KONGU ENGINEERING COLLEGE PERUNDURAI ERODE – 638 060 (Autonomous)

VISION

To be a centre of excellence for development and dissemination of knowledge in Applied Sciences, Technology, Engineering and Management for the Nation and beyond.

MISSION

We are committed to value based Education, Research and Consultancy in Engineering and Management and to bring out technically competent, ethically strong and quality professionals to keep our Nation ahead in the competitive knowledge intensive world.

QUALITY POLICY

We are committed to

- Provide value based quality education for the development of students as competent and responsible citizens.
- Contribute to the nation and beyond through research and development
- Continuously improve our services

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

VISION

To be a centre of excellence for development and dissemination of knowledge in Electronics and Communication Engineering for the Nation and beyond

MISSION

Department of Electronics and Communication Engineering is committed to:

- MS1: To impart industry and research based quality education for developing value based electronics and communication engineers
- MS2: To enrich the academic activities by continual improvement in the teaching learning process
- MS3: To infuse confidence in the minds of students to develop as entrepreneurs
- MS4: To develop expertise for consultancy activities by providing thrust for Industry Institute Interaction
- MS5: To endeavour for constant upgradation of technical expertise for producing competent professionals to cater to the needs of the society and to meet the global challenges

2018 REGULATIONS

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

Graduates of M.E – Embedded Systems will

- PEO1: Succeed in industry and research by applying knowledge of digital systems, embedded systems, signal and image processing and networking.
- PEO2: Identify, design and analyze solutions to solve real world problems in embedded domain
- PEO3: Demonstrate soft skills , professional and ethical values and aptitude for life long learning needed for a successful professional career

MAPPING OF MISSION STATEMENTS (MS) WITH PEOS

MS\PEO	PEO1	PEO2	PEO3
MS1	L 3 3		3
MS2	2	2	3
MS3	3	3	3
MS4	I 3 3		1
MS5	2 2		3
	1 01 1 0 14	1	. 1 1

1 – Slight, 2 – Moderate, 3 – Substantial

PROGRAM OUTCOMES (POs)

M.E (Embedded Systems) Graduates will be able to:

- PO1 Independently carry out research/investigation and development work to solve practical problems
- **PO2** Write and present a substantial technical report/document
- **PO3** Apply the knowledge of digital system, embedded systems, signal & image processing and networking to provide solutions for real time embedded applications
- **PO4** Use research based knowledge includes design, analyze and interpret data for Automotative Electronics, Consumer Electronics, Robotics, Automation and Process Control Industries to undertake multi disciplinary industrial projects and solve complex problems using modern tools.
- **PO5** Demonstrate self confidence and communication skills to become an efficient team leader
- **PO6** Continue to improve the professional value through lifelong learning and hold ethical responsibility for the professional and the society at large

PEO\PO	PO1	PO2	PO3	PO4	PO5	PO6			
PEO1	3	3	3	3	2	2			
PEO2	3	2	3	3	2	2			
PEO3	3	1	2	2	3	3			
1 – Slight, 2 – Moderate, 3 – Substantial									

MAPPING OF PEOs WITH POs AND PSOs

CURRICULUM BREAKDOWN STRUCTURE UNDER REGULATION 2018

Curriculum Breakdown Structure(CBS)	Curriculum Content (% of total number of credits of the program)	Total number of contact hours	Total number of credits				
Program Core(PC)	41.67	450	30				
Program Electives(PE)	25	270	18				
Humanities and Social Sciences and Management Studies(HSMS)	5.56	60	4				
Project(s)/Internships(PR)/Others	27.7	300	20				
Total							

Semes ter			Theory/	Theory cum Pra	ctical / Practical			Internship & Projects	Special Courses	Credits
	1	2	3	4	5	6	7	8	9	
I	Applied Mathematics for Electronic Engineers HSMS-1 (3-1-0-4)	Design of Embedded Systems PC-1 (3-0-0-3)	Digital System Design for Embedded Systems PC-2 (3-1-0-4)	Sensors and Actuators For Robotics PC-4 (3-0-0-3)	Programming Languages for Embedded Systems PC-3 (3-0-2-4)	Microcontroller System Design PC-5 (3-0-2-4)				22
П	Embedded Networking and Buses PC-6 (3-0-2-4)	RISC Processor PC-7 (3-0-2-4)	Embedded Linux PC-8 (3-0-2-4)	Professional Elective I PE-1 (3-0-0-3)	Professional Elective II PE-2 (3-0-0-3)	Professional Elective III PE-3 (3-0-0-3)		Mini Project PR-1 (0-0-4-2)		23
	Professional Elective I PE-4 (3-0-0-3)	Professiona I Elective II PE-5 (3-0-0-3)	Professional Elective III PE-6 (3-0-0-3)					Project work Phase – I PR-2 (0-0-12-6)		15
IV								Project work Phase – II PR-2 (0-0-24-12)		12

KEC R2018: SCHEDULING OF COURSES – ME (Embedded Systems)

Total Credits: 72

KONGU ENGINEERING COLLEGE, PERUNDURAI, ERODE - 638 060 (Autonomous)

M.E. DEGREE IN EMBEDDED SYSTEMS

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

SEMESTER – I

Course	Course Title		lours Weel	s / K	Cradit	Maximum Marks			CBS
Code	Course Thie	L	Т	Р	Cleun	CA	ESE	Total	CDD
	Theory/Theory with Practical								
18AMT13	Applied Mathematics for Electronics Engineers	3	1	0	4	50	50	100	PC
18EST11	Design of Embedded Systems		0	0	3	50	50	100	PC
18EST12	Digital System Design for Embedded Systems		1	0	4	50	50	100	PC
18EST13	Sensors and Actuators for Robotics	3	0	0	3	50	50	100	PC
18ESC11	Programming Languages for Embedded Systems		0	2	4	50	50	100	PC
18ESC12	Microcontroller System Design		0	2	4	50	50	100	PC
	Total	22							

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

KONGU ENGINEERING COLLEGE, PERUNDURAI, ERODE – 638 060 (Autonomous)

M.E. DEGREE IN EMBEDDED SYSTEMS

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

SEMESTER – II

CDC	Course Title	Но	urs / W	eek	Cradit	Maximum Marks			
CBS	Course The	L	Т	Р	Creat	CA	ESE	Total	
	Theory/Theory with Practical								
18ESC21	Embedded Networking and Buses	3	0	2	4	50	50	100	
18ESC22	RISC Processor	3	0	2	4	50	50	100	
18ESC23	Embedded Linux		0	2	4	50	50	100	
	Elective I		0	0	3	50	50	100	
	Elective II	3	0	0	3	50	50	100	
	Elective III	3	0	0	3	50	50	100	
	Practical								
18ESP21	Mini project	0	0	4	2	100	0	100	
	Total				23				

CA - Continuous Assessment, ESE - End Semester Examination, CBS-Curriculum Breakdown Structure

KONGU ENGINEERING COLLEGE, PERUNDURAI, ERODE – 638 060 (Autonomous)

M.E. DEGREE IN EMBEDDED SYSTEMS

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

SEMESTER - I	Π
--------------	---

Course	Course Title	Hours / Week			Credit	Maximum Marks			CBS
Code	Course The	L	Т	Р	crean	CA	ESE	Total	CDS
	Theory/Theory with Practical								
	Elective - IV	3	0	0	3	50	50	100	PE
	Elective - V	3	0	0	3	50	50	100	PE
	Elective - VI	3	0	0	3	50	50	100	PE
	Practical								
18ESP31	Project Work Phase I	0	0	12	6	50	50	100	PR
	Total	15							

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

KONGU ENGINEERING COLLEGE, PERUNDURAI, ERODE – 638 060 (Autonomous)

M.E. DEGREE IN EMBEDDED SYSTEMS

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

SEMESTER – IV

Course Code	Course Title	Hours / Week			Credit	Maximum Marks			CPS
	course rue		Т	Р	Creuit	CA	ESE	Total	CBS
	Practical								
18ESP41	Project Work Phase II	0	0	24	12	50	50	100	PR
	Total				12				

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

Total Credits: 72

LIST OF PROFESSIONAL ELECTIVES									
Course	Course Title	Ho	urs/W	eek	Cradit	CDC			
Code	Course little	L	Т	Р	Credit	CB2			
	SEMESTER II								
18VLE02	Design of Semiconductor Memories	3	0	0	3	PE			
18VLE06	Supervised Machine Learning Algorithms	3	0	0	3	PE			
18COE09	DSP Processor Architecture and Programming	2	0	2	3	PE			
18MWC22	Network Security Essentials	3	0	2	4	PE			
18ESE01	Solar and Energy Storage System	3	0	0	3	PE			
18ESE02	Signal and Image Processing for Embedded Applications	2	0	2	3	PE			
18ESE03	QT Cross Compiling Application Development	3	0	0	3	PE			
18ESE04	Verilog HDL for Embedded FPGA Processor	3	0	0	3	PE			
18ESE05	Medical Imaging Systems	3	0	0	3	PE			
18ESE06	Computer Based Industrial Control	3	0	0	3	PE			
	SEMESTER III								
18VLE12	Nature Inspired Optimization Techniques	3	0	0	3	PE			
18CIE15	Virtual Instrumentation for Industrial Applications	3	0	0	3	PE			
18MSE18	Design and Analysis of Algorithms	3	0	0	3	PE			
18ESE07	Data Analysis for Engineering	3	0	0	3	PE			
18ESE08	RTOS for Embedded Systems	2	0	2	3	PE			
18ESE09	System on Chip	3	0	0	3	PE			
18ESE10	Design of Embedded Control System	3	0	0	3	PE			
18ESE11	Multicore Processor and Computing	3	0	0	3	PE			
18ESE12	Programming Internet of Things	3	0	0	3	PE			
18ESE13	Single Board Computer	2	0	2	3	PE			

1	8AMT13 APPLIED MATHEMATICS FOR ELECTRONICS	ENGI	NEER Branch	S Des)	
	Similar to VEST Design, Communication Systems and Embedded S.	I.	T	P	Credit
		3	1	0	4
Preamble	This course will demonstrate various analytical skills in applied n mathematical tools such as linear programming, graph and queu problem solving and logical thinking applicable in electronics engi	nathem ing the neering	atics an ory wi g.	nd use th the	extensive tactics of
Prerequisites	Vectors and Probability				
UNIT – I					9
Vector Spaces: space, Column	Definition – Subspaces – Linear dependence and independence – space and Null Space – Rank and nullity.	- Basis	and di	mensio	on – Row
UNIT – H					9
Linear Progra method – Simpl North west corr Model – Mather	mming: Mathematical Formulation of LPP – Basic definitions – ex method – Transportation Model – Mathematical Formulation - I her rule – Vogel's approximation method – Optimum solution by matical Formulation – Hungarian algorithm.	Soluti nitial I MODI	ons of Basic Fe metho	LPP: easible d – As	Graphical Solution: ssignment
UNIT – III					9
Non-Linear Pr equality constra programming pr	ogramming : Formulation of non–linear programming problem – Gramming – Constrained optimization with inequality constraints – Gramming involving only two variables.	Constra aphical	metho	ptimiza od of r	ation with 10n–linear
UNIT – IV					9
Graph Theory graphs – Euleria graphs – Appli Properties of tr Kruskal's algori	: Introduction of graphs – Isomorphism – Subgraphs – Walks, pa in Graphs – Hamiltonian Paths and circuits – Digraph – Adjacency i ications: Shortest path algorithms – Dijkstra's algorithm – Wa ees – Spanning trees – Applications of trees: Minimal spanning thm.	aths an matrix rshall's g trees	d circu and inc s algor – Prin	its – C idence ithm – n's Alg	Connected matrix of - Trees – gorithm –
UNIT – V					9
Queuing Theo Queues – Pollac	ry: Markovian queues – Single and Multi-server Models – Little' zek Khintchine Formula.	's form	iula – I	Non- N	/larkovian
	Lectur	•e:45, '	Futoria	al:15, '	Total: 60
REFERENCE	S:				
1. Howard A	nton, "Elementary Linear Algebra", 10th Edition, John Wiley & Son	is, 2010).		
2. Kanti Swa	rup, Gupta P.K. and Man Mohan, "Operations Research", S. Chand	& Co.	, 1997.		
3. Bondy J.A	. and Murthy, USR, "Graph Theory and Applications", Mc Millan F	Press L	td., 198	32.	

COURSE OUTCOMES: BT Mapped								
On con	mpletion of	the course, the	students will b	e able to			(Hig	ghest Level)
CO1:	demonstra	ate accurate and	efficient use o	f advanced alge	braic techniques	5	Under	rstanding (K2)
CO2:	2: formulate and solve linear programming problems that appear in electronics Evaluating (K5) engineering							
CO3:	3: use non-linear programming concepts in real life situations Applying (K3)							
CO4:	: apply graph theoretic algorithms in design of systemsApplying (K3)							
CO5:	5:analyze the characteristics of various queuing modelsAnalyzing (K4)							
			Mappi	ng of COs with	POs			
CC	Ds/POs	PO1	PO2	PO3	PO4	Р	05	PO6
(CO1	2	2	3				
(CO2	3		2	1			_
(CO3	2		3				_
CO4		1		3	2			-
(CO5 2 3							
1 – Sli	ght, 2 – Mo	oderate, 3 – Su	ıbstantial, B7	Г – Bloom's Tax	konomy			

	18EST11 DESIGN OF EMBEDDED SYSTEMS				
		L	T	Р	Credit
		3	0	0	3
Preamble	To understand the design and use of single-purpose processors, get	neral-p	urpose	proce	ssors and
	to describe memories and buses.				
Prerequisites	Digital Electronics				<u>_</u>
UNIT – I					9
Embedded De partitioning - 1 Microprocesson availability - O	sign Life Cycle: Embedded Design life cycle - Product specifica Detailed hardware and software design - Integration - Product te Vs Micro Controller - Performance tools - Bench marking - RT her issues in selection processes.	ation - esting OS ava	Hardv Selecti ailabili	vare / on Protection of the second se	Software ocesses - ool chain
UNIT – II		1			9
Partitioning D	ecision: Hardware / Software duality - Coding Hardware - ASIC rev	volutio	n - Ma	naging	the Risk
- Co-verificatio	n - Execution environment - Memory organization - System startu	p - Ha	rdware	manıj	oulation -
Memory mappe	ed access - Speed and code density.				
UNII – III Emulatori Inta	must Comiss routings Watch dog timors Flash momory Pasia too	last 1	Loot D	anad d	2 chucging
Demote debug	mupt Service routines - watch dog uniers - mash memory basic too	JISCI - J	USI D Stati	aseu u	ebugging
- Kelliole uebuz	gillg - KOM emulators - logic Anaryzer - Caches - Computer optim	Ization	- Stau	Sucar	proming.
UNIT _ IV					9
In Circuit Em	ulators: Bullet proof run control - Real time trace - Hardware brea	k noint	s - Ov	erlav i	nemory -
Timing constra	ints - Usage issues - Triggers.	K Point		onu _j i	nemory
UNIT – V					9
Testing: Bug	tracking - Reduction of risks and costs - Performance - Unit te	sting -	Regre	ession	testing -
Choosing test of	cases - Functional tests - Coverage tests - Testing embedded softw	vare -	Perform	nance	testing -
Maintenance.					
				'	Total: 45
REFERENCE	S:				
1. Arnold S.	Berger, "Embedded System Design", CMP Books, USA, 2002.				
2. Sriram Iye	er, "Embedded Real time System Programming", Tata McGraw-Hill	, 2008.			
2 D 110					

3. Ronald C. Arkin, "Behaviour-based Robotics", The MIT Press, 1998.

COUI	DURSE OUTCOMES:							BT Mapped		
On co	mpletion of	the course, the	students will be	able to			(Highest Level)			
CO1:	realize the	e design flow of	an embedded sy	ystem			Understanding (K2)			
CO2:	comprehe	nd partitioning o	lecision involve	ed in embedded s	system design		Unde	rstanding (K2)		
CO3:	O3: apply basic tool set used for debugging software and hardware Applying (K3)									
CO4:	O4: apply the concepts of emulators in real time applications Applying (K3)									
CO5:	CO5: comprehend different testing methods involved in test phase for the design of Applying (K3)							plying (K3)		
	embedded	l system								
			Mappi	ng of COs with	POs					
CC	Os/POs	PO1	PO2	PO3	PO4	PC	95	PO6		
(CO1	2		3	2	2				
(CO2			2	3	1				
(CO3	1		2	3					
(CO4	2		2	3					
(CO5 3 2									
1 – Sli	ght, 2 – Mo	oderate, 3 – Su	bstantial, BT-	Bloom's Taxon	omy					

	18EST12 DIGITAL SYSTEM DESIGN FOR EMBEDDED S	SYST	EMS		
		L	Т	Р	Credit
		3	1	0	4
Preamble	To understand the advanced digital system design principles for an	embec	lded sy	stems	through
	simulation on verilog language and implementation on PLDs device	es			
Prerequisites	Digital Electronics, VLSI design				
UNIT – I					9
Verilog Progr	amming: Introduction of Verilog HDL - Language Motivation - O	Dvervi	ew of	Verilo	g HDL -
Data Types in	Verilog - Abstraction Levels In Verilog - Behavioral, Gate level	Data	flow a	nd St	ructural -
Expressions -	Operators, Operands and Special Consideration in Expression - Sy	ystem	Task a	ind Fu	inctions -
Design and sin	ulation of Adder, Multiplexer, Comparator Flipflops, Shift Registers	•			
UNIT – II					9
Clocked Sync	hronous Sequential Circuit(CSSN): Analysis of Sequential Ne	etwork	s: Mea	aly an	d Moore
Model, Modeli	ng of CSSN : State Diagram, State Reduction Methods - State Assign	iment	- Desig	gn of C	288N.
UNII – III	Sequential Circuit Design, Analysis of Asymphroneus Sequential	C:			y Jalina of
Asynchronous	Elow Table Elow Table Peduction Methods State Assignment	$\cdot \mathbf{P}_{aca}$	(ASC)) - міс SC Ц	azards in
ASC. THIIIUV	- How Table - How Table Reduction Methods - State Assignment	. Nace	s III A	SC- 11	azarus m
noc.					
UNIT – IV					9
Fault Analyti	cs: Introduction of Fault – Types - Fault Testing Methods: F	Fault 7	Fable	Metho	d - Path
Sensitization N	Iethod - Boolean Difference Method - Kohavi Algorithm.				
UNIT – V					9
PLD: Introduc	tion to PLD - Abstract and Evolution - Simple Programmable Logi	c Dev	ice(SP	LD) -	Complex
Programmable	Logic Device - Field Programmable Gate Array.				
	Lectur	e:45, 🛛	Futoria	al:15, '	Total: 60
REFERENCE	S:				
1. Vivek Sa	gdeo, "The Complete Verilog Book", Kluwer Academic Publishers, N	New D	elhi, 2	002.	
2. Givone D	onald G., "Digital Principles and Design", Tata McGraw- Hill, New	Delhi,	2002.		
3. Biswas N	ripendra N., "Logic Design Theory", Prentice Hall of India, New Del	lhi, 20	01.		
4. Vaibbhav	Taraate, "PLD Based Design with VHDL - RTL Design, Synt	hesis	and In	npleme	entation",
Springer	Nature, Singapore, 2017.				

COUI	RSE OUTC	COMES:					BT Mapped		
On co	mpletion of	the course, the s	tudents will be	able to			(Hig	hest Level)	
CO1:	interpret tl	he syntax of veri	log Programmi	ng Language wit	th digital circuit	s and	Unders	standing (K2)	
	write verilog code for combinational and sequential circuits								
CO2:	design the	synchronous sec	quential circuits	5			Creating (K6)		
CO3:	D3: design the asynchronous sequential circuits with hazards free Creating (K6)							ating (K6)	
CO4:	D4: identify the faults in the circuit by fault analytics algorithms Understanding (K2)							standing (K2)	
CO5:	5: construct the combinational and sequential circuits using PLDs						Creating (K6)		
			Mappi	ng of COs with	POs				
CC	Os/POs	PO1	PO2	PO3	PO4]	PO5	PO6	
(CO1			3	2				
(CO2			3	2				
(CO3	2		2	3				
CO4 1		1		3	3				
(CO5 2 2 3								
1 – Sli	ght, 2 – Mo	derate, 3 – Sub	ostantial, BT –	- Bloom's Taxon	lomy				

	18EST13 SENSORS AND ACTUATORS FOR ROBOT	TICS			
		L	Т	Р	Credit
		3	0	0	3
Preamble	To learn and analyze the parameters components of robotics such manipulators, sensors and actuators	h as j	oaralle	and	grippers,
Prerequisites	Basic of electronics				
UNIT – I					9
Introduction	o Robotics: Definition and origin of robotics - Different types of rol	botics	- Vari	ous ge	enerations
of robots - Deg	rees of freedom - Asimovs laws of robotics - Dynamic stabilization o	f robo	ts.		
	1				
$\mathbf{UNII} - \mathbf{II}$			N 4	- N	<u> </u>
Sensors, Actu	ators and Drive Systems: Sensors: Machine Vision - Ranging - Las	ser - A	Acoust	C - N	lagnetic -
Fiber optic and	tactile sensors. Actuators: Manipulator dynamics and force control	- Elec		and p	
manipulator c	ontrol circuits - End effectors – various types of grippers - des	ign co	onsidei	ations	S. Drives:
Hydraulic, pne	umatic and electric drives				
IINIT – III					9
Robot Dynan	ics. Determination of HP of motor and gearing ratio - Variable	sneed	arran	remen	uts - Path
determination	Solution of inverse kinematics problem - Multiple solution jaco	bian .	work	envelo	n = Hill
Climbing Tech	niques	oluli	WOIR V		p IIII
Children 1001	inques.				
UNIT – IV					9
Robot Progra	mming: Introduction to robot programming languages - Classific	ation	of rob	ot lar	nguages -
Computer cont	rol and robot software - VAL system and Language.				
UNIT – V					9
Industrial A	oplications: Mutiple robots - Machine interface - Robots in	man	ufactui	ring a	and non-
manufacturing	applications - Robot cell design - Selection of robot.				
				I	Total: 45
REFERENCE	S:				
1. Deb S.R.	"Robotics Technology and Flexible Automation", 2 nd Edition, McGra	wHill	Public	cations	s, 2010.
2. Mikell P.	Weiss G.M., Nagel R.N. and Odraj N.G., "Industrial Robotics", McC	Graw-1	Hill, Si	ngapo	ore, 1996.
3. Ghosh, "	Control in Robotics and Automation: Sensor Based Integration",	Allied	Publi	shers,	Chennai,
1999.	-				
4. Klafter F	.D., Chimielewski T.A. and Negin M., "Robotic Engineering –	An I	ntegrat	ed A	pproach",
Prentice 1	Hall of India, New Delhi, 2007.				

COUF	OURSE OUTCOMES:							BT Mapped		
On cor	mpletion of	the course, the s	tudents will be	able to			(Highest Level)			
CO1:	describe th	ne functions of a	robot				Remembering (K1)			
CO2:	analyze th	e type of sensors	s, actuators and	drives for robots	5		Analyzing (K4)			
CO3:	apply the		Applying (K3)							
CO4:	04: experiment robot operations using VAL robot programming language							Applying (K3)		
CO5:	CO5: develop robots for manufacturing Industries						Creating (K6)			
	Mapping of COs with POs									
CC	Os/POs	PO1	PO2	PO3	PO4	PO	5	PO6		
(CO1			3	2					
(CO2	1		3	2					
(CO3	1		3	2					
(CO4			3	2					
CO5 2			2	3	1		2			
1 - Sli	ght, 2 – Mo	derate, 3 – Sul	ostantial, BT –	Bloom's Taxon	omy		•			

1	8ESC11 PROGRAMMING LANGUAGES FOR EMBEDDE	D SY	STEM	S	
		L	Т	Р	Credit
		3	0	2	4
Preamble	To know about the major programming paradigms, the principles	s and t	echniq	ues in	volved in
	embedded system design and to implement modern programming	g lang	uages.		
Prerequisites	Microcontroller				
UNIT – I				~	9
Introduction 1	to C Language: Overview of C - Constants, Variables, and I	Jata t	ypes -	Oper	ators and
Expressions - M	A move	ranchi	ng - D	ecisio	n Making
and Looping - A	Allays.				
UNIT – II					9
C Programmi	ng: Character Arrays and Strings - User defined Functions - Struc	etures	and Ur	nions -	- Pointers
- File Managem	nent in C - Dynamic Memory Allocation and Linked Lists - The P	reproc	essor.	nons	1 0111015
UNIT – III					9
C++ Program	ming: Basics of C++ Programming-Memory Models and Names	space	- Objec	cts and	d Classes -
Working with c	classes - Classes and Dynamic Memory Allocation - Class Inherit	ance -	Reusin	ng cod	le in C++ -
Friends – Exce	ptions - RTI and Type cast - String class - Input, Output and Files.				
UNIT – IV					9
Introduction (o Python: Basics of Python Programming - Decision control	staten	nents -	Func	tions and
Modules - Pyth	on strings - File handling.				
LINIT V					0
$\Delta dvanced ton$	ics in Python. Data Structures - Classes and Objects - Inheritan		nerato	r Avei	z joading -
Error and Exce	ntion handling	0	perato		iloaunig -
	pton nanonng.				
List of Exercis	es / Experiments :				
1. C progr	am for static and dynamic memory allocation				
2. C++ pro	ogram with objects to perform banking transactions				
3. Python	program to create text file and write content in the file				
4. Python	program to open a existing file and append content to the file				
5. Use try	and except in python while performing arithmetic division / or / w	hile o	pening	a file	
	Lecture	:45, P	ractica	al:30, '	Total: 75
REFERENCE	S/ MANUALS/ SOFTWARES:			• • • •	-
1. Balagurus	amy E., "Programming in ANSI C", 7" Edition, Tata McGraw Hi	II Pub	lication	n, 2010	6. 0 f 1
2. Keema I	nareja, "Python Programming using Problem Solving Appro	bach'',	1° E	dition	, Oxford
2 Stoplay D	II, 2017. Linnman Josep Laisie Darbara E. Maa "C++ Drimer" Ath	Edition	n Daar	non F	ducation
3. Statley B	. Lippinan, Josee Lajoie, Barbara E. 1900, C++ Primer, 4	Luitio	n, real	SOIL E	aucation,
2007.					
L					

COU	RSE OUT(BT Mapped						
On coi	mpletion of	the course, the	students will b	e able to			(Highest Level)		
CO1:	manipulat	e data, process	I/O and conver	t numerical valu	es using C		Applying (K3)		
CO2:	apply adv	anced data stru	ctures for proble	em solving			Applying (K3)		
CO3:	solve prol	olems using obj	ect oriented pro	ograms in C++			Applying (K3)		
CO4:	apply pyt	10n programmi	ng concepts for	data manipulati	on		Applying (K3)		
CO5:	O5: use python programs with object oriented and exception handling features and Applying (K3) differentiate interpreted language(Python) from compiled languages(C, C++)								
CO6:	CO6:distinguish static and dynamic memory allocation in C programmingAnalyzing (K Manipulation								
CO7:	CO7: use C++ programming for implementing objects and Inheritance Applyin Manipula								
CO8: apply python programming concepts for file operations and exception handling							Applying (K3), Precision (S3)		
							\$		
			Mappi	ng of COs with	POs				
CC	Os/POs	PO1	PO2	PO3	PO4	PO5	PO6		
(201	2		3	3				
(CO2	2		2	3				
(CO3	2		2	3				
(CO4	2		3	2				
(CO5	2		1	3				
(CO6	2		2	3				
CO7 2 2		2	3						
(CO8	2		2	3				
1 - Sli	ght, $2 - Mc$	oderate. 3 – S	ubstantial. BT	– Bloom's Taxo	nomv				

	18ESC12 MICROCONTROLLER SYSTEM DESI	GN			
		L	Т	Р	Credit
		3	0	2	4
Preamble	To expertise assembly level and C level program for the bar microcontroller architecture and able to interface sensor development	sic 80 and	051 and moto	l pic1 rs foi	6F8777A r project
Prerequisites	Digital Electronics				
UNIT – I					9
8051 Architect Counters- Inter	ture: Architecture - Memory organization - Addressing modes rupts - I/O ports - Serial Communication.	5 - Inst	ruction	ı set -	Timers -
UNIT – II					9
8051 Program Communication RTOSLite - Ful	nming: Assembly Language Programming - Timer Coun n Programming - Interrupt Programming - Interfacing I/O I IIRTOS - Task creation and Run - LCD digital clock/thermomete	ter Pr Device r using	rogram s - R7 ; FullR7	ming FOS f FOS.	- Serial or 8051-
UNIT – III					9
PIC Microcon set - I/O ports -	troller: Architecture of PIC18FXX - Memory organization - Ad Simple Assembly Language Programming - Introduction to Emb	dressi bedded	ng mod C.	les - Ir	nstruction
UNIT – IV					9
Peripheral of	PIC Microcontroller and Programming: I/O Port - Timers -	I2C t	ous - A	/D Co	onverter -
UART- CCP M	odules - Interrupts - EEPROM Memories.				
UNII – V Hardware Inte	reference LCD Display Touch Samon Kaynad SDI Due Dr	ataaal	DC1	207 D	
Motor Direction	n and Speed control using PWM - Stepper Motor.	010001	- DS1	307 K	IC - DC
List of Exercis	es / Experiments :				
1. Introduction	1 to Proteus – Simple programs using ALP.				
2. LED/ Switc	h/ Keypad /Relay/LCD - interfacing using 89c51 Microcontroller	ſ .			
3. Introduction	n to CCS Compiler – Simple programs using Embedded C.				
4. Timer-Exter	rnal hardware Interrupt - A/D converter - Serial Communication -	- 3pin	Tempe	rature	Sensor
Interfacing.					
5. Mini Projec	t using DS1307 RTC/DC Motor/Stepper Motor				
	Lecture	e:45, P	ractica	al:30, '	Total: 75
DEFEDENCE					
KEFERENCE	8 / MANUALS / SUF I WAKES:	<u> </u>	1 Mian	oconte	allan and
I. Munamma	au Ali Maziui, Janice G. Maziui and Kolin D Mickiniay, In	e 805	I MIC	ocontr	oner and
2 Muhamma	ad Ali Mazidi Rolin D. McKinlay Danny Causy "PIC Mic	rocon	roller	and F	mbedded
2. Systems u	sing Assembly and C for PIC18". Pearson Education. 2008	100011			mocuucu
3. MykePred	ko, "Programming and Customizing the 8051 Microcontroller"	Tata N	[cGraw	Hill.	2001.
4. John Lovi	ne, "PIC Microcontroller Project Book". McGraw Hill. 2000.			, ,	
5. Proteus Si	mulator				

COUI	RSE OUT	COMES:					В	T Mapped	
On co	mpletion of	f the course, the	e students will b	be able to			(Hi	ghest Level)	
CO1:	describe	the architecture	e of 8051 and 1	ewrite assemb	ly language pro	ogram	Unde	rstanding (K2)	
	for arithm	netic and logica	l operations						
CO2:	apply as	sembly langua	age program	for internal p	beripherals of	8051	Ap	plying (K3)	
	microcon	troller using pr	oteus simulator	7 6 0051		1		1 • (170)	
CO3:	demonstr	ate the conce	epts of RTOS	s for 8051	microcontroller	and	Ap	plying (K3)	
CO4	docoribo	the or pic 18FX	$\frac{X}{2}$ of DIC19E	y and roughts	accomply lon	<u></u>	Undo	ratanding (V2)	
CO4.	program f	for arithmetic a	nd logical operation	ations	assembly rang	guage	Unde	Istanding (K2)	
CO5:	develop	embedded C	C program for S compiler	or interrupt,	ADC and	Serial	Ap	pplying (K3)	
CO6:	use 8051	ALP to interfac	ce LED, switch.	keypad and L	CD		Ap	plving (K3).	
				, no pua una 20			Man	ipulation (S2)	
CO7:	make use	Ap	Applying (K3),						
	interrupt and serial communication							ipulation (S2)	
CO8:	CO8: design a Project using DS1307 RTC/ DC Motor/ Stepper Motor/ sense						Creating (K6),		
	interfacin	g					Pre	ecision (S3)	
			Mappi	ing of COs wit	h POs				
CC	Os/POs	PO1	PO2	PO3	PO4	PC	05	PO6	
(CO1			3	2				
(CO2			3	3				
(CO3	1		3	2				
(CO4			3	2				
(CO5	2		3	3				
(CO6	2		3	2				
(207	2		3	2				
(CO8	3	3	3	3	4	2	2	
1 - Sli	ght, $2 - \overline{M}$	oderate, $3-S$	ubstantial, BT	- Bloom's Taxo	onomy				

18ESC21 EMBEDDED NETWORKING AND BUSES

L	Т	Р	Credit
2	0	2	4

				-	Ŷ	_	-
Preamble	To understand the concepts and principles of v	various t	buses a	and net	works	for	embedded
	applications with respect ISO/OSI standards.						
Prerequisites	Fundamentals of Microcontrollers and Networks						

UNIT – I

Embedded Communication: Modern Instrumentation and Control Systems - Introduction to Networks-Advantages and Disadvantages. OSI Model - Foundations of OSI Model. Protocol - Standards. Grounding, Shielding and Noise.

UNIT – II

Embedded Networking: Introduction – Serial/Parallel Communication – Serial communication protocols: -RS232 standard – RS485 – Synchronous Serial Protocols -Serial Peripheral Interface (SPI)– Inter Integrated Circuits (I2C)– PC Parallel port programming -ISA/PCI Bus protocols.

UNIT – III

USB Protocol: Firewire USB bus – Introduction – Speed Identification on the bus – USB States – USB bus communication: Packets – Data flow types – Enumeration – Descriptors.

UNIT – IV

Industrial Ethernet: Introduction-IEEE Standards-Ethernet MAC layer-IEEE 802.2 and Ethernet SNAP- OSI and IEEE 802.3 standard. Ethernet transceivers, Ethernet types, switches & switching hubs, 10 Mbps Ethernet, 100 Mbps Ethernet, Gigabit Ethernet. TCP / IP Overview- Internet Layer Protocols-Host-to-Host layer.

UNIT – V

Devicenet: Overview – Layers Profibus-Overview-Protocol Stack. HART Protocol – Overview- Layers. Foundation Field Bus- Layers-Error Detection and Diagnostics. CAN Bus – Introduction - Frames –Bit stuffing –Types of errors –Nominal Bit Timing –PIC18Fxx microcontroller CAN Interface.

List of Exercises / Experiments:

- 1. Basics of Digital Modulation techniques(Simulation)
- 2. Serial port programming RS232- SPI (Hardware)
- 3. PIC18Fxx Microcontroller USB Interface (Simulation/Hardware)
- 4. TCP / IP (Simulation/Hardware)

5. A simple CAN interface based application using PIC18Fxx microcontroller (Simulation/Hardware)

Lecture:45, Practical:30, Total: 75

REFERENCES / MANUALS / SOFTWARES:

- 1. Steve Mackay, Edwin Wright, John Park and Deon Reynders, "Practical Industrial Data Networks: Design, Installation and Trouble Shooting", 1st Edition, Newnes Books, 2004.
- 2. William Buchanan, "Computer Buses-Design and Application", CRC Press, 2000.
- 3. Frank Vahid, Tony, Givargis, "Embedded Systems Design: A Unified Hardware/Software Introduction", 3rd Edition, Wiley Publications, 2009.

9

9

9

9

COUR	RSE (DUTCOMES:		BT Mappe	d				
On con	mplet	ion of the cours	se, the students w	vill be able to			(Highest Lev	vel)	
CO1:	reali	ze the embedd	ded communicat	ion based on C	OSI model stand	lard and	Applying (K	3)	
	digi	tal modulation	techniques to exa	amine the requir	rements of today	's digital			
	wor	ld							
CO2:	diffe	erentiate serial of	communication a	nd parallel com	munication		Understanding	(K2)	
CO3:	deve	elop a system	n to transfer d	ata between	peripheral dev	ice and	Applying (K	3)	
	mici	cocontroller three							
CO4:	anal	yze the differ	ent IEEE Stand	ards, challenge	s and its solu	tions in	Analyzing (K	(4)	
	wire	eless networks							
CO5:	dem	onstrate a com	f the key	Applying (K	3)				
	elen	nents and prin	comotive						
	netw	vorks including							
CO6:	dem	onstrate signa	dulation	Applying (K.	3),				
	techniques							(S2)	
CO7:	carr	yout interfacing	g of serial port, U	SB and CAN w	ith microcontrol	ler	Applying (K.	3),	
							Manipulation (S2)		
CO8:	anal	yze the efficien	ncy of a embedde	d systems over '	TCP/IP commun	ication	Analyzing (K4),		
							Precision (S3)		
			M	apping of COs	with POs				
COs/P	Os	PO1	PO2	PO3	PO4	POS	PO6	5	
CO	1			3	2				
CO	2			3	2				
CO	3			3	3				
CO4	4	1		3	3				
CO	5	1		3	3				
CO	6	2		3	3				
CO	7	2		3	3				
COS	8	2		3	3				
1 - Sli	ght, 2	2 – Moderate,	3 – Substantial	BT – Bloom's	Taxonomy	4			

18ESC22 RISC PROCESSOR Credit L Т Р 3 0 2 To design the embedded system applications with AVR and ARM microprocessors employing the knowledge of different user peripherals and operating systems. Microprocessor

UNIT – I 9 AVR Microcontroller Architecture: Architecture - memory organization - addressing modes - I/O Memory - EEPROM - I/O Ports-SRAM -Timer -UART - Interrupt Structure- Serial Communication with PC -ADC/DAC Interfacing.

UNIT – II

Preamble

Prerequisites

ARM Architecture and Programming: Acorn RISC Machine -Core & Architectures -- The ARM Programmer's model -Registers - Pipeline - Interrupts - Coprocessors. Instruction set - Thumb instruction set -Instruction cycle timings System Peripherals: Bus structure -Memory map -Memory accelerator module -External bus interface - Phase Locked Loop - VLSI peripheral bus divider - Power control

UNIT – III

User Peripherals: Pin connect block -General purpose I/O -Timers -Capture -Compare -PWM modules-Watchdog timer -Analog to digital converter-UART -I2C interface -SPI interface -CAN interface

UNIT - IV

Memory Protection and Management: Protected Regions-Initializing MPU, Cache and Write Buffer-MPU to MMU-Virtual Memory-Page Tables- TLB-Domain and Memory Access Permission-Fast Context Switch Extension.

UNIT - V

ARM Application Development: Introduction to DSP on ARM – Filter – Exception Handling – Interrupts – Interrupt handling schemes- Firmware and boot loader - Example: Standalone - Embedded Operating Systems - Fundamental Components.

List of Exercises / Experiments :

- 1. Interfacing analog sensor/ GSM with ATmega2560 or Arduino
- 2. Understanding Keil IDE and Keil based PLL and VPB configurations
- 3. Interfacing Servo motor/ RTC with LPC21xx.
- 4. SLOS-I on ARM LPC21xx
- 5. SLOS-II on ARM LPC21xx

Lecture:45, Practical:30, Total: 75

REFERENCES / MANUALS / SOFTWARES:

- Andrew N. Sloss, Dominic Symes, Chris Wright, John Rayfield, "ARM System Developer's Guide 1. Designing and Optimizing System Software", Elsevier, 2007.
- Dananjay V. Gadre, "Programming and Customizing the AVR Microcontroller", McGraw Hill, 2017. 2.
- Trevor Martin, "The Insider's Guide To The Philips ARM7-Based Microcontrollers, An Engineer's 3. Introduction To The LPC2100 Series", Hitex (UK) Ltd, 1st Reprint, April 2005.

9

9

9

9

COU	DURSE OUTCOMES:					BT Mapped			
On con	mple	tion of the course, the stud	ents will be al	ole to			(High	nest Level) S1	
CO1:	use	timer, UART and ADC	modules of A	Atmega2560 r	nicrocontrolle	r for	Ap	plying (K3)	
	I/O	applications							
CO2:	real	ize the architecture and in	struction set o	of ARM7			Applying (K3)		
CO3:	use	configurations of PLL a	nd bus struct	ures in LPC2	1xx for frequ	ency	Ap	plying (K3)	
	gen	erations							
CO4:	CO4: differentiate MMU, MPU and Virtual Memory concepts							rstanding (K2)	
CO5:	inte	erpret the concepts of Embe	edded Operati	ng Systems			Ap	plying (K3)	
CO6:	des	ign and interface periph	neral devices	with LPC21	xx for indus	strial	Ар	plying (K3),	
	applications						Manipulation (S2)		
CO7:	CO7: carryout interfacing of analog sensors with ATmega2560						Ар	plying (K3),	
			Mani	pulation (S2)					
CO8:	dev	elop OS based application	s for ARM7				Ар	plying (K3),	
							Pre	ecision (S3)	
			Mapping	of COs with I	POs	1			
COs/F	POs	PO1	PO2	PO3	PO4	I	PO5	PO6	
CO	1	1		3	2				
CO	2			3	2				
CO.	3			2	3				
CO4	4			3	2				
CO	5	1		3	2				
CO	6	2		3	3		1		
CO	7	2		3	3		1		
COS	8	2		3	3		1	2	
1 – Sli	ght,	2 - Moderate, 3 - Substa	intial, BT - B	Bloom's Taxon	omy				

	18ESC23 EMBEDDED LINUX						
		L	Т	Р	Credit		
		3	0	2	4		
Preamble	To study and apply concepts relating to operating systems, such	n as co	oncurre	ncy an	d control		
	of asynchronous processes, deadlocks, memory management, pr	ocesso	or and c	lisk sc	heduling,		
	parallel processing, and file system organization						
Prerequisites	Basics of C						
UNIT – I				_	9		
Fundamentals	of Linux: Basic Linux System Concepts: Working with Files and	nd Dir	ectorie	s - Int	roduction		
to Linux File	system - Basic Linux commands and concepts Logging in - S	Shells	- Basi	c text	editing -		
Advanced shel	is and shell scripting Linux File System Linux programming - Pr	ocesse	es and t	hreads	in Linux		
- Inter process	communication -Linux System calls.						
UNIT – II					9		
Various Distr	ibutions And Cross Platform Tool Chain: Introduction - His	story	of Emb	bedded	l Linux -		
Embedded Lin	ux versus Desktop Linux -Commercial Embedded Linux Distribut	ion - (Choosir	ng a di	stribution		
- Embedded Li	nux Distributions - Architecture of Embedded Linux - Linux ker	nel aro	chitectu	re - U	ser space		
Linux startup s	equence - GNU cross platform Tool chain.						
UNIT – III					9		
Host-Target	Setup and Overall Architecture: Real Life Embedded Lir	ux S	ystems	- De	sign and		
Implementation	n Methodology - Types of Host/Target Development Setups - 7	Types	of Hos	t/Targ	et Debug		
Setups - Gen	eric Architecture of an Embedded Linux System - System	Start	up - 🛛	Гуреs	of Boot		
Configurations	System Memory.						
UNIT – IV 9							
Kernel Config	uration and Root File System: Selecting a Kernel - Configuring	g the H	Kernel -	- Com	piling the		
Kernel - Instal	ling the Kernel - Basic Root File system Structure - Libraries -	Kerne	el Modu	iles ar	d Kernel		
Images - Devi	ce Files - Main System Applications - System Initialization - Se	tting I	Up the	Bootle	oader U-		
boot.							
UNIT – V					9		
Embedded St	prage and Driver: Memory Technology Device (MTD) MTD Ar	chitec	ture - N	MTD I	Driver for		
NOR Flash Th	e Flash Mapping drivers MTD Block and character devices mtdu	itils pa	ackage	Embe	dded File		
Systems Opti	mizing storage space-Porting Roadmap Linux serial driver E	therne	t drive	r USE	gadgets		
Watchdog time	r Kernel Modules.				00		
List of Exercis	es / Experiments :						
1. Linux f	ile access and shell scripting						
2. Installa	tion of Embedded linux distribution and tool chain for the specifie	d targe	et board	1			
3. Target	Development setup and Boot Configurations						
4. Compil	ing a kernel, Building a kernel, Configuring kernel modules, Imag	es for	specifi	ed targ	get Board		
5. Loading	the images in Flash memory through JTAG and driver modules		-	Ť			
	Lecture	e:45, F	Practica	al:30, '	Total: 75		
REFERENCE	S / MANUALS / SOFTWARES:						
1. Paul Cob	baut, "Mastering Linux Fundamentals", Art Power International Po	ublicat	tions, $\overline{2}$	016.			
2. Karim Ya	ghmour, "Building Embedded Linux Systems", 2nd Edition, O'Rei	lly Pu	blicatio	ons, 20	08.		
3. Raghavar	P., Amol Lad, Sriram Neelakandan, "Embedded Linux System	Desig	gn and	Devel	opment",		
Auerbach	Publications, 2006.						

COU	RSE	OUTCOMES:					BT Mapped			
On con	mple	tion of the course, the stude	ents will be ab	le to			(Hig	hest Level)		
CO1:	list	the fundamentals of an lin	ux OS				Remer	nbering (K1)		
CO2:	insp	pect kernel modules for cus	stomer periphe	erals			Analyze (K4)			
CO3:	den	nonstrate communication	between kerne	l space and use	er space		Арр	lying (K3)		
CO4:	dev	elop system configuration		Арр	lying (K3)					
CO5:	inspect software tools for the development of an embedded linux system and architecture							yzing (K4)		
CO6:	con	npute Linux file access and		App	lying (K3),					
				Manip	oulation (S2)					
CO7:	carr	ryout Boot configurations	and develop	tool chain fo	r specified tar	get	Applying (K3),			
	boa	rd		Manipulation (S2)						
CO8:	18: integrate images and target board using debugger and drivers through							Analyzing (K4),		
	ker	nel					Prec	cision (S3)		
			Mapping of	of COs with P	Os					
COs/F	POs	PO1	PO2	PO3	PO4		PO5	PO6		
CO	1			3	2					
CO	2	2		3	3					
CO	3			3	2					
CO	4			3	3					
CO	5			3	2					
CO	б	1		3	3					
CO	7	2		3	3					
COS	8	2		3	2		1	2		
1 - Sli	ght,	2 - Moderate, 3 - Substa	ntial, $BT - B$	loom's Taxon	omy					

18VLE02 DESIGN OF SEMICONDUCTOR MEMORIES

L

Т

Р

Credit

9

9

9

9

9

Total: 45

(Common to VLSI Design and Embedded Systems branches)

		3	0	0	3
Preamble	To study the architectures for SRAM and DRAM, various r	non-vo	latile 1	nemor	ies, fault
	modeling and testing of memories for fault detection and the rad	iation	harden	ing pro	ocess and
	issues for memory.				
Prerequisites	Solid State Devices				

UNIT – I

Random Access Memory Technologies: SRAM Cell Structures-MOS SRAM Architecture-MOS SRAM Cell and Peripheral Circuit Operation- Bipolar SRAM Technologies-Silicon On Insulator (SOI) Technology-Advanced SRAM Architectures and Technologies-Application Specific SRAMs DRAM Technology Development- CMOS DRAMs- DRAMs Cell Theory and Advanced Cell Structures- BiCMOS, DRAMs-Soft Error Failures in DRAMs- Advanced DRAM Designs and Architecture- Application Specific DRAMs.

UNIT – II

Nonvolatile Memories : Masked Read-Only Memories (ROMs)- High Density ROMs- Programmable Read-Only Memories (PROMs)- Bipolar PROMs- CMOS PROMs- Erasable(UV) Programmable Road-Only Memories (EPROMs)- Floating-Gate PROM Cell- One-Time Programmable (OTP) EPROMS- Electrically Erasable PROMs (EEPROMs)- EEPROM Technology and Architecture- Nonvolatile SRAM- Flash Memories (EPROMs or EEPROM)- Advanced Flash Memory Architecture.

UNIT – III

Memory Fault Modeling And Testing: RAM Fault Modeling, Electrical Testing, Peusdo Random Testing-Megabit DRAM Testing- Nonvolatile Memory Modeling and Testing- IDDQ Fault Modeling and Testing-Application Specific Memory Testing.

UNIT – IV

Semiconductor Memory Reliability: General Reliability Issues- RAM Failure Modes and Mechanism-Nonvolatile Memory Reliability- Reliability Modeling and Failure Rate Prediction- Design for Reliability-Reliability Test Structures- Reliability Screening and Qualification.

UNIT – V

Packaging Technologies: Radiation Effects- Single Event Phenomenon (SEP)- Radiation Hardening Techniques- Radiation Hardening Process and Design Issues- Radiation Hardened Memory Characteristics-Radiation Hardness Assurance and Testing - Radiation Dosimetry-Water Level Radiation Testing and Test Structures. Ferroelectric Random Access Memories (FRAMs)- Gallium Arsenide (GaAs) FRAMs- Analog Memories- Magnetoresistive Random Access Memories (MRAMs)- Experimental Memory Devices. Memory Hybrids and MCMs (2D)-Memory Stacks and MCMs (3D)-Memory MCM Testing and Reliability Issues-Memory Cards- High Density Memory Packaging Future Directions.

REFERENCES:

- 1. Sharma K. Ashok, "Semiconductor Memories: Technology, Testing, and Reliability", Wiley-IEEE Press, New York, 2002.
- 2. Sharma K. Ashok, "Advanced Semiconductor Memories, Architectures, Designs and Applications", Wiley-IEEE Press, New York, 2009.
- 3. Krzysztof Hiewski, Santosh K. Kurinec, "Nanoscale Semiconductor Memories", CRC Press, 2017.

COURS	SE OUTCOMES:		BT Mapped					
On com	pletion of the course	e, the students wi	ll be able to			(Highest Level)		
CO1:	comprehend the mic	ro level operatio	ns of random acc	ess memories		Understanding (K2)		
CO2:	analyze the need of		An	alyzing (K4)				
CO3:	design the fault free memory systems by fault modeling techniques Evaluating (K5)							
CO4: analyze and design the memory architectures by considering the radiation							alyzing (K4)	
CO5: identify the packages for memories							Understanding (K2)	
		Ma	pping of COs w	ith POs				
COs/PC	Os PO1	PO2	PO3	PO4	PO5		PO6	
CO1	3	3	2	2	2		3	
CO2			2	3	2			
CO3			1	2	1			
CO4			2	3	2			
CO5	3	3	2	2	2		3	
1 - Slig	ht, 2 – Moderate,	3 – Substantial,	BT - Bloom's Ta	axonomy				

18VLE06 SUPERVISED MACHINE LEARNING ALGORITHMS

(Common to VLSI Design & Embedded Systems branches)

		3	0	0	3		
Preamble	To focus on supervised machine learning algorithms to create sir	nple, i	nterpre	table r	nodels to		
	solve classification and regression problem.						
Prerequisites	Linear Algebra, calculus						

UNIT – I

Discriminative Algorithms: Cost function -LMS Algorithm - The normal Equations-Probability interpretation-locally weighted linear regression-logistic regression-generalized linear models-Application to prediction.

UNIT – II

Generative Algorithms: Generative Models: Gaussian Discriminant Analysis(GDA)-Naïve Bayes- Laplace smoothing-Marginal classifier: Support Vector Machine (SVM) as optimal Margin classifier-Application to Classification.

UNIT – III

Neural Networks: ANN Architecture- Parameter Initialization -Forward Propagation- Activation Functions (Sigmoid,tanh,relu)-Training and Optimization with back propagation-Learning Boolean Functions.

UNIT – IV

Convolutional Neural Networks (CNN) : Convolution kernel-Pooling (Max Pooling, fractional Pooling)-Strides-Fully Connected Layers -Loss functions - MiniBatch Training -Optimization - Application to MNIST image classification.

$\mathbf{UNIT} - \mathbf{V}$

Hyper Parameter Tuning: Regularization: Bias-Variance-Bias-variance Trade off- Initialization of parameters (Xavier)-Cross Validation-Data Augmentation-dropouts-Batch Normalization.

RE	CFERENCES:
1.	Christopher M. Bishop, "Pattern Recognition and Machine Learning", Springer-Verlag New York,
	Reprint, 2010.
2.	Trevor Hastie, "The Elements of Statistical Learning: Data Mining, Inference, and Prediction", 2 nd
	Edition Springer 2009

UCI Machine Learning repository: http://archive.ics.uci.edu/ml/index.php 3.

Total · 45

9

Т

L

Р

Credit

9

9

9

COUH	DURSE OUTCOMES:							BT Mapped		
On con	mple	tion of the course	e, the students wi	ll be able to			(H	ighest Level)		
CO1:	ana	lyse and apply	discriminative al	gorithms for cla	ssification and	regression	Ar	nalyzing (K4)		
	pro									
CO2: validate a generative model based algorithm for classification and regression								nalyzing (K4)		
CO3:		Analyzing (K4)								
CO4: develop a CNN model for image analysis								Applying (K3)		
CO5: analyse various error metrics used in supervised learning							Analyzing (K4)			
			Ma	pping of COs w	ith POs					
COs/P	POs	PO1	PO2	PO3	PO4	PO5		PO6		
CO	1			2	3	2				
CO	2			2	3	2				
CO.	3			2	3	2				
CO	4			3	3	3				
CO	5			2	3	2				
1 - Sli	ght,	2 – Moderate,	3 – Substantial,	BT - Bloom's Ta	axonomy					

18COE09 DSP PROCESSOR ARCHITECTURE AND PROGRAMMING

(Common to Communication Systems, VLSI Design & Embedded Systems branches) T P Credit

				_		
		2	0	2	3	
Preamble	To design the parameters of filters and implement it in real time	DSP ha	ardwar	e.		
Prerequisites	Digital Signal Processing					

UNIT – I

Fundamentals of Programmable DSPs: Multiplier and Multiplier accumulator (MAC) - Modified Bus Structures and Memory access in Programmable DSPs - Multiple access memory - Multi-port memory -VLIW architecture- Pipelining - Special Addressing modes in P-DSPs - On chip Peripherals

UNIT – II

TMS320C54XX: Fundamentals of Programmable DSPs - Architecture of TMS320C54X-54X Buses-Memory organization-Computational Units-Pipeline operation-On-chip peripherals - Address Generation Units- Addressing modes and instruction set- assembly language instructions -Introduction to Code Composer studio

UNIT – III

TMS320C6X: Architecture of TMS320C6X - Computational units-Addressing modes -Memory architecture- pipeline operation- instruction set- assembly language instructions

UNIT – IV

Blackfin Processor(BF537): Architecture of BF537- Computational units - Internal Memory organization-System interrupts - Direct Memory Access- on-chip peripherals-ALU-MAC-DAG Units-Addressing modes-Assembly language instructions- Timers –Interrupts-Serial ports-UART-Simple programs

UNIT - V

Applications Using TMS320C54X/C6X/BF537: Program development - Software Development Tools- The Assembler and the Assembly Source File Filter design- Linker and Memory Allocation -DSP Software Development Steps- Speech Digitization-Encoding and Decoding-Image compression-Restoration-Adaptive Echo cancellation-Modulation

List of Experiments:

- 1. Basic Signal operations using 54x.
- 2. Convolution using c54x and c6713x
- 3. FIR and IIR filter using C6713
- 4. Basic operations and convolution using BF 537
- 5. Speech and Audio application development using BF537

REFERENCES / MANUALS / SOFTWARES:

- Sen M. Kuo, Woon-Seng S. Gan, "Digital Signal Processors: Architecture, Implementation and 1. Applications", 1st Edition, Prentice Hall, 2009.
- Woon-Seng Gan, Sen M. Kuo, "Embedded Signal Processing with the Microsignal Architecture", John 2. Wiley & Sons Inc. Publications, 2007.

6

Lecture: 30, Practical: 30, Total: 60

6

6

6

6

L

COUH	OURSE OUTCOMES:							BT Mapped		
On con	nple	tion of the course	e, the students w	ill be able to			(H	ighest Level)		
CO1:	infe	r the basic conce	epts of DSP proc	essor			Unde	erstanding (K2)		
CO2:	app	ly programming	g concepts to d	evelop simple a	nd real time ap	plications	A	pplying (K3)		
	pro	grams using c542	x processor							
CO3:	app	ly programming	concepts to deve	elop simple and r	eal time applicat	ions	A	pplying (K3)		
	usir	ng c6x processor								
CO4:	app	ly programming	g concepts to d	plications	A	pplying (K3)				
	usir	ng BF 537 pro	ocessor							
CO5:	ana	lyze the perform	BF537	Ar	nalyzing (K4)					
CO6:	den	emonstrate the concepts of DSP using DSP processor						oplying (K3),		
				Manipulation (S2)						
CO7:	O7: design digital filters using DSP processors						Ap	oplying (K3),		
								nipulation (S2)		
CO8:	den	nonstrate speech/	audio applicatio	ns using DSP pro	cessor		Applying (K3),			
							Manipulation (S2)			
			Ma	apping of COs w	ith POs					
COs/P	Os	PO1	PO2	PO3	PO4	PO5		PO6		
CO	1	3				2				
CO	2	3				3				
CO	3	3				3				
CO	4	3				3				
CO	5	3	3			3				
CO	5	3				3				
CO	7	3				3				
CO	8	3				3				
1 - Sli	ght,	2 – Moderate,	3 – Substantial,	BT - Bloom's T	axonomy					

18MWC22 NETWORK SECURITY ESSENTIALS

(Common to Information Technology (Information Cyber Warfare), Communication Systems & Embedded Systems branches)

		3	0	2	4				
Preamble	To introduce the security problems associated with malicious	softwa	are and	1 intru	ders and				
	familiarize the network security controls that help to protect the usability, integrity, reliability								
	and safety of the network infrastructure and the data that travels through it.								
Prerequisites	Computer Networks								

UNIT – I

Introduction: Characteristics of Networks, Need for network security, Intruders, Malicious Software, Reconnaissance, Eavesdropping, wiretapping, impersonation, traffic analysis, website defacement, DOS, active code or mobile code attacks, OSI Security Architecture, Security Services, Model for Network Security.

UNIT – II

Cryptography and Key Distribution: Classical Encryption Techniques, Symmetric Encryption Principles, Symmetric Encryption Algorithms, DES, AES, Stream Ciphers, Block Cipher Modes of Operation, Public Key Cryptography Principles, Public Key Cryptographic Algorithms, RSA,ECC, Key Distribution using Symmetric and Asymmetric Encryption, Kerberos, X.509, Public Key Infrastructure, trust models, revocation, directories.

UNIT – III

Message Authentication and Digital Signatures: Requirement of Authentication Functions, Message Authentication Codes, Hash and MAC Algorithms, MD2, MD4, MD5, SHA, HMAC, CMAC, Whirlpool, Address bases authentication, password based authentication, trusted intermediaries, digital Signatures, Digital Signature Standard.

UNIT – IV

IP Security, Transport Layer Security: IP Sec, Authentication header, Encapsulating Security Payload, IKE, ISAKMP/IKE Encoding, Web Security Issues, Secure Sockets Layer, Transport Layer Security, Negotiating cipher suites, compression methods, encoding, HTTPS, Secure Shell.

UNIT – V

Network Security Applications: Electronic Mail Security, Privacy enhanced mail, PGP, SMIME, Authorization and Access control, Firewalls, Intrusion Detection and Prevention Systems, Honeypots, honetnets, scanning and analysis tools, Antivirus Software, Virtual Private Network.

List of Exercises / Experiments :

- 1. Implement the following substitution and transposition techniques concepts
 - a. Playfair Cipher
 - b. Column Transformation
- 2. Implement Hill Cipher Technique
- 3. Implement the RSA Asymmetric key algorithm
- 4. Implement the Diffie Hellman Asymmetric key algorithm
- 5. Implement the Digital Signature standard algorithm
- 6. Setup a honey pot and monitor the honey pot on network (KF Sensor)

9

Т

L

P

Credit

9

9

9

7. Demonstrate Intrusion Detection System (IDS) using any tool (snort or any other s/w)								
				Le	cture: 45,	Practica	al: 30, Total: 75	
REFE	RENCES / 1	MANUALS / SOF	TWARES:					
1. W H	Villiam Stalli Iall, 2013.	ings, "Cryptograph	y and Network Se	curity Principles a	nd Practice	es", 6 th I	Edition, Prentice	
2. B	ehrouz A. F	ourouzan, "Crypto	graphy and Netwo	rk Security", 2 nd E	dition, Tat	a McGra	w-Hill, 2012.	
3. C w	harlie Kaufr orld", 2 nd Ec	nan, RadiaPeralma lition, Prentice Hal	n, Mike Speciner, 1. 2002.	"Network Security	y: Private c	ommuni	ication in public	
COUR	RSE OUTCO	OMES:	7			B	T Mapped	
On con	npletion of t	he course, the stude	ents will be able to	1		(Hi	ghest Level)	
CO1:	identify th attacks	e attacks against no	etwork infrastructu	re and the sources	of	Under	rstanding (K2)	
CO2:	evaluate the encryption	he design principle	es of conventional	encryption and p	ublic key	Ар	plying (K3)	
CO3:	narrate the	e MAC and hashing	g techniques neede	d for authentication	1	Under	rstanding (K2)	
CO4:	identify th network ir	e various types of s	security controls av	vailable to protect t	he	Under	rstanding (K2)	
CO5:	implement infrastruct	t appropriate sec ure	curity controls to	o safeguard the	network	Ap	plying (K3)	
CO6:	practice th	e different types of	f symmetric key c	ryptographic algori	thms	Apj Pre	plying (K3), ecision (S3)	
CO7:	implement	t the various types	asymmetric key cr	yptographic algori	thms	Ap Pre	Applying (K3), Precision (S3)	
CO8:	demonstra	te the different typ	es of firewalls and	intrusion detection	n system	Applying (K3), Precision (S3)		
			Mapping of CC)s with POs				
CC	Os/POs	PO1	PO2	PO3	PO	4	PO5	
(CO1	3		3	3			
(CO2	3		3	3			
(CO3	3		3	3			
(CO4	3		3	3			
(CO5	3		3	3			
(CO6	3	2	3	3		1	
(CO7	3	2	3	3		1	
(CO8	3	2	3	3		1	
1 – Slig	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy							

18ESE01 SOLAR AND ENERGY STORAGE SYSTEM

Total: 45

					1
		L	Т	P	Credit
		3	0	0	3
Preamble	To understand and apply the process of PV systems. power poi	nt trac	king ar	nd des	ign of PV
	systems		-		
Prerequisites	Basics of Electronics				
UNIT – I					9
Introduction:	Characteristics of sunlight – semiconductors and P-N junctions –	behavi	or of s	olar c	ells – cell
properties - PV	cell interconnection.				
• •					
UNIT – II					9
Solar PV Mod	ules and Arrays: Ratings of PV Module- Standard PV Module F	arame	ters- Fa	actors	Affecting
Electricity Gen	erated by a Solar PV Module- Measuring Module Parameters	Conr	ection	of M	odules in
Series- Connec	tion of Modules in Parallel Combination- Connection of Modules	in Seri	es and	Parall	el.
UNIT – III					9
Batteries and	Applications of Batteries in Solar PV Systems: Types of Batter	ies- Pa	aramete	ers of	Batteries-
Comparison of	Various Rechargeable Batteries- Batteries for Photovoltaic (PV) Syst	ems- I	Design	of Lead-
acid Batteries-	Applications of Batteries in Solar PV Systems.			•	
UNIT – IV					9
Charge Control	oller, MPPT and Inverters: Power Converters and Their Efficient	ency- A	AC to	DC C	onverters-
DC to AC Con	verter (Inverters)- DC to DC Power Converters- Charge Control	lers- N	Iaximu	ım Po	wer Point
Tracking (MPP	T).				
	· · · · · · · · · · · · · · · · · · ·				
UNIT – V					9
Solar PV Syst	em Design and Integration: Types of Solar PV Systems- De	esign I	Method	lology	for SPV
System Applic	ations: Case Studies: Solar Lighting-Solar Cooking-Solar Dry	ing-So	lar De	salina	tion-Solar

REFERENCES:	

Furnaces.

Sukhatme S.P. and Nayak J.K., "Solar Energy", 4th Edition, Tata McGraw Hill, 2017. 1.

Chetan Singh Solanki, "Solar Photovoltaic Technology and Systems, A Manual for Technicians, 2. Trainers and Engineers", PHI Learning Pvt. Ltd., 2013.

Eduardo Lorenzo G. Araujo, "Solar electricity engineering of photovoltaic systems", Progensa, 1994. 3.

COURSE OUTCOMES:						BT Mapped		
On con	On completion of the course, the students will be able to						(Higl	nest Level)
CO1:	infe	er the characteristics of sur	light and the	role of semico	onductors in so	olar	Unders	tanding (K2)
	cell							
CO2:	rela	te types and design of vario	ous PV intercon	nnected system	IS		App	lying (K3)
CO3:	app	ly the concepts of MPPT al	gorithm for PV	V module in Ma	atlab		App	lying (K3)
CO4:	cho	ose system components of	different PV a	pplications			App	lying (K3)
CO5:	5: infer on simple case study Solar Lighting - Solar Cooking - Solar Drying - Understanding (K2)							tanding (K2)
	Sol	ar Desalination - Solar Furn	aces					
			Mapping of	f COs with PC)s			
COs/F	Os	PO1	PO2	PO3	PO4		PO5	PO6
CO	1			2	2			
CO	2			3	2			
CO	3	2		3	2			
CO	4	1		3	2			
CO	5	2		2	2			2
1 - Sli	ght.	2 - Moderate, 3 - Substar	tial. BT - Blo	om's Taxonor	nv			-

18ESE02 SIGNAL AND IMAGE PROCESSING FOR EMBEDDED APPLICATIONS Credit

L	L	L	'
2	0	2	

3

6

6

6

Preamble	To develop the image processing tools from scratch, rather than using any image processing	
	library functions	
Prerequisites	Signals and Systems	

UNIT – I

Digital Image Fundamentals: Elements of digital image processing systems- Brightness- Contrast- Huesaturation- Mach band effect -2D Image sampling- 2D Image transforms: DCT - KLT - Haar. Image Enhancement: Basic intensity transformations - Histogram equalization - Spatial filtering : Smoothing and sharpening Filters – Frequency domain filtering : Smoothing and sharpening filters – Homomorphic filters

UNIT – II

Morphological Image Processing: Erosion - Dilation - Duality - Opening - Closing - Hit or Miss Transformation- Basic Morphological Algorithms : Boundary Extraction- Hole filling - Extraction of connected components - Thinning - Thickening - Grayscale Morphology - Morphological smoothing -Morphological gradient – Tophat and bottom hat transformation

UNIT – III

Image Segmentation: Point, line and edge detection - Basics of intensity thresholding - Region based segmentation: Region growing - Region splitting and merging. Image Compression: Fundamentals: Types of redundancy – Huffmann – Run length coding – Arithmetic coding - Block Transform coding

UNIT - IV

Pattern Recognition: Patterns and Pattern classes - Representation of Pattern classes - Approaches to object recognition : Baye's Parametric classification – Template matching method – Structural Pattern Recognition: statistical and structural approaches

UNIT – V

Overview of Speech Processing: Speech Fundamentals: Articulatory Phonetics - Production and Classification of Speech Sounds; Acoustic Phonetics - acoustics of speech production; Short time Homomorphic Filtering of Speech; Linear Prediction (LP) analysis: Basis and development, LPC spectrum.

List of Exercises / Experiments :

- 1. Simulation of Basic operations on images and image enhancement algorithms
- 2. Simulation of morphological operations and algorithms
- 3. Simulation of simple edge detection and thresholding algorithms
- 4. Finger print Recognition
- 5. Face Recognition

REFERENCES / MANUALS / SOFTWARES:

Gonzalez R.C. and Woods R.E., "Digital Image Processing", 4th Edition, Pearson Education, 2009. 1.

- Jayaraman S., Esakkirajan S. and Veerakumar T., "Digital Image Processing", 1st Edition, Tata 2. McGraw-Hill, New Delhi, 2009.
- Hayes H. Monson, "Statistical Digital Signal Processing and Modeling", John Wiley & Sons Inc., 1996. 3.

6

Lecture: 30, Practical: 30, Total: 60

COU	RSE OUTCOMES:					BT Mapped		
On con	(H	(Highest Level)						
CO1:	interpret the basic image pro-	interpret the basic image processing spatial domain characteristics of digit						
	images							
CO2:	apply Haar, DCT and KL T	ransforms to tr	ansform from	spatial domain	to A	Applying (K3)		
	other domains							
CO3:	apply morphological operato	ors and segment	tation algorith	nms to extract the	ne A	Applying (K3)		
	edges and regions of interest							
CO4:	employ Huffmann, Arithme	etic, Runlength	and nblock	transform codin	ng A	Applying (K3)		
	techniques and compress the	images						
CO5:	examine the pattern recogniti	on and speech p	rocessing appr	oaches	A	nalyzing (K4)		
CO6:	experiment basic image proce	essing algorithm	IS		A	Applying (K3),		
					Ma	Manipulation (S2)		
CO7:	apply edge detection and thre	A	Applying (K3),					
					Ma	Manipulation (S2)		
CO8:	use image processing techniq	ue for biometric	e authentication	1	A	Applying (K3),		
					I	Precision (S3)		
		Mapping of	f COs with PO	Ds				
COs/F	POs PO1	PO2	PO3	PO4	PO5	PO6		
CO	1	_	3	3				
CO	2		3	2				
CO	3 2		3	3				
CO	4 2		3	3				
CO	5 1		2	3				
CO	6 1		3	2				
CO	7 1		3	3				
CO	8 2		3	3		2		
1 - Sli	ight, 2 – Moderate, 3 – Subst	antial, BT - Blo	oom's Taxonoi	my				

	18ESE03 QT CROSS COMPILING APPLICATION DEVE	LOPN	IENT		
		L	Т	Р	Credit
		3	0	0	3
Preamble	To know the basic concepts of Qt - single cross platform and	to use	e C++	tool to	design,
	develop, test, deploy programs for projects.				
Prerequisites	Basics of C++				
UNIT – I					9
Introduction t	o C++: Basic Concepts - Conditionals and Loops - Data Types, A	.rrays,	Pointe	rs – Fi	unctions -
Classes and Ob	jects - Inheritance and Polymorphism – sample programs.				
UNIT – II					9
Qt Installation	a and Compilation: Qt Framework on different platforms – sa	mple	applica	ation o	n current
platform - Qt (Quick access – QMessageBox -signals and slot - UI design – pus	h butte	on – li	ne edit	t –label –
style sheet.					
UNIT – III					9
Qt Platforms:	Qt Android - configuration - linking - compiling - sample pro	grams	–link	image	 inbuilt
resource - appl	ication development – Libraries .				
UNIT – IV					9
Internet of T	hings: Qtweb – QwebView - QNetworkAccessManager - coll	ect an	d store	e sens	or data -
analyze and vis	ualize data – sample programs.				
UNIT – V					9
Application D	evelopment: Design UI file – algorithm design – compile and deb	ug – rı	ın appl	lication	۱.
				,	Total: 45
REFERENCE	S / MANUALS / SOFTWARES:				
	1				

- 1. Stanley B. Lippman, Josee Lajoie, Barbara E. Moo, "C++ Primer", 4th Edition, Pearson Education, 2007.
- Lee Zhi Eng, "Hands on GUI Programming with C++ and Qt5", 1st Edition, Packt Publishing Ltd., 2018.
- 3. Doc.qt.io/qt-5/index.html

COURSE	B	BT Mapped					
On comple	(Hig	(Highest Level)					
CO1: use	e class level C++ programs f	or simple appli	ications.		Ар	Applying (K3)	
CO2: ap	ply programming concepts in	n simple applic	cation for deskt	top.	Ap	plying (K3)	
CO3: wr	ite android application progr	ams.			Cre	eating (K6)	
CO4: ch	pose devices for Internet of t	hings.			Ар	olying (K3)	
CO5: de	velop basic application for en	Cre	Creating (K6)				
		Mapping of	f COs with PC)s			
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	
CO1			3	2			
CO2			3	2			
CO3	2		3	2		1	
CO4	CO4		3	1			
CO5	CO5 2 3 3					2	
1 – Slight,	2 – Moderate, 3 – Substar	itial, BT - Blo	oom's Taxonor	my			

	18ESE04 VERILOG HDL FOR EMBEDDED FPGA PROC	CESSC)R			
		L	Т	Р	Cree	dit
		3	0	0	3	
Preamble	To understand the fundamentals of Verilog HDL programming an	nd inter	rfacing	g techn	iques	for
	various Embededd FPGA processor.					
Prerequisites	Digital Electronics					
UNIT – I						9
Verilog Conce	pts: Introduction- Design flow- Design hierarchy- components of a	simul	ation-	Basic	conce	pts-
Data types - Sy	stem tasks and compiler Directives-Modules and ports-test bench.					
UNIT – II						9
Modeling with	Verilog HDL: Overview of digital design using Verilog-HDL-Ga	ate lev	el Mod	leling-	Dataf	low
Modeling-Beha	viour Modeling-Tasks and Functions-Switch level modeling.					
UNIT – III						9
Logic Synthesi	s with Verilog HDL: Verilog HDL Synthesis-Synthesis Design F	low-V	erifica	tion of	f the g	gate
level net list Mo	odeling for logic synthesis-Example of sequential circuit synthesis.					
UNIT – IV						9
Digital System	Design: Design of a FSM: Mealy and Moore outputs, FSM	repre	sentati	on, F	SM c	ode
development an	d Design examples. Design of FSMD: Single RT operation, ASMD	chart,	Code	develo	pmen	t of
an FSMD, Desi	gn examples.					
UNIT – V						9
Embedded FP	GA Processor and Interfacing: Overview of FPGA Device and E	DA so	ftware	- FPG	A, Xi	linx
Spartan3 device	es, Digilent S3 board, Development flow and Xilinx ISE Project	Naviga	ator. U	ART	interfa	ace,
Seven Segment	Interface, Keyboard/Mouse Interface.					
				1	Total	: 45
REFERENCE	S:					

1.	Samir Palnitkar, "Verilog HDL: A Guide to Digital Design and Synthesis", 2 nd Edition, Pearson
	Education, New Delhi, 9 th Impression, 2010.
2.	Pong P. Chu, "FPGA Prototyping By Verilog Examples Xilinx Spartan-3 Version", 1st Edition, A John

Wiley & Sons Publications, New Jersey, 2008.

COUH	COURSE OUTCOMES:							BT Mapped	
On con	On completion of the course, the students will be able to								
CO1:	reca	all the Verilog p	programming co	ncepts about dat	a types, modules	and test	Reme	embering (K1)	
	ben	ch.							
CO2:	dist	inguish the gate	e level, data flo	w, behavioral a	nd switch level	modeling	Unde	rstanding (K2)	
	tech	nniques of Verilo	og programmin	g					
CO3:	des	ign combinatior	nal and sequentia	d circuits using V	Verilog program	ming	Cr	eating (K6)	
CO4:	des	ign finite state m	nachine circuits u	using Verilog pro	ogramming		Creating (K6)		
CO5:	inte	erface peripheral	s with embedded	l Xilinx Spartan	3 FPGA process	or	Applying (K3)		
			Ma	apping of COs v	with POs				
COs/F	POs	PO1	PO2	PO3	PO4	PO5	PO5		
CO	1			3	2				
CO	2			3	2				
CO3 1		1		2	3				
CO4 1			2	3					
CO	5	2		3	2				
1 - Sli	ght,	2 – Moderate,	3 – Substantial,	BT - Bloom's	Faxonomy				

18ESE05 MEDICAL IMAGING SYSTEMS

 L
 T
 P
 Credit

 3
 0
 0
 3

		•	v	v		
Preamble	To gain more knowledge on Image processing techniques and a	lgorith	ms for	the ap	plicatio	n
	of various Bio-medical Image analysis, detection and diagnosis.					
Prerequisites	Basics of Image Processing					
UNIT – I						9

Fundamentals of Medical Imaging: Introduction, Image Formation, Interaction of Electromagnetic Radiation With Matter in Medical Imaging.

UNIT – II

Image Preprocessing: Image enhancement – point operation, Histogram modeling, spatial operations, Transform operations, Image restoration – Image degradation model, Inverse and Weiner filtering. Image Compression –Spatial and Transform methods.

UNIT – III

Medical Image Reconstruction: Mathematical preliminaries and basic reconstruction methods, Image reconstruction in CT scanners, MRI, fMRI, Ultra sound imaging, 3D Ultra sound imaging, Nuclear imaging-Medicine Imaging Modalities- CT, MRI, fMRI, Ultra sound imaging, 3D Ultra sound imaging, Nuclear imaging, SPECT, PET, Molecular Imaging.

UNIT – IV

Image Analysis and Classification: Image segmentation- pixel based, edge based, region based segmentation. Image representation and analysis, Feature extraction and representation, Statistical, Shape, Texture, feature and image classification – Statistical, Rule based, Neural Network approaches.

UNIT – V

Image Registration and Visualization: Rigid body visualization, Principal axis registration, Interactive principal axis registration, Feature based registration, Elastic deformation based registration, Medical image fusion, Image visualization –2D display methods, 3D display methods, virtual reality based interactive visualization.

REFERENCES:

1.	Atam P.Dhawan, "Medical Image Analysis", 2 nd Edition, IEEE Press, 2011.
2.	Rafael C. Gouzalez and Richard E. Woods, "Digital Image Processing", 3 rd Edition, Pearson Education,
	2016.
3.	Jerry L. Prince and Jonathan Links, "Medical Imaging Signals and Systems", Pearson Education Inc.,
	2008.

9

9

Total: 45

9

COU	COURSE OUTCOMES:							T Mapped
On con	On completion of the course, the students will be able to						(Hi	ghest Level)
CO1:	inte	erpret medical	image formation	n from Electron	nagnetic radiat	ion and	Ар	plying (K3)
	interpret the images for improving its quality using preprocessing techniques							
	and reduction of noise in an image							
CO2:	real	lize different mo	dality of images f	from sensor			Unde	rstanding (K2)
CO3:	app	ly segmentation	techniques to id	lentify the edges	and different re	gions of	Ар	plying (K3)
	inte	erest for a given i	mage					
CO4:	CO4: analyze the features of a given image Analyzing (K4)							
CO5:	CO5: apply registration process to perform image fusion and visualize them in 2D Applying (K3)						plying (K3)	
	and	3D of a given m	ultimodality ima	iges			-	
			Ma	pping of COs w	ith POs			
COs/F	POs	PO1	PO2	PO3	PO4	PO	5	PO6
CO	1			3	3			
CO	2			3	3			
CO	3	1		3	2			
CO4		2		3	2			
CO5 1 3		2						
1 - Sli	ight, i	2 – Moderate,	3 – Substantial,	BT - Bloom's Ta	axonomy			

		18ESE06 COMPUTER BASED INDUSTRIAL CONT	ROL					
		[L T P Credit					
			3	0	0	3		
Pream	nble	To know the need, levels different technologies in robotics an	d pro	ogramr	ning a	spect	s of	
		PLC for real time applications in industrial automation.						
Prerec	quisites	Microprocessors and Microcontrollers						
UNIT	<u>Γ-Ι</u> 9							
Intro	duction:	Automation in Production System, Principles and Strategies of Au	itomat	ion Ba	sic El	ement	s of	
an Au	itomated S	System, Advanced Automation Functions, Levels of Automations.						
UNIT	I – I						9	
Manu comp	onents.	Industries, Continuous Versus Discrete Control, sensors, actuato	ors and	l other	contr	ol sys		
UNIT	I – III						9	
Robo Effect	tics in in tors Sens	dustrial Automation: Robot anatomy and Related Attributes, I are in Robotics. Industrial Robot Applications. Robot programmi	Robot	contro	ol syst	ems, nalvsi	End s of	
Robot	ts.		<u>,</u>		<u>,</u>		5 01	
IINIT	- IV						9	
	in indust	rial Automation: Introduction to PLC Discrete Process Control	· logi	c contr	ol- se	auenc	-ino	
laddei	r logic di	agrams Programmable Logic Controllers: components of the	PLC-	PLC o	perati	ng cy	rcle-	
additi	onal capa	bilities of the PLC- Programming the PLC Personal computers us	ing so	ft logic	peruti	ing cy	ere	
uuuiti	onur oupu			10 10 810	•			
UNIT	$\Gamma - \mathbf{V}$						9	
Case	Studies a	and Safety Measures: Industrial Control Applications: Cement,	Therr	nal, W	ater T	reatm	ent,	
Steel	Plants, Pr	ocess Control plant, Textile and Dyeing industries, Industrial safet	y mea	sures.			,	
	,		~			Total	: 45	
REFI	ERENCE	S:						
1. (Groover N	A.P., "Automation, Production Systems and Computer Integrated N	Manuf	acturin	g", 5 ^t	^h Edit	ion,	

- Pearson Education, 2009.
- 2.
- Krishna Kant, "Computer Based Industrial Control", 2nd Edition, EEE-PHI, 2010. Webb W. John and Reis A. Ronald, "Programmable Logic Controllers", 5th Edition, Prentice Hall 3. Publications, 2006.

COU	RSE	BT Mapped							
On con	mple	tion of the course	e, the students wi	ll be able to			(Highest Level)		
CO1:	identify the principles, elements and levels of integrated industrial automation Understanding (K2)								
	system.								
CO2:	D2: realize industrial control systems and analyze of continuous and discrete Understanding (K2)								
	tech	nnologies with di	ifferent sensors a	nd actuators.					
CO3:	poi	nt out the anatom	ny, applications a	nd programming	methods of robo	otics for	Unde	rstanding (K2)	
	industrial automation								
CO4:	CO4: write programming for PLC based industrial application Applying (K3)								
CO5:	app	ly the industrial	automation conc	epts for real-time	applications and	d select	Ар	plying (K3)	
	the	industrial safety	measures						
			Ma	pping of COs w	ith POs				
COs/F	POs	PO1	PO2	PO3	PO4	PO	5	PO6	
CO	1	2		3	2				
CO	2			2	3				
CO	3			2	3				
CO	4			3	2				
CO	5	2		3 3		1		1	
1 - Sli	ght,	2 - Moderate,	3 – Substantial,	BT - Bloom's Ta	axonomy				

18VLE12 NATURE INSPIRED OPTIMIZATION TECHNIQUES

(Common to VLSI Design, Communication Systems, Embedded Systems,

Computer Science and Engineering & Mechatronics branches)

		3	0	0	3	
Preamble	To acquaint and familiarize with different types of optim	ization	tech	niques,	solving	
	optimization problems, implementing computational technique	es, abst	tractin	g matł	nematical	
	results and proofs etc.					
Prerequisites	Linear algebra and Calculus					
TINITE T						-

UNIT – I

Introduction to Algorithms: Newton's Method – Optimization - Search for Optimality - No-Free-Lunch Theorems - Nature-Inspired Metaheuristics - Brief History of Metaheuristics. **Analysis of Algorithms:** Introduction - Analysis of Optimization Algorithms - Nature-Inspired Algorithms - Parameter Tuning and Parameter Control.

UNIT – II

Simulated Annealing: Annealing and Boltzmann Distribution - Parameters - SA Algorithm - Unconstrained Optimization - Basic Convergence Properties - SA Behavior in Practice - Stochastic Tunneling. **Genetic Algorithms** : Introduction - Genetic Algorithms - Role of Genetic Operators - Choice of Parameters - GA Variants - Schema Theorem - Convergence Analysis

UNIT – III

Particle Swarm Optimization: Swarm Intelligence - PSO Algorithm - Accelerated PSO – Implementation - Convergence Analysis - Binary PSO – Problems. **Cat Swarm Optimization:** Natural Process of the Cat Swarm - Optimization Algorithm – Flowchart - Performance of the CSO Algorithm.

UNIT – IV

TLBO Algorithm: Introduction - Mapping a Classroom into the Teaching-Learning-Based optimization – Flowchart- Problems. **Cuckoo Search:** Cuckoo Life Style - Details of COA – flowchart - Cuckoos' Initial Residence Locations - Cuckoos' Egg Laying Approach - Cuckoos Immigration - Capabilities of COA. **Bat Algorithms:** Echolocation of Bats - Bat Algorithms – Implementation - Binary Bat Algorithms - Variants of the Bat Algorithm - Convergence Analysis.

UNIT – V

Other Algorithms: Ant Algorithms - Bee-Inspired Algorithms - Harmony Search - Hybrid Algorithms.

Total: 45

REFERENCES:

- 1. Xin-She Yang, "Nature-Inspired Optimization Algorithms", 1st Edition, Elsevier, 2014.
- 2. Omid Bozorg-Haddad, "Advanced Optimization by Nature-Inspired Algorithms" Springer Volume 720, 2018.
- 3. Srikanta Patnaik, Xin-She Yang, Kazumi Nakamatsu, "Nature-Inspired Computing and Optimization Theory and Applications", Springer Series, 2017.

9

9

9

9

T P Credit

L

COURSE OUTCOMES: BT Mapped								Г Mapped
On co	mpletion of	the course, the	students will be	e able to			(Hig	ghest Level)
CO1:	CO1:infer the basic concepts of optimization techniquesUnderstanding (K2)							
CO2:	2: identify the parameter which is to be optimized for an application Analyzing (K4)							
CO3:	analyze ar	nd develop math	ematical mode	l of different op	timization algo	rithms	Ana	alyzing (K4)
CO4:	select suit	able optimizatio	on algorithm for	r a real time app	lication		Ap	plying (K3)
CO5:	5: recommend solutions, analyses, and limitations of models Analyzing (K4)							
	Mapping of COs with POs							
CC	Os/POs	PO1	PO2	PO3	PO4	PO5		PO6
(CO1	3	3	2	2	2	2	3
(CO2			2	3	2	2	
CO3				2	3		2	
CO4				3	3	ĺ	3	
CO5				2	3		2	
1 - Sli	ight, 2 – Mo	oderate, 3 – Su	ıbstantial, BT -	- Bloom's Taxo	nomy			

	18 (Commo	CIE15 VIRTUAL INSTRUMENTATION FOR INDUSTRIAL A on to Control and Instrumentation Engineering, Embedded Systems, A Power Electronics Drives branches)	Applie	(CATI) ed Elect	ONS tronics	s &		
			L	Т	Р	Credit		
			3	0	0	3		
Prea	mble	To impart knowledge about advanced tools in virtual instrumentation applications	on to d	levelop	new i	ndustrial		
Prer	equisites	Virtual Instrumentation						
UNI	(T – I 9							
Gra Whi	phical Sys le Loop, S	tem Design Programming Concepts: G-Programming- debugging hift registers-Structures: Case Structure, Sequence Structure, Event	techni Struc	iques-L ture, T	loops: imed	For loop, Structure-		
UNI	T - II					9		
Data	a Acquisit	ion and Interfacing: Data Acquisition in LabVIEW-Hardware ins	stallati	on and	l conf	iguration-		
DAG	Compone	nts-DAQ signal Accessory-DAQ Assistant-DAQ Hardware-DAQ So	oftware	е.		<i></i>		
UNI	T – III					9		
GSI) Program	ming Toolkits: Signal Processing and Analysis-Control System De	esign a	and Sin	nulatio	on-Digital		
Filte	er Design-S	pectral Measurements-Report generation-PID Control-Biomedical St	tartup	kit.		-		
UNI	T – IV					9		
VI	Applicatio	ns Part I: Material Handling System -Fiber-Optic Component I	Inspec	tion U	sing 1	Integrated		
Visi	on and Mo	tion Components-Internet-Ready Power Network Analyzer for Powe	r Qua	lity Me	asurei	ments and		
Mor	itoring.							
UNI	T - V					9		
VI A		ns Part II: Developing Remote Front Panel LabVIEW Application	s- Usi	ng the	Time	d Loop to		
Writ	e Multirat	e Applications in LabVIEW - Client–Server Applications in LabV	IEW-	Neura	l Net	works for		
Mea	surement a	nd instrumentation in virtual Environments.				Total: 15		
DEI	FDENCE	۹.				1 Utal. 43		
1 .	Jovitha Jo Delhi, 20	erome, "Virtual Instrumentation using LabVIEW", 3 rd Edition, PH 12.	II Lea	arning	Pvt. I	Ltd., New		
2.	Sumathi Business	S., Surekha P., "LabVIEW based Advanced Instrumentation Sys Media, 2007.	tems"	, Sprin	iger S	cience &		
3.	Sanjay G	upta, Joseph, John, "Virtual Instrumentation using LabVIEW", 2 nd	Editic	on, Tata	a McC	Graw Hill,		

COURSE OUTCOMES:							BT Mapped	
On con	On completion of the course, the students will be able to						(Highest Level)	
CO1:	CO1: apply structured programming concepts in developing VI programs and employ Applying (K3) various debugging techniques							
CO2:	inte	erface hardware o	levices with softw	ware using DAQ	system		Applying (K3)	
CO3:	CO3: design, implement and analyze an application using different tools Applying (K3)							
CO4:	CO4: apply knowledge on various tools in practical works Applying (K3)							
CO5:	crea	ate virtual instrui	ments for real tim	ne applications			Applying (K3)	
			Ma	pping of COs w	ith POs			
COs/P	POs	PO1	PO2	PO3	PO4	PO5	PO6	
CO	1	3		3	3		2	
CO	2	3		3	3		2	
CO	3	3		3	3		2	
CO	4	3		3	3		2	
CO5 3 3 3				2				
1 - Sli	ght,	2 – Moderate,	3 – Substantial,	BT - Bloom's Ta	axonomy			

18MSE18 DESIGN AND ANALYSIS OF ALGORITHMS

(Common to Embedded Systems & Applied Electronics branches)

 L
 T
 P
 Credit

 3
 0
 0
 3

Preamble: To introduce the fundamental concepts of designing strategies, complexity analysis of algorithms, followed by problems on graph theory and sorting methods and also includes the basic concepts on complexity theory.

Prerequisites: C and Data Structures

UNIT – I

Introduction: The Role of Algorithms in Computing – Growth of Functions – Analysis of Recursive and Non-recursive Functions – Lists – Heap Sort – Quick Sort – Sorting in Linear Time.

UNIT – II

Advanced Data Structures: Binary Search Trees – Red-Black Trees – Augmenting Data Structures – Trees – Fibonacci Heaps

UNIT – III

Algorithm Design Techniques: Dynamic Programming – Rod cutting – Matrix-chain multiplication – Elements of dynamic programming – Longest common subsequence – Optimal binary search trees. Greedy Algorithms: An activity-selection problem – Elements of the greedy strategy – Huffman codes – Matroids and greedy methods – A task-scheduling problem as a matroid Parallel Algorithms: Parallelism Introduction – The Pram Model – Simple parallel operations – Parallel searching, sorting, numerical algorithms – Parallel Graph algorithms

UNIT – IV

Graph Algorithms: Elementary Graph Algorithms – Minimum Spanning Trees – Single Source Shortest Paths – All-Pairs Shortest Paths – Maximum Flow.

$\mathbf{UNIT} - \mathbf{V}$

Non-Deterministic Algorithms: NP-Completeness: Polynomial Time verification – NP Completeness and Reducibility – NP Completeness Proofs – NP Complete Problems

REFERENCES:

- 1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, "Introduction to Algorithms", 3rd Edition, MIT Press, USA, 2009.
- 2. Jeffrey J. McConnell Canisius College, "Analysis of Algorithms: An Active Learning Approach", Jones and Bartlett Publishers, 2001.
- 3. Aho Alfred V., Hopcroft John E. and Ulllman Jeffrey D., "Data Structures and Algorithms", Pearson Education, New Delhi, 2002.

9

9

9

9

9

Total: 45

COURSE OUTCOMES:							BT Mapped	
On completion of the course, the students will be able to							(Highest Level)	
CO1:	design	and implement	elementary data	structures			Creating (K6)	
CO2:	design and implement advanced data structures Creating (K6)							
CO3:	choose	e appropriate alg	orithm design te	echnique and sol	ve problems		Applying (K3)	
CO4:	implei	nent graph algor	rithms				Applying (K3)	
CO5:	analyz	nalyze the time and space complexity of algorithms Ana						
	Mapping of COs with POs							
COs/	'POs	PO1	PO2	PO3	PO4	PO5	PO6	
CC	D1			2	3			
CC	02			2	3			
CC)3	2		3	2			
CO4 1		1		3	2			
CO5 2			2	3				
1 – Slig	1 – Slight, 2 – Moderate, 3 – Substantial BT – Bloom's Taxonomy							

	18ESE07 DATA ANALYSIS FOR ENGINEERIN	G							
	L T P Credi								
3 0 0 3									
Preamble	To understand the analytics of big data process and visualization	used in	n text a	and tin	ne series				
	datasets.								
Prerequisites	Jumber System								
UNIT – I					9				
Problem Staten Quantitative vs	nent - Data Preparation - Data Exploration - Predictive Modeli Qualitative data analysis - Big Data: Sensors and Camera-Social I	ng -Vi Netwoi	sualiza k Ana	ation o lysis.	of Result-				
UNIT – II					9				
Data Preproce and Vectorized Data Wrangling	ssing and Formatting: Data Source - Data Scrubbing - Data Form Computation- Data Loading, Storage, and File Formats - Data g: Join, Combine and Reshape.	mat - N Clean	NumPy ing an	v Basic d Prej	xs: Arrays paration -				
IINIT III					0				
Data Load, St	ore and Visualizations: Retrieving, Processing, and Storing Dat	a, Dat	a Visu	alizati	on: Basic				

Data Load, Store and Visualizations: Retrieving, Processing, and Storing Data, Data Visualization: Basic matplotlib plots- Logarithmic plots- Scatter plots- Legends and annotations- Three-dimensional plots-Autocorrelation plots- Data-Driven Documents (D3).

UNIT – IV

Text Data Analysis: Text Classification: Learning and classification- Bayesian classification- E-mail subject line tester- algorithm- Classifier accuracy.

UNIT – V

Time series data analysis and working with SVM: Time series dataset: Components of a time series-Smoothing the time series, Multivariate dataset- Dimensionality reduction- support vector machine.

Total: 45

9

REF	TERENCES:
1.	Hector Cuesta, "Practical Data Analysis -Transform-model-and-visualize-your-data-through-hands-on-
	projects-developed-in-open-source-tools", 2 nd Edition, Packt Publisher, 2016.
2.	Wes McKinney, "Python for Data Analysis: Data wrangling with Pandas, Numpy and I Python", 2 nd
	Edition,O-Reilly,2017.
3.	Ivan Idris, "Python Data Analysis", Packt Publishing, 2014.

COUI	RSE OU	TCOMES:					B	T Mapped
On co	mpletion	of the course, th	ne students will l	be able to			(Hi	ghest Level)
CO1:	realize	the data analysis	s process				Unde	rstanding (K2)
CO2:	manipu	ilate preprocessi	ing and formattin	ng the given dat	a using python [libraries	Ap	plying (K3)
CO3:	experir	nent the load, sto	ore and visualiza	tion of data usir	ng python librar	ies	Ap	plying (K3)
CO4:	infer te	xt and time serie	es data using pyt	hon libraries			Unde	rstanding (K2)
CO5: summarize the concept of dimensional reduction and support vector analys						alysis	Unde	rstanding (K2)
			Марр	oing of COs wit	h POs			
COs	s/POs	PO1	PO2	PO3	PO4	PC	95	PO6
C	01			3	2			
C	O2	1		3	2			
C	03			3	2			
C	O4			3	2			
C	05	1	2	3	2			
1 - Sli	ight, 2 –	Moderate, 3 –	Substantial, B	T – Bloom's Ta	xonomy			

	18ESE08 RTOS FOR EMBEDDED SYSTEMS				
		L	Τ	Р	Credit
		2	0	2	3
Preamble	To provide a clear description of the concepts that underlie op	perating	g syste	ms su	ch as the
	ability to complete performance measurements at run-time,	to dire	ct the	signal	or send
	messages to tasks and to achieve pending on multiple kernel obj	ects.			
Prerequisites	Microprocessors				
UNIT – I		· · ·	~		6
Introduction t	o Operating Systems: Function of OS –Computer system orga	nizatio	n - Co	mpute	r System
Architecture - C	Derating system Operations – Process management – Memory N	Vlanage	ment –	· Prote	ction and
Security - Syst	En Structures: Operating system Services – User and Operating	ig syste	ing ave	tom St	- System
cans – Types o	System Cans – Operating systems design and implementation –	Operat	ing sys	iem St	inuclure.
UNIT – U					6
Real Time Sve	tems: Overview-System Characteristics-Features of Real time ke	rnels-I	mplem	enting	real time
operating syste	ms - RTOS Concepts: Foreground/Background systems – Re	al tim	e kern	els –	RTOS –
Scheduling: Pro	emptive scheduling – Scheduling Points - Round robin scheduling	g - sch	eduling	g Inter	nals
		<u>0</u>			
UNIT – III					6
μC/OS-III: In	troduction - µC/OS-III Features - Goals of µC/OS-III - Dire	ectories	and I	Files -	- Critical
Sections- Tasks	-Task States – Task Scheduling – Idle Task – Statistics Task –	Interru	pts Uno	der µC	/OS-III –
Clock Tick - µ	C/OS-III Initialization. Task Management: Assigning Task Prior	ities-D	etermi	ning th	ne size of
stack-Detecting	Task stack overflows-Task management services-Task Management	ment Ir	nternals	-Intern	nal Tasks
- Time Manage	ment.				
UNIT – IV					6
Resource Ma	nagement: Disable/Enable Interrupts - Lock/Unlock- Semap	hores-	Mutex	sema	aphore –
Deadlock – Sy	nchronization: Semaphore – Task Semaphore – Event Flags -S	ynchro	nızing	multi	pie tasks.
Message Passi	ng: Messages – Messages Queues – Task Message Queue –	bilatera	al rend	ezvou	s – Flow
control – using	message queues – clients and servers – message queue Internals.				
					£
Momory Mon	agament Creating a memory Partition setting a Mamory Plash	from	nartitio	n_ Do	0
Memory Rlock	to a partition-using memory partitions. Porting uC/OS_{UV} uC	/CPI 1_1	Partition = Part	$\mathbb{H} = \mathbb{K} e$	rt- Roard
support Packag	μ = Case study of coding for an Automatic Chocolate Vending Ma	ichine i	15ino M		S RTOS
List of Exercis	es / Exneriments:		131112 1	1000	S KTOD.
1. Simulat	ion of Task Creation, Dynamic Priority, Time Management				
2. Simulat	ion of Binary Semaphore and Counting Semaphore				
3. Simulat	ion of Mutex and Message Oueue				
4. Simulat	ion of Memory Partition Creation				
5. Simulat	ion of Memory Block Allocation				
	Lecture	: 30. P	ractica	l: 30. '	Total: 60
REFERENCE	S:	,		,	
1. Silberscha	tz A., Galvin P.B., Gagne G., "Operating System Concepts", 8 th I	Edition	, Wiley	, 2009).
2. Jean J. La	brosse, "μC/OS - III The Real Time Kernel User's 3.6.01 Manual	", Micı	rium Pr	ess, 20)14.
3. Raj Kama	l, "Embedded Systems: Architecture, Programming and Design",	2 nd Ed	ition, T	'ata M	cGraw
Hill Educ	ation, 2008.		*		

COUI	RSE OU	TCOMES:				ВТ	' Mapped
On co	mpletion	of the course, t	he students will	be able to		(Hig	hest Level)
CO1:	define	the characteristi	cs of real time sy	ystems		Reme	mbering (K1)
CO2:	realize	the concepts of	scheduling empl	loyed in RTOS		App	olying (K3)
CO3:	apply provide	task creation, p ed by μC/OS –	riority assignme III	ent, and time m	anagement services	s App	olying (K3)
CO4:	apply s	emaphore, mute	ex, and message	queue services in	n a task	App	olying (K3)
CO5:	demon and por	strate memory j rting µC/OS - II	partitions and al I to a different a	locations technion technion technion technic t	ques used in RTOS	App	olying (K3)
CO6:	make concep	use task creat	ion, priority, t different applica	ime manageme tions	nt and semaphore	e App Manij	lying (K3), pulation (S2)
CO7:	implen	nent message qu	eue for inter pro	cess communica	tion	App Manij	lying (K3), pulation (S2)
CO8:	carryou	at memory bloc	k allocation for a	an application		App Manij	lying (K3), pulation (S2)
	•		Марр	oing of COs wit	h POs		
COs	s/POs	PO1	PO2	PO3	PO4	PO5	PO6
C	01			3	2		
C	02			3	2		
C	03	2		3	2		
C	04	2		3	2		
C	05	2		3	2		2
C	06	1		3	2		
C	07	<u> </u>		3	2		
C	08	<u> </u>	<u> </u>	3	2		
1 – Sli	ght, 2 –	Moderate, 3 –	Substantial, B	ST – Bloom's Ta	xonomy		

Т Р L 3 0 0 Preamble To know the architecture of embedded processor like ARM processor and to study different operating systems Prerequisites Microprocessors UNIT – I Introduction to System on Chip Design: Processor architecture and organization ,Abstraction in hardware design, MU0 - a simple processor, Instruction set design, Processor design trade-offs, The Reduced Instruction Set Computer, Design for low power consumption, ARM architecture.

UNIT – II

ARM Organization and Implementation: 3-stage pipeline ARM organization, 5-stage pipeline ARM organization, ARM instruction execution and implementation, coprocessor interface, The ARM instruction set and programming.

UNIT – III

ARM Processor Cores and Memory Hierarchy: ARM7TDMI, ARM8, and ARM9TDMI ARM10TDMI -Memory size and speed, On-chip memory, Caches, Cache design - an example, Memory management.

UNIT – IV

Architectural Support for Operating Systems: An introduction to operating systems, The ARM system control coprocessor, CP15 protection unit registers, ARM protection unit, CP15 MMU registers, ARM MMU architecture, Synchronization, Context switching, Input/output.

$\mathbf{UNIT} - \mathbf{V}$

Embedded ARM Applications: The VLSI Ruby II Advanced Communication Processor, The VLSI ISDN Subscriber Processor, The Ericsson-VLSI Bluetooth Baseband Controller, The ARM7500 and ARM7500FE, case study on The DRACO telecommunications controller.

Total: 45

RE	FERENCES:
1.	Steve Furber, "ARM System-on-Chip Architecture", 2 nd Edition, Pearson, 2015.
2.	Andrew Sloss, Dominic Symes, Chris Wright, "ARM System Developer's Guide: Designing and
	Optimizing System Software (The Morgan Kaufmann Series in Computer Architecture and Design)", 1 st
	Edition, Elsevier Publications, 2011.
3.	Yifeng Zhu, "Embedded Systems with ARM Cortex-M Microcontrollers in Assembly Language and C",
	3 rd Edition, E-Man Press LLC, 2017.
-	

9

9

9

9

9

18ESE09 SYSTEM ON CHIP

Credit

COU	RSE OU	TCOMES:					B	T Mapped		
On con	mpletion	of the course, the	ne students will b	be able to			(Hi	ghest Level)		
CO1:	identify	the basic des	ign of system of	on chip with A	ARM architectu	ire as a	Unde	rstanding (K2)		
	referen	ce								
CO2:	know 1	the 3-line and	5-line pipelinin	g concept of A	ARM organisat	ion and	Unde	rstanding (K2)		
	prograr	nming with inst	ruction set							
CO3:	realize	the memory hie	erarchy and desig	gn of different	ARM7, ARM8,	, ARM9	Ap	Applying (K3)		
	and AR	M10 processor	cores	-			-			
CO4:	04: realize the concept of ARM operating systems, ARM protection				unit and	Ap	plying (K3)			
	MMU.		1	•	Ĩ					
CO5:	apply t	he system on ch	ip concept for d	ifferent embedd	led applications	such as	Ap	plying (K3)		
	ISDN,	Bluetooth and D	RACO telecom	nunication cont	roller		-			
	-		Марр	ing of COs wit	h POs					
COs	/POs	PO1	PO2	PO3	PO4	PO)5	PO6		
C	01			3	2					
C	O2			3	2					
C	03	2		3	2					
C	04	2		3	2					
C	05	3		3	2			2		
1 - Sli	ght, 2 –	Moderate, 3 –	Substantial, B'	T – Bloom's Ta	xonomy					

18ESE10 DESIGN OF EMBEDDED CONTROL SYSTEM Т Р Credit L 3 0 0 3 Preamble To introduce the basic concepts of control systems and its embedded implementation. Prerequisites Microcontroller UNIT – I

Control System Basics: Z-transforms - performance requirements - block diagrams - analysis and design sampling theory – difference equations.

UNIT – II

Control System Implementation: Discretization method – Fixed point mathematics – Nonlinear controller elements – Gain scheduling – Controller implementation and testing in Embedded Systems - a case study of robotic control system.

UNIT – III

Control System Testing: Software implications - Controller implementation and testing in embedded systems - Measuring frequency response.

UNIT – IV

Input Devices: Keyboard basics - Keyboard scanning algorithm - Character LCD modules - LCD module display Configuration - Time-of-day clock - Timer manager - Interrupts - Interrupt service routines -Interrupt-driven pulse width modulation. Triangle waves analog vs. digital values - Auto port detect -Capturing analog information in the timer interrupt service routine - Automatic, multiple channel analog to digital data acquisition.

UNIT - V

Output Devices and Sensors: H Bridge – relay drives - DC/ Stepper Motor control – optical devices. Linear and angular displacement sensors: resistance sensor - induction displacement sensor - digital optical displacement sensor - pneumatic sensors. Speed and flow rate sensors: electromagnetic sensors - fluid flow sensor - thermal flow sensor. Force sensors: piezoelectric sensors - strain gauge sensor - magnetic flux sensor - inductive pressure sensor - capacitive pressure sensor. Temperature sensors: electrical - thermal expansion – optical Case Study- Examples for sensor, actuator, control circuits with applications.

Total: 45

9

9

9

9

REF	FERENCES:
1.	Jim Ledin, "Embedded control systems in C/C++", CMP Books, 2004.
2.	TimWiscott, "Applied control for embedded systems", Elsevier Publications, 2006.
3.	Jean J. Labrosse, "Embedded Systems Building Blocks: Completeand Ready-To-Use Modules in C",
	The Publisher, Paul Temme, 2011.
4.	Lewin A.R.W. Edwards, "Open source robotics and process control cookbook", Elsevier Publications,
	2005.

COUI	RSE OU	TCOMES:					B	T Mapped
On co	mpletion	of the course, the	he students will l	be able to			(Hi	ghest Level)
CO1:	identify	y the basics of co	ontrol systems				Unde	rstanding (K2)
CO2:	implen	nent control theo	ory in embedded	systems			Ap	plying (K3)
CO3:	apprais	e the concept of	control system i	in testing			Unde	rstanding (K2)
CO4:	apply t	he concept in the	e applications us	ing control syste	ems		Ap	plying (K3)
CO5:	infer th	e input and outp	out devices used	in control syster	ns		Unde	rstanding (K2)
			Марр	oing of COs with	h POs			
COs	s/POs	PO1	PO2	PO3	PO4	PC)5	PO6
C	01			2	2			
C	02	1		3	2			
C	03			1	2			
C	O4	1		3	2			
C	05			2	2			
1 - Sli	ight, 2 –	Moderate, 3 –	Substantial, B	T – Bloom's Ta	xonomy			

	18ESE11 MULTICORE PROCESSOR AND COMPUT	FING			
	[L	Т	Р	Credit
		3	0	0	3
Preamble	To know the basic knowledge about multiprocessor, multicomp	puter s	systems	and	advanced
	processor technology in parallel processors				
Prerequisites	Computer Architecture				
UNIT – I					9
Multi-Core	Processors: Single core to Multi-core architectures – SIMD	and	MIN	1D s	ystems –
Interconnecti	on networks - Symmetric and Distributed Shared Memory Archite	ectures	- Cac	he co	herence -
Performance	ssues – Parallel program design.				
	1				
UNIT – II					9
Parallel Prog	ram Challenges: Performance – Scalability – Synchronization and	l data	sharin	ıg – D	ata races
- Synchroniz	ation primitives (mutexes, locks, semaphores, barriers) - de	adlock	and and	l live	e locks –
communicati	on between threads (condition variables, signals, message queues and	d pipe	s).		
UNIT – III					9
UNIT – III Shared Men	ory Programming with OpenMP: OpenMP Execution Model –	Memo	ory Mo	del –	9 OpenMP
UNIT – III Shared Men Directives – Y	ory Programming with OpenMP: OpenMP Execution Model – Vork - sharing Constructs - Library functions – Handling Data an	Memo nd Fu	ory Mo inction	del – al Pa	9 OpenMP arallelism
UNIT – III Shared Men Directives – V – Handling	ory Programming with OpenMP: OpenMP Execution Model – Vork - sharing Constructs - Library functions – Handling Data an Loops - Performance Considerations.	Memo nd Fu	ory Mo inction	del – al Pa	9 OpenMP arallelism
UNIT – III Shared Men Directives – V – Handling	ory Programming with OpenMP: OpenMP Execution Model – Vork - sharing Constructs - Library functions – Handling Data an Loops - Performance Considerations.	Memo nd Fu	ory Mo inction	del – al Pa	9 OpenMP arallelism
UNIT – III Shared Men Directives – V – Handling D UNIT – IV	ory Programming with OpenMP: OpenMP Execution Model – Vork - sharing Constructs - Library functions – Handling Data an Loops - Performance Considerations.	Memo nd Fu	ory Mo inction	del – al Pa	9 OpenMP arallelism 9
UNIT – III Shared Men Directives – V – Handling D UNIT – IV Distributed D	ory Programming with OpenMP: OpenMP Execution Model – Vork - sharing Constructs - Library functions – Handling Data an Loops - Performance Considerations. Memory Programming With MPI: MPI program execution – MPI	Memo nd Fu	ory Mo inction	del – al Pa	9 OpenMP arallelism 9 ies – MPI
UNIT – III Shared Men Directives – V – Handling D UNIT – IV Distributed D send and re	ory Programming with OpenMP: OpenMP Execution Model – Vork - sharing Constructs - Library functions – Handling Data an Loops - Performance Considerations. Memory Programming With MPI: MPI program execution – MPI ceive – Point-to-point and Collective communication – MPI derive	Memo nd Fu constr ed data	ory Mo inction ructs – a types	del – al Pa librari – Per	9 OpenMP arallelism 9 ies – MPI formance
UNIT – III Shared Men Directives – V – Handling D UNIT – IV Distributed D send and re evaluation.	ory Programming with OpenMP: OpenMP Execution Model – Vork - sharing Constructs - Library functions – Handling Data an Loops - Performance Considerations. Memory Programming With MPI: MPI program execution – MPI ceive – Point-to-point and Collective communication – MPI derive	Memo nd Fu constr ed data	ory Mo inction ructs – a types	del – al Pa librari – Per	9 OpenMP arallelism 9 ies – MPI formance
UNIT – III Shared Men Directives – V – Handling D UNIT – IV Distributed D send and re evaluation.	ory Programming with OpenMP: OpenMP Execution Model – Vork - sharing Constructs - Library functions – Handling Data an Loops - Performance Considerations. Memory Programming With MPI: MPI program execution – MPI ceive – Point-to-point and Collective communication – MPI derive	Memo nd Fu constr ed data	ory Mo inction ructs – a types	del – al Pa librari – Per	9 OpenMP arallelism 9 ies – MPI formance
UNIT – III Shared Men Directives – V – Handling D UNIT – IV Distributed D send and re evaluation. UNIT – V	ory Programming with OpenMP: OpenMP Execution Model – Vork - sharing Constructs - Library functions – Handling Data an Loops - Performance Considerations. Memory Programming With MPI: MPI program execution – MPI reeive – Point-to-point and Collective communication – MPI derive	Memo nd Fu constr ed data	ory Mo inction ructs – a types	del – al P <i>t</i> librari – Per	9 OpenMP arallelism 9 ies – MPI formance 9
UNIT – III Shared Men Directives – V – Handling D UNIT – IV Distributed D send and re evaluation. UNIT – V Parallel Pro	ory Programming with OpenMP: OpenMP Execution Model – Vork - sharing Constructs - Library functions – Handling Data an Loops - Performance Considerations. Memory Programming With MPI: MPI program execution – MPI ceive – Point-to-point and Collective communication – MPI derive gram Development: Case studies – n - Body solvers – Tree S	Memo nd Fu constr ed data earch	ory Mo inction ructs – a types – Ope	del – al Pa librari – Per nMP	9 OpenMP arallelism 9 ies – MPI formance 9 and MPI
UNIT – III Shared Men Directives – V – Handling D UNIT – IV Distributed D send and re evaluation. UNIT – V Parallel Pro implementation	ory Programming with OpenMP: OpenMP Execution Model – Vork - sharing Constructs - Library functions – Handling Data an Loops - Performance Considerations. Memory Programming With MPI: MPI program execution – MPI ceive – Point-to-point and Collective communication – MPI derive gram Development: Case studies – n - Body solvers – Tree Sons and comparison.	Memo nd Fu constr ed data earch	ructs – a types – Ope	del – al Pa librari – Per nMP	9 OpenMP arallelism 9 ies – MPI formance 9 and MPI
UNIT – III Shared Men Directives – Y – Handling J UNIT – IV Distributed J send and re evaluation. UNIT – V Parallel Pro implementation	ory Programming with OpenMP: OpenMP Execution Model – Vork - sharing Constructs - Library functions – Handling Data an Loops - Performance Considerations. Memory Programming With MPI: MPI program execution – MPI ceive – Point-to-point and Collective communication – MPI derive gram Development: Case studies – n - Body solvers – Tree Sons and comparison.	Memond Fu	ructs – a types	idel – al Pa librari – Per nMP	9 OpenMP arallelism 9 ies – MPI formance 9 and MPI Total: 45
UNIT – III Shared Men Directives – V – Handling D UNIT – IV Distributed D send and re evaluation. UNIT – V Parallel Pro implementation	ory Programming with OpenMP: OpenMP Execution Model – Vork - sharing Constructs - Library functions – Handling Data an Loops - Performance Considerations. Memory Programming With MPI: MPI program execution – MPI ceive – Point-to-point and Collective communication – MPI derive gram Development: Case studies – n - Body solvers – Tree Sons and comparison. ES:	Memo nd Fu constr ed data earch	ory Mo inction ructs – a types – Ope	del – al Pa librari – Per nMP	9 OpenMP arallelism 9 ies – MPI formance 9 and MPI Total: 45

- 2. Michael J. Quinn, "Parallel programming in C with MPI and OpenMP", 1st Edition, Tata McGraw Hill, 2003.
- 3. Shameem Akhter and Jason Roberts, "Multi-core Programming", Intel Press, 2006.

COUR	RSE OU	TCOMES:					B	Г Mapped
On con	mpletion	of the course,	the students will	be able to			(Hi	ghest Level)
CO1:	interpre	et the operation	s of multiproces	sor and multicom	puter systems		Under	rstanding (K2)
CO2:	describ	e the advand	ced processor	technology, pip	belining and	scalable	Unde	rstanding (K2)
CO3:	examin	e shared memo	ory programming	gusing OpenMP			Ana	alyzing (K4)
CO4:	examin	e distributed m	emory programm	ning with MPI			Ana	alyzing (K4)
CO5:	implen	nent parallel pro	ogramming Oper	nMP and MPI			Ap	plying (K3)
			Map	ping of COs witl	h POs			
COs	/POs	PO1	PO2	PO3	PO4	PO	95	PO6
C	01			3	3			
C	02			3	2			
C	03			3	2			
C	04			2	3			
C	05			3	3			
1 - Sli	ght, 2 –	Moderate, 3 -	– Substantial, H	BT – Bloom's Ta	xonomy			

	18ESE12 PROGRAMMING INTERNET OF THIN	GS			
		L	Т	Р	Credit
		3	0	0	3
Preamble	To learn the fundamentals of this emerging technology and to	design	of sm	art ob	jects that
	provides collaboration and ubiquitous services.	•			-
Prerequisites	Microcontroller				
UNIT – I					9
IoT Architectu	are: IoT Architecture-State of the Art – Introduction, IoT Refere	ence an	chitect	ure, F	unctional
View, Informa	tion View. Real-World Design Constraints- Introduction, Techn	ical D	esign	constra	aints-IOT
Communication	n Models-Communication API's-IOT Enabling Technologies.				
UNIT – II					9
IoT Levels, M2	2M and System Management: IoT Levels1 to 6—M2M-Differen	ice bet	ween I	oT an	d M2M –
SDN and NFV-	Need of IoT system Management- with NETCONF and YANG, I	oT De	sign M	ethodo	ology.
UNIT – III					9
Interoperabili	ty in IoT, Introduction to Programming Python: Data types	– Data	a struc	tures -	- Control
flow - Functio	ons – Modules – Packages – File Handling – Date and timeop	peration	n – Cl	asses	– Python
packages of Io	T. IoT Physical Design: Basic building blocks – Raspberry Pi	– Lini	ux on	Raspb	erry Pi –
Interfaces(LED	and Switch) – Programming on Raspberry Pi with Python				
UNIT – IV					9
Data Analytics	s and Web Framework: Data Analytics for IOT: Apache Hadoo	p-Map	Reduc	e Mo	dels-Case
Study : Batch	Data Analysis and Real Time Data Analysis. Web Application I	Framev	vork: 1	Django	o,-Django
Architecture-st	arting Development with Django.				
UNIT – V					9
Preparing Io	F Projects: Raspberry Pi for Project Development: Raspber	ry Pi	platfo	rm –	GPIO –
Establishment	and setting of Raspberry Pi software – LAMP Installation– Ho	ome te	mperat	ure m	onitoring
system – Webc	am and Raspberry Pi camera project.				

REFERENCES:

Jan Holler, Vtasies Tsiatsis, "From machine to machine Internet of Things: Introductin to a new age of 1. Intelligence", 1st Edition, Elsevier Publication, 2014. Arshdeep Bahga, Vijay Madisetti, "Internet of Things: A Hands-On Approach", 1st Edition, 2014. 2. 3.

Total: 45

Donald Norris, "The Internet of Things: Do-It-Yourself at Home Projects for Arduino, Raspberry Pi and BeagleBone Black", 1st Edition, McGraw Hill, 2015.

COU	RSE OU	TCOMES:					B	Г Mapped
On co	mpletion	of the course, th	ne students will l	be able to			(Hig	ghest Level)
CO1:	compa	re the IoT phy	ysical and log	ical architectur	e and its e	enabling	Under	standing (K2)
	technol	logies						
CO2:	interpro	et different IoT	levels and netwo	orking methodol	ogies		Under	standing (K2)
CO3:	implen	nent IoT program	nming concepts	using python an	nd its open sour	ce tools	Ap	plying (K3)
CO4:	analyze	e the collected da	ata based on data	a analytics tool -	Hadoop, Djan	go	Ana	lyzing (K4)
CO5:	design	and integrate p	rojects using R	Raspberry Pi wi	th temperature	sensor,	Cre	eating (K6)
	webcar	n						
			Марр	oing of COs wit	h POs			
COs	s/POs	PO1	PO2	PO3	PO4	PC)5	PO6
C	01			2	3			
C	O2			2	3			
C	03	2		3	2			
C	04	2		2	3			
C	05	2	2	3	3	3	3	2
1 - Sli	ight, 2 –	Moderate, 3 –	Substantial, B	T – Bloom's Ta	xonomy			

	Г	т	Т	р	Cre	J:4
	-	<u>L</u>	1	P 2		alt
Ducomahla	To develop a basis traceulados in montino with single based some	<u>_</u>	U	<u>_</u>	3	
Preamble	To develop a basic knowledge in working with single board complexity like lot.	puter I	or mur	tirunci	tional	
Dranaquisitas	Digital Electronics, Microprocessor and Microcontroller					
INIT I	Digital Electronics, Microprocessor and Microcontroller					6
UNII – I Introduction (be SPC and Linux Degiese Types of single board computer. Linu	w file	avetar	tor	t adita	0
accessing files computer - terr	- power supply unit - preparation of boot SD card - configurat ninal access.	ion -	networ	king	with H	Iost
UNIT – II						6
Python Prog	ramming and Sensor Interfacing: Pin diagram - GPIO access -	- LED	& Sw	vitch -	Time	rs -
external circuit	interfacing - UART - sensor interfacing.	222				
UNIT – III						6
Peripheral Co	ontrol: Interfacing touch screen - ADC, DAC and, Motor - DC	Motor	Contr	rol usi	ing PV	VM
Relay and Step	per Motor interfacing.					
	1					
UNIT – IV						
						6
Internet of Th	ings: Open API's for Internet of Things - collect and store sensor	data -	analyz	ze and	visua	6 lize
Internet of Th data - control p	lings: Open API's for Internet of Things - collect and store sensor beripheral device.	data -	analyz	ze and	visua	6 lize
Internet of Th data - control p	ings: Open API's for Internet of Things - collect and store sensor peripheral device.	data -	analyz	ze and	visua	6 lize
Internet of Th data - control p UNIT – V Image Process	sing in SBC: Introduction to OPENCY - reading and writing important of the sense	data -	analyz	ze and	visua	6 lize 6
Internet of Th data - control p UNIT – V Image Process conversion - m	hings: Open API's for Internet of Things - collect and store sensor beripheral device. sing in SBC: Introduction to OPENCV - reading and writing image erge - video processing - real-time image processing in SBC	data - nges -	analyz	ze and	visua e - dra	6 lize 6 w -
Internet of Th data - control p UNIT – V Image Process conversion - m	ings: Open API's for Internet of Things - collect and store sensor beripheral device. sing in SBC: Introduction to OPENCV - reading and writing imaterge - video processing - real-time image processing in SBC. Lecture	data - ages -	analyz create	ze and image	visua e - dra	6 lize 6 .w -
Internet of Th data - control p UNIT – V Image Process conversion - m	ings: Open API's for Internet of Things - collect and store sensor peripheral device. sing in SBC: Introduction to OPENCV - reading and writing imaterge - video processing - real-time image processing in SBC. Lecture ments:	data - ages - :30, P	analyz create ractica	ze and image al:30,	visua e - dra Total	6 lize 6 .w -
Internet of Th data - control p UNIT – V Image Process conversion - m List of Experi	bings: Open API's for Internet of Things - collect and store sensor beripheral device. sing in SBC: Introduction to OPENCV - reading and writing imaterge - video processing - real-time image processing in SBC. Lecture ments: pment of bootable OS and Initialize the setup of SBC using Raspbe	data - ages - :30, P	analyz create ractica	ze and image al:30,	visua e - dra Total	6 lize 6 .w - : 60
Internet of Th data - control p UNIT – V Image Process conversion - m List of Experi 1. Develo	aings: Open API's for Internet of Things - collect and store sensor beripheral device. sing in SBC: Introduction to OPENCV - reading and writing ima erge - video processing - real-time image processing in SBC. Lecture ments: pment of bootable OS and Initialize the setup of SBC using Raspber ving of GPIO for I/O devices in Raspberry Pi	data - ages - :30, P erry Pi	analyz create ractica	ze and image	visua e - dra Total	6 lize 6 .w -
Internet of Th data - control p UNIT - V Image Process conversion - m List of Experi 1. Develo 2. Interfac 3 Interfac	ings: Open API's for Internet of Things - collect and store sensor beripheral device. sing in SBC: Introduction to OPENCV - reading and writing imagerge - video processing - real-time image processing in SBC. Lecture ments: pment of bootable OS and Initialize the setup of SBC using Raspbering of GPIO for I/O devices in Raspberry Picing of digital sensors with Raspberry Picing of Context of the setup of Sing of Context of the sensors with Raspberry Picing of Context of the senso	data - ages - :30, P erry Pi	analyz create ractica	ze and image al:30,	e - dra	6 lize 6 w -
Internet of Th data - control p UNIT - V Image Proces conversion - m List of Experi 1. Develo 2. Interfac 3. Interfac	ings: Open API's for Internet of Things - collect and store sensor beripheral device. sing in SBC: Introduction to OPENCV - reading and writing image gradered and writing image processing in SBC. sing in SBC: Introduction to OPENCV - reading and writing image gradered and writing image grader	data - ages - :30, P erry Pi	analyz create ractica	ze and image	visua e - dra Total	6 lize 6 w -
Internet of Th data - control p UNIT – V Image Process conversion - m List of Experi 1. Develo 2. Interfac 3. Interfac 4. Develo	aings: Open API's for Internet of Things - collect and store sensor beripheral device. sing in SBC: Introduction to OPENCV - reading and writing ima erge - video processing - real-time image processing in SBC. Lecture ments: pment of bootable OS and Initialize the setup of SBC using Raspbe cing of GPIO for I/O devices in Raspberry Pi eing of digital sensors with Raspberry Pi pment of Simple IoT Application project - interfacing of sensors data through IOT	data - ages - :30, P erry Pi	analyz create ractica	ze and image	visua e - dra Total	6 lize 6 w -
Internet of Th data - control p UNIT - V Image Proces conversion - m List of Experi 1. Develo 2. Interfac 3. Interfac 4. Develo 5. Mini Pr	Sing in SBC: Introduction to OPENCV - reading and writing imagerge - video processing - real-time image processing in SBC. Lecture ments: pment of bootable OS and Initialize the setup of SBC using Raspberg of GPIO for I/O devices in Raspberry Piering of digital sensors with Raspberry Piering of Simple IoT Application roject - interfacing of sensors data through IOT	data - ages - :30, P erry Pi	analyz create ractica	ze and image	e - dra	6 lize 6 w -
Internet of Th data - control p UNIT – V Image Process conversion - m List of Experi 1. Develo 2. Interfac 3. Interfac 4. Develo 5. Mini Pr	aings: Open API's for Internet of Things - collect and store sensor beripheral device. sing in SBC: Introduction to OPENCV - reading and writing ima erge - video processing - real-time image processing in SBC. Lecture ments: pment of bootable OS and Initialize the setup of SBC using Raspbe bing of GPIO for I/O devices in Raspberry Pi cing of digital sensors with Raspberry Pi pment of Simple IoT Application roject - interfacing of sensors data through IOT	data - ages - :30, P erry Pi	analyz create ractica	ze and image	visua e - dra Total	6 lize 6 W - : 60

 https://www.raspberrypi.org/documentation
 Joe Minichino, Joseph Howse, "Learning OpenCV 3 Computer Vision with Python", 2nd Edition, Packt Publishing Ltd., 2015.

COURSE OUTCOMES:							BT Mapped	
On completion of the course, the students will be able to							(Highest Level)	
CO1:	employ programming concepts to manipulate ports and peripherals of SBC						A	pplying (K3)
CO2:	implement program for real time applications using SBC						Applying (K3)	
CO3:	apply python programming language for internal and external peripherals						Applying (K3)	
CO4:	choose devices for Internet of things						Understanding (K2)	
CO5:	apply image processing for real time applications						Applying (K3)	
CO6:	use different packages of python language for GPIO access						Applying (K3),	
							Manipulation (S2)	
CO7:	experiment with digital sensors using Raspberry Pi						Applying (K3),	
							Manipulation (S2)	
CO8:	develop a project to process the image and transfer the data through IOT						Applying (K3),	
							Precision (S3)	
Mapping of COs with POs								
COs/POs		PO1	PO2	PO3	PO4	PC)5	PO6
CO1				3	2			
CO2		2		3	2			2
CO3				3	2			
CO4				3	3			
CO5		2		3	2			1
CO6				3	3			
CO7		2		3	3			
CO8		2		3	3			1
1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy								