VISION

To be a centre of excellence for development and dissemination of knowledge in Applied Sciences, Technology, Engineering and Management for the Nation and beyond.

MISSION

We are committed to value based Education, Research and Consultancy in Engineering and Management and to bring out technically competent, ethically strong and quality professionals to keep our Nation ahead in the competitive knowledge intensive world.

QUALITY POLICY

We are committed to

- Provide value based quality education for the development of students as competent and responsible citizens.
- Contribute to the nation and beyond through research and development
- Continuously improve our services

DEPARTMENT OF MECHANICAL ENGINEERING

VISION

To be a centre of excellence for development and dissemination of knowledge in Mechanical Engineering for the Nation and beyond.

MISSION

Department of Mechanical Engineering is committed to:

- MS1: Establish itself as an excellent academic centre through expert pedagogical methods and modern laboratories to produce world class mechanical engineers.
- MS2: Disseminate knowledge through seminar, conferences and continuing education programs.
- MS3: Make tie-ups with industries, research centres and renowned institutions to synergize the benefit.
- MS4: Contribute towards the upliftment of the society.

2018 REGULATIONS PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

Graduates of M.E. Engineering Design will

- PEO1: Practice Engineering Design in the general stems of design and development of engineering products.
- PEO2: Habituate continuous learning and carryout research and development in science, engineering and technology that support career growth.
- PEO3: Exhibit ethical code of conduct in a professional manner to solve real-time multidisciplinary engineering design problems.

MAPPING OF MISSION STATEMENTS (MS) WITH PEOS

MS\PEO	PEO1	PEO2	PEO3
MS1	3	3	3
MS2	2	3	2
MS3	2	3	2
MS4	1	1	2

1 -Slight, 2 -Moderate, 3 -Substantial

	PROGRAM OUTCOMES (POs)
Engineering	g Post Graduates will be able to:
PO1	carry out research /investigation and development work to solve practical problems.
PO2	write and present a substantial technical report/document.
PO3	use of modern engineering techniques, skills and tools for design and development of engineering products and services.

MAPPING OF PEOs WITH POs

PEO\PO	PO1	PO2	PO3
PEO1	3	3	3
PEO2	3	3	3
PEO3	3	2	2

1 -Slight, 2 -Moderate, 3 -Substantial

CURRICULUM BREAKDOWN STRUCTURE UNDER REGULATION 2018

Curriculum Breakdown Structure(CBS)	Curriculum Content (% of total number of credits of the program)	Total number of contact hours	Total number of credits
Program Core(PC)	47.22	600	34
Program Electives(PE)	25	270	18
Project(s)/Internships(PR)/Others	27.78	600	20
		Total	72

KEC R2018: SCHEDULING OF COURSES – M.E. (Engineering Design)

Semes			Theory/ T	heory cum Practica	l / Practical			Internship & Projects	Special Courses	Credits
ter	1	2	3	4	5	6	7	8	9	
I	18AMC11 Applied Mathematics (PC-3-1-2-4)	18EDT11 Finite Element Method (PC-3-1-0-4)	18EDT12 Applied Materials Engineering (PC- 3-0-0-3)	18EDT13 Engineering Design Methodology (PC-3-0-0-3)	18EDT14 Advanced Strength of Materials (PC-3-1-0-4)	18GET01 Introduction to Research (PC-3-0-0-3)	18EDL11 Design and Analysis Laboratory (PC-0-0-2-1)			22
11	18EDT21 Optimization Techniques in Design and Manufacturing (PC-3-0-0-3)	18EDC21 Mechanical Vibrations (PC- 3-0-2-4)	18EDT22 Mechanism Design and Analysis (PC-3-1-0-4)	Elective-I (Professional) (PE-3-0-0-3)	Elective-II (Professional) (PE-3-0-0-3)	Elective-III (Professional) (PE-3-0-0-3)	18EDL21 Mechanism Synthesis Laboratory (PC-0-0-2-1)	18EDP21 Mini Project (PR-0-0-4-2)		23
	Elective-IV (Professional) (PE-3-0-0-3)	Elective-V (Professional) (PE-3-0-0-3)	Elective-VI (Professional) (PE-3-0-0-3)					18EDP31 Project Work – Phase I (PR-0-0-12-6)		15
IV								18EDP41 Project Work – Phase II (PR-0-0-24-12)		12

Total Credits: 72

M.E. DEGREE IN ENGINEERING DESIGN

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

SEMESTER – I

Course	Course Title		lours Weel		Credit	N	/axim Mark		CBS
Code	Course Thie	L	Т	Р	Creuit	CA	ESE	Total	CDS
	Theory/Theory with Practical								
18AMC11	Applied Mathematics	3	1*	2*	4	50	50	100	PC
18EDT11	Finite Element Method	3	1	0	4	50	50	100	PC
18EDT12	Applied Materials Engineering	3	0	0	3	50	50	100	PC
18EDT13	Engineering Design Methodology	3	0	0	3	50	50	100	PC
18EDT14	Advanced Strength of Materials	3	1	0	4	50	50	100	PC
18GET01	Introduction to Research	3	0	0	3	50	50	100	PC
	Practical								
18EDL11	Design and Analysis Laboratory	0	0	2	1	100	0	100	PC
	Total	·	·	•	22				

*Alternate week

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

M.E. DEGREE IN ENGINEERING DESIGN

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

SEMESTER – II

Course	Course Title		lours Weel		Credit	N	/laxim Mark		CBS
Code	Course Thie	L	Т	Р	Creuit	CA	ESE	Total	CDS
	Theory/Theory with Practical								
18EDT21	Optimization Techniques in Design and Manufacturing	3	0	0	3	50	50	100	PC
18EDC21	Mechanical Vibrations	3	0	2	4	50	50	100	PC
18EDT22	Mechanism Design and Analysis	3	1	0	4	50	50	100	PC
	Elective - I	3	0	0	3	50	50	100	PE
	Elective - II	3	0	0	3	50	50	100	PE
	Elective - III	3	0	0	3	50	50	100	PE
	Practical								
18EDL21	Mechanism Synthesis Laboratory	0	0	2	1	100	0	100	PC
18EDP21	Mini Project	0	0	4	2	100	0	100	PR
	Total				23				

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

M.E. DEGREE IN ENGINEERING DESIGN

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

SEMESTER -	- III
-------------------	-------

Course	Course Title		lours Weel		Credit	N	/laxim Mark		CBS
Code	Course Thie	L	Т	Р	Creuit	CA	ESE	Total	CDS
	Theory/Theory with Practical								
	Elective - IV	3	0	0	3	50	50	100	PE
	Elective - V	3	0	0	3	50	50	100	PE
	Elective - VI	3	0	0	3	50	50	100	PE
	Practical								
18EDP31	Project Work Phase I	0	0	12	6	50	50	100	PR
	Total				15				

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

M.E. DEGREE IN ENGINEERING DESIGN

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

SEMESTER – IV

Course	Course Title		lours Weel		Credit	N	/laxim Mark		CBS
Code	Course The	L	Т	Р	Creuit	CA	ESE	Total	CDS
	Practical								
18EDP41	Project Work Phase II	0	0	24	12	50	50	100	PR
	Total				12				

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

Total Credits: 72

	LIST OF PROFESSIONAL ELECTIVE	S				
Course	Correct Title	Ho	urs/W	eek	C 114	CDC
Code	Course Title	L	Т	Р	Credit	CBS
	SEMESTER II		•			
18CCE02	Safety in Engineering Industry	3	0	0	3	PE
18CCE04	Design for Manufacture and Assembly	3	0	0	3	PE
18MTE01	Fluid Power System Design	3	0	2	4	PE
18EDE01	Applied Finite Element Analysis	3	1	0	4	PE
18EDE02	Mechanical Behaviour of Materials	3	0	0	3	PE
18EDE03	Experimental Stress Analysis	3	0	2	4	PE
18EDE04	Fracture Mechanics	3	0	0	3	PE
18EDE05	Designing with Newer Materials	3	0	0	3	PE
18EDE06	Tribology in Design	3	0	0	3	PE
18EDE07	Advanced Tool Design	3	0	0	3	PE
18EDE08	Design of Material Handling Equipment	3	0	0	3	PE
	SEMESTER III					
18CCE05	Product Data Management	3	0	0	3	PE
18CCE06	Modeling and Analysis of Manufacturing Systems	3	0	0	3	PE
18CCE08	Reliability Engineering	3	0	0	3	PE
18MTC11	Computer Numerically Controlled Machines	3	0	2	4	PE
18MTT13	Sensors and Instrumentation	3	0	0	3	PE
18MTE13	MEMS Design	3	0	0	3	PE
18EDE09	Vibration and Noise Control	3	0	2	4	PE
18EDE10	Instrumentation and Measurements	3	0	0	3	PE
18EDE11	Design of Heat Exchangers	3	0	0	3	PE
18EDE12	Productivity Management and Reengineering	3	0	0	3	PE
18EDE13	Mechanics of Composite Materials	3	0	2	4	PE
18EDE14	Applied Engineering Acoustics	3	0	0	3	PE

31*2*4PreambleThis course will help the students to identify, formulate and solve problems in mechanical engineering using mathematical tools such as probability, transforms and numerical techniques.PrerequisitesProbability, Calculus, Laplace and Fourier Transform.UNIT – IImage: Calculus, Laplace and Fourier Transform.Random Variables and Probability Distributions: Random Variables and Probability Distributions: Random variable – Probability mass function Probability density function – Moments – Moment generating functions – Discrete distributions – Binomia distribution – Poisson distribution – Geometric distribution – Continuous distributions - Uniform distribution – Exponential distribution – Normal distribution.
engineering using mathematical tools such as probability, transforms and numerical techniques. Prerequisites Probability, Calculus, Laplace and Fourier Transform. UNIT – I Image: Comparison of the second secon
techniques. Prerequisites Probability, Calculus, Laplace and Fourier Transform. UNIT – I Image: Comparison of the second seco
Prerequisites Probability, Calculus, Laplace and Fourier Transform. UNIT – I Image: Comparison of the second sec
UNIT – I Random Variables and Probability Distributions: Random variable – Probability mass function Probability density function – Moments – Moment generating functions – Discrete distributions – Binomis distribution – Poisson distribution – Geometric distribution – Continuous distributions - Uniform distribution – Exponential distribution – Normal distribution.
Probability density function – Moments – Moment generating functions – Discrete distributions – Binomia distribution – Poisson distribution – Geometric distribution – Continuous distributions - Uniform distribution – Exponential distribution – Normal distribution.
distribution – Poisson distribution – Geometric distribution – Continuous distributions - Uniform distribution – Exponential distribution – Normal distribution.
– Exponential distribution – Normal distribution.
UNIT – II
Two Dimensional Random Variables: Joint distributions – Marginal and conditional distributions Covariance – Simple linear correlation – Rank Correlation – Linear Regression.
Covariance Simple inical correlation Rank correlation Lineal Regression.
UNIT – III
Calculus of Variations: Concept of variation and its properties – Euler's equation – Functional dependat
on first and higher order derivatives – Functionals dependant on functions of several independent variables
Variational problems with moving boundaries - Isoperimetric problems - Direct methods : Ritz an
Kantorovich methods.
Transform Methods: Laplace transform methods: Solution of one-dimensional wave equation - Solution of one-dimensional host equation - Solution - Solutio
of one-dimensional heat equation – Fourier transform methods: Solution of Diffusion equation – Solution of one-dimensional wave equation – Solution of Laplace equation.
or one dimensional wave equation - Solution of Euplace equation.
UNIT – V
Numerical Solution of Partial Differential Equations: Solution of one dimensional wave equation
Solution of diffusion equation - Explicit and implicit methods - Solution of Elliptic equation: Solution of
Laplace equation – Solution of Poisson equation.
List of Experiments:
1. Finding probability using discrete distributions
 Identifying probability by means of continuous distributions Determine the marginal and conditional distributions
5 Finding extremum of a functional
5. Finding extremum of a functional6. Integrals involving more than one independent variable

- 7. Finding solution of the functional.
- 8. Solution of Parabolic and Hyperbolic equations by Laplace transform techniques
- 9. Solution of Laplace equation by Fourier Transform
- 10. Numerical solution of wave equation
- 11. Solution of Laplace equation by numerical technique
- 12. Numerical solution of Poisson's equation

Lecture:45, Tutorial & Practical:15, Total: 60

REF	ERENCES:						
			robability and Statistics for Eng	ineers", 9	9 th Edition, Pearson		
	Education, 2	n, 2016.					
2.	Gupta A.S.,	S., "Calculus of Variations with Applications", 12 th Edition, Prentice Hall of India Pvt. Ltd.,					
	New Delhi,						
		o K., "Introduction to Partial	Differential Equations", 3rd Edit	ion, PHI	Learning Pvt. Ltd.,		
	2011.						
			Applied Numerical Analysis", 7 ^{tt}	^{Edition} ,	Pearson Education		
	India, 2009.						
COI	JRSE OUT	COMES:			BT Mapped		
		the course, the students will	be able to		(Highest Level)		
COl		babilistic concepts in enginee			Applying (K3)		
CO2		he relationship between varia			Applying (K3)		
CO3		ational problems that appear			Applying (K3)		
CO4			ns to solve initial and boundar	y value	Applying (K3)		
		in Partial differential equation		-			
CO5	: use nume	rical techniques to solve parti	al differential equations		Applying (K3)		
CO6:	: apply MA	ATLAB to identify the prob	ability and association between	random	Applying (K3),		
	variables				Manipulation (S2)		
CO7:			problems involving functional and	l Partial	Applying (K3),		
		al equations			Manipulation (S2)		
CO8:	: use MAT	LAB to find numerical solution	on of PDE		Applying (K3),		
					Manipulation (S2)		
		Mapp	ing of COs with POs				
С	Os/POs	PO1	PO2		PO3		
	CO1				1		
	CO2				1		
	CO3	1			1		
	CO4	1			2		
	CO5	5 3			2		
	CO6	1			1		
	CO7	3			2		
	CO8	1			2		
1 – S	light, 2 – Me	oderate, 3 – Substantial, BT	– Bloom's Taxonomy				
A 1.	rnata Waalz						

* Alternate Week

18EDT11 FINITE ELEMENT METHOD						
(Common to Engineering Design & CADCAM Branches)						
	L	Т	Р	Credit		

		L	Т	<u> </u>	Credit
		3	1	0	4
Preamble	To familiarize the fundamental concepts of finite element	analys	is with	the	principles
	involved in discretization and to assemble stiffness mat	rices a	nd for	ce ve	ectors for
	simple/advanced elements.				
Prerequisites	Strength of Materials				
UNIT – I					9
One Dimensi	onal Applications: Historical Background - Weighted Residual	Methc	ods - B	asic C	oncept of
	onal Formulation - Ritz Method - Finite Element Modelling - El				
Quadratic Sha	pe functions - Bar and Beam Elements - Galerkin's method - Ap	oplicatio	on of st	ructur	al bar and
heat transfer.	· •	•			
UNIT – II					9
Two Dimensi	onal Scalar Variable Applications: Basic boundary value p	roblems	s in tw	o din	ensions -
	n Triangular element - Higher order elements - Poisson's and				
	Element Matrices and Vectors - Load consideration: Point load a				
Plane strain co	nditions. Two dimensional heat transfer: Finite element equation	ı - Pote	ntial en	ergy a	pproach ·
Conduction - S	Side and face convection - Internal heat generation. Application of	of Struc	tural an	d Hea	t transfer.
UNIT – III					9
Two Dimensi	onal Vector Variable Problems: Introduction to Axi-symmetric	c Form	ulation	- linea	ar element
	Element Matrices and Vectors - Load Consideration - Applic				
	ems - Application of Plane Trusses.				
UNIT – IV					9
Iso-Parametr	ic Formulation: Natural Co-ordinate Systems - Lagrangian	Interp	olation	Poly	nomials -
	Elements - Formulation - Numerical Integration - Gauss				
	ntegration - Rectangular elements - Serendipity elements -				
Illustrative Ex					U
UNIT – V					9
	vnamics and Refinements: Dynamic Analysis - Equation of	Motion	– Mas	ss and	
	e vibration analysis - Natural frequencies of Longitudinal, Transv				
	transient field problems. Refinement techniques - h and p eleme		4 10151	onui	lorution
			Tutori	al:15	Total: 60
REFERENCI		·= U•-TU9	- 410116	~···	- U UI • U
	iresu S., "The Finite Element Method in Engineering", 6 th Edi	tion R	ifferwo	rth-He	inemann
2017.	The second secon	, D(****** W U		, montanni
2017.					

- Reddy J.N., "An Introduction to the Finite Element Method", 3rd Edition, McGraw Hill, Edition, 2009. Logan D.L., "A First Course in the Finite Element Method", 6th Edition, Cengage Learning, 2018. 2. 3.

COUR	COURSE OUTCOMES:							
On cor	On completion of the course, the students will be able to							
CO1:	comprehe	quation for	Analyzing (K4)					
	Ŭ	1	roblems used for designing e	ngineering				
	componen							
CO2:			ng simple two dimensional assur	nptions for	Analyzing (K4)			
		pplications		_				
CO3:		1 0 01	ems using axisymmetric assumpt		Analyzing (K4)			
CO4:	-	6	isoparametric elements and	numerical	Analyzing (K4)			
		n techniques used in FEM						
CO5:	solve the s	structural dynamic problems ir	n various applications		Analyzing (K4)			
		Маррі	ing of COs with POs					
CC	Ds/POs	PO1	PO2		PO3			
(CO1	3	1		3			
(CO2	2			2			
(CO3 2			2				
(CO4 2		2					
(CO5 2							
1 - Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy							

18EDT12 APPLIED MATERIALS ENGINEERING

(Common to Engineering Design & CADCAM Branches)

L

Т

Р

Credit

		3	0	0	3
Preamble	The course deals with the study on structure –property rela analysis on their morphological and technical characteristics, p related techniques.		-		
Prerequisites	Fundamentals of Material Science and Engineering				
UNIT – I					9

Introduction of Physical Metallurgy: Concept of phase diagram - phases and micro constituents in steels and cast irons - Equilibrium and non-equilibrium cooling of various Fe-C alloys - Effects of alloying elements and cooling rate on structure and properties of steels and cast irons.

UNIT – II

Introduction to Heat Treatment and Specifications: Time Temperature Transformation (TTT) diagram and Continuous Cooling Transformation (CCT) diagram - hardenability, measurement, annealing normalizing - hardening and tempering - heat treatment furnaces - atmospheres - quenching media - case hardening techniques. Types of steels: plain carbon steels - alloy steels - tool steels - stainless steels - types of cast iron – compositions - properties and applications.

UNIT – III

Characterization of Materials: Stereographic projections - X-ray diffraction - Crystal structure and phase identification - Residual stress measurement and other applications. Scanning Electron Microscopy (SEM) -Optics and performance of SEM - Image interpretation - Crystallographic information - Analytical microscopy. Transmission Electron Microscopy (TEM) - Construction and operation of TEM - Electron diffraction - Image interpretation.

UNIT - IV

Corrosion Engineering: Degradation of Materials: Oxidation - Corrosion and wear. Basics of thermodynamics and kinetics of oxidation and corrosion - Pourbaix diagram - Polarization - Different types of corrosion - Atmospheric, galvanic, pitting, crevice corrosion, intergranular and de-alloying - Stress corrosion cracking - Season cracking - Hydrogen damage and radiation damage - Hydrogen embrittlement -Corrosion rate measurement.

UNIT - V

Metallurgical Failure Analysis and Plastic Deformation: Stages of failure analysis - Classification and identification of various types of fracture. Overview of fracture mechanics - Characteristics of ductile and brittle fracture. General concepts - Fracture characteristics revealed by microscopy - Factors affecting fatigue life - Creep - Stress rupture - Elevated temperature fatigue - Metallurgical instabilities - Environmental induced failure - Some case studies on failures - Basics of plastic deformation: Mohr's circle - yield theories plastic stress - strain relationship - mechanical working - work hardening.

Total: 45

REFERENCES:

Avner, S. H., "Introduction to Physical Metallurgy", 2nd Edition, McGraw Hill, 2017. 1.

Philips V. A., "Modern Metallographic Techniques and their Applications", Wiley Interscience, 1972.
Fontana. M.G., "Corrosion Engineering", 3rd Edition, Tata McGraw Hill, 2005.
Colangelo V.J. and Heiser F.A., "Analysis of Metallurgical Failures", John Wiley and Sons Inc. New 2. 3.

- 4. York, USA, 1987.
- Hosford W.F. and Caddell R.M., "Metal Forming Mechanics and Metallurgy", Printice Hall, 2014. 5.

9

9

9

COU	COURSE OUTCOMES:						
On con	On completion of the course, the students will be able to						
CO1:	demonstra	te the microstructures of steels	and cast irons	Analyzing (K4)			
CO2:	apply heat	treatment processes for various	applications	Applying (K3)			
CO3:	determine	the microstructure for utilizing	the material characterization	Applying (K3)			
CO4:	analyze th	e causes and impacts of corrosid	on	Analyzing (K4)			
CO5:	solve the p	ures Analyzing (K4)					
	-	Mappin	g of COs with POs				
CC	Os/POs	PO1	PO2	PO3			
(CO1	1	1	3			
(CO2	3	2	3			
(CO3	3	2	3			
(CO4 3 3		3				
(CO5 3 3						
1 - Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy						

		18EDT13 ENGINEERING DESIGN METHODOLO	GY			
			L	Т	Р	Credit
			3	0	0	3
Prea	mble	To impart knowledge on various concepts in engineering design	like p	roduct	desig	n process,
		tools for engineering design, material selection & processing, and	d ethic	cal issu	es in (design.
Prere	equisites	Quality Engineering, Total quality managements, Funda	ament	als of	f des	sign and
		manufacturing courses				
	T - I		~	• 1		9
		Design Process: Importance of Product Design - Design Process				
		hology of Design - Concurrent Engineering - CAD and CAM - I				
Ineet		tion- Identifying customer needs – Benchmarking - Customer requ	Ineme	ents. C	ase su	iuy.
UNI	T – II					9
		neering Design: Concept Generation - Creativity and Problem s	solvin	g - Cr	eative	
		Design - Product Architecture - Configuration Design - Parametric				
		esign - Human factors in Design. Modeling - Role of models				
		nodeling - Geometric modeling - Finite element modeling - Rapid				
	T – III					9
		ction and Materials in Design: Relation of Material selection				
		of Materials - Material selection process - Value analysis - Rev			esign	for brittle
fract	ure - Desig	gn for fatigue failure - Design for corrosion resistance - Design wit	h plas	stics.		
	— — — —	Τ				
	T – IV	 	1	41	_ 1	9
		essing and Design: Classification of manufacturing processes				-
		ining the process selection - Design for manufacturing - Desig gn for sheet metal forming - Design for machining - Design for				
		sign for plastic processing. Case study.	weit	iing - I	Jesigi	ii ioi iicat
ticat	ment De	agn for plastic processing. Case study.				
UNI	T – V					9
		uality Engineering, Legal and Ethical Issues in Design: Desig	n for	enviro	nment	
	-	- Design for safety - Quality Design - Optimisation Methods. The				-
	•	t Law - Product Liability - Protecting Intellectual Property - Le	0			
		s - Solving ethical conflicts. Case study.	-			
						Total: 45
REF	ERENCE					
1.		orge E., "Engineering Design: A Materials and Processing Appro	ach",	3 rd Ed	ition,	McGraw-
		national Edition, Singapore, 2000.				
2.		rl T. and Eppinger Steven D., "Product Design and Developm	nent",	5 th Ed	ition,	McGraw-
		national Edition, 2011.				
3.		Ray, "Elements of Engineering Design", Printice Hall Incorporati				
3. 4.		Pahl and Beitz W., "Engineering Design: A Systematic Appr				- Verlag,

COUR	COURSE OUTCOMES:						
On con	On completion of the course, the students will be able to						
CO1:	apply the	knowledge on various design	process and methods for product design	Applying (K3)			
CO2:	implemen	t the various design modeling	, design methods and optimization tools for	Applying (K3)			
	tool design						
CO3:	apply the	knowledge on the material s	election process by considering the various	Analyzing (K4)			
	design fac						
CO4:	implemen	t the various manufacturing p	process with design of materials for various	Applying (K3)			
	application						
CO5:	-		ect, environmental, quality and safety aspect	Applying (K3)			
	for design	ing of materials.					
		Марр	ing of COs with POs				
CC	Ds/POs	PO1	PO2	PO3			
(CO1	2	2	2			
(CO2	3	3	3			
(CO3	3	3	2			
(CO4 2 2		2				
(CO5 2 2						
1 – Sli	ght, 2 – Mo	derate, 3 – Substantial, BT	Г – Bloom's Taxonomy				

18EDT14 ADVANCED STRENGTH OF MATERIALS

(Approved Data book may be permitted)

		3	1	0	4	
Preamble	Advanced Strength of Materials takes this important subject in masterfully bridging its elementary aspects and its most formi	1 5 6 5				
	concepts here explored in depth include the three-dimensional the	s here explored in depth include the three-dimensional theory of elasticity, Stress and elations and Compatibility equations. It also covers the Shear center estimation,				
	Unsymmetrical bending, stress analysis on Curved beams, torsi and membrane stresses in shells, rotating discs, buckling of plat	eams, torsion on non-Circular members				
Prerequisites	Strength of Materials, Engineering Mechanics					
TINITT T					0	

UNIT – I

Elasticity: Stress - Strain relation and General equation of elasticity in Cartesian , polar ,cylindrical and Spherical coordinates - Differential equation of equilibrium - Compatibility equation - Boundary conditions - Representations of three dimensional stress in tension - Generalized Hooke's law - St.Vennant's Principle - Plane strain, plane stress – Airy's stress function.

UNIT – II

Unsymmetrical Bending and Shear Centre: Stresses and deflection in beams subjected to unsymmetrical loading - Kern of a section. Location of shear centre for various sections - shear flow.

UNIT – III

Curved Beams: Curved flexural members - Circumferential and radial stresses - Deflection and radial curved beam with re-strained ends - Closed ring subjected to concentrated load and uniform load - Chain link and Crane hooks.

UNIT – IV

Stresses due to Rotation and Contact Stresses: Stresses due to rotation - Radial and tangential stresses in solid disc and ring of uniform thickness and varying thickness - Allowable speed. Contact Stresses - Hertz equation for contact stresses - Applications to rolling contact elements.

UNIT – V

Stresses in Flat Plates and Torsion of Non Circular Sections: Stresses in circular and rectangular plates due to various types of loading and end conditions - Buckling of plates. Torsion of rectangular cross section - St.Vennant Theory - ElasticMembrane analogy - Torsional stresses in hollow thin walled tubes.

Lecture:45, Tutorial:15, Total: 60

Т

L

Р

Credit

9

9

9

9

REFERENCES: 1. Timoshenko S., "Strength of Materials", 3rd Edition, CPS Publishers, 2008. 2. Timoshenko and Goodler, "Theory of Elasticity", 3rd Edition, McGraw-Hill, 2006. 2. During LD, "A during the CM state of the State of

- 3. Den Hartog J.P., "Advanced Strength of Materials", Dover Publications, New York, 1987.
- 4. Sadhu Singh, "Applied Stress Analysis", Khanna Publishers, New Delhi, 2009.

COUR	RSE OUTC	COMES:		BT Mapped (Highest Level)			
On cor	On completion of the course, the students will be able to						
CO1:	calculate	the stresses and strains at a poin	t in three dimensional load	Evaluating (K5)			
CO2:	calculate a	analytically the shear center and	stresses in unsymmetrical bending	Evaluating (K5)			
CO3:	determine	the stresses and deflections in c	curved beams, chains and links	Evaluating (K5)			
CO4:	determine	the stresses due to rotation and	contact stresses	Evaluating (K5)			
CO5:	estimate	ar Evaluating (K5)					
	members		-	_			
		Mappin	g of COs with POs				
CC	Ds/POs	PO1	PO2	PO3			
(CO1	3	2	3			
(CO2	3	2	3			
(CO3	3	2	3			
CO4 3 2		2	3				
(CO5 3 2		3				
1 - Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy						

18GET01 INTRODUCTION TO RESEARCH

(Common to Engineering and Technology Branches)

		3	0	0	3	
Preamble	amble To familiarize the fundamental concepts/techniques adopted in research, problem formulation					
	and patenting and to disseminate the process involved in collection, consolidation of published					
	literature and rewriting them in a presentable form using latest to	and rewriting them in a presentable form using latest tools.				
Prerequisites	Nil					

UNIT – I

Concept of Research: Meaning and Significance of Research: Skills, Habits and Attitudes for Research -Time Management - Status of Research in India. Why, How and What a Research is? - Types and Process of Research - Outcome of Research - Sources of Research Problem - Characteristics of a Good Research Problem - Errors in Selecting a Research Problem - Importance of Keywords - Literature Collection – Analysis - Citation Study - Gap Analysis - Problem Formulation Techniques.

UNIT – II

Research Methods and Journals: Interdisciplinary Research - Need for Experimental Investigations - Data Collection Methods - Appropriate Choice of Algorithms / Methodologies / Methods - Measurement and Result Analysis - Investigation of Solutions for Research Problem - Interpretation - Research Limitations. Journals in Science/Engineering - Indexing and Impact factor of Journals - Citations - h Index - i10 Index - Journal Policies - How to Read a Published Paper - Ethical issues Related to Publishing - Plagiarism and Self-Plagiarism.

UNIT – III

Paper Writing and Research Tools: Types of Research Papers - Original Article/Review Paper/Short Communication/Case Study - When and Where to Publish? - Journal Selection Methods. Layout of a Research Paper - Guidelines for Submitting the Research Paper - Review Process - Addressing Reviewer Comments. Use of tools / Techniques for Research - Hands on Training related to Reference Management Software - EndNote, Software for Paper Formatting like LaTeX/MS Office. Introduction to Origin, SPSS, ANOVA etc., Software for detection of Plagiarism.

UNIT – IV

Effective Technical Thesis Writing/Presentation: How to Write a Report - Language and Style - Format of Project Report - Use of Quotations - Method of Transcription Special Elements: Title Page - Abstract - Table of Contents - Headings and Sub-Headings - Footnotes - Tables and Figures - Appendix - Bibliography etc. - Different Reference Formats. Presentation using PPTs.

$\mathbf{UNIT} - \mathbf{V}$

Nature of Intellectual Property: Patents - Designs - Trade and Copyright. Process of Patenting and Development: Technological research - innovation - patenting - development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents.

REFERENCES:

- 1. DePoy, Elizabeth, and Laura N. Gitlin, "Introduction to Research-E-Book: Understanding and Applying Multiple Strategies", Elsevier Health Sciences, 2015.
- 2. Walliman, Nicholas, "Research Methods: The basics", Routledge, 2017.
- 3. Bettig Ronald V., "Copyrighting culture: The political economy of intellectual property", Routledge, 2018.

9

Т

L

Ρ

Credit

9

9

9

Total: 45

	COURSE OUTCOMES: On completion of the course, the students will be able to							
CO1:	list	various stages in research/patenti	ng and categorize the quality of j	ournals	Analyzing (K4)			
CO2:	forn	nulate a research problem from p	ublished literature/journal papers		Evaluating (K5)			
CO3:	writ	e, present a journal paper/ projec	t report using latest tools in prope	er format	Creating (K6)			
CO4:	D4: select suitable journal and submit a research paper		Applying (K3)					
		Map	pping of COs with POs					
COs/F	POs	PO1	PO2		PO3			
CO	1	3	2	1				
CO	2	3	2	3				
CO3 3		3	3	1				
CO4 3		3	2	1				
1 – Slig	1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy							

		N AND ANALYSIS LABORAT ering Design & CADCAM Bran					
	(Common to Engine	ening Design & CADCAW Dran		Т	Р	Credit	
			0 0	0	2	1	
Preamble	Modification, analysis, or opti	bry is the use of computer sy mization of a design. Analysis s mprove the quality of design, imp database for manufacturing.	oftware i	s usec	l to inc	rease the	
Prerequisites	reading skill, Knowledge in m	n of machine elements, Mode odeling and analysis software.	ling skill	, Tec	hnical	drawing	
	ses / Experiments :						
	ng and Assembly of component						
		porting to ANSYS and Meshing	т				
 Finding shear Force and Bending Moment diagram using ANSYS APDL Meshing a component using ANSYS WORKBENCH 							
	ral Analysis using ANSYS WO						
	inear structural contact analysis						
	al Analysis of a component usin	÷					
	Analysis of a structure using AN						
	ic Analysis using ANSYS APD						
10. Couple	ed Field Analysis using ANSYS	APDL			,	Tatal. 20	
DEFEDENCI	ES / MANUALS / SOFTWAR	ES.				Total: 30	
	ry manual	E.S.					
	i y manuai						
COURSE OU	TCOMES:				BT M		
		be able to	On completion of the course, the students will be able to (Highest Lev				
CO1: anal						lapped st Level)	
software Manipulation(S2					Highe	st Level)	
	ware		•	is /	Highe Applyi	st Level) ng (K3),	
CO2: mod	vare el and analyze the structural	members with various fields using members with external load for	•	is /	Highe s Applyin Ianipul Applyin	st Level) ng (K3), ation(S2) ng (K3),	
CO2: mod appl	vare el and analyze the structural ications	members with external load fo	r differe	is A M nt A	Highes Applyin Ianipul Applyin Precis	st Level) ng (K3), ation(S2) ng (K3), ion(S3)	
CO2: mod appl CO3: anal	vare el and analyze the structural ications yze the non-linear structural,		r differe	is A M nt A	Highes Applyin Ianipul Applyin Preciss Applyin	st Level) ng (K3), ation(S2) ng (K3), ion(S3) ng (K3),	
CO2: mod appl CO3: anal vario	ware el and analyze the structural ications yze the non-linear structural, pus applications	members with external load for thermal and coupled field pro-	r differen oblems fo	is M M nt M or M	Highes Applyin Ianipul Applyin Preciss Applyin Preciss	st Level) ng (K3), ation(S2) ng (K3), ion(S3) ng (K3), ion(S3)	
CO2: mod appl CO3: anal vario	ware el and analyze the structural ications yze the non-linear structural, pus applications	members with external load fo	r differen oblems fo	is M M nt M Dr M	Highes Applyin Ianipul Applyin Precis Applyin Precis Applyin	st Level) ng (K3), ation(S2) ng (K3), ion(S3) ng (K3), ion(S3) ng (K3),	
CO2: mod appl CO3: anal vario	ware el and analyze the structural ications yze the non-linear structural, ous applications yze the mode shape and critical	members with external load for thermal and coupled field pro- frequency of the structural comp	r differen oblems fo	is M M nt M Dr M	Highes Applyin Ianipul Applyin Precis Applyin Precis Applyin	st Level) ng (K3), ation(S2) ng (K3), ion(S3) ng (K3), ion(S3)	
CO2: mod appl CO3: anal vario CO4: anal	ware el and analyze the structural ications yze the non-linear structural, ous applications yze the mode shape and critical Map	members with external load for thermal and coupled field pro- frequency of the structural comp ping of COs with POs	r differen oblems fo	is A M nt A Dr A	Highes Applyin Ianipul Applyin Precis Applyin Precis Applyin Precis	st Level) ng (K3), ation(S2) ng (K3), ion(S3) ng (K3), ion(S3) ng (K3),	
CO2: mod appl CO3: anal vario CO4: anal COs/POs	ware el and analyze the structural ications yze the non-linear structural, ous applications yze the mode shape and critical Map PO1	members with external load for thermal and coupled field pro- frequency of the structural comp ping of COs with POs PO2	r differen oblems fo	is A M nt A Dr A	Highes Applyin Ianipul Applyin Preciss Applyin Preciss Applyin Preciss	st Level) ng (K3), ation(S2) ng (K3), ion(S3) ng (K3), ion(S3) ng (K3),	
CO2: mod appl CO3: anal vario CO4: anal COs/POs CO1	ware el and analyze the structural ications yze the non-linear structural, ous applications yze the mode shape and critical Map PO1 3	members with external load for thermal and coupled field pro- frequency of the structural comp ping of COs with POs PO2 3	r differen oblems fo	is A M nt A Dr A	Highes Applyin Ianipul Applyin Preciss Applyin Preciss Applyin Preciss 203 3	st Level) ng (K3), ation(S2) ng (K3), ion(S3) ng (K3), ion(S3) ng (K3),	
CO2: mod appl CO3: anal vario CO4: anal COs/POs	ware el and analyze the structural ications yze the non-linear structural, ous applications yze the mode shape and critical Map PO1	members with external load for thermal and coupled field pro- frequency of the structural comp ping of COs with POs PO2	r differen oblems fo	is A M nt A Dr A	Highes Applyin Ianipul Applyin Preciss Applyin Preciss Applyin Preciss	st Level) ng (K3), ation(S2) ng (K3), ion(S3) ng (K3), ion(S3) ng (K3),	
CO2: mod appl CO3: anal vario CO4: anal COs/POs CO1	ware el and analyze the structural ications yze the non-linear structural, ous applications yze the mode shape and critical Map PO1 3	members with external load for thermal and coupled field pro- frequency of the structural comp ping of COs with POs PO2 3	r differen oblems fo	is A M nt A Dr A	Highes Applyin Ianipul Applyin Preciss Applyin Preciss Applyin Preciss 203 3	st Level) ng (K3), ation(S2) ng (K3), ion(S3) ng (K3), ion(S3) ng (K3),	

3 3 3 3 CO4 3 – Substantial, BT – Bloom's Taxonomy 1 – Slight, 2 – Moderate,

18EDT21 OPTIMIZATION TECHNIQUES IN DESIGN AND MANUFACTURING (Common to Engineering Design & CADCAM branches)

L

Т

Ρ

Credit

9

9

9

		3	0	0	3
Preamble	This course emphasis the application of optimization techniques, tools and methods in the field				
	of Engineering.				
Prerequisite	rerequisite Fundamentals of Operation Research and Mathematical knowledge.				

UNIT – I

Introduction: Introduction to optimum design-global and local – Problems - General Characteristics of mechanical elements-adequate and optimum design-general principles of optimization, formulation of objective function, design constraints – Classification of optimization problem -Saddle point-Single variable optimization-Multi variable optimization with no constraints.

UNIT – II

Unconstrained Optimization Techniques: Single variable and multivariable optimization with constraints, Techniques of unconstrained minimization -Golden section, pattern and gradient search methods - Interpolation methods -Quadratic function method.

UNIT – III

Constrained and Advanced Optimization Techniques: Optimization with equality and inequality constraints - Indirect methods using penalty functions, Lagrange multipliers; Geometric programming-Constrained, mixed inequality and unconstrained minimization; Introduction - GA, SA and NN based on optimization - Fuzzy systems - Taguchi Technique - Parallel processing.

UNIT – IV

Static Applications: Structural applications – Design of simple truss members-Reanalysis techniques Design applications -Design of simple axial, transverse loaded members for minimum cost, maximum weight - Design of shafts and torsionally loaded members – Design of springs.

UNIT – V

Dynamic Applications: Optimum design of single and two degree of freedom systems, vibration absorbers. Optimum design of simple linkage mechanisms. Case study: optimization of process parameters in production operation.

REFERENCES:

1.	Rao Singaresu S., "Engineering Optimization – Theory and Practice", 4 th Edition, New Age
	International Pvt. Ltd., New Delhi, 2009.
2.	Kalyanamoy Deb, "Optimization for Engineering Design Algorithms and Examples", 2 nd Edition,
	Prentice Hall of India Pvt. Ltd., 2012.
3.	Goldberg D.E., "Genetic algorithms in search, optimization and machine", 4 th Edition, Barnen, Addison
	Wesley, New York, 2009.

9

9

Total: 45

COUR	SE O	UTCOMES:		BT Mapped		
On completion of the course, the students will be able to				(Highest Level)		
CO1:	buil	d an optimization problems for d	esign and manufacturing applications	Evaluating (K5)		
CO2:	com	compute the optimum value for unconstrained optimization problem				
CO3:	solv	solve the optimization problem by various techniques Evaluating				
CO4:	4: design the stress members and shafts using reanalysis techniques App			Applying (K3)		
CO5:	opti	mize the influencing parameters	for linkages and vibratory systems	Evaluating (K5)		
Mapping of COs with POs						
COs/PC)s	PO1	PO2	PO3		
CO	1	3	2	3		
CO	2	3	2	3		
CO	3	3	2	3		
CO ₂	4	3	2	3		
CO	5	2	3	3		
1 - Slig	,ht, 2 -	– Moderate, 3 – Substantial, B	T – Bloom's Taxonomy			

18EDC21 MECHANICAL VIBRATIONS

			-	-	010000		
		3	0	2	4		
Preamble	Mechanical vibration is the measurement of a periodic process of oscillations with respect to						
	an equilibrium point. This syllabus provides essential concepts involving vibration analysis,						
	uncertainty modeling, and vibration control. It also gives good fundamental vibrating systems						
	such as beams, strings, plates and membranes, vibration isolation, critical speeds, the						
	balancing of rotating and reciprocating machinery.	l reciprocating machinery.					
Prerequisites	Fundamentals of Mathematics, Fundamentals of Dynamics of M	Aachin	es and	Funda	mentals of		
	strength of materials						

UNIT – I

Fundamentals of Vibration and Single Degree of Freedom System: Review of Single degree freedom systems - Response to arbitrary periodic, Excitations- Duhamel's Integral - Impulse Response function -Virtual work - Lagrange's equation - Single degree freedom forced vibration with elastically coupled viscous dampers – System Identification from frequency response – Transient Vibration.

UNIT – II

Two Degree Freedom System: Free vibration of spring-coupled system - mass coupled system - Vibration of two degree freedom system - Forced vibration - Vibration Absorber - Vibration isolation.

UNIT – III

Multi-Degree Freedom System: Normal mode of vibration – Flexibility Matrix and Stiffness matrix – Eigen values and Eigen vectors - Orthogonal properties - Modal matrix-Modal Analysis - Forced Vibration by matrix inversion - Modal damping in forced vibration - Numerical methods for fundamental frequencies.

UNIT – IV

Vibration of Continuous Systems: Systems governed by wave equations - Vibration of strings - vibration of rods – Euler Equation for Beams – Effect of Rotary inertia and shear deformation – Vibration of plates.

UNIT - V

Experimental Methods in Vibration Analysis: Vibration instruments - Vibration exciters Measuring Devices - Analysis - Vibration Tests - Free and Forced Vibration tests. Examples of Vibration tests -Industrial, case studies.

List of Experiments:

- 1. Determination of natural frequency of a steel beam.
- 2. Fault identification of ball bearing through time domain and frequency signal.
- 3. Model analysis of plates and beams.
- 4. Condition monitoring on spur gear using vibration signal.
- 5. Condition monitoring on lathe machines.

Lecture:45, Practical:30, Total: 75

Т

L

P Credit

REFERENCES:

- Singh V.P., "Mechanical Vibrations", Dhanpat Rai & Co. Ltd., New Delhi, 2014. 1.
- Den Hartog J.P., "Mechanical Vibrations," 3rd Edition, Crastre Press, 2013. Rao S.S., "Mechanical Vibrations", 5th Edition, Prentice Hall, 2004. 2.
- 3.

9

9

9

9

COURS	COURSE OUTCOMES:					
On com	On completion of the course, the students will be able to					
CO1:	solv	e and identify the frequency resp	onse of single degree of freedom	system	Analyzing (K4)	
CO2:	solv	e and design vibration absorber f	vstem	Analyzing (K4)		
CO3:	solv	e and determine the natural frequ	ency of Multi degrees of freedor	n system	Analyzing (K4)	
CO4:	solv	e and analyse the vibration chara	cteristics of continuous system		Evaluating (K5)	
CO5:	CO5: analyse and understand the vibration measuring instruments and machine signature					
CO6:	dete	rmine the natural frequency of st		Analyzing (K4),		
				Manipulation (S2)		
CO7:	O7: identify the defects in bearing using vibration signals				Evaluating (K5),	
					Precision (S3)	
CO8:	CO8: identify the defects in gear using vibration signals				Evaluating (K5),	
					Precision (S3)	
	Mapping of COs with POs					
COs/PC)s	PO1	PO2		PO3	
CO1	l	1	2		1	
CO2	2	1	3		2	
CO3	3	1	3		2	
CO4	1	1	3		1	
CO5	5	1	3		2	
COe	5	1	3		2	
CO7	7	1	3		2	
CO8	3	1	3		2	
1 - Slig	ht, 2 -	– Moderate, 3 – Substantial, B	T – Bloom's Taxonomy			

	18EDT22 MECHANISM DESIGN AND ANALYSIS			
		Т	Р	Credit
	3	1	0	4
Preamble	To study the displacement, velocity and acceleration of various comp	plex me	chanisı	ns through
	various acceleration methods and to develop the various mechanisms	throug	h desig	n, analysis
	and simulation with an ability to use the various mechanisms in real	ife prob	lems e	ffectively.
Prerequisites	Fundamentals of kinematic and kinetic, Basic of vector loop equation	n, Basic	drawir	ıg skill.
UNIT – I				9
	of Kinematics: Review of fundamentals of kinematics - Mobility An	•		
	plex Mechanism - Kinematic Inversion. Position Analysis - Vector	loop e	quatior	is for Four
bar, Slider cra	k, Inverted slider crank, Geared five bar and Six bar linkages.			
UNIT – II				9
	alysis: The velocity and acceleration Analysis- simple four bar linka	0		and Plane
complex mech	anism – Normal acceleration-Goodman"s indirect method- Auxiliary	point me	ethod.	
				0
UNIT – III Dath Carriet	no Theorem Dived and maxima controdes, inflaction points and infla-	tion oir	ala Eu	9
	re Theory: Fixed and moving centrodes, inflection points and inflection		cie. El	ller Savary
equation, grap	nical constructions – cubic of stationary curvature – Bobillier theorem			
UNIT – IV				9
	Aechanisms: Type synthesis – Number synthesis – Associated linka	ge conc	ent D	-
•	action generation, Path generation, Motion generation. Two, Three and	-	-	
	nods. Cognate Linkages -Coupler curve synthesis-Bloch's method of			
bar mechanisn		-)		0
$\mathbf{UNIT} - \mathbf{V}$				
Dynamics and				9
- j mannes and	Spatial Mechanism Analysis: Static force and Inertia force analysis	s of sin	nple m	-
	Spatial Mechanism Analysis: Static force and Inertia force analysinod. Mobility of four bar spatial linkage – Wobble plate mechanism			echanism -
Graphical met	nod. Mobility of four bar spatial linkage – Wobble plate mechanism	- Kine	matic	echanism - analysis of
Graphical met		- Kine	matic	echanism - analysis of
Graphical met spatial RSSR	nod. Mobility of four bar spatial linkage – Wobble plate mechanism	i - Kine se kine	matic matics	echanism - analysis of of robotic
Graphical met spatial RSSR manipulators. REFERENCI	hod. Mobility of four bar spatial linkage – Wobble plate mechanism mechanism – Denavit – Hartenberg parameters. Forward and Inver Lecture:45	i - Kine se kine 5, Tuto	matic matics rial:15	echanism - analysis of of robotic , Total: 60
Graphical met spatial RSSR manipulators. REFERENCI	nod. Mobility of four bar spatial linkage – Wobble plate mechanism mechanism – Denavit – Hartenberg parameters. Forward and Inver Lecture:45	i - Kine se kine 5, Tuto	matic matics rial:15	echanism - analysis of of robotic , Total: 60
Graphical met spatial RSSR manipulators. REFERENCI 1. Shigley J McGraw	nod. Mobility of four bar spatial linkage – Wobble plate mechanism mechanism – Denavit – Hartenberg parameters. Forward and Inver Lecture:45 S: E., Pennock G.R. and Uicker J.J., "Theory of Machines and M Hill, New York, 2016.	i - Kine se kine 5, Tuto echanis	matic matics rial:15 ms", 4	echanism - analysis of of robotic , Total: 60
Graphical met spatial RSSR manipulators. REFERENCI 1. Shigley J McGraw 2. Rattan S.S	nod. Mobility of four bar spatial linkage – Wobble plate mechanism mechanism – Denavit – Hartenberg parameters. Forward and Inver Lecture:45 S: E., Pennock G.R. and Uicker J.J., "Theory of Machines and M Hill, New York, 2016. S., "Theory of Machines", 3 rd Edition, Tata McGraw Hill Education, N	- Kine se kine 5, Tuto echanis ew Yor	matic matics rial:15 ms", 4 k, 2014	echanism - analysis of of robotic , Total: 60 . th Edition, 4.
Graphical met spatial RSSR manipulators. REFERENCI 1. Shigley J McGraw 2. Rattan S.S 3. Ghosh Ar	nod. Mobility of four bar spatial linkage – Wobble plate mechanism mechanism – Denavit – Hartenberg parameters. Forward and Inver Lecture:45 S: E., Pennock G.R. and Uicker J.J., "Theory of Machines and M Hill, New York, 2016. S., "Theory of Machines", 3 rd Edition, Tata McGraw Hill Education, N hitabha and Mallik Asok Kumar, "Theory of Mechanism and Machine	- Kine se kine 5, Tuto echanis ew Yor	matic matics rial:15 ms", 4 k, 2014	echanism - analysis of of robotic , Total: 60 . th Edition, 4.
Graphical met spatial RSSR manipulators. REFERENCI 1. Shigley J McGraw 2. Rattan S.S 3. Ghosh Ar Press, Net	nod. Mobility of four bar spatial linkage – Wobble plate mechanism mechanism – Denavit – Hartenberg parameters. Forward and Inver Lecture:45 S: E., Pennock G.R. and Uicker J.J., "Theory of Machines and M Hill, New York, 2016. S., "Theory of Machines", 3 rd Edition, Tata McGraw Hill Education, N	- Kine se kine 5, Tuto echanis ew Yor s", 3 rd E	matic matics rial:15 ms", 4 k, 2014 cdition,	echanism - analysis of of robotic , Total: 60 . th Edition, 4.

COURS	SE OUTCOMES:		BT Mapped			
On com	(Highest Level)					
CO1:	construct the one D.O.F of the com	plex mechanism by changing the links and	Analyzing (K4)			
	find out the position of links in vario					
CO2:	analyze the velocity and acceleration	Evaluating (K5)				
	by using various methods					
CO3:	determine the path of curvature of th	Evaluating (K5)				
CO4:	4: synthesis the various mechanism links by different synthesis methods					
CO5:	analyze the static and dynamics for	Analyzing (K4)				
COs/PC	s PO1	PO2	PO3			
CO1	3	3	2			
CO2	3	2	3			
CO3	3	2	1			
CO4	3	2	1			
CO5	3	2	1			
1 - Slight	nt, 2 – Moderate, 3 – Substantial, B	T - Bloom's Taxonomy				

		18EDL21 MECHA	NISM SYNTHESIS LABORAT	ORY			
				L	Τ	Р	Credit
				0	0	2	1
Preamb	le	using analysis tools.	design, synthesis and simulate the		-		
Prerequ	isites		ematics and dynamics of links, St ling skill, Knowledge in modeling	-			-
List of]	Exercis	es / Experiments:					
1. 5	Static fo	orce analysis of simple mechan	isms using ANSYS.				
2.	Static fo	orce analysis of plane complex	mechanism using ANSYS.				
3.]	Kinema	tic analysis of slider crank usir	ng ADAMS.				
4.]	Kinema	tic analysis of four bar mechan	ism using ADAMS.				
5.	Kinema	tic analysis of one degree of fr	eedom of pendulum using ADAM	IS.			
6.	Kinema	tic Analysis of the press mecha	anism using ADAMS.				
7.]	Kinema	tic Analysis of lift mechanism	using ADAMS.				
8.]	Kinema	tic Analysis of the Atkinson m	echanism using ADAMS.				
							Total: 30
		S / MANUALS / SOFTWAR			011		
		software.com/product/adams	¹ Edition, Tata McGrawHill, New	Delni, 2	2011.		
		FCOMES:			B	T Ma	nned
		of the course, the students will	be able to				Level)
CO1:			n simple and complex mechanism				g (K5),
					Man	ipulat	ion (S2)
CO2:	analyz	te the kinematics parameters i	n simple and complex mechanism	ms for			g (K5),
	improv	ving the output motions			Man	ipulat	ion (S2)
CO3:	analyz	te the velocity and acceleration	of simple and complex mechanis	ms	Ana	alyzin	g (K4),
					Man	ipulat	ion (S2)
		Мар	ping of COs with POs				
COs/P	Os	PO1	PO2		P	03	
COI		2	2			3	
CO2	2	3	2			3	
COS		3	2			2	
1 - Slig	ht, $2 - 1$	Moderate, 3 – Substantial, B	T – Bloom's Taxonomy				

18CCE02 SAFETY IN ENGINEERING INDUSTRY

es bran	Б	Credit
		('rodit

		3	0	0	3	
Preamble	The course deals with the study on hazards involved in p	erform	ning se	everal	machining	
	operations, safety precautions and guidelines to be followed while handling machines and					
	industrial equipments utilizing safety devices for specified operations and types of guarding					
	systems in machines for safe operation.					
			•			

Prerequisites Manufacturing Technology, Material Removal Processes, Thermal Engineering. UNIT – I

9

9

9

9

Safety in Metal Working Machinery and Wood Working Machines: General safety rules, principles, maintenance, Inspections of turning machines, boring machines, milling machine, planning machine and grinding machines, CNC machines, Wood working machinery, types, safety principles, electrical guards, work area, material handling, inspection, standards and codes- saws, types, hazards.

UNIT – II

Principles of Machine Guarding: Guarding during maintenance, Zero Mechanical State (ZMS), Definition, Policy for ZMS – guarding of hazards - point of operation protective devices, machine guarding, types, fixed guard, interlock guard, automatic guard, trip guard, electron eye, positional control guard, fixed guard fencing- guard construction- guard opening. Selection and suitability: lathe-drilling-boring-milling-grinding-shaping-sawing-shearing-presses- forgehammer – flywheels - shafts couplings-gears-sprockets wheels and chains- pulleys and belts-authorized entry to hazardous installations-benefits of good guarding systems.

UNIT – III

Safety in Welding and Gas Cutting: Gas welding and oxygen cutting, resistances welding, arc welding and cutting, common hazards, personal protective equipment, training, safety precautions in brazing, soldering and metalizing – explosive welding, selection, care and maintenance of the associated equipment and instruments – safety in generation, distribution and handling of industrial gases - colour coding – flashback arrestor – leak detection - pipe line safety - storage and handling of gas cylinders.

UNIT – IV

Safety in Cold Forming and Hot Working of Metals: Cold working, power presses, point of operation safe guarding, auxiliary mechanisms, feeding and cutting mechanism, hand or foot-operated presses, power press electric controls, power press set up and die removal, inspection and maintenance-metal sheers-press brakes. Hot working safety in forging, hot rolling mill operation, safe guards in hot rolling mills – hot bending of pipes, hazards and control measures. Safety in gas furnace operation, cupola, crucibles, ovens, foundry health hazards, work environment, material handling in foundries, foundry production cleaning and finishing foundry processes.

UNIT – V

Safety in Finishing, Inspection and Testing: Heat treatment operations, electro plating, paint shops, sand and shot lasting, safety in inspection and testing, dynamic balancing, hydro testing, valves, boiler drums and headers, pressure vessels, air leak test, steam testing, safety in radiography, personal monitoring devices, radiation hazards, engineering and administrative controls, Indian Boilers Regulation. Health and welfare measures in engineering industry-pollution control in engineering industry- industrial waste disposal.

REFERENCES:

- 1. John V. Grimaldi and Rollin H. Simonds, "Safety Management", 5th Edition, All India Travelers Book Seller, New Delhi, 1991.
- 2. Krishnan N.V., "Safety Management in Industry", Jaico Publishers, 1996.
- 3. Jane Blunt, Nigel C. Balchin, "Health and Safety in Welding and Allied Processes", 5th Edition, Woodhead Publishing Ltd., U.K., 2002.

9

Total: 45

COURS	SE OUTCOMES:		BT Mapped			
On com	pletion of the course, the students will be able to)	(Highest Level)			
CO1:	work safely in metal and wood working maching	Applying (K3)				
CO2:	identify proper guarding for different application	Analyzing (K4)				
CO3:	work safely in welding and allied process	Analyzing (K4)				
CO4:	work safely in cold and hot working metals Ap					
CO5:	handle safely testing and inspection instrument	S	Analyzing (K4)			
Mapping of COs with POs						
COs/PC	PO1	PO2	PO3			
CO1	:		2			
CO2	:		3			
CO3	:		2			
CO4	:		2			
CO5	:		3			
1 - Slig	ht, 2 – Moderate, 3 – Substantial, BT – Bloon	n's Taxonomy				

18CCE04 DESIGN FOR MANUFACTURE AND ASSEMBLY

(Common to CADCAM & Engineering Design branches)

		_	-	-	010440
		3	0	0	3
Preamble	Products cannot be manufactured directly from the basic desig	n by a	manut	facturir	ng process,
	So the design is to be modified as manufacture and assembly oriented. This knowledge is				
	necessary to get a defect free product.				
Prerequisites	Machine drawing, Manufacturing Technology.				

UNIT – I

DFMA Guidelines and Geometric Tolerance: General design principles for manufacturability - Design for assembly - strength and mechanical factors - Geometric tolerances – Worst case method - Assembly limits – Design and Manufacturing Datum – Conversion of design datum into manufacturing datum -Tolerance stacks- Process capability.

UNIT – II

Form Design: Principal materials - Selection of materials and processes - Mechanisms selection - Possible solutions - Evaluation method - Influence of materials on form design - form design of grey iron, malleable iron, steel and aluminium castings, welded members and forgings.

UNIT – III

Machining Considerations: Design features to facilitate machining – Single point and multipoint cutting tools - Design for turning operation- Design for machining round holes – Design for Parts produced by milling, planning, shaping and slotting- Reduction of machined area- Simplification by separation - Simplification by amalgamation - Design for machinability - Design for economy - Design for clampability - Design for accessibility.

UNIT – IV

Casting Considerations: Redesign of castings based on Parting line considerations - Minimizing core requirements, machined holes – Design rules for sand castings – Investment casting: Introduction, Design consideration of Investment casting -The die casting cycle, Determination of number of cavities and appropriate machine size in die casting- Identification of uneconomical design - Modifying the design - Computer applications in DFMA.

UNIT – V

Design for the Environment: Environmental objectives – Basic DFE methods – Lifecycle assessment – AT&T's environmentally responsible product assessment - Weighted sum assessment method – Techniques to reduce environmental impact – Design to minimize material usage – Design for recyclability – Design for remanufacture – Design for energy efficiency – Design to regulations and standards.

REFERENCES:

1. Boothroyd G., "Product Design for Manufacture and Assembly", 3rd Edition, New York, CRC Press, London, 2013.

- 2. Peck Harry, "Design For Manufacture", Pitman Publications, London 1983.
- 3. Otto Kevien and Wood Kristin, "Product Design", 1st Edition, Pearson Publication, New Delhi, 2004.

9

9

Total: 45

Р

Credit

9

9

9

LT

COURS	BT Mapped					
On com	(Highest Level)					
CO1:	analyze the given component and i	dentify the suitable geometrical tolerances	Analyzing (K4)			
	for manufacturing oriented design					
CO2:	propose design guidelines for form	design of castings, welded members and	Applying (K3)			
	forgings					
CO3:	suggest suitable design modification	ns to facilitate machining of components	Applying (K3)			
CO4:		nodify component design for sand and die	Analyzing (K4)			
	castings					
CO5:	CO5: perform the lifecycle assessment for a component to achieve eco-friendly design					
	Mapping of COs with POs					
COs/P	Os PO1	PO2	PO3			
COI	2	1	3			
CO2	2 1	1	3			
CO3	CO3 1 1					
CO4	1	1	3			
CO5	5 2	1	3			
1 - Slig	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy					

18MTE01 FLUID POWER SYSTEM DESIGN

(Common to Mechatronics, Engineering Design & CADCAM branches)

L	Т	Р	Credit
3	0	2	4

		•	•	-	-	
Preamble	This course deals with the design of a system which generate,	contro	ol and	transm	nission	of
	power using pressurized fluids.					ľ
Prerequisites	Nil					

9

9

9

9

Fundamentals and Power Source of Hydraulic System: Basics, Types and structure of fluid power systems – Pascal's Law and its application –Fluid properties – Losses in pipes, valves and fittings – Advantages and applications of Fluid power systems. Fluid power symbols – Hydraulic pumps: Gear, Vane and Piston pumps, Pump Performance, Characteristics and Selection - Sizing of hydraulic pumps.

UNIT – II

UNIT – I

Control Components of Hydraulic System: Direction control valves: Three-way valve, Four way valve, Check valve and shuttle valve – Actuation mechanism of DCV – Pressure control valves: Pressure relief, Pressure Reducing, Counter balance, Sequencing and Unloading Valves – Flow control valves and its types – Proportional Valves – Servo valves and its types.

UNIT – III

Fundamentals of Pneumatic System: Perfect Gas laws – Compressors: piston, screw and vane compressor – Fluid conditioning Elements: Filter, Regulator and Lubricator unit, Pneumatic silencers, After coolers, Air dryers – Air control valves – Fluid power actuators: Linear and Rotary actuators – types – Cushioning mechanism in cylinders – Sizing of Actuators.

UNIT – IV

Fluid Power Circuit Design: Circuit design methods: Cascade method, Step counter method and KV Map method (two / three-cylinder circuits) – Basic pneumatic circuits – Electrical components and electrical controls for Fluid power circuits – Introduction to Fluid logic devices and applications – Accumulator: Types and application circuits – Pressure intensifier circuits – PLC applications in Fluid power circuit.

UNIT – V

Industrial Circuits and Maintenance: Industrial circuits: Speed control circuits – Regenerative cylinder circuits – Pump unloading circuit – Double pump circuit – Counter balance valve circuit – Hydraulic cylinder sequencing circuit – Automatic cylinder reciprocating circuit – Cylinder synchronizing circuits – Fail safe circuits - Sealing devices: Types and materials – Installation, Maintenance and trouble shooting of Fluid Power systems.

List of Experiments:

- 1. Design and testing of Electro-hydraulic circuit with pressure sequence valve
- 2. Design of hydraulic circuit for speed control of hydraulic motor and cylinder
- 3. Circuits with logic controls AND valve and OR valve
- 4. Sequential Circuit with pneumatic control without pneumatic timers
- 5. Sequential Circuit with pneumatic control with pneumatic timers
- 6. Cylinder synchronizing circuits

7. Circuits with multiple cylinder sequence – Electrical control 8. Circuit with rod less cylinder – Electrical control 9. Proportional and Servo control of Pressure and Flow in hydraulic Circuits 10. Simulation and analysis of fluid power circuits using fluid power simulation software Lecture: 45, Practical: 30, Total: 75 REFERENCES / MANUALS / SOFTWARES: 1. Esposito Anthony, "Fluid Power with Applications", 7 th Edition, Pearson Education Ltd., New York, 2013. 2. Majumdar S.R., "Oneumatic Systems – Principles and Maintenance", 1 st Edition, McGraw-Hill, New Delhi, 2017. COURSE CUTCOMES: BT Mapped (Highest Level) OUTEUTE Induction of the course, the students will be able to Colspan= develop a fluid power control components for a given application Applying (K3) Col: Identify the fluid power control components for a given application using Creating (K6) Colspan= da analyze the fluid power circuit with different methodologies for an industrial environment. Colspan= da analyze the fluid power circuit using simulation software for industrial environment. Colspan= da simulate fluid power circuit using simulation software for industry Applying (K3) Colspan							
9. Proportional and Servo control of Pressure and Flow in hydraulic Circuits 10. Simulation and analysis of fluid power circuits using fluid power simulation software Lecture: 45, Practical: 30, Total: 75 REFERENCES / MANUALS / SOFTWARES: 1. Esposito Anthony, "Fluid Power with Applications", 7 th Edition, Pearson Education Ltd., New York, 2013. 2. Majumdar S.R., "Pneumatic Systems – Principles and Maintenance", 1 st Edition, McGraw-Hill, New Delhi, 2017. BT Mapped (Highest Level) OURSE OUTCOMES: On completion of the course, the students will be able to OI: identify the fluid power components, their symbols and functions Applying (K3) CO2: select the required fluid power control components for a given application Applying (K3) CO3: design and analyze the fluid power circuit with different methodologies for an industrial environment Cosi: design and analyze the fluid power circuits with pneumatic, electrical, PLC induction (K6), precision (S3) Cosi: design, construct and test fluid power circuit using simulation software for industrial environ for low cost automation Creating (K6), Precision (S3) Cosi: develop and simulate fluid power circuit using simulation software for industrial environ for low cost automation Creating (K6), Precision (S3) <td col<="" td=""><td>7. Circu</td><td colspan="5">7. Circuits with multiple cylinder sequence – Electrical control</td></td>	<td>7. Circu</td> <td colspan="5">7. Circuits with multiple cylinder sequence – Electrical control</td>	7. Circu	7. Circuits with multiple cylinder sequence – Electrical control				
ID. Simulation and analysis of fluid power circuits using fluid power simulation software Lecture: 45, Practical: 30, Total: 75 REFERENCES / MANUALS / SOFTWARES: 1. Esposito Anthony, "Fluid Power with Applications", 7th Edition, Pearson Education Ltd., New York, 2013. 2. Majumdar S.R., "Pneumatic Systems – Principles and Maintenance", 1st Edition, McGraw-Hill, New Delhi, 2017. 3. Majumdar S.R., "Oil Hydraulic Systems – Principles and Maintenance", 28th Edition, McGraw-Hill, New Delhi, 2017. COURSE OUTCOMES: OI: identify the fluid power components, their symbols and functions Applying (K3). CO2: select the required fluid power components for a given application Applying (K3). CO2: select the required fluid power circuit with different methodologies for an industrial environment Creating (K6). CO5: design and analyze the fluid power circuits with pneumatic, electrical, PLC and logic control for low cost automation Creating (K6). CO6: identify the fluid power components and their symbols used in industry Applying (K3). CO6: identify the fluid power circuits with pneumatic, electrical, PLC and the symbols used in industry Applying (K6). CO6: identify the fluid power circuits using simulation software for industrial application Creating	8. Circuit with rod less cylinder – Electrical control						
Lecture: 45, Practical: 30, Total: 75 REFERENCES / MANUALS / SOFTWARES: 1. Esposito Anthony, "Fluid Power with Applications", 7 th Edition, Pearson Education Ltd., New York, 2013. 2. Majumdar S.R., "Pneumatic Systems – Principles and Maintenance", 1 st Edition, McGraw-Hill, New Delhi, 2017. 3. Majumdar S.R., "Oil Hydraulic Systems – Principles and Maintenance", 28 th Edition, McGraw-Hill, New Delhi, 2017. COURSE OUTCOMES: On completion of the course, the students will be able to CO1: identify the fluid power components, their symbols and functions Applying (K3) CO2: select the required fluid power circuit with different methodologies for an industrial environment Creating (K6) CO3: apply the pneumatic technology to design a system with low cost automation simulation software Creating (K6) CO5: design and analyze the fluid power circuit for a given application using simulation software Creating (K6), Precision (S3) CO7: design, construct and test fluid power circuit swith pneumatic, electrical, PLC and logic control for low cost automation Applying (K3), Mainplualition (S2) CO7: design, and simulate fluid power circuit using simulation software for industrial application (S3) Creating (K6), Precision (S3) CO8: PO1	9. Prop	ortional and Servo control of Pres	sure and Flow in hydraulic Circu	its			
REFERENCES / MANUALS / SOFTWARES: 1. Esposito Anthony, "Fluid Power with Applications", 7 th Edition, Pearson Education Ltd., New York, 2013. 2. Majumdar S.R., "Pneumatic Systems – Principles and Maintenance", 1 st Edition, McGraw-Hill, New Delhi, 2017. 3. Majumdar S.R., "Oil Hydraulic Systems – Principles and Maintenance", 28 th Edition, McGraw-Hill, New Delhi, 2017. COURSE OUTCOMES: 0n completion of the course, the students will be able to CO1: identify the fluid power components, their symbols and functions CO2: select the required fluid power circuit with different methodologies for an industrial environment CO3: apply the pneumatic technology to design a system with low cost automation industry Applying (K3) Co3: co5: design and analyze the fluid power circuit for a given application using simulation software CO6: identify the fluid power components and their symbols used in industry Applying (K3), Mainpulation (S2) Co7: design, construct and test fluid power circuit with pneumatic, electrical, PLC and Napplying (K3), Mainpulation (S3) co7: design, construct and test fluid power circuit using simulation software for industrial application Creating (K6), Precision (S3) CO7: design and analyze the fluid power circuit using simulation software for industrial ap	10. Simu	lation and analysis of fluid power	r circuits using fluid power simula	ation soft	ware		
1. Esposito Anthony, "Fluid Power with Applications", 7 th Edition, Pearson Education Ltd., New York, 2013. 2. Majumdar S.R., "Pneumatic Systems – Principles and Maintenance", 1 st Edition, McGraw-Hill, New Delhi, 2017. 3. Majumdar S.R., "Oil Hydraulic Systems – Principles and Maintenance", 28 th Edition, McGraw-Hill, New Delhi, 2017. COURSE OUTCOMES: 0n completion of the course, the students will be able to CO1: identify the fluid power components, their symbols and functions Applying (K3) CO2: select the required fluid power control components for a given application Applying (K4) CO4: design and develop a fluid power circuit with different methodologies for an industrial environment Creating (K6) CO5: design, construct and test fluid power circuits with pneumatic, electrical, PLC and logic control for low cost automation Applying (K3), Manipulation (S2) CO6: ideutify application Mapping of COs with POs Creating (K6), Precision (S3) CO8/POs PO1 PO2 PO3 CO3 3 2 3 CO4 3 2 3 CO5: design and analyze the fluid power circuit with genematic, electrical, PLC and logic control for low cost automation Precision (S3) CO6: dev			Lectur	e: 45, Pr	actical: 30, Total: 75		
2013. 2. Majumdar S.R., "Pncumatic Systems – Principles and Maintenance", 1 st Edition, McGraw-Hill, New Delhi, 2017. 3. Majumdar S.R., "Oil Hydraulic Systems – Principles and Maintenance", 28 th Edition, McGraw-Hill, New Delhi, 2017. COURSE OUTCOMES: BT Mapped On completion of the course, the students will be able to C01: identify the fluid power components, their symbols and functions Applying (K3) C02: select the required fluid power control components for a given application Applying (K4) CO4: design and develop a fluid power circuit with different methodologies for an industrial environment Creating (K6) C05: design, construct and test fluid power circuit for a given application using simulation software Creating (K6), Manipulation (S2) C06: identify the fluid power components and their symbols used in industry Applying (K3), Manipulation (S2) C07: design, construct and test fluid power circuit using simulation software for industrial application Creating (K6), Precision (S3) C08: develop and simulate fluid power circuit using simulation software for industrial application Creating (K6), Precision (S3) C08: OS/POS PO1 PO2 PO3 C01 3 2 3	REFEREN	CES / MANUALS / SOFTWAR	ES:				
Delhi, 2017.3.Majumdar S.R., "Oil Hydraulic Systems – Principles and Maintenance", 28th Edition, McGraw-Hill, New Delhi, 2017.COURSE OUTCOMES:On completion of the course, the students will be able toCO1:identify the fluid power components, their symbols and functionsCO2:select the required fluid power control components for a given applicationCO3:apply the pneumatic technology to design a system with low cost automationCO4:design and develop a fluid power circuit with different methodologies for an industrial environmentCO5:design and analyze the fluid power circuit for a given application using simulation softwareCO6:identify the fluid power components and their symbols used in industryCO7:design, construct and test fluid power circuit with pneumatic, electrical, PLC and logic control for low cost automationCO8:develop and simulate fluid power circuit using simulation software for industrial applicationCO5:QO1:CO4:3CO5:QO1:CO5:OP1PO2PO3CO4:3CO5:3CO5:3CO5:3CO6:3CO5:3CO6:3CO7:3CO7:3CO8:PO1PO2PO3CO4:3CO5:3CO5:3CO5:3CO6:3CO6:3CO6:3CO7:3CO6		to Anthony, "Fluid Power with A	Applications", 7 th Edition, Pearso	on Educa	tion Ltd., New York,		
New Delhi, 2017. BT Mapped (Highest Level) COURSE OUTCOMES: BT Mapped (Highest Level) CO1: identify the fluid power components, their symbols and functions Applying (K3) CO2: select the required fluid power control components for a given application Applying (K3) CO3: apply the pneumatic technology to design a system with low cost automation Analyzing (K4) CO4: design and develop a fluid power circuit with different methodologies for an industrial environment Creating (K6) CO5: design and analyze the fluid power circuit for a given application using simulation software Creating (K6) CO6: identify the fluid power components and their symbols used in industry Applying (K3), Manipulation (S2) CO7: design, construct and test fluid power circuit swith pneumatic, electrical, PLC and logic control for low cost automation Creating (K6), Precision (S3) CO8: develop and simulate fluid power circuit using simulation software for industrial application Creating (K6), Precision (S3) CO3: Q2 3 2 3 CO4: Gas 2 3 2 3 CO5: PO1 PO2 PO3 2 3 3 CO5: Q3 2	•	· · · ·	Principles and Maintenance", 1	st Edition	, McGraw-Hill, New		
BT Mapped (Highest Level)COURSE OUTCOMES: On completion of the course, the students will be able to(Highest Level)CO1:identify the fluid power components, their symbols and functionsApplying (K3)CO2:select the required fluid power control components for a given applicationApplying (K3)CO3:apply the pneumatic technology to design a system with low cost automationAnalyzing (K4)CO4:design and develop a fluid power circuit with different methodologies for an industrial environmentCreating (K6)CO5:design and analyze the fluid power circuit for a given application using simulation softwareCreating (K6)CO6:identify the fluid power components and their symbols used in industry and logic control for low cost automationApplying (K3), Manipulation (S2)CO7:design, construct and test fluid power circuit using simulation software for industrial applicationCreating (K6), Precision (S3)CO8:develop and simulate fluid power circuit using simulation software for industrial applicationCreating (K6), Precision (S3)CO8:PO1PO2PO3CO1:323CO2:323CO3:323CO4:323CO5:323CO4:323CO5:323CO6:333CO6:333CO5:323CO5:333CO6: </td <td>•</td> <td></td> <td>ns – Principles and Maintenance</td> <td>e", 28th E</td> <td>dition, McGraw-Hill,</td>	•		ns – Principles and Maintenance	e", 28 th E	dition, McGraw-Hill,		
CO1:identify the fluid power components, their symbols and functionsApplying (K3)CO2:select the required fluid power control components for a given applicationApplying (K3)CO3:apply the pneumatic technology to design a system with low cost automationAnalyzing (K4)CO4:design and develop a fluid power circuit with different methodologies for an industrial environmentCreating (K6)CO5:design and analyze the fluid power circuit for a given application using simulation softwareCreating (K6)CO6:identify the fluid power components and their symbols used in industryApplying (K3), Manipulation (S2)CO7:design, construct and test fluid power circuit swith pneumatic, electrical, PLC and logic control for low cost automationCreating (K6), Precision (S3)CO8:develop and simulate fluid power circuit using simulation software for industrial applicationCreating (K6), Precision (S3)CO8:Gos/POsPO1PO2PO3CO3323CO4323CO5323CO5323CO6333CO6333CO7333CO8333	COURSE O	OUTCOMES:	be able to				
CO2:select the required fluid power control components for a given applicationApplying (K3)CO3:apply the pneumatic technology to design a system with low cost automationAnalyzing (K4)CO4:design and develop a fluid power circuit with different methodologies for an industrial environmentCreating (K6)CO5:design and analyze the fluid power circuit for a given application using simulation softwareCreating (K6)CO6:identify the fluid power components and their symbols used in industryApplying (K3), Manipulation (S2)CO7:design, construct and test fluid power circuits with pneumatic, electrical, PLC and logic control for low cost automationCreating (K6), Precision (S3)CO8:develop and simulate fluid power circuit using simulation software for industrial applicationCreating (K6), Precision (S3)CO8:CO1323CO2323CO3323CO4323CO5323CO6333CO6333CO6333							
CO3: apply the pneumatic technology to design a system with low cost automation design and develop a fluid power circuit with different methodologies for an industrial environmentAnalyzing (K4)CO4: design and analyze the fluid power circuit for a given application using simulation softwareCreating (K6)CO5: identify the fluid power components and their symbols used in industry and logic control for low cost automationApplying (K3), Manipulation (S2)CO7: and logic control for low cost automationCreating (K6), Precision (S3)CO8: develop and simulate fluid power circuit using simulation software for industrial applicationCreating (K6), Precision (S3)CO8: CO132CO332CO432CO532CO532CO432CO533CO533CO633CO733CO833	CO2: selec	t the required fluid power control	components for a given applicati	on			
CO4:design and develop a fluid power circuit with different methodologies for an industrial environmentCreating (K6)CO5:design and analyze the fluid power circuit for a given application using simulation softwareCreating (K6)CO6:identify the fluid power components and their symbols used in industry and logic control for low cost automationApplying (K3), Manipulation (S2)CO7:design, construct and test fluid power circuits with pneumatic, electrical, PLC and logic control for low cost automationCreating (K6), Precision (S3)CO8:develop and simulate fluid power circuit using simulation software for industrial applicationCreating (K6), Precision (S3)CO5PO1PO2PO3CO2323CO3323CO4323CO5323CO5323CO6333CO7333CO8333							
$\begin{array}{ c c c c c c } \hline COS: & design and analyze the fluid power circuit for a given application using simulation software components and their symbols used in industry capability the fluid power components and their symbols used in industry capability of the fluid power components and their symbols used in industry capability of the fluid power components and their symbols used in industry capability of the fluid power components and their symbols used in industry capability of the fluid power circuits with pneumatic, electrical, PLC and logic control for low cost automation precision (S3) cost develop and simulate fluid power circuit using simulation software for industrial application to cost automation control for low cost$	-	s for an	Creating (K6)				
$\begin{array}{ c c c c c } \hline CO6: & identify the fluid power components and their symbols used in industry & Applying (K3), Manipulation (S2) \\ \hline CO7: & design, construct and test fluid power circuits with pneumatic, electrical, PLC and logic control for low cost automation & Creating (K6), Precision (S3) \\ \hline CO8: & develop and simulate fluid power circuit using simulation software for industrial application & PO2 & PO3 \\ \hline COs/POs & PO1 & PO2 & PO3 \\ \hline CO3 & 3 & 2 & 3 \\ \hline CO3 & 3 & 2 & 3 \\ \hline CO4 & 3 & 2 & 3 \\ \hline CO5 & 3 & 2 & 3 \\ \hline CO5 & 3 & 2 & 3 \\ \hline CO6 & 3 & 3 & 2 & 3 \\ \hline CO7 & 3 & 3 & 3 & 3 \\ \hline CO8 & 3 & 3 & 3 & 3 \\ \hline \end{array}$	CO5: design and analyze the fluid power circuit for a given application using				Creating (K6)		
CO7:design, construct and test fluid power circuits with pneumatic, electrical, PLC and logic control for low cost automationCreating (K6), Precision (S3)CO8:develop and simulate fluid power circuit using simulation software for industrial applicationCreating (K6), Precision (S3)Mapping of COs with POsCOs/POsPO1PO2PO3CO1323CO2323CO3323CO4323CO5323CO6333CO7333CO8333			nd their symbols used in industry				
CO8:develop and simulate fluid power circuit using simulation software for industrial applicationCreating (K6), Precision (S3)Mapping of COs with POsCOs/POsPO1PO2PO3CO1323CO2323CO3323CO4323CO5323CO6333CO7333CO8333				al, PLC	Creating (K6),		
COs/POsPO1PO2PO3C01323C02323C03323C04323C05323C06333C07333C08333	CO8: deve	lop and simulate fluid power		are for	Creating (K6),		
CO1323CO2323CO3323CO4323CO5323CO6333CO7333CO8333		Map	ping of COs with POs				
CO2323CO3323CO4323CO5323CO6333CO7333CO8333	COs/POs	PO1	PO2		PO3		
CO3 3 2 3 CO4 3 2 3 CO5 3 2 3 CO6 3 3 3 CO7 3 3 3 CO8 3 3 3	CO1	3	2		3		
CO4323CO5323CO6333CO7333CO8333		3	2		3		
CO5 3 2 3 CO6 3 3 3 CO7 3 3 3 CO8 3 3 3		CO3 3 2 3					
CO6 3 3 3 CO7 3 3 3 CO8 3 3 3		CO4 3 2 3					
CO7 3 3 3 CO8 3 3 3 3							
CO8 3 3 3							
			3				
1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy		-			3		
	1 - Slight, 2	– Moderate, 3 – Substantial, B	T - Bloom's Taxonomy				

18EDE01 APPLIED FINITE ELEMENT ANALYSIS								
	L T P Credit							
		3	1	0	4			
Preamble	To familiarize the advanced concepts in finite element an	alysis	and to	o unde	erstand	the		
	principles involved in solving non-Linear and dynamic pr	oblem	s usin	g finit	e elem	ent		
	approach.							
Prerequisites	Finite Element Method							
UNIT – I						9		
Bending of P	ates and Shells: Review of Elasticity Equations – Bending	of Pla	tes and	1 Shell	ls – Fir	iite		
Element Form	alation of Plate and Shell Elements - Conforming and Non-Cont	formin	g Elem	ents –	C_0 and	C_1		
Continuity Ele	ments – Application and Examples.							
UNIT – II						9		
Non-Linear Problems: Introduction – Iterative Techniques – Material Non-linearity – Elasto Plasticity –								
Plasticity – Vi	sco Plasticity - Geometric Non linearity - Large displacement	formu	lation	– App	olication	in		
Metal Forming Process and Contact Problems.								
UNIT – III						9		
Dynamic Pro	blems: Direct Formulation - Free, Transient and Forced Resp	onse –	Soluti	ion Pro	ocedure	s –		
Subspace Iterative Technique – Houbolt, Wilson, Newmark – Methods – Examples.								
UNIT – IV						9		
Fluid Mechan	ics and Heat Transfer Analysis: Governing Equations of Flu	uid Me	echanic	es – In	viscid a	and		
Incompressible	Flow – Potential Formulations – Slow Non-Newtonian Flow –	Metal	and Po	lymer	Formin	g –		
Navier Stokes	Navier Stokes Equation – Steady and Transient Solution.							

$\mathbf{UNIT} - \mathbf{V}$

Error Estimates and Adaptive Refinement: Error norms and Convergence rates - h-Refinement with Adaptivity - Adaptive Refinement Techniques.

Lecture:45, Tutorial:15, Total: 60

9

REFERENCES:

Bathe K.J., "Finite Element Procedures", Prentice Hall, New Jersey, 2006. 1.

Cook, Robert Davis et al, "Concepts and Applications of Finite Element Analysis", 4th Edition, Wiley, 2. John & Sons, 2007.

Ramamurthy G., "Applied Finite Element Analysis", 2nd Edition, I K International Publishing House, 3. 2010.

COURSE OUTCOMES:					BT Mapped	
On completion of the course, the students will be able to					(Highest Level)	
CO1:	CO1: formulate and analyse the finite element equation using plate and shell elements				Applying (K3)	
	for v	arious applications				
CO2:	analy	yze the behaviour of non-linear	materials		Analyzing (K4)	
CO3:	solve	e and compute the responses up	nder dynamics conditions		Analyzing (K4)	
CO4:	calcu	alate the fluid flow phenomena	of various applications		Analyzing (K4)	
CO5:	CO5: estimate the error and remesh the given structure for reducing the discretization				Applying (K3)	
	error					
	Mapping of COs with POs					
COs/PC	COs/POs PO1 PO2		PO3			
CO1	1	2	2		3	
CO2	CO2 1			2		
CO3	CO3 1		2			
CO4	CO4 1		2			
CO5	CO5 2		3			
1 - Slight	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy					

18EDE02 MECHANICAL BEHAVIOUR OF MATERIALS

L

Т

Р

Credit

9

9

9

9

9

Total: 45

(Common to Engineering Design & CADCAM branches)

		3	0	0	3
Preamble	This course provides the necessary knowledge of behaviour un	nder lo	oads w	hich is	needed in
	manufacture and design.				
Prerequisites	Fundamentals of material sciences, Fundamental of physical pro-	opertie	s of the	e matei	rials, Basic
	type of metal and non-metallic materials				

UNIT – I

Elasticity of the Materials: Analysis of stress-definition and notation of stress - equation of equilibrium - description of stress at a point- principal stresses - two and three dimensional Mohr's circles diagram. Boundary condition in terms of surface forces. Analysis of stress-strain components- description of strain at a point - compatibility equations of elasticity: Generalized Hooke's law-formulations of elastic problems - two and three dimensional Mohr's circles diagram - strain energy.

UNIT – II

Plane Stress and Plane Strain Problems: The governing differential equations - bending of narrow cantilever beam of rectangular cross section under an end load - General equations in cylindrical co-ordinates – effect of small circular holes in strained plates-stress concentration

UNIT – III

Elements of the Theory of Plasticity: Introduction - flow curves-tensile test - true stress/true strain-yield criteria for ductile metals- plastic stress-strain relations. Creep definition-creep tests and properties of creep. Theories of failure.

UNIT – IV

Fracture: Overview of problem of fracture and fatigue in structures-stress analysis for members with cracksstress intensity equations- Relationship between stress intensity factor and fracture toughness. Experimental determination $-K_{IC}$ and Kc values-effect of temperature, loading rate and plate thickness on fracture toughness.

UNIT – V

Fracture Mechanics Design: Fatigue crack initiation- fatigue crack propagation under constant load and variable load - fatigue damage tolerance, Elastic - plastic fracture mechanics.

REFERENCES:

George E. Dieter, "Mechanical Metallurgy", 3rd Edition, McGraw Hill Education (India) Pvt. Ltd., 2013.
 Wang C.T., "Applied Elasticity", McGraw-Hill, New York, 1953.

3. Barsoom M. John and Rolte T. Stanley, "Fracture and Fatigue Control in Structures", Prentice-Hall, New Jersey, 1987.

COUR	SE O	BT Mapped			
On com	pletio	(Highest Level)			
CO1:	unde	erstand the elastic behaviours of t	Understanding (K2)		
CO2:	anal	yze the problems of plane stress	and strain conditions.	Analyzing (K4)	
CO3:	unde	erstand the plastic behaviours of	the materials.	Understanding (K2)	
CO4:	impl	lement the various fracture stress	analysis under various conditions.	Analyzing (K4)	
CO5:	impl	lement the fracture mechanics an	d the design under various conditions	Applying (K3)	
		Мар	ping of COs with POs		
COs/PC)s	PO1	PO2	PO3	
CO	l I	3		2	
CO2	2	3		3	
CO3 3		3	2	2	
CO4		3	2	2	
COS	CO5 2			2	
1 - Slig	1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy				

					L	Т	Р	Credit
					3	0	2	4
Preamble	The course introd also provides a gu explore two-dime techniques, structu analogue methods	ideline to sele nsional photo aral model ar	ect an experim b elasticity, th alysis, special	nental technique ne frozen stress l instruments fo	for a g metho	given ag od and	oplicat surfa	ion. It also ce coating
Prerequisites	Stress and strait techniques	in principles,	Metal coatin	ng techniques,	Metro	logy a	nd me	easurement
UNIT – I	· · ·							9
Wheatstone by temperature co UNIT – II	backing materials a idge– constant – cur ompensation effects o sis Methods: Introd	rrent resistanc of lead wires. duction – Tw	e bridge balan	cing Reference I	Bridge tte- thr	–Poten	tiomet ment	er circuit – 9 rectangular
rocatta Th	.aa Flamont Dolt		our -Liement	U U				
	ree - Element Delta transverse strain eff		uge, Plane she	ear gauge, Stress	intensi	ty facto	n guug	ge.
			uge, Plane she	ear gauge, Stress	intensi	ty facto		ge. 9
Correction for UNIT – III Brittle Coating stress in coating merits of stress brittle coating coating mater of the method	transverse strain eff ag Method Bi-Refr ag and that on mode s – coat and all - ter	ects, Stress ga ingent Coati el –Isostatics a np coatings - c el – surface 1 technique app	ng Technique and Isoentacti crack detection preparation an plied to a speci	es: Introduction es - Types of br Techniques –va d application of ific Problem. Re	-relation rittle contribution rittle contribution -rittle rittle -rittle -rittle -rittle -rittle -relation -relation -relation -relation -relation -relation -relation -relation -relation -relation -rittle contribution -rittle contribution -rittle -rittle contribution -rittle - - -rittle 	on betw bating n influen ng cali	ween t nateria ncing a bratior	9 he state of ils relative accuracy of 1 of brittle
Correction for UNIT – III Brittle Coating stress in coating merits of stress brittle coating coating mater of the method	transverse strain eff ag Method Bi-Refr ag and that on mode s – coat and all - tem application-mode als - brittle coatings principle stress – se	ects, Stress ga ingent Coati el –Isostatics a np coatings - c el – surface 1 technique app	ng Technique and Isoentacti crack detection preparation an plied to a speci	es: Introduction es - Types of br Techniques –va d application of ific Problem. Re	-relation rittle contribution rittle contribution -rittle rittle -rittle -rittle -rittle -rittle -relation -relation -relation -relation -relation -relation -relation -relation -relation -relation -rittle contribution -rittle contribution -rittle -rittle contribution -rittle - - -rittle 	on betw bating n influen ng cali	ween t nateria ncing a bratior	9 he state of ils relative accuracy of 1 of brittle

- casting and Modeling techniques – calibration methods -Isoclinic, Isochromatic and stress trajectories - stress separation Methods, Fringe sharpening-stress freezing-three dimensional analysis from models slicing –axisymmetric Stress –torsion problem Plane and spherical waves –coherence.

UNIT – V

Morie Methods: Moire fringes produced by mechanical interference. Geometrical approach, Displacement field approach to Moire fringe analysis, out of plane displacement measurements, Out of plane slope measurements. Applications and advantages. Holography and Thermography.

9

List of Exercises / Experiments :

- 1. Application of strain gauge techniques: Lecture on strain gauge based methods, Cantilever beam and Portal frame experiments.
- 2. Application of Strain Gauge techniques: experiment on combined bending and torsion.
- 3. Applications of photo elasticity: demonstration of photo elastic techniques.
- 4. Applications of photo elasticity: Calibration of the photo elastic constant, Determination of the stress field in a beam under bending.

5	Applications of Digital Image Correla	ation: Demonstration of DIC tech	niques determination of strain
	fields in the gauge section of a polyme		
	Applications of DIC: Determination o		
	Forsion on Hollow shafts.		
		Lectu	re:45, Practical:30, Total: 75
REFER	ENCES:		
	ath L.S., Raghavan M.R., Lingaiah		amachandra K., "Experimental
	ss Analysis", Tata McGraw Hill, 1984		
	ly J.W. and Riley W.F., "Experimenta		cGraw-Hill, 1991.
	hu Singh, "Experimental Stress Analy	sis", Khanna Publishers, 2009.	
	SE OUTCOMES:	l ha ahla ta	BT Mapped
	pletion of the course, the students wil		(Highest Level)
CO1:	handle to measure strain by different	11	
CO2:	conduct the strain analysis of differe	-	Applying (K3)
CO3:	identify, calibrate and recommend th	<u> </u>	Analyzing (K4)
CO4:	measure the Stress trajectories and st		
CO5:	conduct the different experiment to r		Applying (K3)
CO6:	measure the strain on various applica	ations	Applying (K3),
007	1 11	• •.	Precision (S3)
CO7:	measure and calibrate the photoelast	icity	Applying (K3),
CON		1:-:4-1:	Precision (S3)
CO8:	analyze the thermoelastic stress and	digital image correlation	Applying (K3),
	Mor	pping of COs with POs	Precision (S3)
			DO2
COs/PO		PO2	PO3
C01	3	1	2
CO2	3	2	1
CO3	2	1	3
CO4	3	3	3
CO5	3	3	3
CO6	5 3	3	3
CO7	3	3	3
CO8		3	3
1 – Sligl	ht, 2 – Moderate, 3 – Substantial, H	BT - Bloom's Taxonomy	

18EDE04 FRACTURE MECHANICS

L

Т

Р

Credit

JJJJJPreambleFracture mechanics makes it possible to determine whether a crack of given length in a
material of known fracture toughness is safe or not.Image: Strength of materialsImage: Strength of materials

UNIT – I

Elements of Solid Mechanics: The geometry of stress and strain, elastic deformation, plastic and elastoplastic deformation - limit analysis. Theory of Elasticity- Stress – Strain relations, equilibrium equations, compatibility, stress functions.

$\mathbf{UNIT} - \mathbf{II}$

Stationary Crack under Static Loading: Two dimensional elastic fields – Analytical solutions yielding near a crack front – Irwin's approximation - plastic zone size – Dugdaale model – J integral and its relation to crack opening displacement.

UNIT – III

Energy Balance and Crack Growth: Griffith analysis – Linear Fracture Mechanics-Crack Opening displacement – Dynamic energy balance – crack arrest.

UNIT – IV

Fatigue Crack Growth Curve: Empirical relation describing crack growth by fatigue – Life calculations for a given load amplitude – effects of changing the load spectrum – Effects of calculations for a given load amplitude –effects of changing Environment.

$\mathbf{UNIT} - \mathbf{V}$

Elements of Applied Fracture Mechanics: Examples of crack-growth Analysis for cyclic loading - leak before break – crack Initiation under large scale yielding – Thickness as a Design parameter – crack instability in Thermal or Residual – stress fields.

Total: 45

RE	EFERENCES:
1.	George E. Dieter, "Mechanical Metallurgy", 3 rd Edition, McGraw Hill Education (India) Pvt. Ltd., 2013.
2.	Hellan Kare, "Introduction of Fracture Mechanics", Tata McGraw-Hill Book Company, New Delhi,
	1985.
3.	Prashant Kumar, "Elements of Fracture Mechanics", McGraw Hill Education (India) Pvt. Ltd., New
	Delhi, 2009.

9

9

9

COUR	COURSE OUTCOMES: BT Mapped						
On com	pletic	(Highest Level)					
CO1:	knov	know the behaviour of material under load Analyzing (K4)					
CO2:	knov	w the linear fracture mechanics	and crack propagation	Analyzing (K4)			
CO3:	knov	w on fatigue crack growth under	r the various types of loads	Evaluating (K5)			
CO4:	appl	y fracture mechanics for the des	sign of components	Applying (K3)			
CO5:	knov	w the analysis of crack growth v	with large scale yielding	Applying (K3)			
		Ma	pping of COs with POs				
COs/PC)s	PO1	PO2	PO3			
CO	1	3		3			
CO2	2	3					
CO3		3					
CO4				3			
CO5		3					
1 - Slig	ht, 2 -	– Moderate, 3 – Substantial, I	BT – Bloom's Taxonomy				

18EDE05	DESI	GNIN	G WIT	'H NE	WER	MA	TER	IALS	

L

Т

P Credit

9

9

9

9

(Common to Engineering Design & CADCAM branches)

			_	—	
		3	0	0	3
Preamble	The course deals with the study on structure – property processing techniques involved in fabrication of components		-		
Prerequisites	Introduction to material science and engineering				
UNIT – I					9

Modern Materials in Design and Plastics: Modern materials in design plastics composites and smart materials Polymers - classification - Thermoplastics and thermosetting plastics –structure-property relationship- Thermoforming processes - compression and transfer molding - injection molding - extrusion - blow molding - calendaring - lamination and pultrusion. Design consideration in manufacturing of plastic components

UNIT – II

Rubber: Rubber - additives - applications. Stages in raw rubber and latex rubber technology-structureproperty relationship -Processing of rubbers –Manufacturing techniques - tyres - belts - hoses - foot wears cellular products - cables. Manufacture of latex based products

UNIT – III

Glass: Glass - characteristics - application - glass making - Glass forming machines - hollow waresflat glasses, fiberglass, bulbs, bottles, heat absorbing glasses, amber glass and their manufacturing methods, general plant layouts for manufacture of different types of glasses

UNIT – IV

Ceramics: Ceramics - classification - traditional ceramics - structural ceramics - fine ceramics - bioceramics - ceramic super conductors. Ceramic processing techniques - hot pressing - hot isostatic pressing (HIP) - Sintering - injection molding - slip casting - tape casting - gel casting – extrusion

UNIT – V

Composites: Composites - requirements of reinforcement and matrix - Manufacturing of composites - casting - solid state diffusion - cladding – Hot Isostaic Pressing - liquid metal infiltration - liquid phase sintering - preparation of molding compounds and prepregs - hand layup method - autoclave method - filament winding method – functionally graded materials-features-processing methods-applications

		Total: 45
	ERENCES:	
1.	Brydson J. A. and Newnes-Butterwarths, "Plastic Materials", 8 th Edition, London, 2016.	
2.	Barsoum M.W., "Fundamentals of Ceramics", 2 nd Edition, McGraw-Hill Co. Inc., 2002.	
3.	George Lubin, "Handbook of Composites", 1 st Edition, Springer, 1982.	

COURS	COURSE OUTCOMES: BT Mapped					
On com	pletion of the course, the students w	(Highest Level)				
CO1:	demonstrate the manufacturing and design aspects of plastics Applying (K3)					
CO2:	present processing properties and a	applications of rubber products	Applying (K3)			
CO3:	demonstrate processing and applic	ations of glasses	Applying (K3)			
CO4:	demonstrate processing and applic	ations of ceramics	Analyzing (K4)			
CO5:	demonstrate processing and applic	ations of composites	Analyzing (K4)			
	Μ	apping of COs with POs				
COs/Po	s PO1	PO2	PO3			
COI	3	1	3			
CO2	2 3	1	3			
CO3 2		1	2			
CO4 3		1	3			
CO5 3		2	3			
1 - Slig	1 – Slight, 2 – Moderate, 3 – Substantial, BT –Bloom's Taxonomy					

18EDE06 TRIBOLOGY IN DESIGN

\mathbf{L}	Т	Р	Credit
3	0	0	3

Preamble	This course will familiarize the fundamental concepts of friction wear and lubrications.
	Surface effects in tribology, bearing design and contact mechanics will be the key aspects of
	this course which will improve the functionality and life of the components.
Prerequisites	Nil

9

9

9

9

Introduction to Surfaces and Friction: Topography of surfaces – Surface features – Experimental determinations of surface structures – Chemical analysis of surfaces – Surface effects in Tribology – Analysis of surface roughness – Surface topography measurements. Surface treatments, Surface modifications and Surface coating. Friction – Mechanism of friction, Equations and models of friction, Friction measurements, Friction properties of metallic and non metallic materials, Friction in extreme conditions.

UNIT – II

UNIT – I

Fundamentals of Wear and Lubrication: Wear – Types, Mechanism, Mapping, Measurements, Wear resistance materials – Lubricants – selection criteria – lubrication regimes. Hydrodynamic, Elasto and plasto hydrodynamic lubrication, Basic equations, Reynold's equation, Boundary lubrication, Boundary lubricating films and its properties.

UNIT – III

Design of Hydrodynamic Bearings: Dynamic analysis of hydrodynamic bearing performance, thrust and journal bearings– full, partial, fixed and pivoted – mass flow rate, friction, power loss, heat and temperature difference, dynamic loads, oil film thickness, stiffness of squeeze film - problems.

UNIT – IV

Hydrostatic and Rolling Element Bearings: Hydrostatic lubrication -hydrostatic bearing design. Slider bearings – Self acting finite bearings, Failure modes, Materials for rolling element bearings – Types, Bearing geometry and kinematics, load ratings and life prediction.

UNIT – V

Contact Mechanics and Tribo Measurements: Contact mechanics, Analysis of contacts, Elastic plastic contact of frictionless solids, problems. Bearing torque calculation, temperature analysis, endurance testing and failure analysis, bearing performance measurements, bearing vibration measurements

REFERENCES:

Bharat Bhushan, "Principles and Applications of Tribology", 2nd Edition, John Wiley & Sons, New York, 2013.
 Williams LA, "Engineering Tribology", Oxford University Press, 2005.

- 2. Williams J.A., "Engineering Tribology", Oxford University Press, 2005.
- 3. Sahoo P., "Engineering Tribology", PHI Learning, India, 2013.

9

Total: 45

COURS	SE OUTCOMES:		BT Mapped				
On com	On completion of the course, the students will be able to						
CO1:	comprehend the surface effects in tribology		Applying (K3)				
CO2:	apply the basic concepts of friction, wear and lub components	rication in industrial	Evaluating (K5)				
CO3:	design the hydrodynamic bearings with realistic constraint	S	Analyzing (K4)				
CO4:	design the hydrostatic bearings with appropriate assumpt rolling element bearings	ign the hydrostatic bearings with appropriate assumptions and basics about Analyzing (K					
CO5:							
	Mapping of COs with PC)s					
COs/PC	PO1 PO2		PO3				
CO1	1		2				
CO2	2 2		3				
CO3	CO3		2				
CO4	CO4		2				
CO5	5 1		3				
1 - Slight	ht, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonor	my					

18EDE07 ADVANCED TOOL DESIGN

(Common to Engineering Design & CADCAM branches)

L Т Р

Credit

			-	-	orean
		3	0	0	3
Preamble This course provides concepts and techniques for designing the elements of tool engineering					ngineering
	and appropriate materials. Also, explore the important of press tools, jigs and fixtures and tool				
	maintenance.				
Prerequisites	Manufacturing Technology, Design for manufacture and asseml	oly			
TINIT/D T					0

UNIT – I Tool Design Methods: Introduction - The Design Procedure - Statement of the problem - The Need Analysis – Research and Ideation – Tentative Design Solutions – The Finished Design – Drafting and Design Techniques in Tooling drawings – Screws and Dowels – Hole location – Jig-boring practice – Installation of Drill Bushings - Punch and Die Manufacture - Electro-discharge machining - Electro-discharge machining for cavity.

UNIT – II

Tooling Materials: Properties of Materials - Ferrous Tooling Materials - Tool steels - Cast Iron - Mild, or low-carbon Steel - Nonmetallic Tooling Materials - Nonferrous Tooling Materials - Metal cutting Tools -Single-point cutting tools - Milling cutters - Drills and Drilling - Reamer classification - Taps - Tap classification- the selection of carbide cutting tools – Determining the insert thickness for carbide tools.

UNIT – III

Design of Drill Jigs and Fixtures: Introduction – Fixed Gages – Gage Tolerances – The selection of material for Gages - Indicating Gages - Automatic gages - Principles of location - Locating methods and devices -Principles of clamping - Drill jigs - Chip formation in drilling - General considerations in the design of drill jigs – Drill bushings – Methods of construction – Drill jigs and modern manufacturing. Fixtures and economics – Types of Fixtures – Vise Fixtures – Milling Fixtures – Boring Fixtures – Broaching Fixtures – Lathe Fixtures – Grinding Fixtures.

UNIT - IV

Dies and Tool Design: Types of Die construction – Die-design fundamentals – Blanking and Piercing die construction - Pilots - Strippers and pressure pads- Presswork materials - Strip layout - Short-run tooling for Piercing – Bending dies – Forming dies – Drawing operations

UNIT – V

Numerically Controlled Machine: The need for numerical control – A basic explanation of numeric control - Numerical control systems in use today - Fixture design for numerically controlled machine tools - Cutting tools for numerical control - Tool holding methods for numerical control - Automatic tool changers and tool positioners - Tool presetting - Introduction - General explanation of the brown and sharp machine - tooling for Automatic screw machines

Total: 45

REFERENCES:

- Donaldson Cyrll, LeCain H. George, Goold V.C., "Tool Design", 3rd Edition, Tata McGraw-Hill 1. Publishing Company Ltd., New Delhi, 2002.
- Society of Manufacturing Engineers, "Manufacturing Engineers Handbook", 1998. 2.
- Mikell P. Groover, "Fundamentals of Modern Manufacturing", John Wiley & Sons, Singapore, 2004. 3.

9

9

9

COURS	SE O		BT Mapped			
On com	pletio		(Highest Level)			
CO1:	class	in tool	Applying (K3)			
	desi	gn				
CO2:	cate	gorize the tooling materials			Analyzing (K4)	
CO3:	sum	marize the design and developme	ent of drilling jigs and fixtures		Evaluating (K5)	
CO4:	deci	de on the selection of dies for pre	ess working		Evaluating (K5)	
CO5:	reco	mmend tool holding methods for	A/C machines		Evaluating (K5)	
	Mapping of COs with POs					
COs/P	Os	PO1	PO2		PO3	
COI	L	3			2	
CO2	2	3			2	
COS	3	3			3	
CO4	CO4 3			3		
COS	5	3			3	
1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy						

18EDE08 DESIGN OF MATERIAL HANDLING EQUIPMENT

(Common to Engineering Design & CADCAM branches)

(Use of approved data book is permitted)

		L	Т	Р	Credit	
		3	0	0	3	
Preamble Most of accidents occurring in industries due to improper design of material handling						
	equipments. In order to avoid this, the design engineer should be familiar with principle and					
	design concepts in material handling equipments.					
Prerequisites	Fundamentals of Material Handling Equipment					
_	Knowledge on Machine Element and Transmission System					
UNIT – I 9					9	
Flexible Hoist	ing Appliances: Type, selection and applications of material ha	indling	equip	ment's	, choice of	
material handling equipment – hoisting equipment – components and theory of hoisting equipment – chain						
and ropes – selection of ropes, pulleys, pulley systems, sprockets and drums.						

UNIT – II

Load Handling Equipments and Brakes: Forged standard hooks – forged Ram shorn hooks – solid triangular eye hooks – crane grabs, electric lifting magnetic – grabbing attachments for loose materials, arresting gear – brakes: shoe, band and cone types – elements of shoe brakes – thermal calculation in shoe brakes.

UNIT – III

Surface and Overhead Transportation Equipment: Hand operated trucks – powered trucks – tractors – electronically controlled tractors - hand truck on rails – industrial railroad equipment's: locomotives - winches – capstans – turntables – monorail conveyors –pipe rail systems – flat bar monorails. Rail travelling mechanism, cantilever and monorail cranes, cogwheel drive, Monocable tramways- reversible tramways.

UNIT – IV

Elevating Equipment: Continuous-motion vertical conveyors – reciprocating-motion vertical conveyors – stackers – work levelers and tail gates – industrial lifts – passenger lifts – freight elevators – mast type elevators – vertical skip hoist elevators, bucket elevators: design, loading and bucket arrangements.

UNIT – V

Conveying Equipment: Belt conveyors - chain conveyors – apron conveyors – escalators – flight conveyors – roller conveyors - oscillating conveyors. Design of belt conveyors, screw conveyors and pneumatic conveyors.

REFERENCES:

- Rudenko N., "Materials Handling Equipment", 2nd Edition, MIR Publishers, Moscow, 1970.
 Spivakovsky A.O. and Dyachkov V.K., "Conveying Machines", Volume I & II, MIR Publishers,
- Moscow, 1985.
- 3. Lingaiah K., "Machine Design Data Book", 2nd Edition, McGraw Hill, New York, 2003.
- 4. Chowdary R.B. and Tagore G.R.N., "Materials Handling Equipment", Khanna Publishers, New Delhi, 2003.

Total: 45

9

9

COURS		BT Mapped				
On com	On completion of the course, the students will be able to					
CO1:	unde	erstand the basic concepts of flex		Applying (K3)		
CO2:	dem	onstrate the basic concepts and c	lesign the braking system for load han	dling	Applying (K3)	
	equi	pment				
CO3:	solv	e the problems in surface and over	erhead transportation equipment		Analyzing (K4)	
CO4:	solv	e the problems and understanding	g the basic of elevators		Analyzing (K4)	
CO5:	reco	gnize the concepts and solve the	problems of conveying equipment		Analyzing (K4)	
		Мар	ping of COs with POs			
COs/PC)s	PO1	PO2		PO3	
COI	L	2	1		3	
CO2	2	2	1		3	
CO3	3	3	1	3		
CO4 3 1		1	2			
CO5	5	3	1		3	
1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy						

18CCE05 PRODUCT DATA MANAGEMENT (Common to CAD/CAM and Engineering Design branches)

		L	Τ	Р	Credit
		3	0	0	3
Preamble	This course will help the students to capture and maintain det	ailed i	nforma	ation o	n products
	through its development and the whole lifecycle of the produ	ict. It	have t	he adv	antages of
	Track and manage all changes to product related data, spend les	s time	organi	zing ar	nd tracking
	design data and improve productivity through reuse of product d	esign d	lata.		

Prerequisites Knowledge in bill of materials, Knowledge on product life cycle.

UNIT – I

Description of PDM: Definition, Basic functionality, Typology of PDM functions. Information architecture: Document management, creation and viewing of documents, creating parts, versions and version control of parts and documents. System architecture: Client server system in PDM. Trends in PDM, Collaborative Product Development, Case studies.

UNIT – II

Configuration Management: Base lines, meta data, Configuration management: CM function, CM ladder, interchangeability. Structuring the Bill of Material, product structure, Engineering structure, Manufacturing Structure. Case studies

UNIT – III Change Management

Change issue, change requests: production problem, origination of change, change request, request process, concept of Engineering change order. Change Cost: Costing a change, Design and Development Cost, Manufacturing and Field Costs, Materials and Parts Costs, Cost policy, Charge Back of Costs. Case studies.

UNIT – IV

Change Control and Work Flow: Types of change, Class of change, software changes, Revision drafting, change impacts, customer review and approval. Projects and Roles: life cycle of a product, life cycle management. Work flows - creation of work flow templates, life cycle, work flow integration. Case studies.

UNIT – V

Configurators and Variants: Configurators: Product configurator, sales configurator, comparison between product configurator and sales configuration, Types of configurator solutions, Product configurator engine. Variant configuration. Case studies.

REFERENCES:

1.	IvicaCrnkovic, Ulf Asklund, AnnitaPersson Dahlqvist, "Implementing and Integrating Product Data
	Management and Software Configuration Management", Artech House, USA, 2003.
2.	Frank B. Watts, "Engineering Documentation Control Handbook – Configuration Management", 4th
	Edition, William Andrew, Norwich, NY USA, 2011.

3. AnttiSaaksvuori, AnselmiImmonen, "Product Lifecycle Management", 3rd Edition, Springer, New York, 2008.

9

9

9

9

9

Total: 45

COURSE OUTCOMES: BT							
On con	npletic	on of the course, the students will	be able to	(Highest Level)			
CO1:	O1: summarize the concept of PDM			Understanding (K2)			
CO2:	deve	lop a configuration management	in a PLM environment	Applying (K3)			
CO3:		ify the various workflows and ro		Analyzing (K4)			
CO4:	ident	tify the product life cycle in chan	ge management and its issues	Applying (K3)			
CO5:	make	e use of different configurators for	or product selection	Applying (K3)			
	Mapping of COs with POs						
COs/I	POs	PO1	PO2	PO3			
CO	1	1	2	1			
CO	2	3	3	3			
CO	3	2	3	2			
CO4 2		2	3	2			
CO5 2		2	1	2			
1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy							

18CCE06 MODELING AND ANALYSIS OF MANUFACTURING SYSTEMS (Common to CADCAM, Engineering Design & Mechatronics branches)

I

Т

Р

Credit

9

9

9

9

		-	-	-	Cicuit
		3	0	0	3
Preamble	This course provides knowledge of modeling and analysis of ensures a very good performance.	manuf	acturin	g syste	ems which
Prerequisites	Industrial Engineering				
UNIT – I					9

Manufacturing Systems and Models: Types and principles of manufacturing systems, types and uses of manufacturing models, physical models, mathematical models, model uses, model building.

UNIT – II

Material Flow Systems: Assembly lines-Reliable serial systems, approaches to line balancing, sequencing mixed models. Transfer lines and general serial systems-paced lines without buffers, unpaced lines. Shop scheduling with many products. Flexible manufacturing systems-system components, planning and control. Group technology-assigning machines to groups, assigning parts to machines. Facility layout-Quadratic assignments problem approach, graphic theoretic approach.

UNIT – III

Supporting Components: Machine setup and operation sequencing-integrated assignment and sequencing. Material handling systems-conveyor analysis, AGV systems. Warehousing-storage and retrieval systems, order picking.

UNIT – IV

Generic Modeling Approaches: Analytical queuing models, a single workstation, open networks, closed networks. Empirical simulation models-event models, process models, simulation system, example manufacturing system

UNIT – V

Synchronization Manufacturing and Petri Nets: Synchronization Vs Optimization, defining the structure, identifying the constraint, exploitation, buffer management. Basic definitions-dynamics of Petri nets, transformation methods, event graphs, modeling of manufacturing systems

Total: 45 REFERENCES: 1. Ronald G. Askin, and Charles R. Standridge, "Modeling and Analysis of Manufacturing Systems", John Wiley & Sons, New York, 1993. 2. Mengchu Zhou, "Modeling, Simulation, and Control of Flexible Manufacturing Systems: A Petri Net Approach", World Scientific Publishing Co. Pvt. Ltd., 2000. 3. Jean Marie Proth and XiaolanXie, "Petri Nets: A Tool for Design and Management of Manufacturing Systems", John Wiley & Sons, New York, 1996. 4. Brandimarte P. and Villa A., "Modeling Manufacturing Systems", Springer Verlag, Berlin, 1999.

COUI	RSE O	UTCOMES:		BT Mapped		
On co	mpletic	on of the course, the students will	be able to	(Highest Level)		
CO1:	select the appropriate type of manufacturing system and model			Analyzing (K4)		
CO2:	know	about the assembly line transfer	line and FMS	Understanding (K2)		
CO3:	usage	of various materials handling sys	stems	Applying (K3)		
CO4:	know	the generic modeling systems		Understanding (K2)		
CO5:	use t	he theory of constraints for manua	facturing a component	Applying (K3)		
		Марј	oing of COs with POs			
COs/	/POs	PO1	PO2	PO3		
CC	D1			2		
CC	02	3				
CC	03	2		2		
CO4		2		3		
CC	CO5		2			
1 – Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy					

18CCE08 RELIABILITY ENGINEERING

(Common to CADCAM & Engineering Design branches)

		L	T	P	Credit
		3	0	0	3
Preamble	This course provides advanced topics of reliability me improvement techniques for reliability engineering.	asuren	nents,	monit	oring and
Prerequisites	Prerequisites Total Quality Management, Process planning and cost estimation.				
UNIT – I					9
Reliability Concept: Reliability definition – Quality and Reliability– Reliability mathematics – Reliability functions – Hazard rate – Measures of Reliability – Design life –A priori and posterior probabilities – Mortality of a component – Bath tub curve – Useful life.					
UNIT – II					9

Failure Data Analysis: Data collection – Empirical methods: Ungrouped/Grouped, Complete/Censored data – Time to failure distributions: Exponential, Weibull – Hazard plotting – Goodness of fit tests-problems and case study.

UNIT – III

Reliability Assessment: Different configurations – Redundancy – m/n system – Complex systems: RBD – Baye's method – Cut and tie sets – Fault Tree Analysis – Standby system -problems and case study.

9

9

9

UNIT – IV

Reliability Monitoring: Life testing methods: Failure terminated – Time terminated – Sequential Testing – Reliability growth monitoring – Reliability allocation – Software reliability- problems and case study.

UNIT – V

Reliability Improvement: Analysis of downtime – Repair time distribution – System MTTR – Maintainability prediction – Measures of maintainability – System Availability – Replacement theoryproblems and case study. Total: 45

REFERENCES:

Charles E. Ebeling, "An Introduction to Reliability and Maintainability Engineering", Tata McGraw Hill, 2012.
 Dev Billington and Banald N. Allen, "Baliability Evaluation of Engineering Systems", Springer, 2012.

2. Roy Billington and Ronald N. Allan, "Reliability Evaluation of Engineering Systems", Springer, 2013.

COU	RSE O	UTCOMES:		BT Mapped		
On co	mpletic	on of the course, the students will	be able to	(Highest Level)		
CO1:	discus	ss the fundamentals of reliability	Understanding (K2)			
CO2:	summ	narize reliability engineering thro	ugh product life cycle	Evaluating (K5)		
CO3:	analy	ze the reliability configuration us	ing assessment techniques	Analyzing (K4)		
CO4:	apply	and test product using reliabilit	y monitoring methods for given cas	e Evaluating (K5)		
CO5:	exam	ine system downtime and mainta	inability measures for given case	Applying (K3)		
		Мар	ping of COs with POs			
COs	/POs	PO1	PO2	PO3		
CO	D1	2	2	3		
CO	D2	2	2	3		
CO	D3	2	2	3		
CO4		2	2	3		
CO	D5	2	2	3		
1 - Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy					

	18MTC11 COMPUTER NUMERICALLY CONTROLLED MAC (Common to Mechatronics, Engineering Design & CADCAM Brand				
			T	Р	Credit
	3		0	2	4
Preamble	To impart the fundamental knowledge and programming concepts of Cl	NC 1	machi	nes.	
Prerequisites	Nil				
UNIT – I					9
Mechanism, S Power transmi	Seatures of CNC Machines: Introduction - CNC Machine Building, Dr bindle Drives, Axes drives, Feed drives, Linear Motors and Actuator ssion elements - Spindle bearing – Arrangement and installation - Guid tion and anti-friction LM guide ways, Retrofitting.	s, N	Magne	etic L	evitation.
Machine data systems. Conce components - C	ns for CNC Machines and CAD/CAM Integration: Interfacing – Mo - Sources of errors - Compensations for Machine accuracy – DNC – pts of High speed Machining and micro machining. Networking - netwo Graphics standards – Data exchange format, evolution - features of variou TEP etc., Process planning, Computer Aided process planning (CAP)	Ad Arkin S in	laptivong tec terfac	e con hniqu es Gk	trol CNC les, LAN, XS, IGES,
codes, cutter ra routines, mirro programming f UNIT – IV Tooling System semi-qualified	ming: Structure of CNC program, Part Program Terminology Coordius compensation, tool nose radius compensation, tool wear compensation features, Manual part programming for CNC turning and material various machines in FANUC - Computer aided part programming - Portage n and Management: Tooling system - Interchangeable tooling system tools – Coolant fed tooling system – Modular fixturing – Quick cl changers – Tooling requirements for Turning and Machining centers	tion achin ost p – F hang	rocess Preset	ned cy centro sing. , Qua oling	veles, sub e – APT 9 lified and system –
assemblies – T	ool Magazines – ATC Mechanisms – Tool management.	, –		nonde	
machines - Cos features of CN	CNC Operations and Special Purpose CNC Machines: Factors influe t of operation of CNC machines - Practical aspects of introducing CNC C machines - Preventive and other maintenance requirements. CNC g nes - pipe bending, CNC turret Press, CNC EDM - Wire cut EDM, CNC nes.	mac rind	hines ling n	- Ma	intenance nes, CNC
grinding machi					enenneur
grinding machi List of Exercis 1. Study of G	es: codes and M codes for machining centre and turning centre				
grinding machi List of Exercis 1. Study of G 2. Programmi	es: codes and M codes for machining centre and turning centre ng and machining of given component using HMT VMC 200T				
grinding machi List of Exercis 1. Study of G 2. Programmi 3. Programmi	es: codes and M codes for machining centre and turning centre ng and machining of given component using HMT VMC 200T ng and machining of given component using HMT CNC T70				
grinding machi List of Exercis 1. Study of G 2. Programmi 3. Programmi 4. Programmi	es: codes and M codes for machining centre and turning centre ng and machining of given component using HMT VMC 200T ng and machining of given component using HMT CNC T70 ng and machining of given component using CNC turning centre				
grinding machi List of Exercis 1. Study of G 2. Programmi 3. Programmi 4. Programmi	es: codes and M codes for machining centre and turning centre ng and machining of given component using HMT VMC 200T ng and machining of given component using HMT CNC T70				

REFERENCES:											
1. I	Michael Fitz	patrick N.E., and Arlington W.	A., "Machining and CNC Techn	nology	² , 3 rd Edition, Mc Graw						
	Hill Education										
2. \$	Sehrawat M	.S. and Narang J.S., "CNC Mac	chines (Computer Numerical Co	ntrol)"	, Dhanpat Rai and Co.,						
]	Pvt. Ltd., Ne	w Delhi, 2014.									
	•		Building, Programming and Im	pleme	ntation", The McGraw-						
	Hill Companies Inc., 2011.										
	4. Adithan M. and Pabla B.S., "CNC Machines", 3 rd Edition, New Age International (P) Ltd., 2010.										
]	Industrial Pr	ess Inc., 2005.									
COURSE OUTCOMES: BT Mapped											
On completion of the course, the students will be able to (Highest Level)											
CO1:		e basic components and mechan			Understanding (K2)						
CO2:	j	he control system concepts used			Understanding (K2)						
CO3:		part programming for turning an			Creating (K6)						
CO4:		per tooling systems and fixtures			Applying (K3)						
CO5:					Understanding (K2)						
	CNC mac	_									
CO6:	develop C	NC programming using differer	nt G codes and M codes		Applying (K3),						
~~-					Precision (S3)						
CO7:	develop pa	art program and perform machin	ing in Turning Centre		Creating (K6),						
		1			Precision (S3)						
CO8:	develop pa	art program and perform machin	ing in Machining Centre		Creating (K6),						
	<u> </u>		6.000 VI DO		Precision (S3)						
		Mappi	ng of COs with POs								
C	Os/POs	PO1	PO2		PO3						
	CO1	2	1		1						
	CO2	3	3		1						
	CO3	3	2		2						
	CO4 3 1			1							
	CO5 2 3			3							
	CO6	2	1		2						
	CO7	2	1		2						
	CO8	2	1		2						
1 - Sl	ight, 2 – Mo	derate, 3 – Substantial, BT -	Bloom's Taxonomy		1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy						

	18MTT13 SENSORS AND INSTRUMENTATION (Common to Mechatronics, Engineering Design and CAD/CAM Branc	(hes)		
		Τ	Р	Credit
	3	0	0	3
Preamble	To impart basic knowledge about sensors used to measure various p resistance, pressure, flow, level, humidity and so on and convert them (digital or analog) that can be easily read by the user or any other instrum	into el		
Prerequisites	Physics			
UNIT – I				9
	to Measurement: Units and Standards - Instrument classification - Ca of Instruments - Static and dynamic - Classification of errors - Error ertainty.			1
UNIT – II				9
	Transducers: Classification of transducers - Temperature Measur	ement:	Fille	
	Bimetallic thermometer - Pressure Transducers: Elastic transducers - Bour			
Diaphragm. V	acuum: McLeod gauge, thermal conductivity gauge - Ionization gauge.			
UNIT – III				9
	insducers: Turbine flow meter, Electromagnetic flow meter - Hot wire an	emome	eter - I	Jltrasonic
	ve transducers - Potentiometer - RTD - Thermistor - Thermocouple - Radia			
UNIT – IV				9
UNIT – IV Force, Displa	cement, Magnetic and Digital Sensors: Strain gauges - Force mea	asuremo	ent -	
Force, Displa transducer - L	cement, Magnetic and Digital Sensors: Strain gauges - Force mea VDT - RVDT - Capacitive transducer - Piezo electric transducer – Mag	gnetic S	lensor-	Inductive - Types –
Force, Displa transducer - L Magneto resis	VDT - RVDT - Capacitive transducer - Piezo electric transducer – Mag tive – Hall effect – Current sensor - Digital displacement transducer	gnetic S s. Digi	lensor-	Inductive - Types –
Force, Displa transducer - L Magneto resis	VDT - RVDT - Capacitive transducer - Piezo electric transducer - Mag	gnetic S s. Digi	lensor-	Inductive - Types –
Force, Displa transducer - L Magneto resis Encoders – Fil	VDT - RVDT - Capacitive transducer - Piezo electric transducer – Mag tive – Hall effect – Current sensor - Digital displacement transducer	gnetic S s. Digi	lensor-	Inductive - Types – insducers:
Force, Displa transducer - L Magneto resis Encoders – Fit UNIT – V	VDT - RVDT - Capacitive transducer - Piezo electric transducer – Mag tive – Hall effect – Current sensor - Digital displacement transducers per optic sensors – Film sensors - Introduction to MEMS and Nano sensors.	gnetic S s. Digi	ensor- tal tra	Inductive - Types – insducers: 9
Force, Displa transducer - L Magneto resis Encoders – Fil UNIT – V Signal Condit	 VDT - RVDT - Capacitive transducer - Piezo electric transducer - Mag tive - Hall effect - Current sensor - Digital displacement transducers ber optic sensors - Film sensors - Introduction to MEMS and Nano sensors. ioning and Data Acquisition: Need for Signal Conditioning - Amplificati Data logging and Acquisition - Distributed Data Acquisition and contri- 	gnetic S s. Digi	ensor- tal tra	Inductive - Types – insducers: 9 - Sample
Force, Displa transducer - L Magneto resis Encoders – Fil UNIT – V Signal Condit and Holding -	 VDT - RVDT - Capacitive transducer - Piezo electric transducer - Mag tive - Hall effect - Current sensor - Digital displacement transducers ber optic sensors - Film sensors - Introduction to MEMS and Nano sensors. ioning and Data Acquisition: Need for Signal Conditioning - Amplificati Data logging and Acquisition - Distributed Data Acquisition and contri- 	gnetic S s. Digi	tal tra	Inductive - Types – insducers: 9 - Sample
Force, Displa transducer - L Magneto resiss Encoders – Fil UNIT – V Signal Condit and Holding - system and sta	 VDT - RVDT - Capacitive transducer - Piezo electric transducer - Mag tive - Hall effect - Current sensor - Digital displacement transducers ber optic sensors - Film sensors - Introduction to MEMS and Nano sensors. ioning and Data Acquisition: Need for Signal Conditioning - Amplificati Data logging and Acquisition - Distributed Data Acquisition and contradards. 	gnetic S s. Digi ion - Fi rol syst	tal tra	Inductive - Types – insducers: 9 - Sample Interface Total: 45
Force, Displa transducer - L Magneto resis Encoders – Fil UNIT – V Signal Condit and Holding - system and sta REFERENCI 1. Doebelin	 VDT - RVDT - Capacitive transducer - Piezo electric transducer - Mag tive - Hall effect - Current sensor - Digital displacement transducers ber optic sensors - Film sensors - Introduction to MEMS and Nano sensors. ioning and Data Acquisition: Need for Signal Conditioning - Amplificati Data logging and Acquisition - Distributed Data Acquisition and contradards. ES: E.O., "Measurement Systems - Applications and Design", 6th Edition, Tage 	gnetic S s. Digi ion - Fi rol syst	tal tra	Inductive - Types – insducers: 9 - Sample Interface Total: 45
Force, Displa transducer - L Magneto resis Encoders – Fil UNIT – V Signal Condit and Holding - system and sta REFERENCI 1. Doebelin Delhi, 20	VDT - RVDT - Capacitive transducer - Piezo electric transducer – Mag tive – Hall effect – Current sensor - Digital displacement transducers ber optic sensors – Film sensors - Introduction to MEMS and Nano sensors. ioning and Data Acquisition: Need for Signal Conditioning - Amplificati Data logging and Acquisition - Distributed Data Acquisition and contr ndards. ES: E.O., "Measurement Systems – Applications and Design", 6 th Edition, Ta 17.	gnetic S s. Digi ion - Fil rol syst	ensor- tal tra Itering ems - Graw	Inductive - Types – insducers: 9 - Sample Interface Total: 45 Hill, New
Force, Displa transducer - L Magneto resis Encoders – Fil UNIT – V Signal Condit and Holding – system and sta REFERENCI 1. Doebelin Delhi, 20 2. Sawhney and Co. H	 VDT - RVDT - Capacitive transducer - Piezo electric transducer - Mag tive - Hall effect - Current sensor - Digital displacement transducers ber optic sensors - Film sensors - Introduction to MEMS and Nano sensors. ioning and Data Acquisition: Need for Signal Conditioning - Amplificati Data logging and Acquisition - Distributed Data Acquisition and contrindards. ES: E.O., "Measurement Systems - Applications and Design", 6th Edition, Ta 17. A.K., "A course in Electrical and Electronic Measurement and Instrume Pvt. Ltd., New Delhi, 2017. 	s. Digi s. Digi on - Fi rol syst	ensor- tal tra ltering ems - Graw 1 i", Dh	Inductive - Types – insducers: 9 - Sample Interface Total: 45 Hill, New anpat Rai
Force, Displa transducer - L Magneto resis Encoders – Fil UNIT – V Signal Condit and Holding - system and sta REFERENCI 1. Doebelin Delhi, 20 2. Sawhney and Co. H 3. Beckwith	 VDT - RVDT - Capacitive transducer - Piezo electric transducer – Mag tive – Hall effect – Current sensor - Digital displacement transducers ber optic sensors – Film sensors - Introduction to MEMS and Nano sensors. ioning and Data Acquisition: Need for Signal Conditioning - Amplificati Data logging and Acquisition - Distributed Data Acquisition and contrindards. E.O., "Measurement Systems – Applications and Design", 6th Edition, Ta 17. A.K., "A course in Electrical and Electronic Measurement and Instrume Pvt. Ltd., New Delhi, 2017. Marangoni and Lienhard, "Mechanical Measurements", 6th Edition, 74 	s. Digi s. Digi on - Fi rol syst	ensor- tal tra ltering ems - Graw 1 i", Dh	Inductive - Types – insducers: 9 - Sample Interface Total: 45 Hill, New anpat Rai
Force, Displa transducer - L Magneto resis Encoders – Fil UNIT – V Signal Condit and Holding – system and sta REFERENCI 1. Doebelin Delhi, 20 2. Sawhney and Co. H 3. Beckwith York, 20	 VDT - RVDT - Capacitive transducer - Piezo electric transducer - Mag tive - Hall effect - Current sensor - Digital displacement transducers ber optic sensors - Film sensors - Introduction to MEMS and Nano sensors. ioning and Data Acquisition: Need for Signal Conditioning - Amplificati Data logging and Acquisition - Distributed Data Acquisition and contradards. E.O., "Measurement Systems - Applications and Design", 6th Edition, Ta 17. A.K., "A course in Electrical and Electronic Measurement and Instrume Pvt. Ltd., New Delhi, 2017. a., Marangoni and Lienhard, "Mechanical Measurements", 6th Edition, 74. udry D., and Sheil Jain, "Linear Integrated Circuits", New Age International contents. 	ata Mco Addisor	lensor- tal tra ltering ems - Graw l i", Dh	Inductive - Types – insducers: 9 - Sample Interface Total: 45 Hill, New anpat Rai ley, New
Force, Displa transducer - L Magneto resis Encoders – Fil UNIT – V Signal Condit and Holding – system and sta REFERENCI 1. Doebelin Delhi, 20 2. Sawhney and Co. H 3. Beckwith York, 20 4. Roy Cho Delhi, 20 5. Patranabi	 VDT - RVDT - Capacitive transducer - Piezo electric transducer – Mag tive – Hall effect – Current sensor - Digital displacement transducers ber optic sensors – Film sensors - Introduction to MEMS and Nano sensors. ioning and Data Acquisition: Need for Signal Conditioning - Amplificati Data logging and Acquisition - Distributed Data Acquisition and contrindards. ES: E.O., "Measurement Systems – Applications and Design", 6th Edition, Ta 17. A.K., "A course in Electrical and Electronic Measurement and Instrume Pvt. Ltd., New Delhi, 2017. Marangoni and Lienhard, "Mechanical Measurements", 6th Edition, Application, and Sheil Jain, "Linear Integrated Circuits", New Age Interna 14. s D., "Sensor and Actuators", Prentice Hall of India, 2005. 	ational	ensor- tal tra ltering ems - Graw I a", Dh a-Wes Pvt. I	Inductive - Types – insducers: 9 - Sample Interface Total: 45 Hill, New anpat Rai ley, New Ltd., New
Force, Displa transducer - L Magneto resis Encoders – Fil UNIT – V Signal Condit and Holding - system and sta REFERENCI 1. Doebelin Delhi, 20 2. Sawhney and Co. H 3. Beckwith York, 20 4. Roy Chc Delhi, 20 5. Patranabi	 VDT - RVDT - Capacitive transducer - Piezo electric transducer - Mag tive - Hall effect - Current sensor - Digital displacement transducers ber optic sensors - Film sensors - Introduction to MEMS and Nano sensors. ioning and Data Acquisition: Need for Signal Conditioning - Amplificati Data logging and Acquisition - Distributed Data Acquisition and contradards. E.O., "Measurement Systems - Applications and Design", 6th Edition, Ta 17. A.K., "A course in Electrical and Electronic Measurement and Instrume Pvt. Ltd., New Delhi, 2017. Marangoni and Lienhard, "Mechanical Measurements", 6th Edition, 74. udry D., and Sheil Jain, "Linear Integrated Circuits", New Age Interna 14. 	ational	ensor- tal tra ltering ems - Graw I a", Dh a-Wes Pvt. I	Inductive - Types – insducers: 9 - Sample Interface Total: 45 Hill, New anpat Rai ley, New Ltd., New

COU	COURSE OUTCOMES: BT Mapped							
On co	mpletion of	the course, the students will be	able to		(Highest Level)			
CO1:	demonstra	te the basic concepts of measure	ement system and error analysis		Understanding (K2)			
CO2:	categorize application	n the	Applying (K3)					
CO3:				Applying (K3)				
CO4:				Understanding (K2)				
CO5:	CO5: analyze the need for signal conditioning, filters and acquiring data in real time		Analyzing (K4)					
	Mapping of COs with POs							
CC	Ds/POs	PO1	PO2		PO3			
(CO1	1	2		3			
(CO2	3	2		1			
(CO3	2	3		3			
CO4		3	2		1			
(CO5 2 2		2	3				
1 - Sli	ght, 2 – Mo	derate, 3 – Substantial, BT -	Bloom's Taxonomy					

18MTE13 MEMS DESIGN

(Common to Mechatronics, CADCAM, Engineering Design, VLSI Design, Applied Electronics, Power Electronics and Drives & Control and Instrumentation Engineering branches)

 L
 T
 P
 Credit

 3
 0
 0
 3

Preamble: This course equips the students to understand the concepts of Micro mechatronics and apply the knowledge of micro fabrication techniques for various applications.

Prerequisites: Sensors and Instrumentation and Bridge course mechanical

UNIT – I

Materials for MEMS and Scaling Laws: Overview - Microsystems and microelectronics - Working principle of Microsystems - Si as a substrate material - Mechanical properties - Silicon compounds - Silicon piezo resistors - Gallium arsenide - Quartz-piezoelectric crystals - Polymer - Scaling laws in Miniaturization.

UNIT – II

Micro Sensors, Micro Actuators: Micro sensors - Micro actuation techniques - Micro actuators – Micromotors – Microvalves – Micro grippers – Micro accelerometer: introduction, types, actuating principles, design rules, modeling and simulation, verification and testing, applications.

UNIT – III

Mechanics for Microsystem Design: Static bending of thin plates - Mechanical vibration - Thermo mechanics - Thermal stresses - Fracture mechanics - Stress intensity factors, fracture toughness and interfacial fracture mechanics-Thin film Mechanics-Overview of Finite Element Stress Analysis.

UNIT – IV

Fabrication Process and Micromachining: Photolithography - Ion implantation - Diffusion – Oxidation – CVD - Physical vapor deposition - Deposition by epitaxy - Etching process- Bulk Micro manufacturing - Surface micro machining – LIGA –SLIGA.

UNIT – V

Micro System Design, Packaging and Applications: Design considerations - Process design - Mechanical design – Mechanical Design using Finite Element Method-Micro system packaging – Die level - Device level - System level – Packaging techniques - Die preparation - Surface bonding - Wire bonding – Sealing - Applications of micro system in Automotive industry: Bio medical, Aerospace and Telecommunications – CAD tools to design a MEMS device.

REFERENCES:

Tai-Ran Hsu, "MEMS and Microsystems Design and Manufacture", Tata McGraw-Hill, New Delhi, 2008.
 Mohamed Gad-el-Hak, "The MEMS Handbook", CRC Press, 2009.

3. Bao M.H., "Micromechanical Transducers: Pressure sensors, accelrometers, and gyroscopes", Elsevier, New York, 2000.

9

9

Total: 45

9

9

COUF	RSE OUTC	COMES:		BT Mapped			
On cor	npletion of	the course, the students will be	e able to	(Highest Level)			
CO1:	interpret t	he concepts of MEMS material	ls and scaling laws	Remembering (K1)			
CO2:			Understanding (K2)				
CO3:			Applying (K3)				
CO4:	design and fabrication of microsystem		Applying (K3)				
CO5:	design of	microsystem packaging and ap	plication	Applying (K3)			
	Mapping of COs with POs						
CC	Os/POs	PO1	PO2	PO3			
(201	2	2	2			
(CO2	2	2	3			
(203	2	2	3			
(CO4	3	2	3			
(CO5	3	2	3			
1 - Sli	ght, 2 – Mo	oderate, 3 – Substantial, BT	– Bloom's Taxonomy				

		Credit
	3 0 2	4
Preamble	Vibration and noise control is the measurement of a periodic process of oscillation	ons with
	respect to an equilibrium point. Basic principles of control theory will be present	ted from
	feedback control systems. Finally, chapters will include numerous example proble	
	possibly projects.	
Prerequisites	Fundamentals of Mathematics, Fundamentals of Dynamics of Machines, Fundame	entals of
•	Strength of Materials	
UNIT – I		9
determination	ce, analysis of single degree and two degree of freedom systems, torsional V of natural frequencies.	
UNIT – II		9
	bise: Introduction, amplitude, frequency, wavelength and sound pressure level, a	
	d averaging decibel levels, noise dose level, legislation, measurement and analysis of	of noise
measurement	environment, equipment, frequency analysis, tracking analysis, sound quality analysis.	
UNIT – III	Т	
		9
	Noise Sources: Noise - Characteristics of engines, engine overall noise levels, assessoise, assessment of mechanical noise, engine radiated noise, intake and Exhaust noise	
combustion in	tributed noise, transmission noise, aerodynamic noise, tyre noise, brake noise.	z, engine
accessory con		
accessory con	urbuted horse, transmission horse, acrodynamic horse, tyre horse, orake horse.	
		9
UNIT – IV		
UNIT – IV Control Tech	iniques: Vibration isolation, tuned absorbers, untuned viscous dampers, damping tre ynamic forces generated by IC engines, engine isolation, crank shaft damping, modal	
UNIT – IV Control Tech applications d	iniques: Vibration isolation, tuned absorbers, untuned viscous dampers, damping tre	eatments
UNIT – IV Control Tech applications d	miques: Vibration isolation, tuned absorbers, untuned viscous dampers, damping tre ynamic forces generated by IC engines, engine isolation, crank shaft damping, modal	eatments
UNIT – IV Control Tech applications d	miques: Vibration isolation, tuned absorbers, untuned viscous dampers, damping tre ynamic forces generated by IC engines, engine isolation, crank shaft damping, modal	eatments

Source of Noise and Control: Methods for control of engine noise, combustion noise, mechanical Noise, predictive analysis, palliative treatments and enclosures, automotive noise control principles, sound in enclosures, sound energy absorption, sound transmission through barriers.

List of Experiments :

1. Determination of natural frequency of a steel beam

2. Fault identificaiton of ball bearing through time domain and frequency domain signal

3. Fault identificaiton of ball bearing through acoustic signals

4. Condition monitoring of Spur gear using vibration signals

5. Condition monitoring of Spur gear using acoustic signals

6. Condition monitoring of Bevel gear using acoustic signals

7. Condition monitoring of Bevel gear using vibration signals

Lecture: 45, Practical: 30, Total: 75

REFERENCES: 1. Rao Singiresu S., "Mechanical Vibrations", 5 th Edition, Pearson Education, New Delhi, 2010.								
1.								
2.	Pujara 2004.	Kewal, "Vibrations and Noise f	for Engineers", 4 th Edition, Dha	npat Rai & Sons, New Delhi,				
3.		n Bernard and Baranescu Roo	dica, "Diesel Engine Reference	e Book", 2 nd Edition, SAE				
	Interna	tional, Warrendale, 2006.		,				
4.		an-Smith, Julian, "An Introduction	n to Modern Vehicle Design", B	utterworth-Heinemann, Boston,				
	2011.							
5.	5. Fenton John, "Handbook of Automotive Body Construction and Design Analysis", Professional							
COI		ering Publishing, UK, 1998. UTCOMES:		DT Morrad				
			ha ahla ta	BT Mapped				
		on of the course, the students will ve and identify the frequency resp		(Highest Level)				
CO		Applying (K3)						
CO		lyze the noise related parameters	1	Analyzing (K4)				
CO		ve and design the automobile relat		Analyzing (K4)				
CO ²		ve and analyze the vibration isolat		Evaluating (K5)				
	205: identify and analyze the sources of vibration, noise and control			Evaluating (K5)				
CO	5: dete	ermine the natural frequency of st	eel beam	Analyzing (K4),				
				Manipulation (S2)				
CO	7: iden	ntify the defects in bearing using v	vibration and acoustic signals	Evaluating (K5),				
				Precision (S3)				
CO	3: ide	ntify the defects in gear using vibr	ation and acoustic signals	Evaluating (K5),				
				Precision (S3)				
		Map	ping of COs with POs					
COs	/POs	PO1	PO2	PO3				
0	201	3	2	2				
0	CO2	3	2	1				
0	CO3	2	1	1				
0	204	3	3	3				
0	CO5	3	2	2				
C	206	3	2	2				
0	207	3	2	2				
ļ	CO8	3	2	2				
1 - S	1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy							

18EDE10 INSTRUMENTATION AND MEASUREMENTS (Common to Engineering Design & CADCAM branches)

L

Т

Р

Credit

(Common to Engineering Design & CADCAM branches)
--

		3	0	0	3	
Preamble	Knowledge of instrument characteristics enables right choice of	f vario	us mea	asurem	ent system	
	components. This course helps in the design of measurement system for various applications.					
Prerequisites	Basic knowledge of measurement system and its characteristic	s, Bas	ic kno	wledge	statistical	
	mathematics.					
LINIT I					0	

Introduction to Instruments and their Representation: Typical Application of Instrument Systems, Functional Elements of a measurement System, Classification of Instruments, Standards and Calibration. Static and Dynamic characteristics of Instruments: Introduction, Accuracy, Precision, Resolution, Threshold, Sensitivity, Linearity, Hysteresis, Dead Band, Backlash, Drift, Formulation of Differential Equations for Dynamic Performance- Zero Order, First Order and Second order systems, Response of First and Second Order Systems to Step, Ramp, Impulse and Harmonic Functions, Problems including the characteristics study, Error Analysis.

UNIT – II

Transducer Elements: Analog and Digital Transducers, Variable Capacitance, Piezo-Electric Transducer and Associated Circuits, Unbonded and Bonded Resistance Strain Gages. Strain Gage Bridge circuits, Digital Transducers, Frequency Domain Transducer, Vibrating String Transducer, Binary codes, Digital Encoders. Modern Transducer

UNIT – III

Intermediate, Indicating and Recording Elements: Amplifiers, Mechanical, Hydraulic, Pneumatic, Optical, Electrical Amplifying elements, Compensators, Differentiating and Integrating Elements, Filters, Classification of Filters, A-D and D-A Converters, Digital Voltmeters (DVMs), Cathode Ray Oscillo scopes (CROs), Galvanometric Recorders, Magnetic Tape recorders, Data Acquisition Systems, Data Display and Storage.Modern trends in intermediate elements

UNIT – IV

Motion, Force and Torque Measurement: Relative motion Measuring Devices, Electromechanical, Optical, Photo Electric, Moire-Fringe, Pneumatic, Absolute Motion Devices, Seismic Devices, Spring Mass and Force Balance Type, Hydraulic Load Cell, Pneumatic Load Cell, Elastic Force Devices, Separation of Force Components, Electro Mechanical Methods, Strain Gage, Torque Transducer, and Torque Meters. Methods used in modern research

UNIT – V

Pressure, Flow and Temperature Measurement: Pressure Measurement: Moderate Pressure Measurement, Monometers, Elastic Transducer, Dynamic Effects of Connecting Tubing, High Pressure Transducer, Low Pressure Measurement, Calibration and Testing Flow Measurement: Quantity and rate meters, Flow visualization and its techniques, Modern Trends. Measurement of Temperature: Non Electrical Methods – Solid Rod Thermometer, Bimetallic Thermometer, Pressure Thermometer, Electrical Methods – Electrical Resistance Thermometers-RTDs, Semiconductor Resistance Sensors (Thermistors), Thermo– Electric Sensors, Thermocouple Materials and circuitry, Modern Trends

Total: 45

9

9

9

REFERENCES:								
1.		Measurement System: Appli	cation and Design", 5 th Editi	on, Mc	Graw Hill, 2003.			
2.		· · · · · ·	ent and Instrumentation –					
	Elsevier, 2015.	-						
3.	Nakra B.C. and Chaudhary K.K., "Instrumentation, Measurement and Analysis", Tata McGraw Hill,							
	2003.							
4.			trol Engineering", Metropoli					
5.	•	entation, Mechanical Meas	urements and Controls", G	algotia	Publisher, Reprint			
	2008.							
	URSE OUTCOMES:				BT Mapped			
		se, the students will be able t	0		(Highest Level)			
CC		stic analysis of instrument			Analyzing (K4)			
CC		-	surement system and relate	them	Applying (K3)			
		d presentation devices						
CC	i	manipulating and presentat			Applying (K3)			
CC	11 2 1	motion, force and torque measurement in research/modern App			Applying (K3)			
	application							
CC			measuring instruments in d	lay to	Analyzing (K4)			
	day and modern ap			<u> </u>				
			COs with POs					
	COs/POs	PO1	PO2		PO3			
	CO1	3	1		2			
	CO2	2	1		2			
	CO3	2	1		2			
	CO4	3	1		2			
	CO5	3	1		2			
1 –	Slight, 2 – Moderate,	3-Substantial, BT - Bloc	om's Taxonomy					

		18EDE11 DESIGN OF HEAT EXCHANGERS	5			
			L	Т	Р	Credit
			3	0	0	3
Prear	mble	This course intends to build design skills in the field of heat	t exch	angers	amon	g the Post
		Graduate Students of Engineering Design and CADCAM.				
Prere	equisites	Heat Transfer				
UNI	T – I					9
Class	sification	of Heat Exchangers: Parallel flow, Counter flow and Cross fl	ow, S	hell ar	nd tube	and Plate
type,	Single pa	ss and multi pass, Once through steam generators, Analysis of l	neat ex	xchang	ers – l	LMTD and
NTU	Methods					
UNI	T – II					9
Proc	ess Design	n of Heat Exchangers: Heat transfer correlations, Overall heat	transf	er coe	fficien	t, Effect of
baffle	es, Effect	of turbulence, Sizing of finned tube heat exchangers, For	uling	factors	s, Pres	ssure drop
calcu	lations.					
UNI	T – III					9
Mecl	hanical D	esign of Shell and Tube Heat Exchangers: Thickness calculat	ions, 7	Fube s	heet de	esign using
TEM	IA formula	a, Flow induced vibration risks including acoustic issue and reme	edies,	Tube t	o tube	sheet joint
desig	gn, Bucklir	ng of tubes, Thermal stresses.				
	T – IV					9
	-	Plate Heat Exchangers: Types – Merits and Demerits – Design	of Co	ompact	heat e	xchangers,
Plate	heat exch	angers, Performance influencing parameters, Limitations.				
	T – V					9
Conc	densers ar	nd Cooling Towers: Design of surface and evaporative condense	ers – I	Design	of Coo	oling tower
- Ap	proach, Ra	ange, Performance characteristics.				
						Total: 45
	ERENCE					
1.	Kuppan T	hulukkanam, "Heat Exchanger Design Handbook", 2 nd Edition,	CRC	Press (Taylor	& Francis
	Group), 20				-	
2.	Ray Sinne	ot, Gavin Towler, "Chemical Engineering Design", 6th Edition	on, Co	oulson	& Ri	chardson's
		Engineering Series, Elsevier, 2019.				
	D 1 T		n ·	N T 1	*****	ê 9

 Ramesh K. Shah, DuŠan P. Sekulić, "Fundamentals of Heat Exchanger Design", John Wiley & Sons Inc., 2003.

COURS	SE OUTCOMES:		BT Mapped				
On com	On completion of the course, the students will be able to						
CO1:	recognize the type of heat exchang exchanger using LMTD and NTU me	e the heat	Analyzing (K4)				
CO2:	CO2: design a heat exchanger by considering the effects of baffles, turbulence, finned tubes, fouling and pressure drop						
CO3:	exchanger	Applying (K3)					
CO4:	aluate the	Evaluating (K5)					
CO5:	CO5: design and evaluate the condensers and cooling towers with appropriate procedures						
	Марр	ping of COs with POs					
COs/P	Os PO1	PO2		PO3			
COI	3	1		1			
CO2	3	1		1			
CO3	3	1	1				
CO4	4 3 1			2			
COS	3	1		2			
1 - Slig	ht, 2 – Moderate, 3 – Substantial, BT	Γ - Bloom's Taxonomy					

18EDE12 PRODUCTIVITY MANAGEMENT AND REENGINEERING (Common to Engineering Design & CADCAM branches)

esign & CADCAW Draicnes)						
	L	Т	Р			

		3	0	0	3	
Preamble This course provides advanced topics for productivity concepts & measurements, steps &						
	procedures of reengineering procedures and improvement models.					
Prerequisites	erequisites Fundamentals of production and process, Knowledge in basics of mathematics, Fundamentals					
	steps of software, Essentials knowledge of various production resources					
UNIT – I					9	

Introduction of Productivity Concepts: Definitions and various factors for productivity – problems in productivity and production -comparison of productivity measures- Productivity concepts - Macro and Micro factors of productivity, Productivity benefit model-case study- productivity cycle.

UNIT – II

Productivity Measurement: Productivity measurement at International, National and Organizational level-External Environment Economic utility model with productivity index, Total productivity models- problems -Strategies for productivity improvement.

UNIT – III

Management and Organizational Transformation: Productivity management Productivity in manufacturing and service sector-case study -Productivity evaluation models, Productivity improvement models and techniques - laboratory -case study. Principles of organizational transformation and reengineering, fundamentals of process reengineering, preparing the work force for transformation and reengineering, methodology and guidelines.

UNIT – IV

Productivity Models: PMI models, Edosomwan model, Moen and Nolan strategy for process improvement, LMICIP model, NPRDC model -Case studies and applications -DSMCQ and PMP model-case study.

UNIT - V

Re-Engineering Process Improvement Models, Re-Engineering Tools and Implementation: Analytical and process tools and techniques process tools and packages - Information and communication technology -Enabling role of IT.RE-opportunities, process redesign - cases. Software methods in BPR tools and techniques matrix-case study based on information resources - specification of BP, case study - Order, processing, user interfaces, maintainability and reusability-case study from few information resourcesapplication models.

REFERENCES:

1.	Sumanth D.J., "Productivity Engineering and Management", Tata McGraw-Hill, New Delhi, 2008.
2.	Edosomwan J.A., "Organizational Transformation and Process Re-engineering", CRC Press, 1995.
3.	Rastogi P.N., "Re-Engineering and Re-inventing the Enterprise", Wheeler Publishing, New Delhi, 2003.

9

9

Total: 45

9

9

Credit

COURS	SE OUTCOMES:		BT Mapped				
On com	(Highest Level)						
CO1:	CO1: recollect macro and micro factors affecting productivity						
CO2:	CO2: categorize the productivity measurement models						
CO3:	CO3: prepare workforce by incorporating transformation and reengineering						
	techniques						
CO4:	CO4: dramatize productivity models for applications and cases						
CO5:	Evaluating (K5)						
	Mapping of COs with POs						
COs/PC	s PO1	PO2	PO3				
CO1	3	2	3				
CO2	CO2 3 2		3				
CO3	3	2	3				
CO4 3		2	3				
CO5	3	2	3				
1 - Slight	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy						

18EDE13 MECHANICS OF COMPOSITE MATERIALS (Approved Data book may be permitted)

L	Т	Р	Credit
3	0	2	1

		-	•		-	
Preamble	This course provides knowledge of mechanical properties, design characteristics of composite materials.	manufa	cturing	techr	ology	and
Prerequisites	Advanced Strength of Materials					

UNIT – I

Basics of Composites and Manufacturing: Basics of fibers, matrices and composites: Definition – Need – General Characteristics, Applications. Fibers – Glass, Carbon, Ceramic and Aramid fibers. Matrices – Polymer, Ceramic and Metal Matrices – Characteristics of fibers and matrices. Fiber surface treatments. Manufacturing: Bag Moulding – Compression Moulding – Pultrusion – Filament Winding.

UNIT – II

Performance: Static Mechanical Properties – Fatigue and Impact Properties – Environmental effects– Long term properties, Fracture Behavior and Damage Tolerance – Quality Inspection Methods.

UNIT – III

Mechanics: Rule of mixture -volume and mass fractions – density - void content, Evaluation of four elastic moduli based on strength of materials approach and Semi-Empirical model-Longitudinal Young's modulus-transverse Young's modulus-major Poisson's ratio-In-plane shear modulus, Ultimate strengths of a unidirectional lamina. Characteristics of Fiber reinforced lamina-laminates- lamination theory.

$\mathbf{UNIT}-\mathbf{IV}$

Design Analysis and Thermal Behaviour: Failure Predictions, Laminate Design Consideration-design criteria-design allowable -design guidelines, Joint design-Bolted and Bonded Joints, Design Examples-Design of a tension member – design of a compression member – design of a beam-design of a torsional member, Application of FEM for design and analysis of laminated composites. Assumption of Constant Coefficient of Thermal expansion. Modification of Hooke's law. Orthotropic Lamina C.T.E's. C.T.E's for special laminate configurations, Zero C.T.E laminates.

UNIT – V

Particulate Based MMC and PMC: Processing Of MMC –Diffusion Bonding – Stir Casting – Squeeze Casting. Basics Of Graphite, Carbon Nanotube, Nanoclay, Nanosilica. Particulate Reinforced Polymer Composites – Processing, Interactions, Morphological, Rheological, Mechanical Properties.

List of Experiments :

- 1. Testing of fibers: Determination of tensile strength of glass fiber, Measurement of fiber diameter.
- 2. Determination of Critical fiber length
- 3. Determination of tensile strength, flexural strength,
- 4. Determination of impact strength, fatigue strength
- 5. Test on resin : Determination of viscosity, shrinkage and gel time
- 6. Determination of longitudinal modulus ,transverse modulus.
- 7. Determination of Bearing strength of bolted joints,
- 8. Preparation of Al_2O_3 SiC composites by stir casting process
- 9. Determination of Coefficient of thermal expansion of composite
- 10. Determination of major and minor Poisson's ratios and rigidity modulus

Lecture:45, Practical:30, Total: 75

9

9

9

9

REFERI	ENCES:								
	llick P.K., "Fiber Reinforced Comp	osites: Materials, Manufacturing	and De	sign", Marcel Dekker					
	nc, 1993.								
	rr K. Kaw, "Mechanics of Composite Materials", CRC Press, 2006.								
	Agarwal B.D. and Broutman L.J., "Analysis and Performance of Fiber Composites", John Wiley &								
	ns New York, 1990.		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1. 1					
	oson Ronald, "Principles of Composit		Jraw-Hi	l, New Delhi, 1994.					
	awla K.K., "Composite Materials", S	pringer Verlag, Boston, 2006.							
	E OUTCOMES:	h h - h		BT Mapped					
-	letion of the course, the students will		ing of	(Highest Level)					
	demonstrate the knowledge on the	e fundamentals and manufactur	ing of	Understanding (K2)					
	composites understand the performance of fiber r	einforced composites		Understanding (K2)					
1	understand the performance of riber r understand and solve problems rel	*	nnosite	Applying (K3)					
	materials	accu to the meenames of con	nposite	rippiying (its)					
	understand the design concepts and the	nermal behavior of composite mat	terials	Analyzing (K4)					
	demonstrate the knowledge on the	1		Understanding (K2)					
	composite								
CO6:	measure the various mechanical prop	erties of composite materials and	fibers	Applying (K3),					
				Precision (S3)					
CO7:	measure the various physical properti	es of resin		Applying (K3),					
				Precision (S3)					
CO8:	prepare a metal – matrix composite			Applying (K3),					
	M			Precision (S3)					
<u> </u>		ping of COs with POs							
COs/POs	PO1	PO2		PO3					
CO1									
CO2				3					
CO3	3								
CO4	3	3		3					
CO5	3			3					
CO6				3					
CO7				3					
CO8				3					
1 – Sligh	t, 2 – Moderate, 3 – Substantial, B	Г - Bloom's Taxonomy							

		18EDE14 AI	PPLIED EN	GINEERI	NG ACO	USTICS			
						L	Т	P	Credit
						3	0	0	3
Preamble		rse provides the							
	phenome	ena, assessment &	& measureme	ent of soun	d and basic	c concepts	of nois	e contr	ol.
Prerequis		entals of Mather	matics, Fund	damentals	of Acoust	ics, Fund	amental	s of V	ibrations
UNIT – I									9
		stics: Scope of							
		otion – Alteratio							
Sound fi	elds – Interferer	nce – Standing	waves - Ac	oustic energy	gy density	y and inte	nsity –	Specif	ic acoustic
impedance	·e.								
UNIT – I	т								9
	ii	d: The one dime	ensional way	e equation	- Solution	of 1D we	ve equa	tion _	
		city of plane pro		-			-		•
		d – Transverse							
	in two dimensio		wave propa	gation alor		stretene	unuer	tensit	
equation		/11.							
UNIT – I	II								9
Transmi	ssion Phenome	ena: Changes in	ı media – Tr	ransmissior	from one	e fluid me	dium to	o anoth	er, normal
incidence	, oblique incide	ence - Reflectio	on at the sur	face of a	solid, norm	nal incide	nce, ob	lique i	ncidence –
Standing	wave pattern –	Transmission the	rough three r	media.					
UNIT – I	17								9
	ii	sessment and N	Maagumamaa	nt of Sour	d. Introdu	nation "	The dee	hal as	
		power – Sound loisiness – Lou							
		Identified level			-		percerv	eu noi	se level –
Equivale	it sound level –	Identified level	- Mequency		liuue meas	urennenn.			
UNIT –	V								9
Basic Co	ncepts of Nois	se Control: Noi	ise Control	at source,	path, recei	iver – No	ise con	trol by	acoustical
treatment	– Machinery	noise – Types o	of machinery	/ involved	– Determi	ination of	sound	power	and sound
power lev	el – Noise redu	ction procedures	s – Acoustic	enclosures				_	
REFERI									Total: 45
	ENCES:								Total: 45
1. Lav	vrence E. Kins	ler, Austin R. I			s and Jam	nes V. Sa	nders, '	'Funda	
1. Lav Ac	vrence E. Kins oustics", 4 th Edi	tion, John – Wile	ey & Sons In	nc., 1999.					mentals of
1. Lav Acc 2. Dat	vrence E. Kins oustics", 4 th Edi vid A. Bies, C	tion, John – Wile olin H. Hansen	ey & Sons In and Carl (nc., 1999. Q. Howard	l, "Engine	ering No			mentals of
1.Lav Acc2.Dar Pra	vrence E. Kins oustics", 4 th Edit vid A. Bies, C ctice", 5 th Editio	tion, John – Wile	ey & Sons In and Carl (Faylor & Fra	nc., 1999. Q. Howard Incis Group	l, "Engine , London, 2	ering No 2017.	ise Con	trol: T	mentals of Theory and

COUR	RSE O	UTCOMES:			BT Mapped			
On con	npletic	on of the course, the students will	be able to		(Highest Level)			
CO1:	CO1: identify and analyze the fundamentals of acoustic and wave motion							
CO2:	ident	ify and analyses the characteristic	cs of sound		Analyzing (K4)			
CO3:	solve	and design the transmission phe	nomenon of sound		Analyzing (K4)			
CO4:	meas	ure and assessment of sound syst	em for various applications		Applying (K3)			
CO5:					Analyzing (K4)			
	Mapping of COs with POs							
COs/	POs	PO1	PO2		PO3			
CC	D 1	3	2		3			
CC)2	3	2		3			
CC)3	3	2		3			
CC	CO4 3 2				3			
CC)5	3	2	3				
1 - Sli	ght, 2 -	1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy						