VISION

To be a centre of excellence for development and dissemination of knowledge in Applied Sciences, Technology, Engineering and Management for the Nation and beyond.

MISSION

We are committed to value based Education, Research and Consultancy in Engineering and Management and to bring out technically competent, ethically strong and quality professionals to keep our Nation ahead in the competitive knowledge intensive world.

QUALITY POLICY

We are committed to

- Provide value based quality education for the development of students as competent and responsible citizens
- Contribute to the nation and beyond through research and development
- Continuously improve our services

DEPARTMENT OF CSE

VISION

To be a centre of excellence for nurturing competent computer professionals of high calibre and quality for catering to the ever-changing needs of the industry and society.

MISSION

Department of CSE is committed to:

- **MS1:** Develop innovative, competent and ethically strong computer engineers to meet global challenges.
- **MS2:** Foster consultancy and basic as well as applied research activities to solve real world problems.
- **MS3:** Endeavour for constant upgradation of technical expertise to cater to the needs of the industry and society.

2018 REGULATIONS

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

Post Graduates of Computer Science and Engineering will

- PEO1: Adapt new computing technologies for attaining professional excellence and contribute to the advancement of computer science
- PEO2: Achieve peer recognition as an individual or in a team through demonstration of good analytical research, design and implementation skills
- PEO3: Thrive to pursue lifelong reflective learning to fulfill their goals

MS\PEO	PEO1	PEO2	PEO3
MS1	3	2	2
MS2	2	3	2
MS3	2	3	3

MAPPING OF MISSION STATEMENTS (MS) WITH PEOS

1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy

PROGRAM OUTCOMES (POs)

Engineering Post Graduates will be able to:

- **PO1:** Apply mathematical foundations, algorithmic principles, and computer science theory in the modelling and design of computer based systems of varying complexity
- **PO2:** Critically analyze existing literature in an area of specialization and develop innovative and research oriented methodologies to tackle gaps identified
- **PO3:** Design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, ethical, health and safety, and sustainability in the field of computer engineering
- **PO4:** Apply latest techniques and tools necessary for computing practice and demonstrate advanced knowledge of a selected area within the computer science discipline
- **PO5:** Function effectively to accomplish a common goal and communicate with a range of audiences and prepare technical documents and make oral presentations
- **PO6:** Demonstrate an ability to engage in lifelong learning for professional development

PEO\PO	PO1	PO2	PO3	PO4	PO5	PO6		
PEO1	3	2	2	3	1	1		
PEO2			1		3	3		
PEO3	2	2	1	1		3		
1 – Slight, 2 – Moderate, 3 – Substantial								

MAPPING OF PEOs WITH POs

CURRICULUM BREAKDOWN STRUCTURE UNDER REGULATION 2018

Curriculum Breakdown Structure(CBS)	Curriculum Content (% of total number of credits of the program)	Total number of contact hours	Total number of credits			
Program Core(PC)	40.3%	41	29			
Program Electives(PE)	25%	24	18			
Humanities and Social Sciences and Management Studies(HSMS)	5.5%	5	4			
Project(s)/Internships(PR)/Others	29.2%	40	21			
Total						

KEC R2018: SCHEDULING OF COURSES – ME (CSE)

Semes ter		Theory/ Theory cum Practical / Practical					Internship & Projects	Special Courses	Credits
	1	2	3	4	5	6	7	8	9
I	18AMT11 Advanced Mathematics for computing (PC-3-1-0-4)	18MST11 Multicore Architecture (PC-3-1-0-4)	18MST12 Modern Operating System (PC-3-0-0-3)	18MST13 Advanced Software Engineering (PC-3-0-0-3)	18MSC11 Data Structures and Analysis of Algorithms (PC-3-0-2-4)	18MIC11 Advanced Database Technology (PC-3-0-2-4)			22
II	18MSC21 Machine Learning Techniques (PC-3-0-2-4)	18MSC22 Network design and technologies (PC-3-0-2-4)	18MST21 Security in computing (PC-3-1-0-4)	Professional Elective I (PE-3-0-0-3)	Professional Elective II (PE-3-0-0-3)	Professional Elective III (PE-3-0-0-3)	18MSP21 Mini Project (PR-0-0-4-2)		23
111	Professional Elective IV (PE-3-0-0-3)	Professional Elective V (PE-3-0-0-3)	Professional Elective VI (PE-3-0-0-3)				18MSP31 Project Work Phase I (PR-0-0-12-6)		15
IV							18MSP41 Project Work Phase II (PR-0-0-24-12)		12

Total Credits: 72

M.E. DEGREE IN COMPUTER SCIENCE AND ENGINEERING

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

SEMESTER – I

Course	Course Title	Hours / Week			Cradit	Maximum Marks			CBS	
Code	Course Thie	L	Т	Р	Creuit	CA	ESE	Total		
	Theory/Theory with Practical									
18AMT11	Advanced Mathematics for Computing	3	1	0	4	50	50	100	PC	
18MST11	Multicore Architectures		1	0	4	50	50	100	PC	
18MST12	Modern Operating System		0	0	3	50	50	100	PC	
18MST13	Advanced Software Engineering	3	0	0	3	50	50	100	PC	
18MSC11	Data Structures and Analysis of Algorithms	3	0	2	4	50	50	100	PC	
18MIC11	Advanced Database Technology	3	0	2	4	50	50	100	PC	
	Total	22								

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

M.E. DEGREE IN COMPUTER SCIENCE AND ENGINEERING

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

SEMESTER	- II
----------	------

Course	Course Title	H	lours Weel	s / k	Cradit	N	CBS		
Code	Course The	L	Т	Р	Creuit	CA	ESE	Total	CBS
	Theory/Theory with Practical								
18MSC21	Machine Learning Techniques	3	0	2	4	50	50	100	PC
18MSC22	Network Design and Technologies	3	0	2	4	50	50	100	PC
18MST21	Security in Computing	3	1	0	4	50	50	100	PC
	Elective - I	3	0	0	3	50	50	100	PC
	Elective - II	3	0	0	3	50	50	100	PC
	Elective - III	3	0	0	3	50	50	100	PC
	Practical								
18MSP21	Mini Project	0	0	4	2	100	0	100	PR
	Total	Total							

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

M.E. DEGREE IN COMPUTER SCIENCE AND ENGINEERING

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

Course	Course Title	Hours / Week			Credit	Maximum Marks			CBS
Code	Course Thie	L	Т	Р	Cleun	CA	ESE	Total	CDS
	Theory/Theory with Practical								
	Elective - IV	3	0	0	3	50	50	100	PE
	Elective - V	3	0	0	3	50	50	100	PE
	Elective - VI	3	0	0	3	50	50	100	PE
	Practical								
18MSP31	Project Work Phase I	0	0	12	6	50	50	100	PR
	Total	•	•	•	15				

SEMESTER – III

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

M.E. DEGREE IN COMPUTER SCIENCE AND ENGINEERING

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

SEMESTER – IV

Course	Course Title	Hours / Week			Credit	Maximum Marks			CPS
Code	Course The	L	Т	Р	Cleun	CA	ESE	Total	CDS
	Practical								
18MSP41	Project Work Phase II	0	0	24	12	50	50	100	PR
	Total				12				

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

Total Credits: 72

LIST OF PROFESSIONAL ELECTIVES									
Course		Ho	urs/W	/eek		CDC			
Code	Course Title	L	Т	Р	Credit	CBS			
	SEMESTER II								
18COT21	Wireless Sensor Networks	3	1	0	4	PE			
18MIE02	Data Visualization Techniques	3	0	0	3	PE			
18MSE01	Business Intelligence	3	0	0	3	PE			
18MSE02	Cloud Computing	3	0	0	3	PE			
18MSE03	Compiler Design Techniques	2	0	2	3	PE			
18MSE04	Data mining Techniques	3	0	0	3	PE			
18MSE05	Blockchain Technologies	3	0	0	3	PE			
18MSE06	Virtualization Techniques	3	0	0	3	PE			
18MSE07	18MSE07Big Data Analytics302								
	SEMESTER III								
18MIC12	Internet of Things	3	0	2	4	PE			
18MIT11	Modern Information Retrieval Techniques	3	0	0	3	PE			
18MIE09	Social Network Analysis	3	0	2	4	PE			
18VLE12	Nature Inspired Optimization Techniques	3	0	0	3	PE			
18MSE08	Software Defined Networking	3	0	0	3	PE			
18MSE09	Information Storage Management	3	0	0	3	PE			
18MSE10	Randomized Algorithms	2	1	0	3	PE			
18MSE11	User Interface design	2	0	2	3	PE			
18MSE12	Deep Learning Techniques	3	0	2	4	PE			
18MSE13	Advanced Parallel Architecture and Programming	2	0	2	3	PE			
18MSE14	Speech and Natural Language Processing	3	0	0	3	PE			
18MSE15	Intelligent System Design	3	0	0	3	PE			
18MSE16	Mobile and Pervasive Computing	3	0	0	3	PE			

	(C	18AMT11 ADVANCED MATHEMATICS FOR COMPL common to Computer Science and Engineering & Information Techn	U TIN Nology	G Branc	hes)	
	()		L	Т	P	Credit
			3	1	0	4
Preamb	le	This course emphasizes the students to identify basic mathemat designing various concepts in computing, storage methods, co managing databases, artificial intelligence, compiler and design etc.	ical to oncept , DBN	ools ar s in d IS, de	nd techr ligital p esign of	niques for rinciples, Software
Prerequ	isites	Basic concepts of probability and counting principles.				
UNIT –	- I					9
Estimat	tion Th	eory: Point Estimation - Characteristics of estimators - Unbias	sed es	timato	ors - M	ethods or
Estimati	ion: Me	hod of Maximum Likelihood Estimation - Method of Moments -	Corre	lation	- Regr	ession.
					Y	
UNIT –	- II					9
Testing proporti significa significa	of Hy ion - Di ance of ance of	pothesis: Sampling Distributions - Large sample tests - Testin ference of proportions - Single mean - Difference of means - Sm means (student's t-test) - Testing the significance of Varia goodness of fit - Independence of attributes (χ^2 -test).	g the all sar nces	signii nple t (F-tes	ficance ests - T t) - Te	of single esting the esting the
UNIT -	- TTT					9
Combin exclusion Function	n atorics on - Ma ns - Sol	: Permutations and Combinations - Pigeonhole principle - thematical Induction - Recurrence relations - Solution of recurring recurrence relation by generating functions.	Princi rence	iple c relatio	of inclu ons - G	sion and enerating
UNIT –	- IV					9
Number theorem	r Theo 1 - GCD	ry: Divisibility - Prime numbers - Fundamental theorem of - Euclid's algorithm - Congruence - Solution of Congruences - C	arithn Chines	netic e rema	- Ferma ainder t	tt's Little heorem.
UNIT –	- V					
						9
Automa	ata The	ory: Formal Languages: Introduction - Phrase structure gram	mar -	Type	s of G	9 rammar -
Automa Finite s DFA to and Cor	ata The tate ma NFA - ntext Fre	ory: Formal Languages: Introduction - Phrase structure gram chine - Finite state automata - Deterministic and Non-determin Push down automata - Languages accepted by PDA - Equivale the Languages - Turing Machine.	mar - nistic ence o	Type FSA f Pusl	es of G - Equiv ndown J	9 rammar - alence of Automata
Automa Finite s DFA to and Cor	ata The tate ma NFA - ntext Fre	ory: Formal Languages: Introduction - Phrase structure gram chine - Finite state automata - Deterministic and Non-determin Push down automata - Languages accepted by PDA - Equivale the Languages - Turing Machine.	mar - nistic ence o e:45, '	Type FSA f Pusl Futor	s of G - Equiv ndown J ial:15,	9 rammar - alence of Automata Total: 60
Automa Finite s DFA to and Cor	ata The tate ma NFA - ntext Fre RENCE	ory: Formal Languages: Introduction - Phrase structure gram chine - Finite state automata - Deterministic and Non-determin Push down automata - Languages accepted by PDA - Equivale the Languages - Turing Machine. Lectur	mar - nistic ence o e:45, '	Type FSA f Pusl Futor	s of G - Equiv ndown J ial:15,	9 rammar - alence of Automata Total: 60
AutomaFinite sDFA toand CorREFER1.GuSo	ata The tate ma NFA - ntext Fre RENCE apta S.Cons, 201	ory: Formal Languages: Introduction - Phrase structure gram chine - Finite state automata - Deterministic and Non-determin Push down automata - Languages accepted by PDA - Equivale the Languages - Turing Machine. Lectur S: C. and Kapoor V.K., "Fundamentals of Mathematical Statistics 3.	mar - nistic ence o e:45, ' s", 11	Type FSA f Pusl Futor	es of G - Equiv ndown ial:15, tion, S	9 rammar - alence of Automata Total: 60 ultan and
AutomaFinite sDFA toand Corr REFER 1.Gu2.ViUr	ata The tate ma NFA - ntext Fre RENCE upta S.Cons, 201 ctor Sho niversity	ory: Formal Languages: Introduction - Phrase structure gram chine - Finite state automata - Deterministic and Non-determin Push down automata - Languages accepted by PDA - Equivale the Languages - Turing Machine. Lectur S: C. and Kapoor V.K., "Fundamentals of Mathematical Statistics bup, "A Computational Introduction to Number Theory and Algeb Press, 2011.	mar - nistic ence o e:45, ' s", 11 bra", 2	Type FSA f Pusl Futor th Edi	s of G - Equiv ndown ial:15, tion, S ition, C	9 rammar - alence of Automata Total: 60 ultan and ambridge

COU	RSE OUT(BT Mapped							
On coi	mpletion of	the course, the	students will be	e able to			(Highest Level)			
CO1:	use a sam	ple to compute	point estimate				Applying (K3)			
CO2:	apply stat	istical tests in te	sting hypothes	es on data			Analyzing (K4)			
CO3:	use comb	inatorial concep	ts in analysis o	f algorithms			Evaluating (K5)			
CO4:	4:handle network security related problems using number theory conceptsApplying (K3)									
CO5:	5:model different kinds of machines using finite state machinesCreating (K6)									
	•									
			Mappi	ng of COs with	POs					
CC	Os/POs	PO1	PO2	PO3	PO4	PO5	PO6			
(CO1	1		1						
(CO2	1	1	1						
(CO3	2	1	2						
(CO4	2	1	2						
(CO5	3	1	3						
1 - Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy									

	18MST11 MULTICORE ARCHITECTURES	~			
	(Common to Computer Science and Engineering & Information Technolo	ogy Bi	ranches	s) 	
			T	<u>P</u>	Credit
D 11		3	1	0	4
Preamble	This course will introduce the students to the world of multi-core	comp	uter ar	chitec	tures and
	focuses on delivering an in-depth exposure in memory-subsystems	and	interco	nnects	and few
Duene qui site s	Introductory sessions on advanced superscalar processors.				
Prerequisites	Computer Architecture and Organization				
UNIT – I					9
Energy and Principles of CMP Archite Architecture UNIT – II Memory Hi Optimization Studies	Cost - Dependability - Measuring, Reporting and Summarizing P Computer Design - Classes of Parallelism - ILP, DLP, TLP and RLP - 1 ectures - Limitations of Single Core Processors - The MultiCore era - 0 s. erarchy Design: Introduction - Optimizations of Cache Performance is - Protection: Virtual Memory and Virtual Machines - Design of M	- Memor	mance Thread Studies mory 7 ry Hie	- Qu ding - s of M Fechno rarchie	SMT and fulti Core 9 logy and es - Case
UNIT – III DLP in Vec Multimedia	tor, SIMD and GPU Architectures: Vector Architectures - SIMD Ins Graphics Processing Units - Detecting and Enhancing Loop Level Para	structi llelisi	ion Set n - Cas	Exter se Stud	9 nsions for lies.
UNIT – IV					9
TLP and M Issues - Per Networks - H	Iultiprocessors: Symmetric and Distributed Shared Memory Archite Formance Issues - Synchronization Issues - Models of Memory Cons Buses, Crossbar and Multi-stage Interconnection Networks.	ecture sistend	s - Ca cy - In	iche C iter Co	oherence onnection
UNIT - V		11 1	C 11	7 1	9
KLP and D Computers - Guidelines f interface Dat	LP in Warehouse Scale Architectures: Programming Models and Wor Architecture for Warehouse scale computing - Domain Specific Ar or DSAs- Example Domain: Deep Neural Network - Google's Ter a Center Accelerator.	kload rchite isor I	s for V ctures: Process	Vareho Intro Sing U	use scale duction - nit - An
	Lecture	:45, 7	lutoria	al:15, '	Total: 60
REFERENC 1.John LEdition2.Kai Hw	CES: Hennessey and David A. Patterson, "Computer Architecture – A C, Morgan Kaufmann, Elsevier, 2017. rang, "Advanced Computer Architecture", Tata McGraw-Hill Education	Quanti	itative 3.	Appro	oach", 6 th
3. Richard	Y. Kain, "Advanced Computer Architecture: A Systems Design Appro	ach",	Prenti	ce Hal	l, 2011.
4. David Approa	E. Culler, Jaswinder Pal Singh, "Parallel Computing Architecture ch", Morgan Kaufmann, Elsevier, 2013.	e: A	Hardy	ware/	Software

COU	RSE OUTC		BT Mapped					
On con	mpletion of	the course, the s	tudents will be	able to			(Hig	ghest Level)
CO1:	investigate	e the limitations	of ILP and the r	need for multi c	ore architectures		Ana	lyzing (K4)
CO2:	describe th	ne hierarchical m	emory system				Under	standing (K2)
CO3:	3: summarize the salient features of different multi core architectures and how they Understanding (K2)							
	exploit par	rallelism						
CO4:	04: critically analyze the different types of inter connection networks Analyzing (K4)							
CO5:	O5: compare the architectures of GPUs, Warehouse scale computers and Domain Analyzing (K4)							
	specific architecture							
	Mapping of COs with POs							
PEO	Os/POs	PO1	PO2	PO3	PO4	PO	5	PO6
(CO1	3	3	1				
(CO2	1	3	2				
(CO3	1	3	1				
(CO4	1	3	1				
CO5 3		3	2	2				
1 - Sli	ght, 2 – Mo	derate, 3 – Sul	ostantial, BT -	Bloom's Taxon	omy			

	18MST12 MODERN OPERATING SYSTEM								
		L	Т	P	Credit				
		3	0	0	3				
Preamble	The concepts of operating system to distributed environment lik computing etc.	ce clou	id con	nputing	g, mobile				
Prerequisites	Operating systems								
UNIT – I					9				
Process Synchronization: Introduction - Functions of OS - Design Approaches - Types of advanced OS, Synchronization mechanisms - Critical Section Problem - Process Deadlocks: Models of Deadlock - Models of Resources.									
UNIT – II					9				
Distributed Primitives - Algorithms -	Distributed Operating Systems: Issues in Distributed Operating System - Architecture - Communication Primitives - Lamport's Logical clocks - Causal Ordering of Messages - Distributed Mutual Exclusion Algorithms - Centralized and Distributed Deadlock Detection Algorithms - Agreement Protocols.								
UNIT – III					9				
Distributed Resource Management: Distributed File Systems - Design Issues - Distributed Shared Memory - Algorithms for Implementing Distributed Shared memory - Issues in Load Distributing - Load Distributing Algorithms - Synchronous and Asynchronous Check Pointing and Recovery. UNIT - IV 9 Fault Tolerance and Security: Fault Tolerance - Two-Phase Commit Protocol - Non-blocking Commit Protocol - Security and Protection Multiprocessor Operating Systems: Structures - Design Issues - Threads -									
Process Sync	hronization - Processor Scheduling - Memory Management - Reliabili	ty / Fa	ult Tol	erance					
UNIT - V	nometing Sustance Introduction Consumerous Control Distri	hard a	Datab		9				
Concurrency Systems – C Mobile Oper	Control Algorithms. Real Time and Mobile Operating Systems: haracteristics - Applications of Real Time Systems - Real Time Tas ating Systems.	Basic k Sche	Mode eduling	l of R g - Ov	Real Time erview of				
					Total: 45				
REFERENC	ES:								
1. Mukesł Databas	Singhal and Niranjan G. Shivaratri, "Advanced Concepts in Opera e, and Multiprocessor Operating Systems", Tata McGraw-Hill, 2014.	ating S	ystem	s – Di	istributed,				
2. Rajib N	all, "Real-Time Systems: Theory and Practice", Pearson Education In	dia, 20	06.						
3. Abraha John W	n Silberschatz, Peter Baer Galvin, Greg Gagne, "Operating System & Sons, 2004.	stem (Concep	ots", 7 ^t	^h Edition,				
4. Andrew	S. Tanenbaum, "Modern Operating Systems", 2 nd Edition, Addison W	/esley,	2001.						
5. Daniel	P. Bovet and Marco Cesati, "Understanding the Linux kernel", 3 rd Edit	ion, O	'Reilly	, 2005	•				
6. Neil Si	nyth, "iPhone iOS 4 Development Essentials – Xcode", 4 th Edition, I	Payloa	d Medi	a, 201	1.				

COUI	OURSE OUTCOMES:							BT Mapped	
On con	mpletion of	the course, the s	students will be	able to			(Highest Level)		
CO1:	elaborate	the synchroniza	tion mechanisn	n, various mode	els and function	s of an	Understanding (K2)		
	operating system								
CO2:	CO2: examine the issues - Mutual exclusion, Deadlock detection and Agreement Analyzing (K4)								
	protocols	of Distributed O	perating System	1					
CO3:	CO3: interpret the file system and load distribution mechanisms in Distributed Applying (K3)								
	Operating	System							
CO4:	CO4: compare various fault tolerant protocols and security issues Understanding (K2)								
CO5:	CO5: summarize the characteristics of multiprocessor and illustrate different features Applying (K3)						plying (K3)		
	of real tim	e and mobile op	erating systems						
			Mappi	ng of COs with	POs				
PE	Os/POs	PO1	PO2	PO3	PO4	PC)5	PO6	
(CO1	2	1						
(CO2	3	3						
(CO3	3	2	1					
(CO4	2	1						
CO5 3 1									
1 - Sli	ght, 2 – Mo	oderate, 3 – Su	bstantial, BT -	Bloom's Taxon	omy				

	18MST13 ADVANCED SOFTWARE ENGINEERIN	NG			
		L	Т	Р	Credit
		3	0	0	3
Preamble	This course takes into account of the emerging needs of industry software engineering practices.	under	pinned	by th	neory and
Prerequisites	Software Engineering				
UNIT – I					9
Introduction t Agile methods scaling agile m	o Software Engineering: Introduction - Software processes - Ag - plan-driven and agile development - Extreme programming - A ethods - Requirements engineering.	gile son Agile p	ftware project	devel mana	opment - agement -
IINIT II					0
UNII – II Modeling and	Decign. System modeling Types of models and model driven	anain		1	9 hitaatumal
design - Desi Implementatior development -	gn and implementation - Object-oriented design using the U issues - Open source development - Software testing - Develop Release testing - User testing	JML pment	- Des testing	ign p g - Te	atterns - est-driven
UNIT – III					9
software engir engineering.	heering - Service-oriented architecture - Embedded software	- Asp	ect-ori	g - D	software 9
Software Man Project schedu management.	agement: Project management - Project planning - Software pricing ling - Agile planning - Estimation techniques - Quality ma	- Plan anagen	-driver nent -	devel Conf	lopment - figuration
UNIT – V					9
DEVOPS: Mo Building and T	tivation - Cloud as a platform - Operations - Deployment Pipel esting – Deployment - Case study: Migrating to Microservices.	line: C	Verall	Arch	itecture -
				'	Total: 45
REFERENCE	S:				
1. Roger S. I	Pressman, "Software Engineering - A Practioner's Approach", 7th Ed	ition, N	MCGra	w Hil	1, 2009.
2. Ian Somm	erville, "Software Engineering", 9 th Edition, Addison Wesley, 2011.				
3. Heineman Together"	G.T., and Councill W.T., "Component-Based Software Engine, Pearson Higher Education/Addison Wesley, 2001.	eering	: Putt	ing th	ne Pieces
4. Len Bass Education	, Ingo Weber and Liming Zhu, "DevOps: A Software Archite, 2016.	ect's F	Perspec	tive",	Pearson
5. Martin R Publisher,	C., "Agile Software Development: Principles, Patterns, and Pra 2011.	actices'	', Pea	rson I	Education

COU	OURSE OUTCOMES:						BT Mapped		
On con	mpletion of	the course, the s	tudents will be	able to			(Highest Level)		
CO1:	summarize	the core conce	ots in software e	engineering			Understanding (K2)		
CO2:	2: apply general principles of software development in the development of Applying (K3) complex software								
CO3:	O3:discuss the methods and techniques for advanced software development and apply these in various development situationsApplying (K3)								
CO4:	A:apply the different project management features to solve the world senariosApplying (K3)								
CO5:	O5: apply the DevOps practices for different cases A						Ар	Applying (K3)	
	Mapping of COs with POs								
PE	Os/POs	PO1	PO2	PO3	PO4	PC)5	PO6	
(CO1	2		1					
(CO2	3	2						
(CO3	3	1	1	2				
(CO4							1	
CO5 3			1	2					
1 – Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy								

18MSC11 DATA STRUCTURES AND ANALYSIS OF ALGORITHMS

(Common to Computer Science and Engineering, Information Technology & Information Technology(ICW) Branches)

		L	Т	Р	Cre	dit			
		3	0	2	4				
Preamble	Provides insight into the intrinsic nature of the problem as techniques, independent of programming language / progra hardware/ implementation aspect.	s well ammin	as po g para	ossible adigm/	solu comp	tion uter			
Prerequisites	Nil								
UNIT – I						9			
Data Structu Recursive and	Data Structures: The Role of Algorithms in Computing- Growth of Functions - Analysis of Recursive and Non-recursive Functions – Lists - Heap Sort – Quick Sort – Sorting in Linear Time								
UNIT – II						9			
Advanced Dat – Binomial He	a Structures: Binary Search Trees-Red-Black Trees-Augmentin aps - Fibonacci Heaps	g Data	a Struct	tures -	B- T	ress			
UNIT – III						9			
Algorithm	Design Techniques: Overview of Basic Design T	echni	ques:	Divi	de	and			
Conquer(Strass	sen's Matrix Multiplication) – Dynamic Programmin	g(Rod	l Cu	tting)	- Gre	edy			
Algorithms(Hu	ffman Codes) - String Matching: Naïve Algorithm - Rabin	Kar	p Alg	orithm	ı - St	ring			
matching with	finite automata - Knuth-Morris-Pratt Algorithm - Computation	al Geo	ometry	: Line	Segn	nent			
Properties - De	termining segments intersection – Convex Hull – Closest pair of p	points.							
UNIT – IV 9									
Graph Algon	Graph Algorithms: Elementary Graph Algorithms - Minimum Spanning Trees - Single Source								
Shortest Paths	- All Pairs Shortest Paths - Maximum Flow								
UNIT V						0			
NP and Appr	ovimation Algorithm: NP-Completeness: Polynomial Time ver	rificati	on NI	Com	nleter	ness			
and Reducibil Traveling Sale	ity - NP Completeness Proofs - NP Complete Problems - sman Problem - Sum of Subset Problem - Vertex Cover Problem	Appro	ximati	on Al	gorith	ims:			
List of Exercis	ses / Experiments :								
1. Implement	any two sorting algorithm								
2. Apply Bina	ry Search Trees, Red-Black trees, Binomial Heap and Fibonacci h	neaps a	algorith	nms					
3. Strassen's	natrix multiplication algorithm, Huffman code using Algorithm I	Design	Techn	iques					
4. Implement	String Matching and Graph algorithms								
5. Solve NP F	roblems sum of Subset Problem and Travelling sales person problem	lem							
		e:45, P	ractica	al:30, '	Fotal	:75			
	S / MANUALS / SOFTWARES:	1 1 0	. •	T 4 1					
1. Inomas	H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Cliff	ford S	tein,	Introd	uction	1 to			
Algorithn	15, 5 Edition, MIT Press, USA, 2009.		ion A	ddiaa	Wa	1.01-1			
2. Levitin A	, introduction to the Design and Analysis of Algorithms", 2°	Edit	lion, A	uuison	wes	ney,			
3 Woice M	A, 2007.	Editio	n Dag	reon E	ducet	ion			
J. WUISS IVIA New Dell	in Anon, Data Subclures and Algorithm Analysis in C++, 5	LuitiC	п, геа	ISUII E	uucal	1011,			
4 Aho Alfr	ed V Honcroft John E. and Illilman Jeffrey D. "Data Structure	es and	Algori	thme"	Реат	son			
Education	, New Delhi, 2002.	Jo unu	115011		, i cai	5011			

COUI	RSE OUTO		ВТ	' Mapped				
On con	mpletion of	the course, the	students will be	e able to			(Hig	hest Level)
CO1:	analyze a	lgorithms and pr	rove their correct	ctness for search	ning and sorting	2	Ana	lyzing (K4)
CO2:	choose ap	propriate data s	tructure as appli	icable to specifi	ed problem de	finition	App	olying (K3)
CO3:	design al them to re	gorithms using al world proble	different Algorem	rithm Design	Fechniques and	l apply	App	olying (K3)
CO4:	summariz	e the major grap	oh algorithms ar	nd apply on star	ndard problems		App	olying (K3)
CO5:	outline the	e significance of	f NP-completen	less and Approx	imation algorit	hm	Under	standing (K2)
CO6:	: identify the appropriate data structure for solving the given problem Applying (K3), Precision (S3)							
CO7:	7: choose and employ appropriate data structure to represent complex data Applying (K3), structure Precision (S3)							
CO8:	O8: synthesize operations like searching, insertion, deletion and traversing on Applying (K3), various data structures Precision (S3)							lying (K3), cision (S3)
	Mapping of COs with POs							
CC	Os/POs	PO1	PO2	PO3	PO4	PC)5	PO6
(CO1	3	3		3			1
(CO2	3	2		3			
(CO3	3	2		3			
(CO4	3	2		3			
(CO5	2	1		2			
(CO6	3	2		3			
(CO7	3	2		3			
(CO8	3	2		3			
1 – Sli	ht, 2 - Mc	oderate, 3 – Su	ıbstantial, BT -	Bloom's Taxo	nomy			

18MIC11 ADVANCED DATABASE TECHNOLOGY (Common to Information Technology & Computer Science and Engineering Branches)

,	<u> </u>			,			
		L	Т	Р	Credit		
		3	0	2	4		
Preamble	To acquire knowledge on advanced databases like parallel and	l distri	buted	databa	se, object		
	oriented database, active database, temporal database, spatial database, mobile database,						
	multimedia database, XML database and cloud database to effectively store the data for real						
	time applications.						
Prerequisites	Fundamentals of Database Management Systems						
UNIT – I					9		
Donallal and	Pigtributed Databases Database System Anabitastumese Ca	mtmolin	ad an	d Clia	at Comron		

Parallel and Distributed Databases: Database System Architectures: Centralized and Client-Server Architectures - Server System Architectures - Parallel Systems - Distributed Systems - Parallel Databases: I/O Parallelism - Inter and Intra Query Parallelism - Inter and Intra operation Parallelism -Design of Parallel Systems - Distributed Database Concepts - Distributed Data Storage -Distributed Transactions - Commit Protocols - Concurrency Control - Distributed Query Processing - Case Studies.

UNIT – II

Object Oriented Databases: Object Oriented Databases - Introduction - Weakness of RDBMS - Object Oriented Concepts - Storing Objects in Relational Databases - Next Generation - Database Systems - Object Oriented Data models - OODBMS Perspectives - Persistence - Issues in OODBMS - Object Oriented Database Management System Manifesto - Advantages and Disadvantages of OODBMS - Object Oriented Database Design - OODBMS Standards and Systems - Object Management Group - Object Database Standard ODMG - Object Relational DBMS - Postgres - Comparison of ORDBMS and OODBMS.

UNIT – III

Intelligent Databases: Active Databases: Syntax and Semantics (Starburst, Oracle, DB2) – Taxonomy – Applications - Design Principles for Active Rules - Temporal Databases: Overview of Temporal Databases-TSQL2 - Deductive Databases: Logic of Query Languages - Datalog - Recursive Rules-Syntax and Semantics of Datalog Languages - Implementation of Rules and Recursion - Recursive Queries in SQL - Spatial Databases - Spatial Data Types - Spatial Relationships - Spatial Data Structures - Spatial Access Methods - Spatial DB Implementation.

UNIT – IV

Advanced Data Models: Mobile Databases: Location and Handoff Management - Effect of Mobility on Data Management - Location Dependent Data Distribution - Mobile Transaction Models - Concurrency Control - Transaction Commit Protocols - Multimedia Databases - Information Retrieval - Data Warehousing - Data Mining - Text Mining.

UNIT – V

Emerging Technologies: XML Databases: XML Data Model - DTD - XML Schema - XML Querying - Web Databases - Geographic Information Systems - Biological Data Management - Cloud Based Databases: Data Storage Systems on the Cloud - Cloud Storage Architectures - Cloud Data Models - Query Languages - Introduction to Big Data - Storage - Analysis.

List of Exercises / Experiments :

1. Distributed Database for Bookstore

2. Deadlock Detection Algorithm for distributed database using wait- for graph

3. Object Oriented Database – Extended Entity Relationship (EER)

4. Parallel Database – University Counselling for Engineering colleges

5. Parallel Database – Implementation of Parallel Join & Parallel Sort

9

9

9

6.	6. Active Database – Implementation of Triggers & Assertions for Bank Database							
7. Deductive Database – Constructing Knowledge Database for Kinship Domain (Family Relations)								
8. Study and Working of WEKA Tool								
9. Query Processing – Implementation of an Efficient Query Optimizer								
10	Designing	XML Schema	for Company Da	atabase				
Lecture:45, Practical:30, Total: 75								
REFE	RENCES	MANUALS /	SOFTWARES	•				
1. E	Elmasri H	R., Navathe	S.B., "Fun	damentals o	of Database	Systems'	", 5 ^{tr}	¹ Edition,
F	Pearson Edu	cation/Addison	Wesley, 2010.					
2. 1	Thomas C	annolly and	Carolyn Beg	g, "Database	e Systems, A	A Practic	al Ap	pproach to
	Design, Implementation and Management", 3 ¹⁰ Edition, Pearson Education, 2007.							
3. F	Henry F.	Korth, Abral	ham Silbersch	iatz S., Suc	dharshan, "Da	itabase Sy	ystem	Concepts",
	Edition,	McGraw Hill, 20		<u>,1 0 ((</u>	A T / 1 /*	4 D	4 1	G 4 22
4. L	Date C.J.,	Kannan A.,	and Swamyn	hathan S.,	An Introductio	on to Da	atabase	Systems [*] ,
5 5	e caluon, l	Pearson Education	UII, 2000.	Cabrlea	"Databasa	Managan	aant	Sustama''
J. F	rd Edition	McGrow Hill 20	Jonannes	Genike,	Database	Managen	lient	Systems,
	Eurion,	Wiedraw IIII, 20	,04.					
COUI	SE OUTO	COMES					RT	Manned
	mpletion of	the course the	students will be	able to			(Hig	hest Level)
CO1	CO1: select the appropriate high performance database like parallel and distributed Applying (K3)							
database								
CO2:	CO2:model and represent the real world data using object oriented databaseEvaluating (K4)							
CO3:	CO3: design a semantic based database to meaningful data access Evaluating (K4)							
CO4:	embed the	e rule set in the d	latabase to impl	ement intellige	ent databases		Evalı	uating (K4)
CO5:	represent	the data using X	ML database fo	or better interop	perability		Evalı	uating (K4)
CO6:	design an	effective query	processing for p	parallel and dis	tributed databas	se	Appl	lying (K3),
<u>C07</u> .	dosign on	onling system for	r various appli	antiona			Appl	$\frac{181011}{1800}$
07.	uesign an	onnie system to	or various applie	cations			Appi Drec	$\frac{1}{2} (K3),$
C08.	design an	application usin	a advanced data	a models			Δnnl	ving(K3)
000.	design an	application usin		u models			Prec	rsion (S3)
	1		Mannin	a of COs with	POs		1100	
		DO1				DOS	I	
	DS/POS	POI	PO2	PO3	PO4	P05		PO6
(201	3	3		3			1
(CO2	3	2		3			
(CO3	3	2		3			
(CO4	3	2		3			
(CO5	2	1		2			
(CO6	3	2		3			
(CO7	3	2		3			
(CO8	3	2		3			
1 – Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy							

18MSC21 MACHINE LEARNING TECHNIQUES

(Common to Computer Science and E	Engineering,	Information	Technology,	Information 7	Fechnology
(Information Cyber Warfare)	& Control a	nd Instrumer	ntation Engin	eering branch	les)

L	Т	Р	Credit
3	0	2	4

9

9

9

9

9

Preamble	Provides a concise introduction to the fundamental concepts of machine learning and popular
	machine learning algorithms.

Prerequisites

Nil

UNIT – I

Supervised Learning: Definition of Machine Learning - Examples of Machine Learning Applications. Supervised Learning:Learning a Class from Examples - VC Dimension - PAC Learning - Noise - Learning Multiple Classes - Regression - Model Selection and Generalization - Dimensions of a Supervised Machine Learning Algorithm. Dimensionality Reduction: Introduction - Subset Selection – Principal Component Analysis- Feature Embedding - Factor Analysis.

UNIT – II

Tree And Probabilistic Models: Learning with Trees – Decision Trees – Constructing Decision Trees – Classification and Regression Trees – Different ways to Combine Classifiers – Boosting – Bagging — Gaussian Mixture Models – Nearest Neighbor Methods – Unsupervised Learning – K means Algorithm.

UNIT – III

Multilayer Perceptrons: Introduction - The Perceptron - Training a Perceptron - Learning Boolean Functions - Multilayer Perceptrons - MLP as a Universal Approximator - Backpropagation Algorithm - Training Procedures - Tuning the Network Size - Dimensionality Reduction - Learning Time

$\mathbf{UNIT} - \mathbf{IV}$

Kernel Machines: Introduction - Optimal Separating Hyperplane - Soft Margin Hyperplane - v-SVM - Kernal Trick - Vectorial Kernels - Defining Kernels - Multiple Kernel Learning - Multiclass Kernel Machines - One class Kernel Machines - Kernel Dimensionality Reduction.

$\mathbf{UNIT} - \mathbf{V}$

Reinforcement Learning: Introduction - Single State Case-Elements of Reinforcement Learning - Model-Based Learning - Temporal Difference Learning - Generalization - Partially Observable States. Design of Machine Learning Experiments: Introduction - Factors, Response, and Strategy of Experimentation -Response Surface Design - Randomization, Replication, and Blocking - Guidelines for Machine Learning Experiments.

List of Exercises / Experiments :

- 1. Implementation of linear regression
- 2. Implementation of Decision tree
- 3. Implementation of k-means clustering
- 4. Implementation of k-NN
- 5. Implementation of Backpropagation algorithm
- 6. Comparison of linear regression and decision tree algorithm for the given dataset
- 7. Comparison of kernel functions of Support Vector Machine for the given dataset

Lecture:45, Practical:30, Total: 75

REFERENCES / MANUALS / SOFTWARES:

1. Ethem Alpaydin, "Introduction to Machine Learning", 3rd Edition, Prentice Hall of India, 2014.

2. Christopher Bishop, "Pattern Recognition and Machine Learning", 2nd Edition, Springer, 2011.

3. Willi Richert, Luis Pedro Coelho, "Building Machine Learning Systems with Python", 2nd Edition, Packt Publishing Ltd., 2015.

COU	RSE OUTO	COMES:					BT Mapped		
On con	On completion of the course, the students will be able to								
CO1:	illustrate	the foundations	of machine lear	rning and apply	suitable dimens	sionality	Applying (K3)		
	reduction	reduction techniques for an application							
CO2:	make use	of supervised n	nethods to solve	e the given prob	lem		Applying (K3)		
CO3:	apply neu	ral networks to	solve real world	d problems			Applying (K3)		
CO4:	solve real	world problems	s using kernel r	nachines			Applying (K3)		
CO5:	summariz experime	the concepts of the concepts o	of reinforcemen	t learning and d	lesign machine	earning	Analyzing (K4)		
CO6:	implement various supervised algorithms and evaluate the performance						Analyzing (K4),		
							Precision (S3)		
CO7:	: implement the unsupervised algorithms and evaluate the performance						Analyzing (K4),		
							Precision (S3)		
CO8:	implemen	it and compare t	he performance	e of different alg	gorithms		Analyzing (K4),		
					DO		Precision (S3)		
	. / D.O.	501	Mappi	ng of COs with	POS	D 05			
	Ds/POs	POI	PO2	PO3	PO4	PO5	PO6		
(CO1	3		2					
(CO2	3		2			1		
(CO3	3			2		1		
(CO4	3			2		1		
(CO5	2		3			1		
(CO6	3		2					
(CO7	3		2					
(CO8	3		2					
1 - Sli	ght, $2 - Mo$	oderate, $3 - S_{1}$	ubstantial, BT	- Bloom's Taxo	nomy				

18MSC22 NETWORK DESIGN AND TECHNOLOGIES

L	Т	Р	Credit
2	Δ	2	1

		5	U		-	
Preamble	This course provides insight into Network design, tools for a	monito	oring th	ne netv	work ar	ıd
	advanced topics in Networks such as Wireless network proto	cols, 4	4G and	1 5G 1	network	s,
	Software-Defined Networks.					
Prerequisites	Computer Networks					

UNIT – I

Network Design Fundamentals: Introduction -Cooperative communications -The OSI model -The TCP/IP model -The Internet protocols-Networking hardware-Physical connectivity-Virtual connectivity.

UNIT – II

Network monitoring and Analysis: An effective network monitoring LAN and WAN - Monitoring your network -The dedicated monitoring server – monitoring various network parameters - characteristics of monitoring tools - Types of monitoring tools-Spot check tools-Log analysers-Trending tools-Realtime tools-Benchmarking-Interpret the traffic graph - Monitoring RAM and CPU usage.

UNIT – III

Wireless Networks: IEEE802.16 and WiMAX – Security – Advanced 802.16 Functionalities – Mobile WiMAX - 802.16e – Network Infrastructure – WLAN – Configuration – Management Operation – Security – IEEE 802.11e and WMM – QoS – Comparison of WLAN and UMTS.

UNIT – IV

4G and 5G Networks: LTE – Network Architecture and Interfaces – FDD Air Interface and Radio Networks –Scheduling – Mobility Management and Power Optimization – LTE Security Architecture – Interconnection with UMTS and GSM – LTE Advanced (3GPPP Release 10)- 4G Networks and Composite Radio Environment – Protocol Boosters – Hybrid 4G Wireless Networks Protocols – Green Wireless Networks – Physical Layer and Multiple Access – Introduction to 5G.

UNIT – V

Software Defined Networks: Introduction – Centralized and Distributed Control and Data Planes – Open Flow – SDN Controllers – Data centre concepts and constructs : Introduction- The Multitenant Data Center - The Virtualized Multitenant Data Center- Orchestration - Connecting a Tenant to the Internet:VPN - Virtual Machine Migration and Elasticity - SDN Solutions for the Data Center Network – VLANs - Network Topology – Building an SDN Framework :The Juniper SDN Framework.

List of Exercises / Experiments :

1. Switches configuration – Managed and Unmanaged switches.

2. Establishing a Local Area Network (LAN).

3. VLAN Creation, adding resources and configuration.

4. DHCP Server Configuration.

5. Connecting two LANs using multi-router topology with static routes.

6. Defining access control lists and integrating centralized authentication server.

7. Firewall configuration.

8. Installing and configuring open source based packet analyzer and network management tools.

9

9

9

9	. Monitoring	the network and	d locate source	of the problem	with Spot chec	k tools			
1	0. Collecting	g network activit	ty data, analyzii	ng and reporting	g it with Trend	ing tools			
1	1. Monitorin	g a network wit	h Realtime tool	S					
-					Lectu	re: 45, P	ractical	: 30, Total: 75	
REF	FERENCES	/ MANUALS /	SOFTWARES	5:					
1.	Martin Saut	er, "From GSM	I to LTE, An I	ntroduciton to	Mobile Networ	ks and M	lobile E	Broadband", 1 st	
	Edition, Wi	ley, 2014.					-4		
2.	Thoman D.	Nadeau, and	Ken Gray, "S	DN - Softwar	e Defined Ne	tworks",	1 st Edi	ition, O'Reilly	
2	Publishers,	2013. D. Dolohor M	Conocco E 7	Annara M "L	Low To Accolo	roto Vou	r Intorr	at A Dreatical	
5.	Guide to B	andwidth Manag	pement and On	timisation usin	σ Open Source	Softwar	e" 1 st 1	Edition BMO	
	Book Sprint	t Team, 2006.	Sement and Op	difficution dom	g open source	boltwar	•,11	Lattion, Divio	
CO	URSE OUT	COMES:					B	T Mapped	
On c	completion of	f the course, the	students will be	e able to			(Hig	ghest Level)	
CO1	: identify t	he components	required for des	signing a netwo	ork		Ap	plying (K3)	
CO2	D2: apply different tools for network monitoring						Ap	plying (K3)	
CO3	: analyze v	arious wireless	network techno	ologies			Analyizing (K4)		
CO4	: summari	ze the features of	of LTE, 4G and	5G networks			Understanding (K2)		
CO5	: experime	ent with software	e defined netwo	orks			Understanding (K2)		
	configure	e LAIN, VLAIN,	DHCP server a	nd firewalls			Applying $(K3)$,		
CO7	· identify	install and confi	gure open sour	ce hased nacket	t analyzer and r	etwork	Applying (K3)		
007	managen	nent tools	gure open sour	ee bused pueke	t unuryzer unu r	let work	Precision (S3)		
CO8	: analyze r	network activity	with spot checl	k, trending and	real time tools		Analyzing (K4),		
		•	Ĩ				Precision (S3)		
			Mappi	ng of COs with	n POs				
(COs/POs	PO1	PO2	PO3	PO4	PC)5	PO6	
	CO1	3	3	2	3				
	CO2	2	2	1	3				
	CO3	1	2						
	CO4	1	3						
	CO5	1	2						
	CO6	2	3	3	2				
	CO7	2	2	3	3				
	CO8	3	3	3	3				
1 - 5	Slight, $2 - \overline{M}$	oderate, $3 - Su$	ubstantial, BT	- Bloom's Taxo	onomy				

L	Т	Р	Credit
3	1	0	4

		3	1	U	-			
Preamble	Able to learn the basic concepts in computer security inclu	ıding	softwar	re vulr	nerability			
	analysis and defense, networking and wireless security, applied cryptography, as well as							
	ethical, legal, social and economic facets of security.							
Prerequisites	Computer Networks							
UNIT – I					9			
Introduction	Introduction to Mathematical Foundations of Cryptography: Integer arithmetic, Modular arithmetic,							
Congruence ar	nd Matrices- Probability and Information theory, Algebraic f	ounda	tions-	Introdu	uction to			

UNIT – II

Number theory.

Symmetric Encryption Techniques and Key Management: Substitution Ciphers – Transposition Ciphers – Classical Ciphers – DES – AES – Modes of operation - Key Channel Establishment for symmetric Cryptosystems.

UNIT – III

Asymmetric Cryptosystems: The Diffie-Hellman Key Exchange Protocol - Discrete Logarithm Problem -Public-key Cryptosystems: RSA Cryptosystem and cryptanalysis - Elliptic curve cryptography - ElGamal Cryptosystem -Need for Stronger Security notions for Public-key Cryptosystems. Combination of Asymmetric and Symmetric Cryptography. Key Channel Establishment for Public key Cryptosystems.

UNIT – IV

Authentication: Authentication Protocols Principles – Authentication protocols for Internet Security – SSH Remote login protocol – Kerberos Protocol – SSL and TLS – Authentication frame for public key Cryptography- Hash Functions – Security of Hash Functions and MACs – MD5 Message Digest Algorithm - Secure Hash Algorithm - Digital Signature Standard.

UNIT – V

Legal and Ethical issues in Security: Protecting Programs and Data – Information and the Law – Rights of Employees and Employers – Software Failures – Computer Crime – Privacy – Ethical Issues in Computer Security. **Need for security**: The security SDLC - Business needs, threats, attacks - NSTISSC security model, ISO, NIST and VISA models.

REFERENCES:

Lecture:45, Tutorial:15, Total: 60

1.	Mao W., "Modern Cryptography – Theory and Practice", 1 st Edition, Pearson Education, 2004.
2.	Stallings William, "Cryptography and Network Security: Principles and Practices", 7 th Edition, Pearson
	Education, 2016.
3.	Charles P. Pfleeger, Shari Lawrence Pfleeger, "Security in Computing", 5 th Edition, Prentice Hall, 2018.

9

9

9

COUI	COURSE OUTCOMES:						BT Mapped		
On co	On completion of the course, the students will be able to						(Highest Level)		
CO1:	apply the r	nathematical fo	undations in se	ecurity principle	S		Ap	plying (K3)	
CO2:	analyze va	rious symmetrie	encryption ar	nd key managen	nent techniques		Ana	alyzing (K4)	
CO3:	evaluate th	e different asyr	nmetric encryp	otion techniques			Eva	luating (K5)	
CO4:	outline van	ious authentica	tion protocols				Under	rstanding (K2)	
CO5:	express the	e legal and ethic	al issues of se	curity and need	for security pra	ctices	Under	rstanding (K2)	
	as well as models								
			Mappi	ng of COs with	POs				
CC	Os/POs	PO1	PO2	PO3	PO4	PC)5	PO6	
(CO1	3	2		3				
(CO2	3	3	1	3				
CO3 3 3			2	3					
CO4 2 1			2						
CO5 2			1		2				
1 - Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy								

18COT21 WIRELESS SENSOR NETWORKS

(Common to Communication Systems, Control and Instrumentation Engineering, Computer Science and Engineering & Information Technology branches)

		3	1	0	4	
Preamble	This course will cover the most recent research topics in wireles	ss sens	or net	vorks a	and IPV	6
	transition. Topics such as MAC layer and PHY layer	functi	onaliti	es, 6I	LoWPA	N
	fundamentals, routing, mobility and other advanced topics are pr	ecisely	v cover	ed.		
Prerequisites	Wireless Networks					
UNIT – I						9

UNIT – I

IEEE 802.15.4 PHY Layer: WSN Introduction, WPAN, network topologies, superframe structure, data transfer model, frame structure, slotted CSMA, IEEE 802.15.4 PHY: frequency range, channel assignments, minimum LIFS and SIFS periods, O-QPSK PPDU format, modulation and spreading. Simulation of data transfer model using Cooja simulator.

UNIT – II

IEEE 802.15.4 MAC Layer: MAC functional description, MAC frame formats and MAC command frames, Simulation of WSN traffic model using Cooja simulator.

UNIT – III

6LoWPAN Fundamentals: 6LoWPAN-Introduction, protocol stack, addressing, L2 forwarding, L3 routing, Header Compression, Fragmentation and Reassembly, Commissioning, Neighbor Discovery. Analyzing of sensor data exchange using Wireshark.

UNIT - IV

6LoWPAN Mobility and Routing: Mobility: types, Mobile IPv6, Proxy MIPv6, NEMO, Routing: Overview, ROLL, border routing, RPL, MRPL, Edge Router Integration (Cooja simulation).

UNIT - V

IPv6 Transition and Application Protocols: IPv4 Interconnectivity: IPv6 transition, IPv6-in-IPv4 tunneling, application protocols: design issues, MQTT-S, ZigBee CAP.

Lecture:45, Tutorial:15, Total: 60

Т

L

Р

Credit

REFERENCES:

- "IEEE Standard for Local and metropolitan area networks, Part 15.4: Low-Rate Wireless Personal Area 1. Networks (LR-WPANs)", IEEE Computer Society, New York, 5 September 2011.
- Shelby and Zach, "6LoWPAN : The Wireless Embedded Internet", 1st Edition, John Wiley & Sons Inc., 2. Hoboken, New Jersey, 2009, ISBN 978-0-470-74799-5.
- Holger Karl and Andreas Willig, "Protocols and architectures for wireless sensor networks", John Wiley 3. & Sons Inc., Hoboken, New Jersey, 2005, ISBN 978-0-470-09510-2.

9

9

9

COUR	COURSE OUTCOMES:							BT Mapped		
On com	nplet	ion of the course	e, the students wi	ill be able to			(Highest Level)			
CO1:	CO1: interpret the physical layer functionalities of IEEE 802.15.4 sensor devices						Understanding (K2)			
CO2:	anal	yze MAC frame	modeling of IEl	EE 802.15.4 sense	or devices		Analyzing (K4)			
CO3:	anal	yze 6LoWPAN	architecture				Aı	nalyzing (K4)		
CO4:	vali	date the routing	protocol perform	nance of 6LoWPA	AN devices		Ev	aluating (K5)		
CO5:	CO5: apply IPV6 protocols for IoT applications						A	Applying (K3)		
	Mapping of COs with POs									
COs/PO	Os	PO1	PO2	PO3	PO4	PO5		PO6		
CO1					3					
CO2	,	3	3							
CO3		3	3			3				
CO4			3							
CO5	CO5 3									
1 – Slig	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy									

18MIE02 DATA VISUALIZATION TECHNIQUES

(Common to Information Technology & Computer Science and Engineering branches)								
	L	Т	Р	Credit				
		3	0	0	3			
Preamble Data visualization techniques are used to communicate complex information in a way that is easier to interpret by turning information into visually engaging images and stories. Data visualization is a key to clear-cut reports and dashboards.								
Prerequisites	Database Management Systems and Data Mining Concepts							
UNIT – I					9			
Core Skills for Visual Analysis: Information visualization - Uses - History - Effective Analysis - Traits of								

Core Skills for Visual Analysis: Information visualization - Uses – History – Effective Analysis – Traits of meaningful data – Visual Perception – Making Abstract Data Visible – Building blocks of information visualization.

UNIT – II

Analytical Skills: Analytical Interaction: Interaction and Navigation – Analytical Techniques And Practices: Optimal Quantitative Scales – Reference Lines and Regions – Trellises And Crosstabs – Multiple Concurrent Views – Focus And Context – Over-Plotting Reduction – Analytical Patterns – Guidelines And Pattern Examples.

UNIT – III

Time-Series, Ranking and Deviation Analysis: Time-Series Analysis: Patterns –Displays – Techniques and Best Practices – Part-To-Whole And Ranking Analysis: Patterns – Displays – Techniques and Best Practices – Deviation Analysis: Displays – Techniques and Best Practices.

UNIT – IV

Distribution, Correlation and Multivariate Analysis: Distribution Analysis : Describing Distributions – Patterns – Displays – Techniques and Best Practices – Correlation Analysis: Describing Correlations – Patterns –Displays –Techniques and Best Practices – Multivariate Analysis: Patterns – Displays –Techniques And Best Practices.

UNIT – V

Information Dashboard Design: Dashboard Design – Categorizing Dashboards – Typical Dashboard Data – Common Mistakes – Visual Perception – Limits Of Short-Term Memory – Visually Encoding Data – Gestalt Principles – Principles Of Visual Perception.

REFERENCES:

1.	Stephen Few, "Now you see it: Simple Visualization Techniques for Quantitative Analysis", 1 st Edition,
	Analytics Press, 2009.

- 2. Stephen Few, "Information Dashboard Design: The Effective Visual Communication of Data", 1st Edition, O'Reilly, 2006.
- 3. Edward R. Tufte, "The Visual Display of Quantitative Information", 2nd Edition, Graphics Press, 2001.

9

9

9

9

Total: 45

COUH	RSE OUTC	COMES:					B	T Mapped	
On completion of the course, the			students will be	able to			(Highest Level)		
CO1:	describe t	he core skills for	or visual analys	sis and discuss t	the importance	of data	Understanding (K2)		
	visualizati	ion							
CO2:	outline the	e general technic	ques and practic	es that enhance	visual analysis		Understanding (K2)		
CO3:	apply tim	ne-series, rankin	ng, and deviat	tion analysis te	echniques and	design	Ap	plying (K3)	
	practices for data visualization								
CO4: apply the various tech			iques of distri	ibution, correla	tion and mult	ivariate	Ap	plying (K3)	
	analysis in data visualization								
CO5:	CO5: examine the fundamental concept of how to design the information dashboards				Analyzing (K4)				
Mapping of COs with POs									
CC	Ds/POs	PO1	PO2	PO3	PO4	PO	5	PO6	
(CO1	2	1						
(CO2	2	1						
(CO3	2	2						
(CO4	2	2						
(CO5	2	2	2					
1 - Sli	ght, $2 - Mc$	oderate, 3 – Su	ıbstantial, BT –	Bloom's Taxon	omy				

18MSE01 BUSINESS INTELLIGENCE

		L	Т	Р	Credit	
		3	0	0	3	
Preamble	Improved application development and high scale deployment.					
Prerequisites	Database, SQL Queries					

UNIT - I9Introduction to Business Intelligence: Introduction to Digital Data and its Types – Structured, Semi-
structured and Unstructured Data - Introduction to OLTP and OLAP – Architectures – Data Models – Role of
OLAP in BI – OLAP Operations – Business Intelligence - BI Definition and Evolution – BI Concepts - BI
Component Framework – BI Process, Users, Applications – BI Roles – BI Best Practices– Popular BI Tools.

UNIT – II

Data Integration: Need for Data Warehouse – Definition of Data Warehouse – Data Mart – Ralph Kimball's Approach vs. W.H.Inmon's Approach – Goals of Data Warehouse – ETL Process – Data Integration Technologies – Data Quality – Data Profiling – Case Study from Healthcare domain – Kettle Software: Introduction to ETL using Pentaho Data Integration.

UNIT – III

Multidimensional Data Modeling: Basics of Data Modeling – Types of Data Model – Data Modeling Techniques – Fact Table – Dimension Table – Dimensional Models- Dimensional Modeling Life Cycle – Designing the Dimensional Model - Measures, Metrics, KPIs and Performance Management – Understanding Measures and Performance – Measurement System - Role of metrics – KPIS - Analyze Data using MS Excel 2010.

UNIT – IV

Basics of Enterprise Reporting: Reporting Perspectives - Report Standardization and Presentation Practices– Enterprise Reporting Characteristics - Balanced Scorecard - Dashboards - Creating Dashboards- Scorecards Vs Dashboards - Analysis - Enterprise Reporting using MS Access / MS Excel.

UNIT – V

BI Applications and Case Studies: Understanding Business Intelligence and Mobility – Business Intelligence and Cloud Computing – Business Intelligence for ERP Systems – Social CRM and Business Intelligence - Case Studies : Good Life HealthCare Group, Good Food Restaurants Inc., Ten To Ten Retail Stores.

REFERENCES / MANUALS / SOFTWARES:

- 1. Prasad N., Seema Acharya, "Fundamentals of Business Analytics", 2nd Edition, Wiley-India Publication, 2016.
- 2. Efraim Turban, Ramesh Sharda, Dursun Delen, David King, "Business Intelligence: A Managerial Approach", 2nd Edition, Pearson Education, 2014.
- 3. David Loshin, "Business Intelligence", 5th Edition, Morgan Kaufmann Publishers, San Francisco, 2007.

9

Total: 45

9

9

COU	COURSE OUTCOMES:						B	BT Mapped		
On con	On completion of the course, the students will be able to						(Hi	(Highest Level)		
CO1:	apply the	key elements of	data warehous	e and business i	ntelligence in E	BI tools	Ap	Applying (K3)		
CO2:	apply the	concepts and te	chnology of BI	space in any do	omain		Applying (K3)			
CO3:	explain ab	out analysis, in	tegration and re	eporting services	8		Unde	rstanding (K2)		
CO4:	summariz	e the functional	ities of key per	formance indica	itors		Unde	rstanding (K2)		
CO5:	5: apply BI to mobile, cloud, ERP and social CRM systems						Applying (K3)			
			Mappi	ng of COs with	POs					
CC	Os/POs	PO1	PO2	PO3	PO4	PC)5	PO6		
(CO1	3	3	1						
(CO2	2	3	1	2					
(CO3	2	2	2	2					
(CO4	3	2	2	2					
(CO5			1	2					
1 – Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy									

18MSE02 CLOUD COMPUTING

L T P Credit

9

9

9

9

						_	
		3	0	0	3		
Preamble	Cloud computing is a scalable services consumption and delivery	v platfo	orm tha	t provi	des on-		
	demand computing service for shared pool of resources, namely servers, storage, networking,						
	software, database, applications etc., over the Internet.						
Prerequisites	Nil						
UNIT – I						9	

Cloud Computing Basics: Defining Cloud computing – Cloud Types - Characteristics of Cloud computing-Cloud Architecture - Cloud Computing Stack - Infrastructure as a service - Platform as a Service - Software as a Service – Identity as a Service - Compliance as a Service.

UNIT – II

Platforms and Cloud based Services: Abstraction and Virtualization – Load Balancing and Virtualization – Hypervisors – Machine Imaging – Porting Applications – Capacity Planning – Google Web Services-Amazon Web Services- Microsoft Cloud Services.

UNIT – III

Managing and Securing the Cloud: Administrating the cloud – Cloud Management Products – Cloud Management Standards - Securing the cloud – Securing Data – Establishing Identity and Presence.

UNIT – IV

Cloud Based Storage: Digital Universe- Provisioning Cloud Storage – Cloud Backup Solutions – Cloud Storage Interoperability. Mobile Cloud: Mobile Market – Smartphones with the cloud – Mobile web services – Service types – Service Discovery.

UNIT – V

Cloud Computing Tool: Openstack – Overview of services - Conceptual architecture - Controller - Compute - Block Storage - Object Storage – Networking - Environment – Security - Identity service - Image service - Installation.

	Total: 45
RE	FERENCES:
1.	Barrie Sosinsky, "Cloud Computing Bible", 1 st Edition, Wiley Publishing, 2015.
2.	Kai Hwang, Geoffrey C. Fox, Jack G. Dongarra, "Distributed and Cloud Computing, From Parallel
	Processing to the Internet of Things", 1 st Edition, Morgan Kaufmann Publishers, 2012.
3.	www.openstack.org

COUI	COURSE OUTCOMES:						BI	BT Mapped		
On co	On completion of the course, the students will be able to					(Hig	(Highest Level)			
CO1:	describe t	he main conce	pts, key techn	ologies, strengt	hs and limitation	ons of	Understanding (K2)			
	cloud com	puting								
CO2:	outline the	e underlying pri	nciple of abstr	action, virtualiz	ation, load bala	ncing,	Under	standing (K2)		
	capacity p	lanning and clo	ud based servio	ces						
CO3:	identify th	e core issues in	cloud security	and apply reme	dial measures		Apj	olying (K3)		
CO4:	identify th	e various interc	perability and	storage issues ir	n modern cloud		Apj	olying (K3)		
CO5:	5: use appropriate open stack components to set up a private cloud environment					ment	Applying (K3)			
			Mappi	ing of COs with	POs					
CC	Os/POs	PO1	PO2	PO3	PO4	P	05	PO6		
(CO1		1	2						
(CO2				2					
(CO3		1							
(CO4			2	2					
(CO5				3					
1 – Sli	ight, 2 – Mo	oderate, 3 – Su	ıbstantial, BT	- Bloom's Taxo	nomy					

	18MSE03 COMPILER DESIGN TECHNIQUES
	L T P Credit
Preamble	The course is intended to make the students learn the basic techniques that underlie the
	practice of Compiler Construction and to introduce the theory and tools that can be used to
	perform syntax-directed translation of a high-level programming language into an executable
	code with optimization techniques.
Prerequisites	Programming Languages
UNIT – I	6
Introduction:	Language Processors - Structure of a compiler – Evolution of Programming Languages-
Applications o	f Compiler Technology Programming Language Basics - The Lexical Analyzer Generator -
Parser Generat	or-Compiler Tools: Lex and YACC. Intermediate Code Generation techniques: Variants of
Syntax trees-11	aree Address Code.
$\frac{00011 - 11}{00000000000000000000000000000000000$	Introduction Farly Optimizations: Constant Expression Evaluation Scalar Penlacement of
Aggregates-Al	gebraic Simplifications and Reassociation -Value Numbering - Conv Pronagation-Sparse
Conditional Co	instant Propagation, Redundancy Elimination: Common Subexpression Elimination - Invariant
Code Motion-	Partial-Redundancy Elimination- Redundancy Elimination and Reassociation- Code Hoisting.
Loop Optimiza	tions: Induction Variable Optimizations - Unnecessary Bounds Checking Elimination.
1 1	
UNIT – III	6
Instruction L	evel Parallelism: Processor Architectures - Code-Scheduling Constraints - Basic-Block
Scheduling -Gl	obal Code Scheduling -Software Pipelining.
UNIT – IV	
Optimizing fo	r Parallelism and Locality: Basic Concepts- Matrix-Multiply-An Example - Iteration Spaces
- Affine Array	Indexes - Data Reuse - Array data dependence Analysis- Application: Finding Synchronization
- Free Parallell	sm- Pipeining.
LINIT _ V	6
<u>Interprocedur</u>	al Analysis and Register Allocation: Basic Concepts – Need for Interprocedural Analysis –
A Logical Re	presentation of Data Flow – A Simple Pointer-Analysis Algorithm. Register Allocation:
Register alloca	tion and Assignment-Local Methods-Graph Coloring.
List of Exercis	ses / Experiments :
1 Implem	pentation of Scanner using LEX
1. Implem	citation of Scamer (Tag deem and Datter and
2. Implem	entation of Parser (Top down and Bottom up)
3. Generat	tion of Intermediate code
4. Conver	t the BNF rules into YACC form and write code to generate abstract syntax tree.
5. Write p	rogram to generate machine code from the abstract syntax tree generated by the parser
	Lecture: 30, Practical: 30, Total: 60
REFERENCE	S / MANUALS / SOFTWARES:
1. Alfred V.	Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman, "Compilers: Principles, Techniques and
Tools", 2 ¹	¹⁰ Edition, Pearson Education, 2013.
2. Steven S	. Muchnick, "Advanced Compiler Design Implementation", 1 st Edition, Morgan Kaufman
Publisher	s Elsevier Ncience India 2008

Publishers, Elsevier Science, India, 2008.
3. Richard Y. Kain, "Advanced Computer Architecture: A Systems Design Approach", 1st Edition, Prentice Hall, 2011.

COUH	RSE OUTO	COMES:					B	T Mapped	
On completion of the course, the students will be able to					(Hi	ghest Level)			
CO1:	describe d	lifferent phases	of compiler an	nd design a sim	ple scanner and	d parser	Applying (K3)		
	by using i	ts pattern							
CO2:	survey va	rious code optin	nization techni	ques to improve	e the performation	nce of a	Analyzing (K4)		
	program i	n terms of speed	and space						
CO3:	study the	architectural des	sign of the syste	em for compilat	ion		Unde	rstanding (K2)	
CO4:	apply opti	mization techni	ques to optimiz	e programs in r	eal time		Ap	plying (K3)	
CO5:	optimize	functions and	demonstrate	how to store	data and acce	ss from	An	alyzing (K4)	
	registers								
CO6:	apply the	knowledge of	LEX tool and	YACC tool to	develop a scan	ner and	Ap	plying (K3),	
	parser						Pre	ecision (S3)	
CO7:	CO7: develop programs with new code optimization techniques to optimize the					Analyzing (K4),			
	performance of a program interms of speed and space					Precision (S3)			
CO8: analyze modern programming languages and write programs for generating					Analyzing (K4),				
	target lang	guage					Precision (S3)		
			Mappi	ng of COs with	POs				
CC	Ds/POs	PO1	PO2	PO3	PO4	PC	5	PO6	
(CO1	3	1		2				
(CO2	2	2		2				
(CO3	2	1	1					
(CO4	2	1	1	3				
(CO5	1	2	2	2				
(CO6	3	2	2	1				
(CO7	3	2	2	2				
(CO8	3	2	1	1				
1 - Sli	ght, $2 - Mc$	oderate, $3 - Su$	ıbstantial, BT -	- Bloom's Taxo	nomy				

	18MSE04 DATA MINING TECHNIQUES					_			
		L	Т	Р	Credit				
		3	0	0	3				
Preamble	This course provides students with an overview of the data minin	ng proc	ess and	d techr	iques for				
	preprocessing. It also make the students to gain knowledge of various data mining techniques								
	and also prepare them for taking research in the area of data mini	ing and	l its ap	plicatio	ons.				
Prerequisites	Database Management Systems								
UNIT – I					9				
Introduction:	Data Mining - Steps in Knowledge Discovery Process- Kin	ds of	Data	and P	atterns –				
Technologies u	sed-Targeted applications - Major issues in Data Mining - Data	object	s and a	attribut	te types -				
Statistical desci	iptions of data - Data Visualization- Measuring data similarity and	d dissi	nilarity	у.					
UNIT – II					9				
Data Preproce	ssing: Data Cleaning, Integration, Reduction, Transformation	and	Discret	izatior	i, Mining				
Frequent Patter	ns - Frequent Itemset Mining Methods.								
					0	_			
$\frac{\text{UNII} - \text{III}}{\text{Classifier}}$	Desiring Tree Industion Description Classification De	1. 1	1	<u>Class:</u>	9				
Classification:	Decision Tree Induction-Bayesian Classification - Ru		Jased	Classii Essaluu	ication -				
Classification D	y Back Propagation – Support Vector Machines – Lazy Learne	ers - 1	viodei	Evalua	ation and				
Selection - Tec	inques to improve Classification Accuracy - k-ivearest ivergibor	Classi	llel.						
UNIT – IV					9	,			
Clusters Anal	vsis: Partitioning Methods – Hierarchical Methods – Density b	ased I	Method	ls - Gi	rid based	_			
Methods - Eva	uation of Clustering – Outliers and Outlier analysis - Outlier de	tectior	Meth	ods - S	Statistical				
Approaches.									
11									
UNIT – V					9				
Applications:	Mining Complex data types - Statistical Data Mining - Data Min	ing fou	indatio	ons - V	isual and				
Audio Data Mi	ning – Applications - Ubiquitous and invisible Data Mining - Soci	al imp	acts of	Data M	Mining.				
				,	Fotal: 45				
REFERENCE	S / MANUALS / SOFTWARES:								

- **REFERENCES / MANUALS / SOFTWARES:**

 1.
 Han Jiawei and Kamber Micheline, "Data Mining: Concepts and Techniques", 3rd Edition, Morgan Kaufmann Publishers, 2012.
- 2. Berson Alex, and Smith Stephen J., "Data Warehousing, Data Mining and OLAP", 13th Reprint, Tata McGraw Hill, New Delhi, 2013.
- Gupta G.K., "Introduction to Data Mining with Case Studies", 2nd Edition, Prentice Hall India, New Delhi, 2011.

COUH	COURSE OUTCOMES: BT Mapped								
On con	On completion of the course, the students will be able to					(Highest Level)			
CO1:	describe t	he different da	ta mining techr	niques and iden	tify different ty	pes of	Applying (K3)		
	data								
CO2: apply data preprocessing and frequent itemset mining methods for the given problem						Applying (K3)			
CO3:	CO3: summarize the characteristics of classification methods and use them for					Applying (K3)			
	solving a problem								
CO4:	CO4: summarize and demonstrate the working of different clustering and outlier			Applying (K3)					
	methods								
CO5: comprehend the role of data mining in various applications							Understanding (K2)		
			Mappi	ng of COs with	POs				
CC	Os/POs	PO1	PO2	PO3	PO4	P	05	PO6	
(CO1	3			2			1	
(CO2	3		2				1	
(CO3	3			2			1	
(CO4			3				2	
(CO5			3				2	
1 – Sli	ght, 2 – Mo	oderate, $3 - S^{\dagger}$	ubstantial, BT ·	- Bloom's Taxo	nomy				

18MSE05	BLOCKCHA	IN TECHNOL	OGIES
----------------	----------	-------------------	--------------

		3	0	0	3	
Preamble	The widespread popularity of digital cryptocurrencies has led the	e foun	dation	of Blo	ockchai	n.
	This course covers both the conceptual as well as application a	aspects	of B	lockcha	ain. Th	is
	includes the fundamental design and architectural primitives of Blockchain, the system and the					
	security aspects, along with various use cases from different application domains.					
Prerequisites	Basics of Cryptography and Distributed systems					
UNIT – I						9

Introduction to Blockchain: Financial transaction – Ledger – trustless system – Elements of blockchain – types – Byzantine General Problems – benefits – challenges – Components and structure of blockchain: blocks – chain – hashing – digital signatures – example – miners – validators – smart contracts - speed – decentralization Vs distributed systems

UNIT – II

Cryptography behind Blockchain: principles – historical perspectives – classical cryptography- types – symmetric – asymmetric – signatures – hashing. **Bitcoin:** History – Why bitcoin – keys and addresses – transactions – blocks – bitcoin network – wallets

UNIT – III

Consensus: Practical Byzantine fault tolerance algorithm – Proof of Work - Proof of Stake - Proof of Authority - Proof of Elapsed time Cryptocurrency Wallets: Introduction to cryptocurrency wallets - Transactions - Types of cryptocurrency wallets – Tenancy - Alternate Blockchains

UNIT – IV

Hyperledger and Enterprise Blockchains: History - Hyperledger projects - Hyperledger Burrow - Hyperledger Sawtooth - Hyperledger Fabric - Hyperledger Iroha - Hyperledger Indy - Tools in Hyperledger – Deploy a simple application on IBM cloud

UNIT – V

3.

Ethereum: Introducing Ethereum - Components of Ethereum - Ethereum accounts - Ethereum network - Ethereum clients - Ethereum gas - Ethereum virtual machine - Ethereum block – Ether - Basics of Solidity - Ethereum Development

REFERENCES:

Ι.	Brenn Hill, Samanyu Chopra, Paul Valencourt, "Blockchain Quick Reference: A guide to exploring
	decentralized blockchain application development", 1 st Edition, Packt Publishing, 2018.
2.	Andreas Antonopoulos, "Mastering Bitcoin: Programming the open blockchain", 2 nd Edition, O'Reilly

Media, 2017. Melanie Swan, "Blockchain: Blueprint for a New Economy", 1st Edition, O'Reilly Media, 2015.

Tot

Т

L

Р

Credit

9

9

9

9

Total: 45

COURSE OUTCOMES: BT Mapped									
On con	mpletion of	the course, the	students will b	e able to			(Hi	ghest Level)	
CO1:	discuss th	e elements, stru	cture and archi	tecture of a bloc	kchain		Unde	rstanding (K2)	
CO2:	CO2: describe blockchain cryptography and history of bitcoin Understanding (K2)								
CO3:	O3: explain consensus and cryptocurrency wallet Understanding (K2)								
CO4:	CO4: deploy a simple application using Hyperledger on IBM cloud Applying (K3)								
CO5:	CO5: develop and analyze a distributed application using Ethereum and Solidity						Evaluating (K4)		
Mapping of COs with POs									
CC	Os/POs	PO1	PO2	PO3	PO4	PC)5	PO6	
(CO1	1			1				
(CO2	2	1		2				
CO3		2	1		2				
CO4 3		3	2	1	3				
CO5 3 3 2 3									
1 – Sli	ght, 2 – Mo	oderate, $3 - Su$	ibstantial, BT	- Bloom's Taxor	nomy	.=			

18MSE06 VIRTUALIZATION TECHNIQUES								
		L	Т	Р	Credit			
		3	0	0	3			
Preamble	Virtual machine allows the creation of an environment that underlying hardware. The cloud is essentially a virtual environ combination of multiple virtual machines into one powerful enti-	is not onmen	logica t that a	arises	ed to the from the			
	virtualization is a key element in the creation of cloud platforms	ty. 110 and inf	rastruc	, liic p	IOCESS OI			
Prerequisites	Operating system Networking concepts		lastiuc	iuic.				
1101000000000000000000000000000000000	operating system, retworking concepts				9			
Overview of Network Virtue Operating Virtue Taxonomy of V Concepts.	Virtualization: Basics of Virtualization - Virtualization Types alization – Server and Machine Virtualization – Storage Virtu aalization – Application Virtualization-Virtualization Advantages Virtual machines - Process Virtual Machines – System Virtual M	 Des alizati Virt lachine 	sktop V on – S tual Ma es – Hy	Virtual System achine ypervis	ization – -level or Basics – sor - Key			
UNIT II					0			
Server Consol Physical and Lo Uses of Virtual	idation: Hardware Virtualization – Virtual Hardware Overvier ogical Partitioning - Types of Server Virtualization – Business cas server Consolidation – Planning for Development – Selecting serv	w - So ses for ver Vir	erver V Sever tualiza	Virtual Virtual tion Pl	ization – lization – atform.			
UNIT – III					9			
Network Virtu WAN Archite Scalability - Th Virtual Firewa Trunking Gen Virtualization.	alization: Design of Scalable Enterprise Networks - Virtualizing cture- WAN Virtualization - Virtual Enterprise Transport leory Network Device Virtualization Layer 2 - VLANs Layer 3 V Il Contexts Network Device Virtualization - Data- Path Virtua eric Routing Encapsulation – IPsec-L2TPv3 Label Switch	the Ca Virtua RF Ins alizatio ed Pa	ampus ilization stances on Lay aths -	WAN n–VLA Layer ver 2: Cont	Design – ANs and 2 - VFIs 802.1q - rol-Plane			
UNIT – IV					9			
Virtualizing S Fiber Channel techniques – R. – Host based A SAN – Perform	torage: SCSI- Speaking SCSI- Using SCSI buses – Fiber Chann Hardware Devices – iSCSI Architecture – Securing iSCSI – AID – SNIA Shared Storage Model – Classical Storage Model – S Architecture – Storage based architecture – Network based Arch ing Backups – Virtual tape libraries.	el – Fi SAN SNIA itectur	iber Ch backup Shared e – Fa	annel o and Storag ult tole	Cables – recovery ge Model erance to			
<u>UNIT – V</u> Virtual Machi	nes Products: Xen Virtual machine monitors- Xen API – VM	ware -	- VMw	vare pr	oducts –			
VMware Featur	res – Microsoft Virtual Server – Features of Microsoft Virtual Server	ver.						
				r	Fotal: 45			
REFERENCE	S:							
1. William v	on Hagen, "Professional Xen Virtualization", 1st Edition, Wrox Pu	iblicati	ions, Ja	nuary,	2008.			
2. Chris Wo	lf, Erick M. Halter, "Virtualization: From the Desktop to the Ent	terprise	e", Illu	strated	Edition,			

- APress 2005.
- 3. Kumar Reddy, Victor Moreno, "Network virtualization", 1st Edition, Cisco Press, July, 2006.

COURSE OUTCOMES: BT Mapped								
On con	mpletion of	the course, the	students will b	e able to			(Hi	ighest Level)
CO1:	demonstra	ate the various v	rirtual machine	products			Ap	oplying (K3)
CO2: create a virtual machine and to extend it to a virtual network Creating (K6)							reating (K6)	
CO3:	CO3: analyse the intricacies of server, storage and network virtualizations Analyzing (K4)							alyzing (K4)
CO4:	CO4: compile all types of virtualization techniques Creating (K6)							
CO5: design and develop applications on virtual machine platforms						Applying (K3)		
Mapping of COs with POs								
CC	Os/POs	PO1	PO2	PO3	PO4	PO5		PO6
(201	2	2	1				
(CO2	2	2	1	2			
CO3		1	2	1	2			
CO4 1		1	3	2	1			
(CO5		2	1	2			
1 - Sli	ght, $2 - Mo$	oderate, $3 - Su$	ubstantial, BT	- Bloom's Taxo	nomy			

18MSE07 BIG DATA ANALYTICS

(Common to Computer Science and Engineering, Information Technology & Information Technology (ICW) branches)

		L	L	P	Credi	ε	
		3	0	2	4		
Preamble	Provides basic knowledge about Big data, its framework an	d stor	age in	datab	ases ar	ıd	
	prepares the students to perform various analytical operations an	d visua	alize th	e resul	ts		
Prerequisites	Database Management Systems						
UNIT – I						9	
Big Data: Defi	Big Data: Definition – Wholeness of big data: Understanding – Capturing –Benefits and management –						
Organizing and	analyzing - Challenges - Big data architecture - Big data source	es and	applica	ations:	Big da	ta	

sources – Machine to machine Communications- Big data Applications.

UNIT – II

MapReduce Framework: Introducing Hadoop – Starting Hadoop – Components of Hadoop: Working with files in HDFS - Anatomy of a MapReduce program – Reading and writing - Writing basic MapReduce programs: Getting the patent data set-Constructing the basic template of a MapReduce program-Counting things-Adapting for Hadoop's API changes-Streaming in Hadoop- Improving performance with combiners – Hadoop Ecosystem.

UNIT – III

NoSQL Database Systems: Introduction to NoSQL – CAP theorem - MongoDB : Data types – MongoDB Query Language – Cassandra: Features of Cassandra- Data types – CRUD- Collections Alter Commands – Import and Export- Querying system tables

UNIT – IV

Mining Data Streams: Stream Data Model - Sampling Data in a Stream–Filtering Streams–Counting Distinct Elements in a Stream–Estimating Moments–Counting Ones in a Window–Decaying Window - Stream processing with SPARK and Kafka.

UNIT – IV

Case Studies: Implement using open source frameworks/tools : Time Series Analysis - Text analysis – Social Network Analysis - Data streams

List of Exercises / Experiments :

- 1. Install, configure and run Hadoop and HDFS
- 2. Implement word count / frequency programs using MapReduce
- 3. Implement an application that stores big data in MongoDB / Cassandra
- 4. Data streaming using open source frameworks/tools
- 5. Text Analysis

REFERENCES/MANUAL/SOFTWARE:

- 1. Anil Maheshwari, "Big Data". 1st Edition, McGraw Hill Education, 2017.
- 2. Chuck Lam, "Hadoop in Action", 2nd Edition, Manning Publications, 2011.
- 3. Seema Acharya and Subhashini Chellappan, "Big Data and Analytics", 1st Edition, Wiley, 2015.
- 4. List of Softwares: Hadoop, R Package, Hbase, Pig, Hive

9 DB

9

9

9

Lecture:45, Practical:30, Total: 75

COURSE OUTCOMES:							B	BT Mapped		
On con	npletion of	the course, the	students will b	e able to			(Hi	(Highest Level)		
CO1:	identify th	e need for big o	lata analytics				Unde	rstanding (K2)		
CO2:	develop si	mple programs	using Hadoop	framework			Understanding (K2)			
CO3:	explore N	oSQL database	system for real	world problem	S		An	alyzing (K4)		
CO4:	recognize	the need for	stream proces	sing and discu	ss SPARK an	d Kafka	Analyzing (K4)			
	architecture									
CO5:	D5: discuss big data use cases and implement using open source frameworks/tools						Applying (K3)			
CO6:	O6: demonstrate simple programs using MapReduce, Hadoop and HDFS						Applying (K3),			
							Precision (S3)			
CO7:	07: use MongoDB / Cassandra for storing big data in real world problems						Applying (K3),			
							Precision (S3)			
CO8:	O8: implement programs for data streaming and text analysis using open source						Applying (K3),			
	frameworl	ks/ tools					Precision (S3)			
			Mappi	ng of COs with	POs					
CC	os/POs	PO1	PO2	PO3	PO4	PO	5	PO6		
(201	2								
(CO2	2	2	2	2					
(CO3	2	2	2	2					
(CO4	1	1							
(CO5	2	2	2	2	1		1		
(CO6	3	2							
(CO7	3	2	1						
(CO8	3	2	1		1		1		
1 – Sli	ght, $2 - Mc$	oderate, 3 – Su	ubstantial, BT	- Bloom's Taxo	nomy					

L T P Credit 3 0 2 4 Preamble This course is intended to give students a thorough understanding of IoT and its applications and to design, develop and analyze the various tools for building IoT applications also to develop IoT infrastructure for various real time applications. Prerequisites Microprocessors/Microcontrollers/Computer Organization/Networks UNIT - I 9 Introduction to Internet of Things and Design Methodology: Definition and Characteristics of IoT - Physical Design of IoT - IoT Protocols - IoT Communication Models - IoT Communication APIs - IoT enabled Technologies - IoT Levels and Templates - M2M - Difference between M2M and IoT - Software defined networks - Network function virtualization - IoT Platform design Methodologies. UNIT - II 9 IoT Architecture and Protocols: Four Pillars of IoT - DNA of IoT - Middleware for IoT: Overview - Communication middleware for IoT - LBS and Surveillance Middleware - Protocol Standardization for IoT - Efforts - M2M and WSN Protocols - SCADA and RFID Protocols - Unified Data Standards. UNIT - III 9 Introduction to Python and IoT Physical Devices: Language features of Python - Data types - Data structures - Exception handling Python packages - JSON, XML, HTTPLib, URLLib, SMTPLib - Introduction to Raspberry PI - Interfaces (serial, SPI, I2C)Programming - Python program with Raspberry PI with focus of interfacing external gadgets - Controlling output - Reading input from pins.
3 0 2 4 Preamble This course is intended to give students a thorough understanding of IoT and its applications and to design, develop and analyze the various tools for building IoT applications also to develop IoT infrastructure for various real time applications. Prerequisites Microprocessors/Microcontrollers/Computer Organization/Networks UNIT - I 9 Introduction to Internet of Things and Design Methodology: Definition and Characteristics of IoT - Physical Design of IoT - IoT Protocols - IoT Communication Models - IoT Communication APIs - IoT enabled Technologies - IoT Levels and Templates - M2M - Difference between M2M and IoT - Software defined networks - Network function virtualization - IoT Platform design Methodologies. UNIT - II 9 IoT Architecture and Protocols: Four Pillars of IoT - DNA of IoT - Middleware for IoT: Overview - Communication middleware for IoT - LBS and Surveillance Middleware - Protocol Standardization for IoT - Efforts - M2M and WSN Protocols - SCADA and RFID Protocols - Unified Data Standards. UNIT - III 9 Introduction to Python and IoT Physical Devices: Language features of Python - Data types - Data structures - Control of flow – Functions – Modules – Packaging - File handling - Data/time operations – Classes - Exception handling Python packages - JSON, XML, HTTPLib, URLLib, SMTPLib - Introduction to Raspberry PI - Interfaces (serial, SPI, I2C)Programming - Python program with Raspberry PI with focus of interfacing external gadgets - Controlling output - Reading input from pins.
Preamble This course is intended to give students a thorough understanding of IoT and its applications and to design, develop and analyze the various tools for building IoT applications also to develop IoT infrastructure for various real time applications. Prerequisites Microprocessors/Microcontrollers/Computer Organization/Networks UNIT - I 9 Introduction to Internet of Things and Design Methodology: Definition and Characteristics of IoT - Physical Design of IoT - IoT Protocols - IoT Communication Models - IoT Communication APIs - IoT enabled Technologies - IoT Levels and Templates - M2M - Difference between M2M and IoT - Software defined networks - Network function virtualization - IoT Platform design Methodologies. UNIT - II 9 IoT Architecture and Protocols: Four Pillars of IoT - DNA of IoT - Middleware for IoT: Overview - Communication middleware for IoT - LBS and Surveillance Middleware - Protocol Standardization for IoT - Efforts - M2M and WSN Protocols - SCADA and RFID Protocols - Unified Data Standards. UNIT - III 9 Introduction to Python and IoT Physical Devices: Language features of Python - Data types - Data structures - Control of flow – Functions – Modules – Packaging – File handling - Data/time operations – Classes - Exception handling Python packages - JSON, XML, HTTPLib, URLLib, SMTPLib - Introduction to Raspberry PI - Interfaces (serial, SPI, I2C)Programming - Python program with Raspberry PI with focus of interfacing external gadgets - Controlling output - Reading input from pins.
and to design, develop and analyze the various tools for building IoT applications also to develop IoT infrastructure for various real time applications. Prerequisites Microprocessors/Microcontrollers/Computer Organization/Networks UNIT – I 9 Introduction to Internet of Things and Design Methodology: Definition and Characteristics of IoT - Physical Design of IoT - IoT Protocols - IoT Communication Models - IoT Communication APIs - IoT enabled Technologies - IoT Levels and Templates - M2M - Difference between M2M and IoT - Software defined networks - Network function virtualization - IoT Platform design Methodologies. UNIT – II 9 IoT Architecture and Protocols: Four Pillars of IoT - DNA of IoT - Middleware for IoT: Overview - Communication middleware for IoT - LBS and Surveillance Middleware - Protocol Standardization for IoT - Efforts - M2M and WSN Protocols - SCADA and RFID Protocols - Unified Data Standards. UNIT – II 9 Introduction to Python and IoT Physical Devices: Language features of Python - Data types - Data structures - Control of flow – Functions – Modules – Packaging - File handling - Data/time operations – Classes - Exception handling Python packages - JSON, XML, HTTPLib, URLLib, SMTPLib - Introduction to Raspberry PI - Interfaces (serial, SPI, I2C)Programming - Python program with Raspberry PI with focus of interfacing external gadgets - Controlling output - Reading input from pins.
Intrastructure for Various real time applications. Prerequisites Microprocessors/Microcontrollers/Computer Organization/Networks UNIT - I 9 Introduction to Internet of Things and Design Methodology: Definition and Characteristics of IoT - Physical Design of IoT - IoT Protocols - IoT Communication Models - IoT Communication APIs - IoT enabled Technologies - IoT Levels and Templates - M2M - Difference between M2M and IoT - Software defined networks - Network function virtualization - IoT Platform design Methodologies. UNIT - II 9 IoT Architecture and Protocols: Four Pillars of IoT - DNA of IoT - Middleware for IoT: Overview - Communication middleware for IoT - LBS and Surveillance Middleware - Protocol Standardization for IoT - Efforts - M2M and WSN Protocols - SCADA and RFID Protocols - Unified Data Standards. UNIT - III 9 Introduction to Python and IoT Physical Devices: Language features of Python - Data types - Data structures - Control of flow – Functions – Modules – Packaging - File handling - Data/time operations – Classes - Exception handling Python packages - JSON, XML, HTTPLib, URLLib, SMTPLib - Introduction to Raspberry PI - Interfaces (serial, SPI, I2C)Programming - Python program with Raspberry PI with focus of interfacing external gadgets - Controlling output - Reading input from pins.
Introduction to Internet of Things and Design Methodology: Definition and Characteristics of IoT - Physical Design of IoT - IoT Protocols - IoT Communication Models - IoT Communication APIs - IoT enabled Technologies - IoT Levels and Templates - M2M - Difference between M2M and IoT - Software defined networks - Network function virtualization - IoT Platform design Methodologies. UNIT - II 9 IoT Architecture and Protocols: Four Pillars of IoT - DNA of IoT - Middleware for IoT: Overview - Communication middleware for IoT - LBS and Surveillance Middleware - Protocol Standardization for IoT - Efforts - M2M and WSN Protocols - SCADA and RFID Protocols - Unified Data Standards. UNIT - III 9 Introduction to Python and IoT Physical Devices: Language features of Python - Data types - Data structures - Control of flow - Functions - Modules - Packaging - File handling - Data/time operations - Classes - Exception handling Python packages - JSON, XML, HTTPLib, URLLib, SMTPLib - Introduction to Raspberry PI - Interfaces (serial, SPI, I2C)Programming - Python program with Raspberry PI with focus of interfacing external gadgets - Controlling output - Reading input from pins.
UNIT - I 9 Introduction to Internet of Things and Design Methodology: Definition and Characteristics of IoT - Physical Design of IoT - IoT Protocols - IoT Communication Models - IoT Communication APIs - IoT enabled Technologies - IoT Levels and Templates - M2M - Difference between M2M and IoT - Software defined networks - Network function virtualization - IoT Platform design Methodologies. UNIT - II 9 IoT Architecture and Protocols: Four Pillars of IoT - DNA of IoT - Middleware for IoT: Overview - Communication middleware for IoT - LBS and Surveillance Middleware - Protocol Standardization for IoT - Efforts - M2M and WSN Protocols - SCADA and RFID Protocols - Unified Data Standards. UNIT - III 9 Introduction to Python and IoT Physical Devices: Language features of Python - Data types - Data structures - Control of flow - Functions - Modules - Packaging - File handling - Data/time operations - Classes - Exception handling Python packages - JSON, XML, HTTPLib, URLLib, SMTPLib - Introduction to Raspberry PI - Interfaces (serial, SPI, I2C)Programming - Python program with Raspberry PI with focus of interfacing external gadgets - Controlling output - Reading input from pins.
Introduction to Internet of Things and Design Methodology: Definition and Characteristics of 101 - Physical Design of 10T - 10T Protocols - 10T Communication Models - 10T Communication APIs - 10T enabled Technologies - 10T Levels and Templates - M2M - Difference between M2M and IoT - Software defined networks - Network function virtualization - 10T Platform design Methodologies. UNIT - II 9 IoT Architecture and Protocols: Four Pillars of IoT - DNA of IoT - Middleware for IoT: Overview - Communication middleware for IoT - LBS and Surveillance Middleware - Protocol Standardization for IoT - Efforts - M2M and WSN Protocols - SCADA and RFID Protocols - Unified Data Standards. UNIT - III 9 Introduction to Python and IoT Physical Devices: Language features of Python - Data types - Data structures - Control of flow - Functions - Modules - Packaging - File handling - Data/time operations - Classes - Exception handling Python packages - JSON, XML, HTTPLib, URLLib, SMTPLib - Introduction to Raspberry PI - Interfaces (serial, SPI, I2C)Programming - Python program with Raspberry PI with focus of interfacing external gadgets - Controlling output - Reading input from pins.
Design of for Fibre for Fibre for Communication Models Fibre Communication Arris Fibre endoted Technologies - IoT Levels and Templates - M2M - Difference between M2M and IoT - Software defined networks - Network function virtualization - IoT Platform design Methodologies. UNIT – II 9 IoT Architecture and Protocols: Four Pillars of IoT - DNA of IoT - Middleware for IoT: Overview - Communication middleware for IoT - LBS and Surveillance Middleware - Protocol Standardization for IoT - Efforts - M2M and WSN Protocols - SCADA and RFID Protocols - Unified Data Standards. UNIT – III 9 Introduction to Python and IoT Physical Devices: Language features of Python - Data types - Data structures - Control of flow – Functions – Modules – Packaging - File handling - Data/time operations – Classes - Exception handling Python packages - JSON, XML, HTTPLib, URLLib, SMTPLib - Introduction to Raspberry PI - Interfaces (serial, SPI, 12C)Programming - Python program with Raspberry PI with focus of interfacing external gadgets - Controlling output - Reading input from pins.
networks - Network function virtualization - IoT Platform design Methodologies. UNIT - II 9 IoT Architecture and Protocols: Four Pillars of IoT - DNA of IoT - Middleware for IoT: Overview - Communication middleware for IoT - LBS and Surveillance Middleware - Protocol Standardization for IoT - Efforts - M2M and WSN Protocols - SCADA and RFID Protocols - Unified Data Standards. UNIT - III 9 Introduction to Python and IoT Physical Devices: Language features of Python - Data types - Data structures - Control of flow - Functions - Modules - Packaging - File handling - Data/time operations - Classes - Exception handling Python packages - JSON, XML, HTTPLib, URLLib, SMTPLib - Introduction to Raspberry PI - Interfaces (serial, SPI, I2C)Programming - Python program with Raspberry PI with focus of interfacing external gadgets - Controlling output - Reading input from pins.
UNIT – II 9 IoT Architecture and Protocols: Four Pillars of IoT - DNA of IoT - Middleware for IoT: Overview - Communication middleware for IoT - LBS and Surveillance Middleware - Protocol Standardization for IoT - Efforts - M2M and WSN Protocols - SCADA and RFID Protocols - Unified Data Standards. 9 Introduction to Python and IoT Physical Devices: Language features of Python - Data types - Data structures 9 Introduction to Python and IoT Physical Devices: Language features of Python - Data types - Data structures 9 Introduction to Python packages - JSON, XML, HTTPLib, URLLib, SMTPLib - Introduction to Raspberry 9 PI - Interfaces (serial, SPI, 12C)Programming - Python program with Raspberry PI with focus of interfacing external gadgets - Controlling output - Reading input from pins. 1
UNIT – II 9 IoT Architecture and Protocols: Four Pillars of IoT - DNA of IoT - Middleware for IoT: Overview - Communication middleware for IoT - LBS and Surveillance Middleware - Protocol Standardization for IoT - Efforts - M2M and WSN Protocols - SCADA and RFID Protocols - Unified Data Standards. UNIT – III 9 Introduction to Python and IoT Physical Devices: Language features of Python - Data types - Data structures - Control of flow – Functions – Modules – Packaging - File handling - Data/time operations – Classes - Exception handling Python packages - JSON, XML, HTTPLib, URLLib, SMTPLib - Introduction to Raspberry PI - Interfaces (serial, SPI, I2C)Programming - Python program with Raspberry PI with focus of interfacing external gadgets - Controlling output - Reading input from pins.
IoT Architecture and Protocols: Four Pillars of IoT - DNA of IoT - Middleware for IoT: Overview - Communication middleware for IoT - LBS and Surveillance Middleware - Protocol Standardization for IoT - Efforts - M2M and WSN Protocols - SCADA and RFID Protocols - Unified Data Standards. UNIT – III 9 Introduction to Python and IoT Physical Devices: Language features of Python - Data types - Data structures - Control of flow – Functions – Modules – Packaging - File handling - Data/time operations – Classes - Exception handling Python packages - JSON, XML, HTTPLib, URLLib, SMTPLib - Introduction to Raspberry PI - Interfaces (serial, SPI, I2C)Programming - Python program with Raspberry PI with focus of interfacing external gadgets - Controlling output - Reading input from pins.
Communication middleware for IoT - LBS and Surveillance Middleware - Protocol Standardization for IoT - Efforts - M2M and WSN Protocols - SCADA and RFID Protocols - Unified Data Standards. UNIT - III 9 Introduction to Python and IoT Physical Devices: Language features of Python - Data types - Data structures - Control of flow - Functions - Modules - Packaging - File handling - Data/time operations - Classes - Exception handling Python packages - JSON, XML, HTTPLib, URLLib, SMTPLib - Introduction to Raspberry PI - Interfaces (serial, SPI, I2C)Programming - Python program with Raspberry PI with focus of interfacing external gadgets - Controlling output - Reading input from pins.
UNIT - III 9 Introduction to Python and IoT Physical Devices: Language features of Python - Data types - Data structures - Control of flow – Functions – Modules – Packaging - File handling - Data/time operations – Classes - Exception handling Python packages - JSON, XML, HTTPLib, URLLib, SMTPLib - Introduction to Raspberry PI - Interfaces (serial, SPI, I2C)Programming - Python program with Raspberry PI with focus of interfacing external gadgets - Controlling output - Reading input from pins.
UNIT – III 9 Introduction to Python and IoT Physical Devices: Language features of Python - Data types - Data structures - Control of flow – Functions – Modules – Packaging - File handling - Data/time operations – Classes - Exception handling Python packages - JSON, XML, HTTPLib, URLLib, SMTPLib - Introduction to Raspberry PI - Interfaces (serial, SPI, I2C)Programming - Python program with Raspberry PI with focus of interfacing external gadgets - Controlling output - Reading input from pins.
Introduction to Python and IoT Physical Devices: Language features of Python - Data types - Data structures - Control of flow – Functions – Modules – Packaging - File handling - Data/time operations – Classes - Exception handling Python packages - JSON, XML, HTTPLib, URLLib, SMTPLib - Introduction to Raspberry PI - Interfaces (serial, SPI, I2C)Programming - Python program with Raspberry PI with focus of interfacing external gadgets - Controlling output - Reading input from pins.
- Control of flow – Functions – Modules – Packaging - File handling - Data/time operations – Classes - Exception handling Python packages - JSON, XML, HTTPLib, URLLib, SMTPLib - Introduction to Raspberry PI - Interfaces (serial, SPI, I2C)Programming - Python program with Raspberry PI with focus of interfacing external gadgets - Controlling output - Reading input from pins.
Exception handling Python packages - JSON, XML, HTTPLib, URLLib, SMTPLib - Introduction to Raspberry PI - Interfaces (serial, SPI, I2C)Programming - Python program with Raspberry PI with focus of interfacing external gadgets - Controlling output - Reading input from pins.
PI - Interfaces (serial, SPI, I2C)Programming - Python program with Raspberry PI with focus of interfacing external gadgets - Controlling output - Reading input from pins.
external gadgets - Controlling output - Reading input from pins.
for LoT Date Analysis: Various Real time applications of 101 - Connecting 101 to cloud - Cloud Storage
101 101 - Data Analytics 101 101 - Software and Management 1001s 101 101
UNIT – V
Cyber Security and Privacy in Internet of Things : Security and Privacy issues and challenges - Mitigating
Security and Privacy Challenges - Security Assessment of an IoT Solution - Attacks and Countermeasures:
Perception Layer - Network Layer - Transport Layer - Application Layer - IoT security requirements based on
CIA Principles - Security in IoT Protocols.
List of Exercises / Experiments :
1. Working with Cooja Simulator
i. Creating an IoT scenario
11. Sending data between an Io1 client and server
11. Launching an attack in KPL protocol LED Pi
2. Controlling using Kaspberry Pl via webpage/mobile app
5. Data communication using MQTT Protocol via Mosquitto simulator
4. Configure MQ11 Mosquillo Server to secure MQ11
5. Sensing and Sending the sensor value via JSUN/SMTP
6. Gatner, Visualize and analyze the data in BLUEMIX
/. Perfom decision making with IOT data in Xively Cloud (Google Cloud)
Lecture:45, Practical:30, Total: 75

REFE	REFERENCES / MANUALS / SOFTWARES:							
1. A	1. ArshdeepBahga and Vijay Madisetti, "Internet of Things - A Hands-on Approach", Universities Press,							
2	2015.				11	st as st	· •	
2. F	Honbo Zhou	, "The Internet	of Things in the	e Cloud: A Mid	dleware Perspec	ctive", 1 st	Editio	on, CRC Press,
2 3 h	2012.	isaca org/Iourna	1/archives/2015	/Volume_1/Page	es/security_and_r	rivacy_c	halleno	es_of_iot_
J. 1.	nabled-solu	tions aspx	1/ archives/ 2013	volume-4/1 age	es/security-and-p	JIIVac y-ci	naneng	,65-01-101-
4. <i>k</i>	4 https://www.researchgate.net/270763270 Survey of Security and Privacy Issues							
5. h	nttp://slogix.	in/			<u></u> <u>_</u> _			
COU	COURSE OUTCOMES: PT Manned							
On co	On completion of the course, the students will be able to (Highest Level)							
CO1:	describe th	ne physical and	logical design of	of IoT and iden	tify the appropr	iate IoT	An	plying (K3)
0011	level and c	levelop design n	ethodologies fo	or a given applic	ation		P	p-j8 (e)
CO2:	explain tl	ne architecture,	need for mi	ddleware and	the role of c	lifferent	Unde	rstanding (K2)
standardization protocols								
CO3:	CO3: recall the basic concepts and packages of Python related to IoT for interfacing				Ар	Applying (K3)		
001	with 101 devices					1 . (172)		
CO4:	develop simple real time applications, upload the data onto the cloud and perform Applying (K:					plying (K3)		
CO5	CO5: identify the security threats against a given IoT system and suggest simple. Under					rstanding (K2)		
005.	countermeasures					istanding (112)		
CO6:	develop Io	T applications u	sing Cooja Sim	ulator and Raspl	berry Pi		Ap	plying (K3),
					-		Pre	ecision (S3)
CO7:	communic	ate to server via	application laye	er protocols			Ap	plying (K3),
G 00	1 1						Pro	ecision (S3)
CO8:	analyse lo	I data stored in	cloud				Ap	plying (K3), $(S2)$
			Mannir	og of COs with	POs		PI	ecision (55)
C	Os/POs	PO1	PO2	PO3	PO4	PO	5	PO6
	CO1	1		1	1	10	-	
	CO2	- 1	1	- 1	- 1			
	CO3	2	1	י ר	1 2			
	CO4	2	1	2	2			
	C04	2	1	2	2			
	CO5	3	1	3	3			
(CO6	3	2	1	1			
	CO7	3	2	1	1			
(CO8	3	2	1	1			
1 – Sli	ght, 2 – Mo	derate, 3 – Suł	stantial, BT- B	loom's Taxonor	ny			

	18MIT11 MODERN INFORMATION RETRIEVAL TECH	INIQU	JES						
(Common to Information Technology & Computer Science and Engineering branches)									
		L	Τ	Р	Credit				
		3	0	0	3				
Preamble	Information Retrieval Techniques discusses about the basic co	oncepts	of II	R, and	various				
	modeling techniques with different ways of indexing and searching	g mech	anism	s to bu	ild a text				
D • •	or multimedia based IR system.								
Prerequisites	DBMS, DWDM, Web Technology								
UNIT – I					9				
Introduction a	and Classic IR Models: Information Retrieval - The IR Problem	- The	IR S	ystem	- Search				
Interfaces Toda	y - Visualization in Search Interfaces - Modeling – Boolean Model	– Tern	n Weig	hting -	- TF-IDF				
Weighting – V	ector Model – Set Theoretic Models – Algeraic Models – Latent	Seman	tic Inc	exing	Model –				
Neural Network	Model - Probabilistic Models - Retrieval Evaluation – Retrieval M	etrics.							
UNIT II					0				
Relevance Fee	dback Languages and Query Properties. A Framework for f	eedbac	k met	hods -	Fxplicit				
Relevance feed	back - Implicit feedback through local analysis - Global analysis	s - Dc	k mei	nts: M	etadata -				
Documents for	nats - Oueries - Ouery Language – Ouery Properties.	.5 D(Jeumer	105. 101	oludulu				
UNIT – III 9									
Text Operatio	ns, Indexing and Searching: Text Properties - Document Preproce	essing	- Text	Comp	ression –				
Text Classifica	tion – Characterization of Text Classification – Unsupervised	l Algo	rithms	- Si	upervised				
Algorithms –	Decision Tree – K-NN Classifier – SVM Classifier – Feature S	Selection	on or	Dimer	sionality				
Reduction – E	valuation Metrics - Accuracy and Error - Indexing and Search	hing -	- Inve	rted I	ndexes –				
Sequential Sear	ching – Multidimensional Indexing.								
					r				
UNIT – IV		~ 1			9				
Web Retrieval	and Web Crawling: The Web – Search Engine Architectures – (Cluster	Based	Archi	tecture –				
Distributed Ar	chitectures – Search Engine Ranking – User Interaction –Bro	wsing	- We	eb Cra	awling –				
Applications of	a Web Crawler – Taxonomy – Architecture and Implementation	– Sch	edulin	g Algo	orithms –				
Evaluation.									
UNIT V					0				
Applications:	Enterprise Search - Tasks - Architecture - Library Systems - Online	Dubli		se Cat					
IR System and	Document Databases – Digital Libraries – Architecture and Fundam	entals		ss Cali	ilogues –				
IN Bystein and	Document Databases Digital Dioraries Preintecture and Fundam	cintais.			Total·45				
REFERENCE	S:		••••••		100011-10				
1. Ricardo	Baeza-Yate, Berthier Ribeiro-Neto, "Modern Information Retrie	eval"	2^{nd} E	lition	Pearson				
Education	Asia, 2011.	· · · · · · · · · · · · · · · · · · ·	- 2	,					
2. Chowdhu	y G.G., "Introduction to Modern Information Retrieval". 2 nd Edition	n, Neal	-Schui	nan Pı	ublishers.				
2003.		*			,				
3. Daniel Ju	afsky and James H. Martin, "Speech and Language Processing", 1st	Editio	n, Pea	rson E	ducation,				
2000.	• • • •								
2000.					J				

COUF	RSE OUTC	COMES:					B	T Mapped
On coi	On completion of the course, the students will be able to					(Highest Level)		
CO1:	describe tl	he basic concept	s of information	n retrieval			Unde	erstanding (K2)
CO2: apply the various modeling techniques Applying (K3)					oplying (K3)			
CO3:	discuss the	e concepts of fee	edback, languag	ges and query pr	operties		Unde	erstanding (K2)
CO4:	create an l	IR application by	y using text-bas	ed indexing and	l searching mech	nanisms	C	reating (K5)
CO5:	design a s	imple search eng	gine		Applying (K3)			
			Mappi	ing of COs with	n POs			
CC	Os/POs	PO1	PO2	PO3	PO4	PO	5	PO6
(CO1	1		1				
(CO2	1	1	1				
(CO3	2	1	2				
(CO4	2	1	2				
(CO5	3	1	3				
1 - Sli	ght, $2 - Mc$	oderate, 3 – Suł	ostantial, BT – I	Bloom's Taxon	omy			

18MIE09 SOCIAL NETWORK ANALYSIS

(Cor	nmon to Information Technology & Computer Science and Engin	neering	g branc	hes)	
		L	Т	Р	Credit
		3	0	2	4
Preamble	The study of graphs and revelation of their properties with the Social Network Analysis. Some of the surprising and beautiff Social Network Analysis are 6 degrees of separation, the algo Link prediction, Viral marketing, etc.,	ir tool ul disc rithm ∣	s have overies behind	been t s achie Goog	ermed as eved with le search,
Prerequisites	Nil				
IINIT I					0

Graph Theory and Social Networks: Graphs: Basic Definitions- Paths and Connectivity- Distance and Breadth First Search-Network Dataset: An overview. Strong and Weak Ties: Triadic Closure- The Strength of Weak Ties- Tie Strength and Network Structure in Large Scale Data- Tie Strength, Social Media, and Passive Engagement- Closure, Structural Holes, and Social Capital. Networks in their Surrounding Contexts: Homophily – Mechanism Underlying Homophily-Selection and Social Influence- Affiliation. Positive and Negative Relationships: Structural Balance- Characterizing the Structure of Balanced Networks – Application of Structural Balance – A Weaker Form of Structural Balance

UNIT – II

Game Theory and Interaction in Networks: Games: What is Game?- Reasoning about Behavior in Game-Best Responses and Dominant Strategies- Nash Equilibrium- Multiple Equilibria- Coordination Games, The Hawk-Dove Game-Mixed Strategies-Examples and Empirical Analysis- Pareto Optimality and Social Optimality. Evolutionary Game Theory: Fitness as a Result of interaction- Evolutionarily Stable Strategies- A General Description of Evolutionarily Stable Strategies- Relationship between Evolutionarily and Nash Equilibria- Evolutionarily Stable Mixed Strategies. Modeling Network Traffic using Game Theory: Traffic at Equilibrium- Braess's Paradox. Matching Markets: Bipartite Graphs and Perfect Matchings-Valuations and Optimal Assignments.

UNIT – III

Information Networks and the World Wide Web: The Structure of the Web: The World Wide Web-Information Networks, Hypertext, and Associative Memory- The Web as a Directed Graph- The Bow-Tie Structure of the Web. Link Analysis and Web Search: Searching the Web: The problem of Ranking- Link Analysis using Hubs and Authorities- Page Rank- Applying Link Analysis in Modern Web Search.

UNIT – IV

Network Dynamics - Population Models: Information Cascades: Following the Crowd- A Simple Herding Experiment- Bayes Rule: A model of Decision Making-Making under Uncertainty- Baye's Rule in the Herding Experiment- A Simple, General Cascade Model- Sequential Decision Making and Cascades. Network Effects: The Economy Without Network Effects- The Economy with Network Effects- Stability, Instability and Tipping Points- A Dynamic View of the Market- Industries with Network Goods- Mixing Individual Effects with Population-Level Effects. Power Laws and Rich-Get-Richer Phenomena: Popularity as Network Phenomenon-Power Laws- Rich-Get-Richer Models-The Unpredictability of Rich-Get-Richer Model-The Long Tail-The Effect of Search Tools and Recommendation Systems.

9

9

UNIT	' – V							9
Netwo Model Ties- World the pro and D	ork Dynan ling diffusion Extensions Phenomen ocess of De Difficulties	nics – Structu on through a Ne of the Basic C on: Six Degrees centralized Seat in Decentralize	ral Models: (twork- Cascade ascade Model- of Separation- rch- Empirical A ed Search. Epi	Cascading Beh s and Clusters- Knowledge, Th Structure and F Analysis and G demics: Disea	avior in Netwo Diffusion, Thre hresholds and C Randomness- De eneralized Mode ses and the N	orks: I esholds Collecti ecentral els- Co etwork	Diffusion , and the ve Actio lized Sea re Periph s that tu	in Network- Role of Weak n. The Small- rch- Modeling nery Structures ransmit them-
Gonta	ning Proces	Sses- The SIR	Epidemic Mod	el- The SIS E	pidemic Model	- Sync	chronizat	ion- Transient
Listo	f Exercises	•	urrency.					
1.	Exploring	• face book Gran	h API					
2.	Implemen	ting access toke	n using face bo	ok API				
3.	Implemen	ting FQL(Face	book Query Lar	iguage)				
4.	Implemen	tation using Op	enGraph API					
5.	Use Dialo	gs API to imple	ment login, pos	ting on time lin	e and sending r	equest		
					Lecture	e: 45, P	ractical	: 30, Total: 75
REFF	ERENCES	/ MANUALS /	SOFTWARE:					
1. I	David Easle World", Caı	ey, Jon Klienber nbridge Univers	g, "Networks, sity Press, 2010	Crowds, and M	arkets: Reasoni	ng abo	ut a Hig	hly Connected
2. 8	Stanley Wa Cambridge	asserman, Kath University Press	erine Faust, " s, 2010.	Social Networ	rks Analysis:	Methoo	ls and	Applications",
3. (Charles Ka University F	dushin, "Under Press, 2012.	rstanding Socia	al Networks: 7	Theories, Conce	epts, a	nd Find	ings", Oxford
COU	RSE OUTC	COMES:					ВТ	' Mapped
On co	mpletion of	the course, the	students will be	able to			(Hig	hest Level)
CO1:	apply th distribution	e concepts of on	graph theory	for analysis	of social net	works	Unders	standing (K2)
CO2:	utilize ga	me theory for de	ecision making	in the context o	f social network	ting	App	olying (K3)
CO3:	compare	and contrast dif	ferent link analy	sis and web sea	arch techniques		Unders	standing (K2)
CO4:	analyze n	etwork behavio	r based on popu	lation model			App	olying (K3)
CO5:	investigat model	te the aggregate	behavior of the	e social networl	ks based on stru	ctural	Арр	olying (K3)
CO6:	demonstr	ate APIs for dif	ferent social net	works			App Prec	lying (K3), cision (S3)
CO7:	implemen	nt Face book Qu	ery Language				App	lying (K3),
<u> </u>	use Diele	and ADI to cond	nosts onling				Prec	$\frac{c1s10n(53)}{lving(K2)}$
000.	use Dialo	gs AFT to send	posts onnine				App Pred	cision $(S3)$
			Mappir	ng of COs with	POs		110	
CC	Os/POs	PO1	PO2	PO3	PO4	Р	O5	PO6
(CO1	1		1				
(CO2	1	1	1				
(CO3	2	1	2	1			
	CO4	2	1	2				
(CO5	3	1	3				
(CO6			2			3	
(CO7						2	
(CO8				2		2	1
1 - Sli	ight, 2 – Mo	oderate, 3 – Su	ıbstantial, BT-	 Bloom's Taxe 	onomy			

18VLE12 NATURE INSPIRED OPTIMIZATION TECHNIQUES

(Common to VLSI Design, Communication Systems, Embedded Systems,

Computer Science and Engineering & Mechatronics branches)

		3	0	0	3	
Preamble	To acquaint and familiarize with different types of optimoptimization problems, implementing computational technique	nizatior es, abs	tech: tractin	niques. g matl	, solving nematical	
	results and proofs etc.					
Prerequisites	Linear algebra and Calculus					
TINITE T						

UNIT – I

Introduction to Algorithms: Newton's Method – Optimization - Search for Optimality - No-Free-Lunch Theorems - Nature-Inspired Metaheuristics - Brief History of Metaheuristics. **Analysis of Algorithms:** Introduction - Analysis of Optimization Algorithms - Nature-Inspired Algorithms - Parameter Tuning and Parameter Control.

UNIT – II

Simulated Annealing: Annealing and Boltzmann Distribution - Parameters - SA Algorithm - Unconstrained Optimization - Basic Convergence Properties - SA Behavior in Practice - Stochastic Tunneling. **Genetic Algorithms** : Introduction - Genetic Algorithms - Role of Genetic Operators - Choice of Parameters - GA Variants - Schema Theorem - Convergence Analysis

UNIT – III

Particle Swarm Optimization: Swarm Intelligence - PSO Algorithm - Accelerated PSO – Implementation - Convergence Analysis - Binary PSO – Problems. **Cat Swarm Optimization:** Natural Process of the Cat Swarm - Optimization Algorithm – Flowchart - Performance of the CSO Algorithm.

UNIT – IV

TLBO Algorithm: Introduction - Mapping a Classroom into the Teaching-Learning-Based optimization – Flowchart- Problems. **Cuckoo Search:** Cuckoo Life Style - Details of COA – flowchart - Cuckoos' Initial Residence Locations - Cuckoos' Egg Laying Approach - Cuckoos Immigration - Capabilities of COA. **Bat Algorithms:** Echolocation of Bats - Bat Algorithms – Implementation - Binary Bat Algorithms - Variants of the Bat Algorithm - Convergence Analysis.

UNIT – V

Other Algorithms: Ant Algorithms - Bee-Inspired Algorithms - Harmony Search - Hybrid Algorithms.

Total: 45

REFERENCES:

- Xin-She Yang, "Nature-Inspired Optimization Algorithms", 1st Edition, Elsevier, 2014.
 Omid Bozorg-Haddad, "Advanced Optimization by Nature-Inspired Algorithms" Springer Volume 720,
- 2018.
 3. Srikanta Patnaik, Xin-She Yang, Kazumi Nakamatsu, "Nature-Inspired Computing and Optimization Theory and Applications", Springer Series, 2017.

9

9

9

9

T P Credit

L

COUI	RSE OUTC	COMES:					B	Г Mapped
On co	mpletion of	the course, the s	students will be	e able to			(Hig	ghest Level)
CO1:	CO1: infer the basic concepts of optimization techniques				Understanding (K2)			
CO2: identify the parameter which is to be optimized for an application Analyzing (K4)					lyzing (K4)			
CO3:	analyze ar	nd develop mathe	ematical mode	l of different op	timization algo	rithms	Ana	lyzing (K4)
CO4:	CO4: select suitable optimization algorithm for a real time application Applying (K3)					plying (K3)		
CO5: recommend solutions, analyses, and limitations of models Analyzing				lyzing (K4)				
			Марріі	ng of COs with	POs			
CC	Os/POs	PO1	PO2	PO3	PO4	PO	D5	PO6
(CO1	1		1				
(CO2	1	1	1				
(CO3	2	1	2				
(CO4	2	1	2				
(CO5	3	1	3				
1 - Sli	ight, 2 – Mo	oderate, 3 – Su	bstantial, BT -	- Bloom's Taxo	nomy			

	18MSE08 SOFTWARE DEFINED NETWORKIN	G				
		L	Т	Р	Cree	dit
		3	0	0	3	
Preamble	Provides insight on basics of software defined networking and communications networks are managed, maintained, and secure	how i d.	t is ch	anging	g the v	way
Prerequisites	Operating Systems, Data Structures and Algorithms, Computer	Netwo	orks			
UNIT – I						9
Introduction to	SDN: Traditional switch Architecture, Autonomous and Dynamics of SDN, Harry SDN, and The Oran Flow Specification of	mic Fo	rwardi	ng Ta	ble, V	Vhy
SDN?, The Gene	sis of SDN, How SDN works, The OpenFlow Specification, C	penFlo	ow 1.0	and O	penF	low
Basics, OpenFlov	w 1.1 and OpenFlow 1.3					
UNIT – II						9
SDN Application	n in Data Center: SDN in the Data Center, SDN Use Cases in	the Da	ata Cer	iter, O	pen S	DN
versus Overlays	in the Data Center, SDN in other Environments, SDN Appli	cations	s, SDN	J Oper	n Sou	rce,
Switch Implement	tation, Controller Implementation, SDN Futures					
UNIT – III						9
SDN Control P	lane: Distributed Control plane, Centralized Control plane, C	penFlo	ow, SI	ON Co	ontroll	lers,

9 rs, SD Network Programmability, Data Center concepts and constructs, The Virtualized Multitenant Data Center, SDN solution for Data Center Network

UNIT – IV

SDN and NFV: Network Function Virtualization, Virtualization and Data plane I/O, Service Locations and Chaining, Network Topology and Topological Information Abstraction, Building an SDN Framework, IETF SDN Frameworks, Open Daylight Controller/Framework

$\mathbf{UNIT} - \mathbf{V}$

REFERENCES:

SDN Usecases: Usecases for Bandwidth Scheduling, Manipulation and calendaring, Data Center Overlays, Big Data and Network Function Virtualization, Input Traffic Monitoring, Classification, and Triggered Actions.

9

9

Total: 45

1.	Paul Goransson, Chuck Black, "Software Defined Networks: A Comprehensive Approach", 1 st Edition,
	Morgan Kaufmann, June 2014.
2.	Thomas D. Nadeau, Ken Gray, "SDN: Software Defined Networks, An Authoritative Review of
	Network Programmability Technologies", O'Reilly Media, August 2013.
3.	Vivek Tiwari, "SDN and OpenFlow for Beginners". Amazon Digital Services Inc., 2013.

COUH	RSE OUTC	COMES:					B	T Mapped
On con	mpletion of	the course, the	students will be	e able to			(Hi	ghest Level)
CO1:	employ o network	penflow protoc	ol to determin	e the operation	ns of software	defined	Ap	plying (K3)
CO2:	demonstra environmo	ate the role of ent	software defi	ned network in	n different net	working	Ар	plying (K3)
CO3:	examine t	he data plane ar	d control plane	of software def	fined networks		An	alyzing (K4)
CO4:	model sof	tware defined c	ontroller for var	rious networkin	g applications		Ар	plying (K3)
CO5:	use softwa	are defined netw	ork to solve the	e given network	problems		Ар	plying (K3)
			Mappi	ng of COs with	POs			
CC	Os/POs	PO1	PO2	PO3	PO4	PO	5	PO6
(CO1	2	1	-	2			
(CO2	2	1		2			
(CO3	3	3	2	3			
(CO4	3	2		3			
(CO5	2	1		2			2
1 - Sli	ght, $2 - Mc$	oderate, 3 – Su	ıbstantial, BT -	- Bloom's Taxo	nomy			-

18MSE09 INFORMATION STORAGE MANAGEMENT Т L Р Credit 3 0 0 3 Preamble Information storage management offers essential details about various storage systems, storage networking technologies and business continuity solutions along with management techniques in order to store, manage, and protect digital information in classic, virtualized, and cloud environments Computer Networks and Database Management Systems Prerequisites UNIT – I 9 Storage Systems: Introduction to evolution of storage architecture, key data center elements, virtualization, and cloud computing. Components of storage system environments - Host (or computer), connectivity, storage, and application in both classic and virtual environments. RAID implementations, techniques and levels along with the impact of RAID on application performance. Components of intelligent storage provisioning and intelligent storage implementations. UNIT – II 9 Storage Networking Technologies: Fibre channel SAN components, connectivity options, and topologies including access protection mechanism -Zoning, FC protocol stack, addressing operations, SAN-based virtualization and VSAN technology, iSCS and FCIP protocols for storage access over IP network, Converged protocol FCoE and its components Network Attached Storage (NAS) - components, protocol and operations, File level storage virtualization. Object based storage and unified storage platform. UNIT – III 9 Backup, Archive and Replication: Business continuity terminologies, planning and solutions, clustering and multipathing architecture to avoid single points of failure, Backup and recovery - methods, targets and topologies, Data duplication and backup in virtualized environment, Fixed content and data archive, Local replication in classic and virtual environments, Remote replication in classic and virtual environment. UNIT - IV9 Cloud Computing: Business drivers for Cloud computing, Definition of Cloud computing, Characteristics of cloud computing, Steps involved in transitioning from Classic data center to Cloud computing environment services and deployment models, Cloud infrastructure components, Cloud migration considerations. UNIT - V9 Securing and Managing Storage Infrastructure: Security threats, and countermeasures in various domains security solutions for FC-SAN, IP-SAN and NS environments, Security in virtualized and cloud environment, Monitoring and managing various information infrastructure components in classic and virtual environments, Information lifecycle management (ILM) and storage tiering, Cloud service management activities. Total: 45 **REFERENCES:** EMC Corporation, "Information Storage and Management", 2nd Edition, Wiley, 2012. 1. Robert Spalding, "Storage Networks: The Complete Reference", Tata McGraw Hill, Osborne, 2003. 2.

3. Marc Farley, "Building Storage Networks", 2nd Edition, Tata McGraw Hill, Osborne, 2001.

COUI	RSE OUTC	COMES:					B	Г Mapped
On con	mpletion of	the course, the	students will be	e able to			(Hi	ghest Level)
CO1:	explore th	e various storag	e systems and I	RAID impleme	ntations		Unde	rstanding (K2)
CO2: identify various storage networking technologies and its components				Ap	plying (K3)			
CO3:	apply bus	iness continuity	v solutions – ba	ckup and repli	cation, and arc	nive for	Ap	plying (K3)
	managing	fixed content						
CO4:	describe th	ne fundamentals	s of cloud storag	ge environment			Under	rstanding (K2)
CO5:	explain th	e storage securi	ty framework a	and discuss the	storage monitor	ing and	Unde	rstanding (K2)
	manageme	ent activities						
			Mappi	ng of COs with	POs			
CC	Os/POs	PO1	PO2	PO3	PO4	PC)5	PO6
(CO1	1	1		2			
(CO2		2	2	1			
(CO3	1	1	2	3			
(CO4		2		1			
(CO5	2	2					
1 - Sli	ight, 2 – Mo	oderate, 3 – Su	ıbstantial, BT -	Bloom's Taxo	nomy			

	18MSE10 RANDOMIZED ALGORITHMS				
		L	Т	Р	Credit
		2	1	0	3
Preamble	In this course, the probability tools required to design and analyze	a rand	lomize	d algo	rithm are
	studied. The emphasis will be on strengthening the analytical skills	of the	studer	t so th	hat he can
	independently design or analyze a randomized algorithm.				
Prerequisites	Design and Analysis of Algorithms, Data Structures and Algorithm	S			
UNIT – I					9
Introduction:	Min-Cut Algorithm, Binary Planar Partitions, Game-theoretic	e tech	nique	s: Ga	me Tree
Evaluation, The	e Minimax principle, Randomness and Non-uniformity. Moments	and d	eviatio	ns: O	ccupancy
Problems, Mar	kov and Chebyshev Inequalities, Randomized Selection, Two-point	t Samp	oling, S	Stable	Marriage
Problem and Co	bupon Collector's Problem.				
TINIT II					
UNII – II Toji Inoqualit	inst Charnoff Bound Bouting in a parallal Computer A wiring	Droble	m M	orting	loc The
nrobabilistic	nethod: Overview Maximum Satisfiability Expanding Graphs	Lovas	$z I \alpha$	al I ei	mma and
Method of Con	ditional Probabilities	LUvas	Z LUC	ai Lei	iiiiia allu
UNIT – III					9
Markov Chai	ns and Random Walks: A 2-SAT Example, Markov Chains, I	Rando	n Wa	lks on	Graphs,
Electrical Netw	vorks, Cover Times, Graph Connectivity, Expanders and Rapid	ly Miz	king R	andon	n Walks.
Algebraic tec	nniques: Fingerprinting and Freivalds Technique, verifying po	lynom	ial ide	ntities	, perfect
matchings in gr	aphs, verifying equality of strings, pattern matching, Interactive proc	of syste	ems.		-
UNIT – IV					9
Data Structur	res: Fundamental Data-structuring problem, Random Treaps, Sk	ip Lis	ts, Ha	sh Ta	ables and
Hashing. Grap	h algorithms: All-pairs Shortest Paths, Min-cut Problem, Minimum	Spann	ing Tr	ees.	
UNIT – V					. 9
Approximate	Counting: Randomized Approximation Schemes, DNF Counting Pr	roblem	i, Volu	me Es	stimation.
Parallel and	distributed algorithms: PRAM model and its sorting, Maximal	Inde	penden	t Sets	s, Perfect
Matching, Choi	ce Coordination Problem, Byzantine Agreement.				
	0				Total: 45
KEFERENCE 1 Deiger M	5: atuani and Brakhakar Daghayan "Dandomizad Algorithma" 1 st Ed	ition	Combr	idaa T	Inizonaitez
1. Kajeev M	orwani anu Fiaonakai Kagnavan, Kandomized Algoninms, I Ed	mon,	Cambr	luge C	Juversity
2 Michael	Allii 2010. Mitzenmacher and Eli Unfal "Drobability and Computing De	ndom	ized A	lacrit	hme and
2. Probabilie	tic Analysis" Cambridge University Press 2005	uiuoiii	izeu F	nguin	mis and
3 Grimmett	and Stirzaker "Probability and Random Processes" Oxford 2001				
J. Unimen	and Suizaker, Trobability and Kandolli Processes, Oxford, 2001.				

COUI	RSE OUTC	COMES:				BT N	Aapped
On co	mpletion of	the course, the	students will be	e able to		(High	est Level)
CO1:	outline th	e basic concep	ts in the desig	gn and analysis	s of randomized	Understa	anding (K2)
	algorithms	5					
CO2:	illustrate	tail inequalities	and different	probability that	at are frequently	Understa	anding (K2)
	used in alg	gorithmic applic	ation				
CO3:	determine	the use of Marl	kov chains and	Random walks	s in the different	Apply	ving (K3)
	practical a	pplications					
CO4:	discover th	ne applications of	of data structure	es and graph alg	gorithms	Analyzing (K4)	
CO5:	examine t	he different ap	propriate coun	ting schemes a	and parallel and	Analyzing (K4)	
	distributed	l algorithms for	various applica	ations			
			Mappi	ng of COs with	POs		
CC	Os/POs	PO1	PO2	PO3	PO4	PO5	PO6
(CO1	2	1	1	2	2	1
(CO2	2	1	1	2	2	1
(CO3	3	2	1	3	3	2
(CO4	3	3	2	3	3	3
(CO5	3	3	2	3	3	3
1 - Sli	ight, 2 – Mo	oderate, 3 – Su	bstantial, BT -	Bloom's Taxor	nomy		

LTPCredit2023PreambleUID deals with design of responsive web application using Full Stack Web Development – MEAN ie MongoDB, ExpressJS, AngularJS and NodeJS.PrerequisitesHTML,CSS and Javascript
2023PreambleUID deals with design of responsive web application using Full Stack Web Development – MEAN ie MongoDB, ExpressJS, AngularJS and NodeJS.Development – VerequisitesPrerequisitesHTML,CSS and Javascript
PreambleUID deals with design of responsive web application using Full Stack Web Development – MEAN ie MongoDB, ExpressJS, AngularJS and NodeJS.PrerequisitesHTML,CSS and Javascript
MEAN ie MongoDB, ExpressJS, AngularJS and NodeJS.PrerequisitesHTML,CSS and Javascript
Prerequisites HTML,CSS and Javascript
-
UNIT – I 9
Introduction to NoSQL Database - MongoDB: What is NoSQL Database - Why to Use MongoDB -
Difference between MongoDB & RDBMS - Download & Installation - Common Terms in MongoDB -
Implementation of Basic CRUD Operations using MongoDB.
<u>UNIT – II</u> 9
Introduction to Server-side JS Framework – Node.js: Introduction - What is Node JS – Architecture –
Feature of Node JS - Installation and setup - Creating web servers with HTTP (Request and Response) – Event
Handling - GET and POST implementation - Connect to NoSQL Database using Node JS – Implementation of
CRUD operations.
UNII – III 9 Introduction to TypeScript, TypeScript, Introduction to TypeScript, Eastures of TypeScript, Installation
Setup Variables Detetupes Enum Array Tuples Eurotions OOD concents Interfaces Concrise
Setup – Variables – Datatypes – Ellum – Array – Tuples – Functions – OOF concepts – Interfaces – Generics – Modulos Namospaces Decorators Compiler entions Project Configuration
Modules – Mailespaces – Decorators – Compiler options – Project Comiguration.
Introduction to Client-side IS Framework – Basics of Angular: Introduction to Angular - Needs and
Evolution – Features – Setup and Configuration – Components and Modules – Templates – Change Detection –
Directives – Data Binding - Pipes – Nested Components.
X
UNIT – V 9
Client-side JS Framework – Forms and Routing in Angular: Template Driven Forms - Model Driven Forms
or Reactive Forms - Custom Validators - Dependency Injection - Services - RxJS Observables - HTTP -
Routing.
List of Exercises / Experiments :
1. Implementation of Basic CRUD Operations using MongoDB
2. Create web server connection with HTTP Request and HTTP Response
3. Implementation of Event Handling using GET and POST Method
4. Establish Connection to NoSQL Database using NodeJS and implement CURD operations
5. Demonstrate Inheritance and Interfaces using Typescript
6. Design a web application using AngularJS
Lecture:45, Practical:15, Total: 60
REFERENCES / MANUALS / SOFTWARES:
1. Nathan Rozentals, "Mastering TypeScript", 2 nd Edition, Packt Publishing, 2017.
2. Nathan Murray, Ari Lerner, Felipe Coury, Carlos Taborda, "ng-book, The Complete Book on Angular 6",
Createspace Publisher, 2018.

COUI	COURSE OUTCOMES:							' Mapped		
On co	mpletion of	the course, the	students will be	e able to			(Hig	hest Level)		
CO1:	CO1: create NoSQL Database CURD operations using MongoDB									
CO2:	CO2: develop server side applications using Node JS Creating (K6)									
CO3: make use of Type Script to build web application Applying								olying (K3)		
CO4:	CO4: summarize Angular features and create component based web pages Understanding (K2									
CO5:	design a F	full Stack web aj	oplication				Cre	ating (K6)		
CO6:	design RV	VD to perform C	URD operation	ns with Mongol	OB		Cre	ating (K6),		
							Pree	cision (S3)		
CO7:	D7:create web server connection with HTTP request and HTTP responseApplying (K3),									
	Precision (S3)									
CO8:	CO8: develop full stack application using angular for the given use case							Creating (K6),		
							Precision (S3)			
Mapping of COs with POs										
CC	Os/POs	PO1	PO2	PO3	PO4	PO	5	PO6		
(CO1	3	3	3	3					
(CO2	3	3	3	3					
(CO3	3	2		3					
(CO4	2	1		2					
(CO5	3	3	3	3					
(CO6	3	3	3	3					
(CO7	3	2		3					
(CO8	3	3	3	3					
1 - Sli	ght, $2 - \overline{MG}$	oderate, 3 – Su	bstantial, BT -	Bloom's Taxo	nomy					

18MSE12 DEEP LEARNING TECHNIQUES									
(Common to Computer Science and Engineering & Information Technology branches)									
		L	Т	Р	Credit				
D 11		3	0	2					
Preamble	Deep Learning is a subfield of machine learning concerned with attractive and function of the brain called artificial neural network	algor	ithms	inspire	ed by the				
	fundamentals concepts in the design of deep neural networks and i	(S. 111 te vari	is cour	se exp	ures such				
	as convolutional neural networks, recurrent neural networks etc.	ts vari	ous aiv	inteet	ures such				
Prerequisites	Fundamental concepts of Algorithms and computer programming								
UNIT – I					9				
Foundations o	f Deep Learning: Introduction – Math behind machine learning – I	Linear	Algeb	ra – S	tatistics –				
How does Mac	hine Learning works – Logistic regression – Evaluating Models –	Neural	l Netw	orks –	Training				
Ineural Network	rs – Activation functions – Loss functions – Hyper parameters.								
UNIT – II					9				
Architectural	Design: Defining Deep Learning – Common Architectural Prin	nciples	s of D	eep N	Vetworks:				
Parameters – I	ayers - Activation functions - Loss functions - Optimization Algo	orithms	s – Hy	per pa	rameters.				
Building blocks	of Deep Networks: RBMS-Auto encoders-Variational encoders.								
$\frac{\text{UNIT} - \text{III}}{\text{T}}$		NT 1		1 /	9				
Lypes of Deep Recurrent Neur	al Networks: Unsupervised pretrained Networks – Convolutional J	Neural	Netw	orks (CNNS) –				
Kecuitent Neur	ai Networks – Recursive Neurai Networks – Applications.								
UNIT – IV					9				
Convolutional	Neural Networks: Pooling layers – Batch Normalization – padding	and st	rides –	Diffe	rent types				
of initialization	n - implementing a convolutional auto encoder - 1D to CNN	to tex	t. Rec	urren	t Neural				
Networks: Imp	lementing a simple RNN – Adding LSTM – GRUs – Bidirectional	RNNs	– Cha	racter-	level text				
generation.									
UNIT – V					9				
Case Studies:	Large scale deep learning – Computer vision – speech recognition –	natura	al lang	lage p	rocessing				
– implementati	Dn.		0		0				
List of Exercis	es:								
1. Impleme	ntation of linear regression technique.								
2. Program	to create a multi-layer neural network.								
3.Program	to test the performance of multi-layer neural network with various action	tivatio	n and l	oss fu	nctions				
4.Tuning th	e neural network performance with hyper parameters								
5.Implemer	tation of convolutional neural networks								
6. Impleme	ntation of Recurrent neural networks								
7. Impleme	ntation of Recursive neural networks								
8. Developi	ng a simple image recognition application								
9. Developi	ng a simple speech recognition application								
10. Develop	bing a Chatbot								
	Lecture:	45, Pr	actica	l: 30, '	Total: 75				

REFE	REFERENCES / MANUALS / SOFTWARES:							
1. J	1. Josh Patterson and Adam Gibson, "Deep Learning – A Practitioner's Approach", 1 st Edition, O'Reilly							
S	Series, August 2017.							
2. I	2. Indra den Bakker, "Python Deep Learning Cookbook", 1 st Edition, Packt Publishing, October 2017.							
3. Ia	3. Ian Goodfellow, Yoshua Bengio and Aaron Courville, "Deep Learning", 1 st Edition, MIT Press, 2016.							
COURSE OUTCOMES: BT Mapped						Mapped		
On completion of the course, the students will be able to (Highest Level					est Level)			
CO1:	outline the	e basic concepts	in the design of	f neural networl	KS	Underst	anding (K2)	
CO2:	demonstra	ate the significat	nt functionalitie	es of various co	omponents present	Underst	anding (K2)	
	in the dee	p networks						
CO3:	design and	d explore the arc	hitecture of var	rious types of de	eep networks	Apply	ving (K3)	
CO4:	build dif	fferent kinds	of deep net	works using	Tensorflow/keras	Apply	ving (K3)	
	framewor	ks						
CO5:	CO5: relate the use of deep networks in different practical applications Analyzing (K4)						zing (K4)	
CO6:	CO6: implement the regression technique and variants of deep neural networks					Applying (K3),		
	Precision (S3)					sion (S3)		
CO7: analyze the performance of artificial neural network Analyzing (zing (K4),			
Precision (S3)					sion (S3)			
CO8:	develop th	ne simple deep le	earning application	tions		Evaluating (K5),		
						Preci	sion (S3)	
			Mappir	ng of COs with	POs			
CC	Ds/POs	PO1	PO2	PO3	PO4	PO5	PO6	
(CO1	2	1	1				
(CO2	2	1	1				
(CO3	2	1	2				
(CO4	2		2				
(CO5	1	1	1	1			
(CO6	2	3	3				
(CO7	2	3	3				
(CO8	2	3	3				
1 – Sli	ght, $2 - Mc$	oderate, 3 – Su	bstantial, BT -	Bloom's Taxor	nomy			

1	8MSE13 ADVANCED PARALLEL ARCHITECTURE AND PR	OGR	AMMI	NG	
		L	Т	P	Credit
		2	0	2	3
Preamble	This course provides an understanding of the fundamental principle	es and	engine	ering	rade-offs
	involved in designing modern parallel computing systems as	well	as to	teach	parallel
	programming techniques necessary to effectively utilize these mac	chines.	Becau	se wri	ting good
	parallel programs requires an understanding of key machine perf	orman	ce cha	racteri	stics, this
	course covers both parallel hardware and software.				
Prerequisites	Computer Architecture and Multicore Architecture				
UNIT – I					6
Parallel Arc	hitecture and Foundations of Parallel Programming: Parallel Arch	itectur	e: Need	d, Con	vergence,
Design issue	s – Parallel Application Case Studies – The von Neumann architectur	re - P	rocesse	es, mul	titasking,
and threads -	Modifications to the von Neumann Model – Parallel Hardware and Se	oftwar	e – Inp	ut and	Output –
Performance	– Parallel Program Design – Writing and Running Parallel Programs				
UNIT – II					6
Message Pa	ssing Paradigm: Basic MPI programming – MPI_Init and MPI_Fina	lize –	MPI co	ommui	nicators –
SPMD progr	ams – message passing – MPI_Send and MPI_Recv – message matching	ng – N	1PI I/O	– para	ıllel I/O –
collective co	mmunication – derived types – Performance evaluation of MPI pro	ogram	s - A	Paralle	l Sorting
Algorithm.					
UNIT – III					6
Shared Mer	nory Paradigm PThreads: Basics of Pthreads – Execution, Error ch	neckin	g of th	reads -	– Matrix-
Vector Multi	plication – Critical sections – Busy waiting – Mutexes – Producer-Co	nsume	er Sync	hroniz	ation and
Semaphores	– Barriers and Condition variables – Read Write locks – Caches,	Cache	Coher	ence a	and False
sharing – Th	read-Safety – Pthreads case study.				
					6
Shared Men	pary Paradigm Onon MP: Basic Onan MP constructs The Transzoid	lal Dul	e Sco	ne of	Variables
– Reduction	Clause – Parallel for Directive – Loops in OpenMP – Scheduling	loons	-Svr	ochroni	variables
OpenMP - C	ase Study: Producer Consumer problem – Cache Issues – Threads safet	tv in C) nenMF))	
openium e	use study. I foldeer consumer problem cache issues Threads said	ty m c	peintin	•	
UNIT – V					6
OpenCL La	nguage: Introduction to OpenCL – OpenCL example – Platforms, Cor	ntexts	and De	vices -	OpenCL
programming	z in C – Simple Programs.			11005	openel
List of Exer	cises:				
1. Imple	mentation of numerical methods using MPI and OpenMP				
2 Paral	elizing loops in OpenMP				
2. Tutur 3. Matri	x vector multiplication using Pthreads				
J. Madi	x vector multiplication using 1 threads				
4. FIOU	mentation of read/write lasks using Dthreads				
5. Imple	ementation of read/write locks using Pthreads				
6. Vecto	or operations with OpenCL	20 D		1 20	T () (0
		30, P	ractica	al: 30,	Fotal: 60
	ED / MANUALD / JUF I WAKED:		II1		Software
	E. Culler, Jaswinder Pal Singh, "Parallel Computing Architectu	re: A	Hard	ware/	Sonware
Approa	Dashaaa "An introduction to neurllal ansar in "Name Karl		011		
2. Peter S.	Pacheco, "An introduction to parallel programming", Morgan Kaufma	$\frac{1}{2}$	JII. 201	1	
3. Munshi	Aattab, Gaster R. Benedict, "OpenCL Programming Guide", Addision	-wesl	ey, 201	1.	

COUR	COURSE OUTCOMES:							Г Mapped		
On cor	On completion of the course, the students will be able to							ghest Level)		
CO1:	investigat	te issues in Para	llel Architectur	e and Programn	ning		Ana	alyzing (K4)		
CO2:	develop message passing parallel programs using MPI framework							plying (K3)		
CO3:	O3: implement shared memory parallel programs using Pthreads							plying (K3)		
CO4:	experime	nt with OpenMl	P for shared me	mory applicatio	ns		Ap	Applying (K3)		
CO5:	write sim	ple parallel prog	grams using Op	enCL			Under	rstanding (K2)		
CO6:	develop p	arallel program	s for numerical	methods with N	/IPI and OpenM	IP	App	olying (K3),		
							Pre	ecision (S3)		
CO7:	: develop parallel programs for different system tasks using Pthreads							plying (K3),		
								ecision (S3)		
CO8:	perform different vector operations with OpenCL						Applying (K3),			
							Pre	ecision (S3)		
Mapping of COs with POs										
COs/POs PO1 PO2 PO3					PO4	P	D5	PO6		
(201	3	3	1	3					
(CO2	3	2		3					
(203	3	2		3					
(204	3	2		3					
(205	2	1		2					
(CO6	3	2		3					
(CO7	3	2		3					
(CO8	3	2		3					
1 - Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy									

LTPCredit3003PreambleThe course provides the foundation knowledge on speech production and perception along with processing of speech signal and also deals with the basics of text processing and then it also covers some of the most interesting applications of text mining.PrerequisitesNilUNIT - I9Words and Morphology:Introduction - Models and Algorithms – Words – Morphology - Morphological Parsing using Finite State Transducers - FST Lexicon and Rules - Porter Stemmer - Spelling Errors - Error Pattern - Non-Word Error - Probabilistic Models - Applying Bayesian Methods to Spelling - Word Segmentation - N-grams - Smoothing – Backoff.UNIT – II9Tagging and Grammer:Part of Speech Tagging - Tagsets for English - Rule Based Tagging - Stochastic Part of Speech Tagging – Transformation-Based Tagging - CFG for English - Context Free Rule - Sentence-Level Constructions - Noun Phrase - Coordination-Agreement - Verb Phrase and Sub categorization -Auxiliaries – Parsing - Top Down Parsing - Bottom Up Parsing - Earley Algorithm.
3 0 0 3 Preamble The course provides the foundation knowledge on speech production and perception along with processing of speech signal and also deals with the basics of text processing and then it also covers some of the most interesting applications of text mining. Prerequisites Nil UNIT – I 9 Words and Morphology: Introduction - Models and Algorithms – Words – Morphology - Morphological Parsing using Finite State Transducers - FST Lexicon and Rules - Porter Stemmer - Spelling Errors - Error Pattern - Non-Word Error - Probabilistic Models - Applying Bayesian Methods to Spelling - Word Segmentation - N-grams - Smoothing – Backoff. UNIT – II 9 Tagging and Grammer:Part of Speech Tagging - Tagsets for English - Rule Based Tagging - Stochastic Part of Speech Tagging – Transformation-Based Tagging - CFG for English - Context Free Rule - Sentence-Level Constructions - Noun Phrase - Coordination-Agreement - Verb Phrase and Sub categorization - Auxiliaries – Parsing - Top Down Parsing - Bottom Up Parsing - Earley Algorithm. UNIT – III 9
Preamble The course provides the foundation knowledge on speech production and perception along with processing of speech signal and also deals with the basics of text processing and then it also covers some of the most interesting applications of text mining. Prerequisites Nil 9 Words and Morphology: Introduction - Models and Algorithms – Words – Morphology - Morphological Parsing using Finite State Transducers - FST Lexicon and Rules - Porter Stemmer - Spelling Errors - Error Pattern - Non-Word Error - Probabilistic Models - Applying Bayesian Methods to Spelling - Word Segmentation - N-grams - Smoothing – Backoff. 9 Tagging and Grammer:Part of Speech Tagging - Tagsets for English - Rule Based Tagging - Stochastic Part of Speech Tagging - CFG for English - Context Free Rule - Sentence-Level Constructions - Noun Phrase - Coordination-Agreement - Verb Phrase and Sub categorization -Auxiliaries – Parsing - Top Down Parsing - Bottom Up Parsing - Earley Algorithm. 9 UNIT – II 9
with processing of speech signal and also deals with the basics of text processing and then it also covers some of the most interesting applications of text mining. Prerequisites Nil UNIT – I 9 Words and Morphology: Introduction - Models and Algorithms – Words – Morphology - Morphological Parsing using Finite State Transducers - FST Lexicon and Rules - Porter Stemmer - Spelling Errors - Error Pattern - Non-Word Error - Probabilistic Models - Applying Bayesian Methods to Spelling - Word Segmentation - N-grams - Smoothing – Backoff. UNIT – II 9 Tagging and Grammer:Part of Speech Tagging - Tagsets for English - Rule Based Tagging - Stochastic Part of Speech Tagging - CFG for English - Context Free Rule - Sentence-Level Constructions - Noun Phrase - Coordination-Agreement - Verb Phrase and Sub categorization -Auxiliaries – Parsing - Top Down Parsing - Bottom Up Parsing - Earley Algorithm.
also covers some of the most interesting applications of text mining. Prerequisites Nil UNIT – I 9 Words and Morphology: Introduction - Models and Algorithms – Words – Morphology - Morphological Parsing using Finite State Transducers - FST Lexicon and Rules - Porter Stemmer - Spelling Errors - Error Pattern - Non-Word Error - Probabilistic Models - Applying Bayesian Methods to Spelling - Word Segmentation - N-grams - Smoothing – Backoff. UNIT – II 9 Tagging and Grammer:Part of Speech Tagging - Tagsets for English - Rule Based Tagging - Stochastic Part of Speech Tagging - CFG for English - Context Free Rule - Sentence-Level Constructions - Noun Phrase - Coordination-Agreement - Verb Phrase and Sub categorization -Auxiliaries – Parsing - Top Down Parsing - Bottom Up Parsing - Earley Algorithm. UNIT – II 0
Prerequisites Nil UNIT – I 9 Words and Morphology: Introduction - Models and Algorithms – Words – Morphology - Morphological Parsing using Finite State Transducers - FST Lexicon and Rules - Porter Stemmer - Spelling Errors - Error Pattern - Non-Word Error - Probabilistic Models - Applying Bayesian Methods to Spelling - Word Segmentation - N-grams - Smoothing – Backoff. UNIT – II 9 Tagging and Grammer:Part of Speech Tagging - Tagsets for English - Rule Based Tagging - Stochastic Part of Speech Tagging – Transformation-Based Tagging - CFG for English - Context Free Rule - Sentence-Level Constructions - Noun Phrase - Coordination-Agreement - Verb Phrase and Sub categorization -Auxiliaries – Parsing - Top Down Parsing - Bottom Up Parsing - Earley Algorithm. UNIT – III 0
UNIT – I 9 Words and Morphology: Introduction - Models and Algorithms – Words – Morphology - Morphological Parsing using Finite State Transducers - FST Lexicon and Rules - Porter Stemmer - Spelling Errors - Error Pattern - Non-Word Error - Probabilistic Models - Applying Bayesian Methods to Spelling - Word Segmentation - N-grams - Smoothing – Backoff. UNIT – II 7 Tagging and Grammer:Part of Speech Tagging - Tagsets for English - Rule Based Tagging - Stochastic Part of Speech Tagging – Transformation-Based Tagging - CFG for English - Context Free Rule - Sentence-Level Constructions - Noun Phrase - Coordination-Agreement - Verb Phrase and Sub categorization -Auxiliaries – Parsing - Top Down Parsing - Bottom Up Parsing - Earley Algorithm.
Words and Morphology: Introduction - Models and Algorithms – Words – Morphology - Morphological Parsing using Finite State Transducers - FST Lexicon and Rules - Porter Stemmer - Spelling Errors - Error Pattern - Non-Word Error - Probabilistic Models - Applying Bayesian Methods to Spelling - Word Segmentation - N-grams - Smoothing – Backoff. UNIT – II 9 Tagging and Grammer:Part of Speech Tagging - Tagsets for English - Rule Based Tagging - Stochastic Part of Speech Tagging – Transformation-Based Tagging - CFG for English - Context Free Rule - Sentence-Level Constructions - Noun Phrase - Coordination-Agreement - Verb Phrase and Sub categorization -Auxiliaries – Parsing - Top Down Parsing - Bottom Up Parsing - Earley Algorithm.
Parsing using Finite State Transducers - FST Lexicon and Rules - Porter Stemmer - Spelling Errors - Error Pattern - Non-Word Error - Probabilistic Models - Applying Bayesian Methods to Spelling - Word Segmentation - N-grams - Smoothing – Backoff. UNIT – II 9 Tagging and Grammer:Part of Speech Tagging - Tagsets for English - Rule Based Tagging - Stochastic Part of Speech Tagging – Transformation-Based Tagging - CFG for English - Context Free Rule - Sentence-Level Constructions - Noun Phrase - Coordination-Agreement - Verb Phrase and Sub categorization -Auxiliaries – Parsing - Top Down Parsing - Bottom Up Parsing - Earley Algorithm.
Pattern - Non-Word Error - Probabilistic Models - Applying Bayesian Methods to Spelling - Word Segmentation - N-grams - Smoothing – Backoff. UNIT - II 9 Tagging and Grammer:Part of Speech Tagging - Tagsets for English - Rule Based Tagging - Stochastic Part of Speech Tagging – Transformation-Based Tagging - CFG for English - Context Free Rule - Sentence-Level Constructions - Noun Phrase - Coordination-Agreement - Verb Phrase and Sub categorization -Auxiliaries – Parsing - Top Down Parsing - Bottom Up Parsing - Earley Algorithm.
Segmentation - N-grams - Smoothing – Backoff. 9 UNIT – II 9 Tagging and Grammer:Part of Speech Tagging - Tagsets for English - Rule Based Tagging - Stochastic Part of Speech Tagging – Transformation-Based Tagging - CFG for English - Context Free Rule - Sentence-Level Constructions - Noun Phrase - Coordination-Agreement - Verb Phrase and Sub categorization -Auxiliaries – Parsing - Top Down Parsing - Bottom Up Parsing - Earley Algorithm. UNIT – III 9
UNIT – II 9 Tagging and Grammer: Part of Speech Tagging - Tagsets for English - Rule Based Tagging - Stochastic Part of Speech Tagging – Transformation-Based Tagging - CFG for English - Context Free Rule - Sentence-Level Constructions - Noun Phrase - Coordination-Agreement - Verb Phrase and Sub categorization -Auxiliaries – Parsing - Top Down Parsing - Bottom Up Parsing - Earley Algorithm. UNIT – III 9
UNIT – II 9 Tagging and Grammer:Part of Speech Tagging - Tagsets for English - Rule Based Tagging - Stochastic Part of Speech Tagging – Transformation-Based Tagging - CFG for English - Context Free Rule - Sentence-Level Constructions - Noun Phrase - Coordination-Agreement - Verb Phrase and Sub categorization -Auxiliaries – Parsing - Top Down Parsing - Bottom Up Parsing - Earley Algorithm. UNIT – III 9
Tagging and Grammer:Part of Speech Tagging - Tagsets for English - Rule Based Tagging - Stochastic Part of Speech Tagging – Transformation-Based Tagging - CFG for English - Context Free Rule - Sentence-Level Constructions - Noun Phrase - Coordination-Agreement - Verb Phrase and Sub categorization -Auxiliaries – Parsing - Top Down Parsing - Bottom Up Parsing - Earley Algorithm. UNIT – III 0
of Speech Tagging – Transformation-Based Tagging - CFG for English - Context Free Rule - Sentence-Level Constructions - Noun Phrase - Coordination-Agreement - Verb Phrase and Sub categorization -Auxiliaries – Parsing - Top Down Parsing - Bottom Up Parsing - Earley Algorithm.
Constructions - Noun Phrase - Coordination-Agreement - Verb Phrase and Sub categorization -Auxiliaries – Parsing - Top Down Parsing - Bottom Up Parsing - Earley Algorithm.
Parsing - Top Down Parsing - Bottom Up Parsing - Earley Algorithm.
Features and Unification: Features and Unification – Structures - Unification of Structure - Features and
Structures in Grammar – Implementing Unification - Parsing with Unification Constraints - Probabilistic
CFG - Probabilistic Lexicalize CFG – Dependency Grammar.
Somentics: Sementic Analysis Syntax Driven Sementic Analysis Attachments for a Fragment of English
Integrating Semantic analysis - Syntax Driven Semantic Analysis - Attachments for a Hagment of English -
Integrating Semantic analysis into Larley Farser Word Sense Disantorguation and information Retreval.
UNIT – V 9
Advanced Topics: Computational Phonology - Speech Synthesis - Speech Recognition - HMM and Speech
Recognition – Discourse - Dialogue and Conversation - Deen Learning and Natural Language Processing
Total: 45
REFERENCES:
1 Daniel Jurafsky and James H. Martin "Speech and Language Processing" Pearson Education 2000
T. TERATIVE JULATSNY ATAL JATUGS TE IVIALUTE ODGGUT ATALIAUSUASG FLOVGSSTUSE FGALSON FUNCATION 2009. – I
2. Christopher Manning and Hinrich Schuetze "Foundations of Statistical Natural Language Processing"
 Damer surarsky and sames II. Martin, "specen and Language Processing", Pearson Education, 2009. Christopher Manning and Hinrich Schuetze," Foundations of Statistical Natural Language Processing", MIT Press, 2000.
 Daniel surarsky and sames II. Martin, "speech and Language Processing", rearson Education, 2009. Christopher Manning and Hinrich Schuetze," Foundations of Statistical Natural Language Processing", MIT Press, 2000. Xuedong Huang , Alex Acero, and Hsiao - Wuen Hon, "Spoken Language Processing: A Guide to

COUI	RSE OUTC	BT N	BT Mapped					
On co	On completion of the course, the students will be able to						st Level)	
CO1:	analyze w	ord structure u	sing morpholog	gical analysis a	nd Finite State	Analyz	ing (K4)	
	Transduce	rs						
CO2:	apply Pro	babilistic app	oaches for Sp	elling and use	e N-grams for	Applying (K3)		
	Language	Modelling	-	-	-			
CO3:	analyze Se	entences using l	Parsing with CF	G and Probabili	istic Parsing	Analyz	ing (K4)	
CO4:	CO4: apply Semantic in word sense disambiguation and Information					Applying (K3)		
	Retrieval							
CO5:	CO5: discuss Speech recognition and Text to Speech conversion using			Understanding (K2)				
	Computation Phonology and HMM							
	Mapping of COs with POs							
CC	Ds/POs	PO1	PO2	PO3	PO4	PO5	PO6	
(CO1	3	3	2	3			
(CO2	3	3	2	3			
(CO3	3	3	2	3			
(CO4	3	3	3	3			
(CO5	3	3	3	3			
1 - Sli	I – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy							

		18MSE15 INTELLIGENT SYSTEM DESIGN							
			L	Т	Р	Credit			
			3	0	0	3			
Pream	ıble	This course deals with designing intelligent systems using various	s techr	niques	like se	earch and			
	heuristics, making use of logic in knowledge representation and reasoning, and employing								
	machine learning techniques with data sets. The role of fuzzy and neural systems in building								
		intelligent systems will also be discussed.							
Prereq	luisites	Artificial Intelligence				<u></u>			
UNIT	' – I					9			
Proble	em Solvi	ng and Searching: Evolution of Modern Computational Intellig	ence -	Probl	em So	olving by			
Search	n - Inforr	ned (Heuristic) Search - Iterative Search - Adversarial Search.							
UNIT	' – II					9			
Logic	and Kno	wledge Base Systems: Knowledge Representation and Reasoning -	Rule-	Based	Exper	t Systems			
- Mana	aging Un	certainty in Rule Based Expert Systems.							
	' – III					9			
Fuzzy	and Net	Iral Systems: Fuzzy Expert Systems – Artificial Neural Networks -	- Adva	nced A	Artifici	al Neural			
Netwo	orks.								

UNIT	'-IV				-	9			
Learn	ling from	n Data: Machine Learning – Decision Trees Evolutionary	Algori	thms	- Evo	olutionary			
Metan	leuristics	IS.							
	T 7								
	- V	4. Westerney Constant Intention of Constants				9			
B10-11	ispirea I	itelligence: Swarm Intelligence - Hybrid Intelligent Systems.				Tatal. 15			
DEEE	DENCE	ç.				10tal: 45			
$\frac{\mathbf{KEFE}}{1}$	Crino Gro	5: con and Aiith Abraham "Intelligent Systems A Modern Annroad	h" Sn	ringar	Vorl	ag Dorlin			
	Juidalbar	san and Ajtin Abraham, interrigent Systems – A Modern Approact α 2011	n , sp	inger	- ven	ag bernn			
1 2 E	Pohert I	Schalkoff "Intalligant Systems Dringinles Daradiams and Drag	matics	" Ion	ລເ ງກ(1 Bartlatt			
	Publisher	2011	matics	, 501	us and	Dartiett			
3. F	Padhy N.I	P., "Artificial Intelligence and Intelligent Systems", Oxford University	ty Pres	s, 200	5.				

COUH	RSE OUTC	BT N	BT Mapped					
On coi	On completion of the course, the students will be able to						est Level)	
CO1:	apply sear	Apply	ving (K3)					
CO2:	make use	of logic in knov	vledge represen	tation and reaso	ning	Apply	ving (K3)	
CO3:	explain th	ne role of fuzz	y and neural	systems in bu	ilding intelligent	Understa	anding (K2)	
	systems							
CO4:	CO4: outline the machine learning techniques using datasets Understanding (K2)							
CO5: employ bio-inspired algorithms and build hybrid intelligence systems						Applying (K3)		
Mapping of COs with POs								
CC	Os/POs	PO1	PO2	PO3	PO4	PO5	PO6	
C01		3	1	2				
(CO2	3	1	2				
(CO3	3	2	3				
(CO4	3	2	3	2			
(CO5	2	2	3				
1 - Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy							

	18MSE16 MOBILE AND PERVASIVE COMPUTIN	١G			
		L	Т	Р	Credit
		3	0	0	3
Preamble	This course provides an understanding of wireless and mobile com	munica	ation co	oncept	s through
	various layers of mobile networking. It also helps to realize the p	pervasi	ive and	l conte	ext aware
	computing architectures, systems and applications.				
Prerequisites	Network design and Technologies				
UNIT – I	te Winder Frankrausse 4. Letter bestimt a second second	: W	<u>1</u>	Turn	<u> </u>
Introduction	Control Wireless MAC protocols. Comparison of 2C, 2C, 4C loop	10n-w	ireless	I ran	smission-
Medium Acces	s Control- wireless MAC protocols –Comparison of 2G, 3G,4G look	ang an	iead SC	j syste	ems.
UNIT – II					9
Mobile Comm	unication: GSM - Bluetooth - Mobile network laver-Mobile tra	nsport	laver	- Fil	le system
support for mol	pility support - Mobile execution environments and applications.	nspore	lujei	1 11	ie system
UNIT – III					9
Pervasive Co	mmunication: Pervasive computing principles - Characteristic	s of	pervas	ive c	omputing
environments -	Applications and case study - Pervasive Web Application architect	cture -	Perva	sive c	omputing
and web based	applications - Voice enabling pervasive computing- PDA in pervasiv	ve com	puting	- User	interface
issues in pervas	sive computing.				
UNIT – IV			0		9
Context Awa	re Computing: Structure and Elements of Context-aware Pe	ervasıv	e Sys	tems:	Abstract
dovice users	Infrastructures - Minduleware and toolkits, Context-aware mobile s	ervice	s: Coll		vices and
Context aware	artifacts	awale	moon	e serv	vices and
Context aware					
UNIT – V					9
Context-Awar	e Pervasive System: Context-aware sensor networks – A framewor	k for	Contex	t awar	re sensors
- Context-awa	re security systems – Constructing Context-aware pervasive system	n- Fut	ure of	Conte	ent aware
systems.					
					Total: 45
REFERENCE	S:				
1. Schiller Jo	ochen, "Mobile Communication", 2 nd Edition, PHI/Pearson Education	n, 200	9.		
2. Burkhardt	Jochen, Henn Horst and Hepper Stefan, Schaec Thomas and	Rindto	rff Kla	us, "	Pervasive
Computin	g Technology and Architecture of Mobile Internet Applications",	, Addi	son W	esley	Reading,
2007.			-		
3. Seng Lok	e, "Context-Aware Pervasive Systems: Architectures for a New	Breed	of Ap	plicat	tions", 1 st
Edition, A	uerbach Publications, 2006.				

COURSE OUTCOMES:							BT Mapped		
On co	On completion of the course, the students will be able to						est Level)		
CO1:	describe th	ne operation and	l performance o	of wireless proto	ocols	Understa	unding (K2)		
CO2:	summariz	e the concepts a	nd principles of	f various mobile	e communication	Understa	unding (K2)		
	technologi	ies							
CO3:	demonstra	te the working	of protocols that	at support mobil	lity	Understa	unding (K2)		
CO4:	CO4: illustrate architecture of pervasive computing and identify the						Applying (K3)		
	applicability of pervasive computing								
CO5: explain the concepts of context aware computing and pervasive system						Understanding (K2)			
Mapping of COs with POs									
CC	Os/POs	PO1	PO2	PO3	PO4	PO5	PO6		
(CO1	2	2						
(CO2	2	2						
(CO3	2	2						
(CO4	2	2	1					
(CO5	2	2	1					
1 - Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy								