantages, Handling and transportation of fish, Individual quick freezing; Retort pouch processing of fish; Food utilization of by-catch and underutilized species; Quality Assurance of Seafood; Advances in fishery by-products technology - Productions of fish protein concentrate, fish liver oil, fish sauce and insulin.

## UNIT – IV

Advances in Meat Processing Operations: Microbial decontamination by irradiation; Automation for lamb carcass production; Refrigerated poultry handling; New developments in freezing of meat – high pressure shift freezing, ultrasonic freezing; Generation of peptides from meat proteins; Ohmic heating of meat products; Microwave in fish handling and processing; Meat calculations for QUID (Quantitative Ingredient Declarations); Drug residues in meat; Meat fraud detection; Advances in bulk packaging for the transport of fresh fish.

## UNIT – V

Advances in Meat, Poultry and Fish Processing: Mechanically recovered meat; Hot boning of meat, brine vacuum impregnation in ham salting; Applications of bacteriocins in meat products; Processing strategies for developing functional meat products; Shockwave processing of meat; Tailor designing nitrite free meat products; Enhancement and control of proteolysis in dry cured meats; Probiotic cultures; HACCP for poultry industry.

#### Total: 45

RE	FERENCES:
1.	George M. Hall, "Fish Processing: Sustainability and New Opportunities", 1 st Edition, Wiley Blackwell
	Publications, USA, 2011.
2.	Isabel Guerrero-Legarreta, "Handbook of Poultry Science and Technology: Secondary Processing", 1st
	Edition, John Wiley and Sons Publications, UK, 2010.
3.	Hui Y H "Handbook of Meat and Meat Processing" 2 nd Edition, CRC Press, USA, 2012.

9

9

9

9

9

COURSE	E OUTCOMES:				BT Mapped	
On compl	On completion of the course, the students will be able to					
CO1: cla						
CO2: ap	ply various methods	to preserve poultry of	co-products and egg	5S	Applying (K3)	
CO3: se	lect suitable method	for fish preservation			Applying (K3)	
	plain the advances in				Understanding (K2)	
CO5: ma	ake use of advance te	chnologies in meat a	and fish processing		Applying (K3)	
		Mapping	of COs with POs			
COs/POs	PO1	PO2	PO3	PO4	PO5	
CO1	1		1	1	1	
CO2	2	1		1	1	
CO3	2	1		1	1	
CO4	2		1		1	
CO5	2	1		1	1	
1 – Slight,	, $2 - Moderate$ , $3 - $	Substantial, BT - B	loom's Taxonomy			

	18MFE24 ADVANCED DAIRY TECHNOLOGY				
		L	Τ	Р	Credit
		3	0	0	3
Preamble	This course aims at enriching the minds of those students who l advances in dairy technology and milk preservation in the broad and food safety.				0
Prerequisites	Nil				
UNIT – I					9
	ents and Its Properties: Constituents of milk, Factors affecting n	nilk co	omposi	tion. F	L
of milk - Ther	mal, Optical, Electrical and Rheological properties, Refractive Ind onstituents and properties of milk, Bioactive compounds from milk.	lex, Ef	-	,	1
UNIT – II					9
	Changes: Chemical and physical changes in Ultra Heat Temperat	ure tre	eatmen	t Hea	t-induced
Bio-Functional proteins.	Whey Based Beverages, Production and enrichment of bioactive	pepti	des der	ived f	rom milk
proteins.					
•	-				
UNIT – III Advanced Da	iry Processing: Microwave processing, High Pressure process				ric Field
UNIT – III Advanced Da processing, Ul	<b>iry Processing:</b> Microwave processing, High Pressure process trasound processing, Advanced heating processes - extended s ern approaches to lactose production.				ric Field
UNIT – III Advanced Da processing, Ul	trasound processing, Advanced heating processes - extended s				ric Fielc ve steam
UNIT – III Advanced Da processing, Ul injection, Mode UNIT – IV Dairy Product Processed Che	trasound processing, Advanced heating processes - extended s	shelf-l Frozen	ife, In	novati n, Drie	ve steam
UNIT – III Advanced Da processing, Ul injection, Mode UNIT – IV Dairy Product Processed Che Glycosylated w	trasound processing, Advanced heating processes - extended sern approaches to lactose production. <b>ts Manufacture:</b> Liquid infant formulae, Anhydrous Milk Fat, Heese, Dairy protein products, Blends and blended spreads – prod	shelf-l Frozen	ife, In	novati n, Drie	ric Fielc ve steam
UNIT – III Advanced Da processing, Ul injection, Mode UNIT – IV Dairy Product Processed Che Glycosylated w UNIT – V Operational C Biofilm - form	trasound processing, Advanced heating processes - extended sern approaches to lactose production. <b>ts Manufacture:</b> Liquid infant formulae, Anhydrous Milk Fat, Heese, Dairy protein products, Blends and blended spreads – prod	Frozen luction s, fact	ife, Ind cream n and o ors aff ibuting	novati n, Drie quality	ric Field ve steam ed cream aspects
UNIT – III Advanced Da processing, Ul injection, Mode UNIT – IV Dairy Product Processed Che Glycosylated w UNIT – V Operational C Biofilm - form	trasound processing, Advanced heating processes - extended sern approaches to lactose production. ts Manufacture: Liquid infant formulae, Anhydrous Milk Fat, Heese, Dairy protein products, Blends and blended spreads – productey proteins, Milk imitations. Considerations and Limitations: Fouling - types, mechanisms ation, detection, control. Automation in Dairy Industry: Factors	Frozen luction s, fact	ife, Ind cream n and o ors aff ibuting	novati n, Drie quality fecting	ric Field ve stean ed cream aspects fouling tomation
UNIT – III Advanced Da processing, Ul injection, Mode UNIT – IV Dairy Produc Processed Che Glycosylated w UNIT – V Operational C Biofilm - form Stages in auton	Itrasound processing, Advanced heating processes - extended sern approaches to lactose production. Its Manufacture: Liquid infant formulae, Anhydrous Milk Fat, Heese, Dairy protein products, Blends and blended spreads – productey proteins, Milk imitations. Considerations and Limitations: Fouling - types, mechanisms ation, detection, control. Automation in Dairy Industry: Factors nation in dairy, Automation at enterprise level - Enterprise Resources.	Frozen luction s, fact	ife, Ind cream n and o ors aff ibuting	novati n, Drie quality fecting	ric Field ve steam ed cream aspects fouling tomation
UNIT – III Advanced Da processing, Ul injection, Mode UNIT – IV Dairy Produc Processed Che Glycosylated w UNIT – V Operational C Biofilm - form Stages in auton	Itrasound processing, Advanced heating processes - extended sern approaches to lactose production. Its Manufacture: Liquid infant formulae, Anhydrous Milk Fat, Heese, Dairy protein products, Blends and blended spreads – productey proteins, Milk imitations. Considerations and Limitations: Fouling - types, mechanisms ation, detection, control. Automation in Dairy Industry: Factors nation in dairy, Automation at enterprise level - Enterprise Resource	Frozen luction s, fact	ife, Ind cream n and o ors aff ibuting	novati n, Drie quality fecting	ric Field ve steam ed cream aspects
UNIT – III Advanced Da processing, Ul injection, Mode UNIT – IV Dairy Product Processed Che Glycosylated w UNIT – V Operational C Biofilm - form Stages in auton REFERENCE 1. Spreer E., 2. Datta N., Industry"	Itrasound processing, Advanced heating processes - extended sern approaches to lactose production. Its Manufacture: Liquid infant formulae, Anhydrous Milk Fat, Heese, Dairy protein products, Blends and blended spreads – productey proteins, Milk imitations. Considerations and Limitations: Fouling - types, mechanisms ation, detection, control. Automation in Dairy Industry: Factors nation in dairy, Automation at enterprise level - Enterprise Resources.	Frozen luction s, fact contr ce Plan	ife, Ind cream n and o ors aff ibuting uning.	novati n, Drie quality fecting to au for t	ric Field ve stean ed cream aspects fouling tomation Total: 45 he Dairy

COU	RSE	<b>OUTCOMES:</b>				BT Mapped	
On con	mple	etion of the course, the	ne students will be a	ible to		(Highest Level)	
CO1:	out	line the basic consti	Understanding (K2)				
CO2:	ass	ess changes occurrir	ng in milk due to he	at induced processe	s	Applying (K3)	
CO3:	app	praise the advances of	of technology in the	area of milk proces	sing	Applying (K3)	
CO4:	ana	alyze the advances in	processing operation	ons of dairy produc	ts	Analyzing (K4)	
CO5:						Applying (K3)	
			Mapping	g of COs with POs			
COs/P	Os	PO1	PO2	PO3	PO4	PO5	
COI	L I	2	2			1	
CO2	2	2	2			1	
COS	3	2	2			1	
CO ²	1	2	2			1	
COS	5	1	2			1	
1 - Sli	ght,	2 - Moderate, 3 -	Substantial, BT - B	loom's Taxonomy			

	18MFE25 TECHNOLOGY OF FOOD COLOURS AND F	LAVO	URS		
		L	Т	Р	Credit
		3	0	0	3
Preamble	This course will help students to understand the chemistry and and colours, regulatory aspects, analytical techniques used in fl flavours and colours in food product development.				
Prerequisites	Nil				
UNIT – I					9
structure and a astringency, co Flavor potenti	<b>burs and Colours:</b> Olfactory perception of flavour and taste–The activity relationships of taste – Sweet, bitter, acid and salt, C oling effect – properties. Classification of flavours – Natural, Na ators. Basics of colour – Hue, chroma, brightness. Regulat I safety aspects.	hemica ture id	als cau entical	sing p and sy	oungency, ynthetic –
UNIT – II					9
turmeric, Carar pH, temperatu	Chlorophyll and chlorophyll derivatives, Haems and bilins, C nel colour, Anthocyanins and betalains, Monascus, cochineal and re and other processing conditions. Technology for the proc cell suspensions in the synthesis of colours.	related	l pigme	ents, St	tability to
UNIT – III					9
on flavour de Continuous an	tion of flavours during processing –enzymatic development, effect velopments- Essential oils and oleoresins –Extraction – Super d semi continuous methods- Effect of types of solvents use capsulated flavours – techniques and applications in food indu	er criti ed. Lio	cal flu quid ai	id ext nd dry	traction - y flavour
UNIT – IV					9
Isolation – So Headspace Co		olation thods analysi	ı – Sta – Solv s of Aı	tic H ent E oma	eadspace, xtraction, Isolates,
UNIT – V					9
Flavour Appli Meat Products. Chewing Gum Gum. Dairy Pr	cations: Culinary and Meat Products - Soups and Stocks, Sauces Baked Goods and Bakery Products, Snack Foods, Sugar-Based - Hard Candies, Caramels (Toffees), Pressed Tablets, Starch- oducts - Flavored Milks, Flavored Yogurts, Flavored Dairy Desse	Confe Depos	ctioner ited Cl	ry Pro news,	larinades, ducts and Chewing
Beverages.				I	Total: 45
REFERENCE	S:				
1. Reinecciu	s G. and Heath H.B., "Flavor Chemistry and Technology", 2 nd Ed				

Rowe D.J., "Chemistry and Technology of Flavors and Fragrances", Blackwell Publishing Ltd., 2005.
 Eiri Board, "Hand Book of Flavours Technology", Engineers India Research Institute, 2007.

COUF On cor		BT Mapped (Highest Level)						
CO1:	sur	Understanding (K2)						
CO2:		oly the technological		Applying (K3)				
CO3:	outline the techniques of flavor analysis and interpret the results Understanding (K2)							
CO4:	cla	ssify flavours and ill	ustrate various tech	nologies used in fla	vor production	Understanding (K2)		
CO5:	select and apply appropriate flavours/seasonings across the entire food					Applying (K3)		
	cat	egory						
			Mapping	of COs with POs				
COs/P	Os	PO1	PO2	PO3	PO4	PO5		
CO1		2	3	2	3	1		
CO2	2	2	3	2	3	1		
CO3	3	3	2	3	2	2		
CO4	4 <u>3</u> <u>2</u> <u>2</u> <u>2</u>		1					
CO5	D5 3 2 3 2			2	2			
1 – Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy							

### **18MFE26 INTERNET OF THINGS IN FOOD AND AGRICULTURE**

L	Т	Р	Credit
3	0	0	3

		3	0	0	3
Preamble	Course is designed to develop certain tools using the concepts of	f IOT r	equire	d in fie	ld of
	Food and Agriculture				
Prerequisites	Nil				

UNIT - I

Introduction to Internet of Things (IoT): Definition and Characteristics of IoT, Physical Design of IoT -IoT Protocols, IoT Communication Models - IoT Communication APIs - IoT enabled Technologies -Wireless Sensor Networks - Cloud Computing - Big data analytics - Communication Protocols, Embedded Systems – IoT Levels and Templates.

### UNIT – II

Python, Physical Devices and Endpoints for IoT: Language features of Python, Data types, data structures, Control of flow, functions, modules, packaging, classes, exception handling. Python packages - HTTPLib, URLLib, SMTPLib.: Introduction to Raspberry PI - Interfaces (serial, SPI, 12C) Programming - Python program with Raspberry PI with focus of interfacing external gadgets – controlling output – reading input from pins – connecting IoT to Cloud – Xively.

## UNIT – III

IoT in Food and Agriculture: Issues and challenges in food and agriculture-RFID and sensor network integration in food industry-RFID in food production, food supply chain, retailing and sustainability. RFID in sensor network and food processing-Case studies-Big data analytics in food industries-Food supply chain visibility, Intelligent food supply chain. Block chain-Concepts-Potential Applications in Food Industry.

## UNIT - IV

IoT in Food Spoilage and Safety: Importance of IoT concerning food quality, safety and security. Biosensors for detection of food borne pathogens - prevention & retardation of food spoilage. Microbial detection, GIS, Sensor Networks. Case study on ensuring safety by enhanced IoT's.

## UNIT - V

IOT in Traceability and Waste Management: Food Traceability: Need of new technologies in food traceability systems. Architecture of traceability system- ICT & EPC enabled systems. Real time tracking and remote monitoring - Wireless sensing technologies, remote communications and Intelligent traceability. Food Waste Management: Scope and significance of IoT in food waste management. Smart Garbage System (SGS) - components, design, architecture of SGS, implementation and efficiency, real-time application in food waste minimization.

**REFERENCES:** Qusay F. Hassan, Attaur Rehman Khan, Sajjad A. Madani, "Internet of Things Challenges, Advances 1. and Applications - First Series", CRC Press, Taylor and Francis Group, 2017. Selwyn Piramuthu, Weibiao Zhou, "RFID and Sensor Network Automation in the Food Industry: 2. Ensuring Quality and Safety through Supply Chain Visibility", John Wiley & Sons, UK, 2016. Montserrat Espiñeira, Francisco J. Santaclara, "Advances in Food Traceability Techniques and 3. Technologies - Improving Quality Throughout the Food Chain", Woodhead Publishing, 2016.

9

9

9

#### Total: 45

9

9

COUR	COURSE OUTCOMES:								
On cor	On completion of the course, the students will be able to								
CO1:	ide	entify architecture, in	Applying (K3)						
CO2:	sur	nmarize the fundam	ental concepts of Int	ernet-connected pro	duct	Understanding (K2)			
CO3:	apply concept of IoT's in food and agriculture Applying (K3)								
CO4:	rec	commend appropriate	e IoT's for food sp	ooilage detection and	l ensuring safety	Evaluating (K5)			
CO5:	1	egorize the IoT's stem	ste management	Analyzing (K4)					
	-		Mapping	of COs with POs					
COs/P	Os	PO1	PO2	PO3	PO4	PO5			
COI	l	3	2	1	1	1			
CO2 3		3	2	1		1			
CO3	CO3 3 2 1 1		1	2					
CO4 3 3		1	2	1					
COS	CO5 3 2 1 3				1				
1 – Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy								

	18MFE27 MACHINE VISION FOR FOOD TECHNOLOG	01			
	L		Т	Р	Credit
	3	,	0	0	3
Preamble	To educate the students about image acquisition, object classification	ation	and	vario	us image
	processing technology used in food technology				
Prerequisites	Nil				
UNIT – I					9
ultrasound, In Noise Remov Edge-Based S	<b>sition Systems:</b> Electromagnetic spectrum - Image acquisition systems frared, Tomographic imaging. <b>Image Segmentation Techniques:</b> Pre- al - Contrast Enhancing. Segmentation Techniques – Thresholding Segmentation - Region-Based Segmentation - Gradient-Based Segmentation - Other Segmentation Techniques.	-proc - Βε	cessin ased \$	ig Tec Segmo	hniques - entation -
Hardware ori	<b>urement System:</b> Size – Shape – Size dependent and independent ented, Instrumental – Texture – Structural, Statistical, Transform an <b>Methods:</b> Artificial neural network – Statistical classification – Fuzz r machine.	nd m	nodel	based	l. Object
11					
UNIT – III Hyperspectra Development	al Imaging Technology: Fundamentals – Multivariate data analysis - of Multivariate Calibration, Model Validation and Evaluation,				ocessing,
UNIT – III Hyperspectra Development	<b>I Imaging Technology:</b> Fundamentals – Multivariate data analysis -				
UNIT – III Hyperspectra Development	al Imaging Technology: Fundamentals – Multivariate data analysis - of Multivariate Calibration, Model Validation and Evaluation,				ocessing,
UNIT – III Hyperspectra Development Wavelengths, UNIT – IV Raman Cher instruments –	al Imaging Technology: Fundamentals – Multivariate data analysis - of Multivariate Calibration, Model Validation and Evaluation,	Sele	ection es –R	of ] Raman	rocessing, Important 9 imaging
UNIT – III Hyperspectra Development Wavelengths, UNIT – IV Raman Cher instruments – quantitative an	<ul> <li>Imaging Technology: Fundamentals – Multivariate data analysis - of Multivariate Calibration, Model Validation and Evaluation, Multivariate Image Analysis. Application for muscle foods.</li> <li>nical Imaging Technology: Principles – Raman spectroscopy techn Raman image analysis techniques – Image preprocessing, target ider</li> </ul>	Sele	ection es –R	of ] Raman	rocessing Important imaging oping and
UNIT – III Hyperspectra Development Wavelengths, UNIT – IV Raman Cher instruments – quantitative an	<b>I Imaging Technology:</b> Fundamentals – Multivariate data analysis - of Multivariate Calibration, Model Validation and Evaluation, Multivariate Image Analysis. Application for muscle foods. <b>nical Imaging Technology:</b> Principles – Raman spectroscopy techn Raman image analysis techniques – Image preprocessing, target iden nalysis. Application.	Sele nique ntific	ection es –R cation	of ] Raman	rocessing Important imaging oping and
UNIT – III Hyperspectra Development Wavelengths, UNIT – IV Raman Cher instruments – quantitative an	<ul> <li>Imaging Technology: Fundamentals – Multivariate data analysis - of Multivariate Calibration, Model Validation and Evaluation, Multivariate Image Analysis. Application for muscle foods.</li> <li>nical Imaging Technology: Principles – Raman spectroscopy techn Raman image analysis techniques – Image preprocessing, target ider</li> </ul>	Sele nique ntific	ection es –R cation	of Raman , Map Other	rocessing Important imaging oping and g foods.
UNIT – III Hyperspectra Development Wavelengths, UNIT – IV Raman Cher instruments – quantitative an UNIT – V Quality Evalu	<ul> <li>Imaging Technology: Fundamentals – Multivariate data analysis - of Multivariate Calibration, Model Validation and Evaluation, Multivariate Image Analysis. Application for muscle foods.</li> <li>nical Imaging Technology: Principles – Raman spectroscopy techn Raman image analysis techniques – Image preprocessing, target idenalysis. Application.</li> <li>uation of Foods: Meat, poultry carcass, sea foods, fruits and vegetables</li> </ul>	Sele nique ntific	ection es –R cation	of Raman , Map Other	rocessing Importan imaging oping and
UNIT – III Hyperspectra Development Wavelengths, UNIT – IV Raman Cher instruments – quantitative an UNIT – V Quality Evalu REFERENC 1. Da-Wen	al Imaging Technology: Fundamentals – Multivariate data analysis -         of Multivariate Calibration, Model Validation and Evaluation,         Multivariate Image Analysis. Application for muscle foods.	Sele nique ntific	ection es –R cation ains, (	of Raman , Map Other	rocessing Importan imaging oping and foods. Total: 45
II         UNIT – III         Hyperspectra         Development         Wavelengths,         UNIT – IV         Raman Cher         instruments –         quantitative an         UNIT – V         Quality Evalu         REFERENC         1.       Da-Wen         Press, Lo	<ul> <li>Imaging Technology: Fundamentals – Multivariate data analysis - of Multivariate Calibration, Model Validation and Evaluation, Multivariate Image Analysis. Application for muscle foods.</li> <li>nical Imaging Technology: Principles – Raman spectroscopy techn Raman image analysis techniques – Image preprocessing, target identalysis. Application.</li> <li>uation of Foods: Meat, poultry carcass, sea foods, fruits and vegetables</li> </ul>	Sele nique ntific s, Gra	es –R cation ains, 0	of Raman , Map Other	rocessing Importan imaging oping and foods. Total: 45

COU	RSE	BT Mapped						
On con	mple	(Highest Level)						
CO1:	sele	ect image acquisition	Applying (K3)					
CO2:	me	asure and classify th	e objects using mac	chine vision technolo	gy	Applying (K3)		
CO3:	explain hyperspectral imaging technology Understanding (K2)							
CO4:	exp	olain Raman chemic	al imaging technolo	gy for food materials		Understanding (K2)		
CO5:	sel	ect machine vision t	Applying (K3)					
	Mapping of COs with POs							
COs/P	<b>POs</b>	PO1	PO2	PO3	PO4	PO5		
CO	CO1 3		1			1		
CO2	CO2 3 1				1			
COS	3	1						
CO4 2		2	1			1		
CO5 3		1			1			
1 - Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy							