KONGU ENGINEERING COLLEGE PERUNDURAI ERODE – 638 060 (Autonomous)

VISION

To be a centre of excellence for development and dissemination of knowledge in Applied Sciences, Technology, Engineering and Management for the Nation and beyond.

MISSION

We are committed to value based Education, Research and Consultancy in Engineering and Management and to bring out technically competent, ethically strong and quality professionals to keep our Nation ahead in the competitive knowledge intensive world.

QUALITY POLICY

We are committed to

- Provide value based quality education for the development of students as competent and responsible citizens.
- Contribute to the nation and beyond through research and development
- Continuously improve our services

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

VISION

To be a centre of excellence for development and dissemination of knowledge in Electronics and Communication Engineering for the Nation and beyond

MISSION

Department of Electronics and Communication Engineering is committed to:

- MS1: To impart industry and research based quality education for developing value based electronics and communication engineers
- MS2: To enrich the academic activities by continual improvement in the teaching learning process
- MS3: To infuse confidence in the minds of students to develop as entrepreneurs
- MS4: To develop expertise for consultancy activities by providing thrust for Industry Institute Interaction
- MS5: To endeavour for constant upgradation of technical expertise for producing competent professionals to cater to the needs of the society and to meet the global challenges

2018 REGULATIONS

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

Graduates of M.E -Communication Systems will

- PEO1: Design, analyze and Develop communication systems with strong fundamentals and advanced concepts acquired during the programme
- PEO2: Attain successful professional carriers, exhibit leadership to meet challenges in industry and academia with continuous updates of technical and managerial skills.
- PEO3: Embark on a lifelong learning to professional development and pursue research for academic and entrepreneurial pursuits.

MAPPING OF MISSION STATEMENTS (MS) WITH PEOS

MS\PEO	PEO1	PEO2	PEO3		
MS1	3	3	2		
MS2	2	3	3		
MS3	2	1	3		
MS4	3	3	3		
MS5	2	3	3		

1 – Slight, 2 – Moderate, 3 – Substantial

PROGRAM OUTCOMES (POs)

M.E (Communication Systems) Graduates will be able to:

- PO1 Independently carry out research/investigation and development work to solve practical problems.
- **PO2** Write and present a substantial technical report /document.
- **PO3** Demonstrate a degree of maturity and mastery in the science of RF systems design, antenna system and microwave integrated circuits with respect to their applications
- **PO4** Integrate the learning experience accrued to provide system solutions in the domains of wireless systems and their applications.
- **PO5** Bring together their programme outcome expertise to create innovative products/systems to solve real world problems in communication systems domain.
- **PO6** Apply appropriate managerial and technical skills in the domain of communication systems incorporating safety and sustainability to become a successful professional /entrepreneur through lifelong learning.

PEO\PO	PO1	PO2	PO3	PO4	PO5	PO6
PEO1	3	3	3	2	3	1
PEO2	3	2	3	2	3	3
PEO3	2	1	3	3	2	3

MAPPING OF PEOs WITH POS AND PSOs

1 -Slight, 2 -Moderate, 3 -Substantial

CURRICULUM BREAKDOWN STRUCTURE UNDER REGULATION 2018

Curriculum Breakdown Structure(CBS)	Curriculum Content (% of total number of credits of the program)	Total number of contact hours	Total number of credits						
Program Core(PC)	41.67	450	30						
Program Electives(PE)	25	270	18						
Humanities and Social Sciences and Management Studies(HSMS)	5.56	60	4						
Project(s)/Internships(PR)/Others	27.7	300	20						
	Total								

KEC R2018: SCHEDULING OF COURSES – ME (Communication Systems)

Semes ter			Theory/	Theory cum Prac	ctical / Practical			Internship & Projects	Online/ VACs	Special Courses	Credi
	1	2	3	4	5	6	7	8	10	11	ts
I	Applied Mathematics for Electronic Engineers HSMS-1 (3-1-0-4)	Optical Networks PC-1 (3-0-0-3)	Wireless Communication Networks PC-2 (3-0-2-4)	Antenna System Design PC-3 (3-0-2-4)	Digital Communication Techniques PC-4 (3-0-2-4)	Statistical Signal Processing PC-5 (3-1-0-4)					23
11	Information Theory & Coding PC-6 (3-0-0-3)	Digital Communic ation Receivers PC-7 (3-0-2-4)	Wireless Sensor Networks PC-8 (3-1-0-4)	Professional Elective I PE-1 (3-0-0-3)	Professional Elective II PE-2 (3-0-0-3)	Professional Elective III PE-3 (3-0-0-3)		Mini Project PR-1 (0-0-4-2)			22
111	Professional Elective I PE-4 (3-0-0-3)	Professiona I Elective II PE-5 (3-0-0-3)	Professional Elective III PE-6 (3-0-0-3)					Project work Phase – I PR-2 (0-0-12-6)		Audit Course (2-0-0-0)	15
IV								Project work Phase – II PR-2 (0-0-24-12)			12

Total Credits: 72

KONGU ENGINEERING COLLEGE, PERUNDURAI, ERODE - 638 060 (Autonomous)

M.E. DEGREE IN COMMUNICATION SYSTEMS

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

SEMESTER – I	
--------------	--

Course	Course Title		lours Weel		Credit	N	/laxim Mark		CBS
Code	Course Thie	L	Т	Р	creat	CA	ESE	Total	CDS
	Theory/Theory with Practical								
18AMT13	Applied Mathematics for Electronics Engineers	3	1	0	4	50	50	100	PC
18COT11	Optical Networks	3	0	0	3	50	50	100	PC
18COC11	Wireless Communication Networks	3	0	2	4	50	50	100	PC
18COC12	Antenna System Design	3	0	2	4	50	50	100	PC
18COC13	Digital Communication Techniques	3	0	2	4	50	50	100	PC
18COT12	Statistical Signal Processing	3	1	0	4	50	50	100	PC
	Total				23				

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

KONGU ENGINEERING COLLEGE, PERUNDURAI, ERODE – 638 060 (Autonomous)

M.E. DEGREE IN COMMUNICATION SYSTEMS

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

SEMESTER – II

Course	Course Title		lours Weel		Credit	Ν	/laxim Mark		CBS
Code	Course The	L	Т	Р	creat	CA	ESE	Total	CDS
	Theory/Theory with Practical								
18MWE02	Information Theory and Coding	3	0	0	3	50	50	100	PC
18COC21	Digital Communication Receivers	3	0	2	4	50	50	100	PC
18COT21	Wireless Sensor Networks	3	1	0	4	50	50	100	PC
	Elective - I	3	0	0	3	50	50	100	PE
	Elective - II	3	0	0	3	50	50	100	PE
	Elective - III	3	0	0	3	50	50	100	PE
	Practical								
18COP21	Mini Project	0	0	4	2	100	0	100	PR
	Total	÷	•	•	22				

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

KONGU ENGINEERING COLLEGE, PERUNDURAI, ERODE – 638 060 (Autonomous)

M.E. DEGREE IN COMMUNICATION SYSTEMS

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

Course	Course Title	Hours / Week			Credit	N	CBS		
Code	Course Thie	L	Т	Р	Cicuit	CA	ESE	Total	CDS
	Theory/Theory with Practical								
	Elective - IV	3	0	0	3	50	50	100	PE
	Elective - V	3	0	0	3	50	50	100	PE
	Elective - VI	3	0	0	3	50	50	100	PE
	Practical								
18COP31	Project Work Phase I	0	0	12	6	50	50	100	PR
	Total	I	1	1	15				

SEMESTER – III

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

KONGU ENGINEERING COLLEGE, PERUNDURAI, ERODE – 638 060 (Autonomous)

M.E. DEGREE IN COMMUNICATION SYSTEMS

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

SEMESTER – IV

Course Code	Course Title	Hours / Week			Credit	N	laxim Mark		CBS
	course rue		Т	Р	create	CA	ESE	Total	
	Practical								
18COP41	Project Work Phase II	0	0	24	12	50	50	100	PR
	Total		•	•	12				

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

Total Credits: 72

	LIST OF PROFESSIONAL ELECTIVI	ES				
Course		Но	urs/W	eek	a 1 4	CDC
Code	Course Title	L	Т	Р	Credit	CBS
	SEMESTER II	1				
18MWE03	Multimedia Compression Techniques	3	0	0	3	PE
18MWC22	Network Security Essentials	3	0	2	4	PE
18COE01	CDMA Engineering	3	0	0	3	PE
18COE02	Statistical Detection Theory	3	0	0	3	PE
18COE03	TCP/IP Networks	3	0	0	3	PE
18COE04	Electromagnetic Interference and Compatibility	3	0	0	3	PE
18COE05	Satellite Communication Systems	3	0	0	3	PE
18COE06	Mobile Ad-Hoc Networks	3	0	0	3	PE
18COE07	Multicarrier Communications	3	0	0	3	PE
18COE08	Spread Spectrum Communication	3	0	0	3	PE
18COE09	DSP Processor Architecture and Programming	2	0	2	3	PE
	SEMESTER III					
18VLE12	Nature Inspired Optimization Techniques	3	0	0	3	PE
18COE10	Statistical Estimation Theory	3	0	0	3	PE
18COE11	Microwave Integrated Circuits	3	0	0	3	PE
18COE12	RF System Design	3	0	0	3	PE
18COE13	Digital Image Processing and Multi Resolution Analysis	3	0	0	3	PE
18COE14	Industrial Data Communication	3	0	0	3	PE
18COE15	Wireless Systems and Standards	3	0	0	3	PE
18COE16	Satellite Navigational System	3	0	0	3	PE
18COE17	Speech and Audio Signal Processing	2	0	2	3	PE

()	Common to VLSI Design, Communication Systems and Embedded Systems	Dianci	les)		
	L	Т	Р	Cree	lit
	3	1	0	4	
Preamble	This course will demonstrate various analytical skills in applied mathematical tools such as linear programming, graph and queuing the problem solving and logical thinking applicable in electronics engineering	eory wit			
Prerequisites	Vectors and Probability				
UNIT – I					9
-	: Definition – Subspaces – Linear dependence and independence – Basis space and Null Space – Rank and nullity.	and di	mensi	on – F	Rov
UNIT – II					9
method – Simp North west con	amming: Mathematical Formulation of LPP – Basic definitions – Solutioner Method – Transportation Model – Mathematical Formulation - Initial Former rule – Vogel's approximation method – Optimum solution by MODI ematical Formulation – Hungarian algorithm.	Basic Fe	easible	Solut	ion
UNIT – III	1				ļ
	rogramming: Formulation of non-linear programming problem – Constra	ameu oi	Junnz		viu
	aints – Constrained optimization with inequality constraints – Graphical problem involving only two variables.	-	-	non–lir	nea
	aints - Constrained optimization with inequality constraints - Graphical	-	-	non—lir	nea
programming p UNIT – IV Graph Theory graphs – Euleri graphs – App	aints – Constrained optimization with inequality constraints – Graphical problem involving only two variables. y: Introduction of graphs – Isomorphism – Subgraphs – Walks, paths an an Graphs – Hamiltonian Paths and circuits – Digraph – Adjacency matrix lications: Shortest path algorithms – Dijkstra's algorithm – Warshall's rees – Spanning trees – Applications of trees: Minimal spanning trees	d circul and inci s algori	d of 1 its – 0 idence thm -	Connec e matrii – Tree	cteo x o s -
programming p UNIT – IV Graph Theory graphs – Euleri graphs – App Properties of t Kruskal's algor UNIT – V Queuing Theo	aints – Constrained optimization with inequality constraints – Graphical problem involving only two variables. y: Introduction of graphs – Isomorphism – Subgraphs – Walks, paths an an Graphs – Hamiltonian Paths and circuits – Digraph – Adjacency matrix lications: Shortest path algorithms – Dijkstra's algorithm – Warshall's rees – Spanning trees – Applications of trees: Minimal spanning trees	d circui and inci s algori – Prim	d of 1 its – 0 idence thm - 1's Al	Connec e matri: - Tree gorithr	cteo x o s - m -
programming p UNIT – IV Graph Theory graphs – Euleri graphs – App Properties of t Kruskal's algor UNIT – V Queuing Theo	aints – Constrained optimization with inequality constraints – Graphical problem involving only two variables. y: Introduction of graphs – Isomorphism – Subgraphs – Walks, paths an an Graphs – Hamiltonian Paths and circuits – Digraph – Adjacency matrix lications: Shortest path algorithms – Dijkstra's algorithm – Warshall's rees – Spanning trees – Applications of trees: Minimal spanning trees rithm.	d circui and inci and inci a algori – Prim	d of 1 its – 0 idence thm - i's Al	Connece e matri: - Tree gorithr Markov	cteo x o s - m - vian
programming p UNIT – IV Graph Theory graphs – Euleri graphs – App Properties of t Kruskal's algor UNIT – V Queuing Theo Queues – Polla REFERENCI	aints – Constrained optimization with inequality constraints – Graphical problem involving only two variables. y: Introduction of graphs – Isomorphism – Subgraphs – Walks, paths and an Graphs – Hamiltonian Paths and circuits – Digraph – Adjacency matrix lications: Shortest path algorithms – Dijkstra's algorithm – Warshall's rees – Spanning trees – Applications of trees: Minimal spanning trees rithm. pry: Markovian queues – Single and Multi-server Models – Little's form czek Khintchine Formula. Lecture:45, ' ES:	d circui and inci s algori – Prim nula – N Tutoria	d of 1 its – 0 idence thm - i's Al	Connece e matri: - Tree gorithr Markov	cteo x o s - m - vian
programming p UNIT – IV Graph Theory graphs – Euleri graphs – App Properties of t Kruskal's algor UNIT – V Queuing Theory Queues – Polla REFERENCI 1. Howard 4	aints – Constrained optimization with inequality constraints – Graphical problem involving only two variables. y: Introduction of graphs – Isomorphism – Subgraphs – Walks, paths and an Graphs – Hamiltonian Paths and circuits – Digraph – Adjacency matrix lications: Shortest path algorithms – Dijkstra's algorithm – Warshall's rees – Spanning trees – Applications of trees: Minimal spanning trees rithm. Dry: Markovian queues – Single and Multi-server Models – Little's form czek Khintchine Formula. Lecture:45, 7 ES: Anton, "Elementary Linear Algebra", 10 th Edition, John Wiley & Sons, 2010	d circui and inci and inci algori – Prim nula – N Futoria	d of 1 its – 0 idence thm - i's Al	Connece e matri: - Tree gorithr Markov	cte x c s m via
programming p UNIT – IV Graph Theory graphs – Euleri graphs – App Properties of t Kruskal's algor UNIT – V Queuing Theo Queues – Polla REFERENCI 1. Howard A 2. Kanti Sw	aints – Constrained optimization with inequality constraints – Graphical problem involving only two variables. y: Introduction of graphs – Isomorphism – Subgraphs – Walks, paths and an Graphs – Hamiltonian Paths and circuits – Digraph – Adjacency matrix lications: Shortest path algorithms – Dijkstra's algorithm – Warshall's rees – Spanning trees – Applications of trees: Minimal spanning trees rithm. pry: Markovian queues – Single and Multi-server Models – Little's form czek Khintchine Formula. Lecture:45, ' ES:	d circui and inci s algori – Prim nula – N Futoria 0.	d of 1 its – 0 idence thm - 1's Al Non- 1 hl:15,	Connece e matri: - Tree gorithr Markov	cte x c s n via

COU	RSE OUTC	COMES:					B	Г Mapped	
On con	mpletion of	the course, the	students will be	e able to			(Hig	ghest Level)	
CO1:	demonstra	te accurate and	efficient use of	advanced algel	braic techniques	8	Under	rstanding (K2)	
CO2:	formulate engineerir	and solve linear	r programming	problems that a	ppear in electro	onics	Evaluating (K5)		
CO3:	use non-li	near programmi	ng concepts in	real life situation	ons		Applying (K3)		
CO4:	Apj	Applying (K3)							
CO5: analyze the characteristics of various queuing models Ar									
			Mappir	ng of COs with	POs				
CC	Os/POs	PO1	PO2	PO3	PO4	P	05	PO6	
(CO1	3							
(CO2	3					2	2	
(CO3	3					3		
(CO4	3		2	2		2		
(CO5	3							
1 - Sli	ght, 2 – Mo	oderate, 3 – Su	ıbstantial, BT -	- Bloom's Taxo	onomy	·			

	18COT11 OPTICAL NETWORKS				
		T	P	Credi	t
D 11		0	0	3	1
Preamble	To provide the essential knowledge about optical information process covers the basics and advanced topics for an in depth knowledge in this	0	-		KS
		teenne	Jiogy.		
Prerequisites	Optical Communication				
UNIT – I					9
	em Components: Optical System Components - Couplers - Isola				
-	Filters: Bragg Gratings - Fabry perot - Mach Zehnder Interferometer -	- Optic	cal An	nplifiers	3 -
Transmitters -	Detectors - Switches - Wavelength converters				
UNIT – II					9
	ign and Management & Control and Management: Network Desi	on and	1 Mar	nagemei	-
	System Engineering - System Model - Power Penalty - Transmitter	0		0	
	Crosstalk - Dispersion - Fiber Non-linearity - Wavelength Stabil				
	Network Management Functions - Configuration Management - Pe				
management -	Optical safety.				ш
U					111
UNIT – III					9
UNIT – III Optical Netw	ork Architecture and Survivability: Introduction to Optical Networ				9
UNIT – III Optical Netw Layered Arch	ork Architecture and Survivability: Introduction to Optical Networ itecture - Broadcast and Select Networks - IP, MAC Protocols and	Test	beds.	Netwo	9 [- rk
UNIT – III Optical Netw Layered Arch Survivability -	Fork Architecture and Survivability: Introduction to Optical Networ itecture - Broadcast and Select Networks - IP, MAC Protocols and - Protection in SONET / SDH and IP Networks - Optical Layer Protect	Test	beds.	Netwo	9 [- rk
UNIT – III Optical Netw Layered Arch	Fork Architecture and Survivability: Introduction to Optical Networ itecture - Broadcast and Select Networks - IP, MAC Protocols and - Protection in SONET / SDH and IP Networks - Optical Layer Protect	Test	beds.	Netwo	9 [- rk
UNIT – III Optical Netw Layered Arch Survivability -	Fork Architecture and Survivability: Introduction to Optical Networ itecture - Broadcast and Select Networks - IP, MAC Protocols and - Protection in SONET / SDH and IP Networks - Optical Layer Protect	Test	beds.	Netwo	9 [- rk
UNIT – III Optical Netw Layered Arch Survivability between layers UNIT – IV	Fork Architecture and Survivability: Introduction to Optical Networ itecture - Broadcast and Select Networks - IP, MAC Protocols and - Protection in SONET / SDH and IP Networks - Optical Layer Protect	Test tion - 1	beds. Interne	Netwo etworkin	9 [- rk ng 9
UNIT – III Optical Netw Layered Arch Survivability - between layers UNIT – IV Wavelength I	Pork Architecture and Survivability: Introduction to Optical Networ itecture - Broadcast and Select Networks - IP, MAC Protocols and - Protection in SONET / SDH and IP Networks - Optical Layer Protect s.	Test tion - 1	beds. Interne	Netwo etworkin	9 [- rk ng 9
UNIT – III Optical Netw Layered Arch Survivability - between layers UNIT – IV Wavelength I - Dimensionin	Fork Architecture and Survivability: Introduction to Optical Networ itecture - Broadcast and Select Networks - IP, MAC Protocols and - Protection in SONET / SDH and IP Networks - Optical Layer Protect s. Routing: WDM Network Elements: WDM Network Design - Cost trade-	Test tion - 1	beds. Interne	Netwo etworkin	9 [- rk ng 9 /A
UNIT – III Optical Netw Layered Arch Survivability - between layers UNIT – IV Wavelength I - Dimensionin UNIT – V	Tork Architecture and Survivability: Introduction to Optical Networ itecture - Broadcast and Select Networks - IP, MAC Protocols and - Protection in SONET / SDH and IP Networks - Optical Layer Protect s. Routing: WDM Network Elements: WDM Network Design - Cost trade- g Wavelength - Routing Network - Statistical Dimensioning Models.	Test tion - 1	beds. Interne	Netwo etworkin and RW	9 [- rk ng 9 /A 9
UNIT – III Optical Netw Layered Arch Survivability - between layers UNIT – IV Wavelength I - Dimensionin UNIT – V Packet Switcl	Fork Architecture and Survivability: Introduction to Optical Network itecture - Broadcast and Select Networks - IP, MAC Protocols and - Protection in SONET / SDH and IP Networks - Optical Layer Protects. Routing: WDM Network Elements: WDM Network Design - Cost trade-g Wavelength - Routing Network - Statistical Dimensioning Models. hing: Photonic Packet Switching - OTDM – Synchronization - Header Protect	Test tion - 1	beds. Interne	Netwo etworkin and RW	9 [- rk ng 9 /A 9
UNIT – III Optical Netw Layered Arch Survivability - between layers UNIT – IV Wavelength I - Dimensionin UNIT – V Packet Switcl	Tork Architecture and Survivability: Introduction to Optical Networ itecture - Broadcast and Select Networks - IP, MAC Protocols and - Protection in SONET / SDH and IP Networks - Optical Layer Protect s. Routing: WDM Network Elements: WDM Network Design - Cost trade- g Wavelength - Routing Network - Statistical Dimensioning Models.	Test tion - 1	beds. Interne LTD a ing –	Netwo etworkin and RW Bufferin	9 rk ng 9 /A 9
UNIT – III Optical Netw Layered Arch Survivability - between layers UNIT – IV Wavelength I - Dimensionin UNIT – V Packet Switch - Burst Switch	Fork Architecture and Survivability: Introduction to Optical Network itecture - Broadcast and Select Networks - IP, MAC Protocols and - Protection in SONET / SDH and IP Networks - Optical Layer Protects. Routing: WDM Network Elements: WDM Network Design - Cost trade-g Wavelength - Routing Network - Statistical Dimensioning Models. hing: Photonic Packet Switching - OTDM – Synchronization - Header Pring - Access Networks.	Test tion - 1	beds. Interne LTD a ing –	Netwo etworkin and RW	9 rk ng 9 /A 9 ng
UNIT – III Optical Netw Layered Arch Survivability - between layers UNIT – IV Wavelength H - Dimensionin UNIT – V Packet Switcl - Burst Switch REFERENCI	Fork Architecture and Survivability: Introduction to Optical Network itecture - Broadcast and Select Networks - IP, MAC Protocols and - Protection in SONET / SDH and IP Networks - Optical Layer Protects. Routing: WDM Network Elements: WDM Network Design - Cost trade-g Wavelength - Routing Network - Statistical Dimensioning Models. hing: Photonic Packet Switching - OTDM – Synchronization - Header P ing - Access Networks.	Test tion - 1	beds. Interne LTD a	Netwo etworkin and RW Bufferin Total: 4	9 rk ng 9 YA 9 ng 45
UNIT – III Optical Netw Layered Arch Survivability - between layers UNIT – IV Wavelength I - Dimensionin UNIT – V Packet Switch - Burst Switch REFERENCI 1. Rajiv Ra	Fork Architecture and Survivability: Introduction to Optical Network itecture - Broadcast and Select Networks - IP, MAC Protocols and - Protection in SONET / SDH and IP Networks - Optical Layer Protects. Routing: WDM Network Elements: WDM Network Design - Cost trade-g Wavelength - Routing Network - Statistical Dimensioning Models. hing: Photonic Packet Switching - OTDM – Synchronization - Header Fing - Access Networks. ES: maswami and Kumar N. Sivarajan, "Optical Networks: A Practical Pers	Test tion - 1	beds. Interne LTD a	Netwo etworkin and RW Bufferin Total: 4	9 rk ng 9 A 9 ng
UNIT – III Optical Netw Layered Arch Survivability - between layers UNIT – IV Wavelength H - Dimensionin UNIT – V Packet Switch - Burst Switch REFERENCI 1. Rajiv Ra Harcourt	Protecture and Survivability: Introduction to Optical Network itecture - Broadcast and Select Networks - IP, MAC Protocols and - Protection in SONET / SDH and IP Networks - Optical Layer Protects. Routing: WDM Network Elements: WDM Network Design - Cost trade-g Wavelength - Routing Network - Statistical Dimensioning Models. Image: Image: Photonic Packet Switching - OTDM – Synchronization - Header Fing - Access Networks. ES: Image: Network Silvarajan, "Optical Networks: A Practical Personal Action Access Networks.	Test tion - 1 offs - Process spectiv	beds. Interne LTD a ing – e", 2 ⁿ	Netwo etworking and RW Buffering Total: 4 d Editic	9 rk ng 9 /A 9 ng 45
UNIT – IIIOptical NetwLayered ArchSurvivability -between layersUNIT – IVWavelength H- DimensioninUNIT – VPacket SwitchBurst SwitchREFERENCI1.Rajiv Ra Harcourt2.Siva Rat	Fork Architecture and Survivability: Introduction to Optical Networ itecture - Broadcast and Select Networks - IP, MAC Protocols and - Protection in SONET / SDH and IP Networks - Optical Layer Protects. Routing: WDM Network Elements: WDM Network Design - Cost trade- g Wavelength - Routing Network - Statistical Dimensioning Models. hing: Photonic Packet Switching - OTDM – Synchronization - Header F ing - Access Networks. ES: maswami and Kumar N. Sivarajan, "Optical Networks: A Practical Pers Asia Pvt. Ltd., 2006. ma Moorthy C., and Mohan Gurusamy, "WDM Optical Networks:	Test tion - 1 offs - Process spectiv	beds. Interne LTD a ing – e", 2 ⁿ	Netwo etworking and RW Buffering Total: 4 d Editic	9 rk ng 9 /A 9 ng 45
UNIT – III Optical Netw Layered Arch Survivability - between layers UNIT – IV Wavelength I - Dimensionin UNIT – V Packet Switch - Burst Switch REFERENCI 1. Rajiv Ra Harcourt 2. Siva Ran Algorithi	Protecture and Survivability: Introduction to Optical Network itecture - Broadcast and Select Networks - IP, MAC Protocols and - Protection in SONET / SDH and IP Networks - Optical Layer Protects. Routing: WDM Network Elements: WDM Network Design - Cost trade-g Wavelength - Routing Network - Statistical Dimensioning Models. Image: Image: Photonic Packet Switching - OTDM – Synchronization - Header Fing - Access Networks. ES: Image: Network Silvarajan, "Optical Networks: A Practical Personal Action Access Networks.	Test tion - 1 offs - Process spectiv	beds. Interne LTD a ing – e", 2 ⁿ	Netwo etworking and RW Buffering Total: 4 d Editic	9 rk ng 9 YA 9 ng 45

	RSE OUTC	OMES: the course, the s	tudents will be	able to				' Mapped hest Level)	
CO1:	analyze dif	ferent Optical c	omponents con	stituting a com	nunication Syst	tem	Ana	lyzing (K4)	
CO2:	apply the n	etwork manage	ment concepts of	of an optical net	twork		Applying(K3)		
CO3:	demonstrat	te knowledge in	modern optical	systems and th	eir implementa	tion	App	olying (K3)	
CO4:	design WD	M networks bas	sed on network	requirements			Cre	ating (K6)	
CO5:	analyze Ph	otonic Packet S	witching systen	ns			Ana	lyzing (K4)	
			Mappin	ng of COs with	POs				
C	Os/POs	PO1	PO2	PO3	PO4	PO	D5	PO6	
	CO1	3	1						
	CO2	1				,	3		
	CO3	3					1		
	CO4	3					1		
	CO5	3							
1 – Sl	ight, 2 – Mo	oderate, 3 – Su	bstantial, BT –	Bloom's Taxo	nomy		<i>i</i>		

	18COC11 WIRELESS COMMUNICATION NETWORKS			
		T	Р	Credit
	3	0	2	4
Preamble	To introduce students to 802.11 based wireless networks. This course wireless networks in the MAC layer, PHY layer and Mobility management unit is dedicated for 802.11 a/b/g/ac simulation and analysis using NS-3.	. Furthe		
Prerequisites	Cellular and Mobile Communication, Wireless Networks			
UNIT – I				9
	rks Overview: Frequency band - Nomenclature and design – Architecture	- Mobi	lity su	pport and
non-standard d	levices.			
UNIT – II	1			9
$\frac{1}{802} \frac{11}{11} \frac{11}{11} \frac{11}{11}$	Fundamentals: CSMA/CA - MAC access modes (PCF and DCF) - Hid	den terr	ninal	problem -
	ntation - Encapsulation of higher-layer protocols within 802.11 - Contenti			
UNIT – III				9
	Fundamentals: Physical-Layer Architecture, 802.11 FH PHY, HR-DS	SSS: PI	LCP a	nd PMD.
	and PMD.802.11 b/g flavors. Simulation of 802.11 b/g radios.			
UNIT – IV				9
		• 1	1	. 1
	bility - Roaming and Mobile IP - Simulation of mobility model:	indoo	r and	outdoor.
Mobility: Mo Demonstration		indoo	r and	outdoor.
		indoo	r and	outdoor.
Demonstration UNIT – V QoS for 802.	n of Mobile IP. 11 Wireless LAN: QoS Challenges in wireless environment - QoS N			9
Demonstration UNIT – V QoS for 802.	n of Mobile IP.			9
Demonstration UNIT – V QoS for 802. Deployment P	n of Mobile IP. 11 Wireless LAN: QoS Challenges in wireless environment - QoS N lanning - WLAN Design Considerations.			9
Demonstration UNIT – V QoS for 802. Deployment P List of Exerci	n of Mobile IP. 11 Wireless LAN: QoS Challenges in wireless environment - QoS M lanning - WLAN Design Considerations. ses / Experiments:			9
Demonstration UNIT – V QoS for 802. Deployment P List of Exerci 1. Routin	n of Mobile IP. 11 Wireless LAN: QoS Challenges in wireless environment - QoS N lanning - WLAN Design Considerations. ses / Experiments: g Protocol Implementation in Multi-hop Networks			9
Demonstration UNIT – V QoS for 802. Deployment P List of Exerci 1. Routin 2. Conges	n of Mobile IP. 11 Wireless LAN: QoS Challenges in wireless environment - QoS M lanning - WLAN Design Considerations. ses / Experiments: g Protocol Implementation in Multi-hop Networks stion Control Algorithm in Multi-hop Networks			9
Demonstration UNIT – V QoS for 802. Deployment P List of Exerci 1. Routin 2. Conges 3. Mobili	n of Mobile IP. 11 Wireless LAN: QoS Challenges in wireless environment - QoS N lanning - WLAN Design Considerations. ses / Experiments: g Protocol Implementation in Multi-hop Networks stion Control Algorithm in Multi-hop Networks ty Analysis in V2V Networks			9
Demonstration UNIT – V QoS for 802. Deployment P List of Exerci 1. Routin 2. Conges 3. Mobili 4. Traffic	n of Mobile IP. 11 Wireless LAN: QoS Challenges in wireless environment - QoS M lanning - WLAN Design Considerations. ses / Experiments: g Protocol Implementation in Multi-hop Networks stion Control Algorithm in Multi-hop Networks ty Analysis in V2V Networks model analysis in Multi-hop Wireless Network			9
Demonstration UNIT – V QoS for 802. Deployment P List of Exerci 1. Routin 2. Conges 3. Mobili 4. Traffic	n of Mobile IP. 11 Wireless LAN: QoS Challenges in wireless environment - QoS N lanning - WLAN Design Considerations. ses / Experiments: g Protocol Implementation in Multi-hop Networks stion Control Algorithm in Multi-hop Networks ty Analysis in V2V Networks model analysis in Multi-hop Wireless Network tion of 802.11 wireless networks	ſechani	sm O	9 verview -
Demonstration UNIT – V QoS for 802. Deployment P List of Exerci 1. Routin 2. Conges 3. Mobili 4. Traffic 5. Simula	n of Mobile IP. 11 Wireless LAN: QoS Challenges in wireless environment - QoS M lanning - WLAN Design Considerations. ses / Experiments: g Protocol Implementation in Multi-hop Networks stion Control Algorithm in Multi-hop Networks ty Analysis in V2V Networks model analysis in Multi-hop Wireless Network tion of 802.11 wireless networks Lecture:45, J	ſechani	sm O	9 verview -
Demonstration UNIT – V QoS for 802. Deployment P List of Exerci 1. Routin 2. Conges 3. Mobili 4. Traffic 5. Simula REFERENCI 1. Matthew	n of Mobile IP. 11 Wireless LAN: QoS Challenges in wireless environment - QoS M lanning - WLAN Design Considerations. ses / Experiments: g Protocol Implementation in Multi-hop Networks stion Control Algorithm in Multi-hop Networks ty Analysis in V2V Networks model analysis in Multi-hop Wireless Network tion of 802.11 wireless networks Lecture:45, J	1echani	sm O' al:30,	9 verview - Total: 75
Demonstration UNIT – V QoS for 802. Deployment P List of Exerci 1. Routin 2. Conges 3. Mobili 4. Traffic 5. Simula REFERENCI 1. Matthew ISBN: 0- 2. Pejman F ISBN: 97	n of Mobile IP. 11 Wireless LAN: QoS Challenges in wireless environment - QoS M lanning - WLAN Design Considerations. ses / Experiments: g Protocol Implementation in Multi-hop Networks stion Control Algorithm in Multi-hop Networks ty Analysis in V2V Networks model analysis in Multi-hop Wireless Network tion of 802.11 wireless networks ES: Gast, "802.11 Wireless Networks: The Definitive Guide", O'Reill 596-00183-5. Roshan and Jonathan Leary, "802.11 Wireless LAN Fundamentals", Cisco 781587050770.	Aechani Practica y Press Press, I	sm O ³ al:30, s, Ap Decem	9 verview - Total: 75 ril 2002, ber 2003,
Demonstration UNIT – V QoS for 802. Deployment P List of Exerci 1. Routin 2. Conges 3. Mobili 4. Traffic 5. Simula REFERENCI 1. Matthew ISBN: 0- 2. Pejman F ISBN: 97 3. Vijay K. Series, 20	n of Mobile IP. 11 Wireless LAN: QoS Challenges in wireless environment - QoS M lanning - WLAN Design Considerations. ses / Experiments: g Protocol Implementation in Multi-hop Networks stion Control Algorithm in Multi-hop Networks ty Analysis in V2V Networks model analysis in Multi-hop Wireless Network tion of 802.11 wireless networks ES: Gast, "802.11 Wireless Networks: The Definitive Guide", O'Reill 596-00183-5. Roshan and Jonathan Leary, "802.11 Wireless LAN Fundamentals", Cisco 781587050770. Garg., "Wireless Communications and Networking", 1 st Edition, Elsev 2007, ISBN: 978-0-12-373580-5.	Iechani Practica y Pres Press, I rier-Mo	sm Ov al:30, s, Ap Decem rgan H	9 verview - Total: 75 ril 2002, ber 2003, Xaufmann
Demonstration UNIT – V QoS for 802. Deployment P List of Exerci 1. Routin 2. Conges 3. Mobili 4. Traffic 5. Simula REFERENCI 1. Matthew ISBN: 0- 2. Pejman F ISBN: 97 3. Vijay K. Series, 20 4. Theodore ISBN: 10	n of Mobile IP. 11 Wireless LAN: QoS Challenges in wireless environment - QoS M lanning - WLAN Design Considerations. ses / Experiments: g Protocol Implementation in Multi-hop Networks stion Control Algorithm in Multi-hop Networks ty Analysis in V2V Networks model analysis in Multi-hop Wireless Network tion of 802.11 wireless networks ES: Gast, "802.11 Wireless Networks: The Definitive Guide", O'Reill 596-00183-5. Roshan and Jonathan Leary, "802.11 Wireless LAN Fundamentals", Cisco 781587050770. Garg., "Wireless Communications and Networking", 1 st Edition, Elsev	Aechani Practica y Press, I vier-Moi nd Editi	sm O al:30, s, Ap Decem rgan H	9 verview - Total: 75 ril 2002, ber 2003, Kaufmann HI, 2010,

COUI	RSE OUT	COMES:					BT Mapped
On co	mpletion o	f the course, t	he students w	ill be able to			(Highest Level)
CO1:	examine	the functional	ities of 802.1	1based wirele	ess networks		Understanding (K2)
CO2:	analyze 8	802.11 MAC a	nd PHY laye	r functionaliti	es		Analyzing (K4)
CO3:	analyze p environm	performance of the termination of terminati	nodels	Analyzing (K4)			
CO4:	validate 1	outing protoc		Evaluating (K5)			
CO5:	validate o	congestion cor	ntrol algorithr	n performanc	e under wirele	ss environment	Evaluating (K5)
CO6:	analyse c	lifferent conge	estion control	approach			Analyzing(K4), Manipulation(S2),
CO7:	analyse t	he 802.11 netv	work				Analyzing(K4), Manipulation(S2),
CO8:	simulate	and analyse d	ifferent routir	ig mechanism	for wireless n	etwork	Analyzing(K4), Manipulation(S2)
			N	lapping of C	Os with POs		
CO	os/POs	PO1	PO2	PO3	PO4	PO5	PO6
(201				3		
(CO2	3	3				
(203	3	3				
(CO4					3	
(205					3	
(C O 6	3	2		2	3	2
(CO7	3	2		2	3	2
(CO8	3	2		2	3	2
1 - Sli	ght, 2 – M	oderate, 3 –	Substantial, 1	BT – Bloom's	s Taxonomy		

	18COC12 ANTENNA SYSTEM DESIGN				
		L	Т	Р	Credit
		3	0	2	4
Preamble	To understand the theory and fundamentals of antenna design and practical antenna design	to le	arn the	key a	aspects of
Prerequisites	Antennas and Wave Propagation				
UNIT – I					
	damentals: Antenna fundamental parameters - The Vector Potentia Vector Potential F for a Magnetic Current Source M - Half wave				
UNIT – II					I
	MAPERTURE: E-plane and H-plane horn antenna - Parabolic reflector	anten	na - Sl	ot ante	
UNIT – III					
Antenna Arr	ays and Microstrip antennas: N element - Linear and planar array	anten	nas - F	Rectar	ngular an
circular patch	antenna - Circularly polarized microstrip antenna array.				
UNIT – IV					
Antenna Mea	surements and Instrumentation: Gain - Impedance and antenna fac		easure	ment	
Antenna Mea	surements and Instrumentation: Gain - Impedance and antenna facing - Concept of EMC measuring antenna - Antenna radiation hazards.		ieasure	ment	
Antenna Mea test range Des			easure	ment	- Antenn
Antenna Mea test range Des UNIT – V	ign - Concept of EMC measuring antenna - Antenna radiation hazards.	•			- Antenn
Antenna Mea test range Des UNIT – V Special Anter		•			- Antenn
Antenna Mea test range Des UNIT – V Special Anter	ign - Concept of EMC measuring antenna - Antenna radiation hazards. nas and Advanced Antennas: Multiband antennas - Phased array	•			- Antenn
Antenna Mea test range Des UNIT – V Special Anter Smart antenna	ign - Concept of EMC measuring antenna - Antenna radiation hazards. nas and Advanced Antennas: Multiband antennas - Phased array	•			- Antenn
Antenna Mea test range Des UNIT – V Special Anter Smart antenna List of Exerci	ign - Concept of EMC measuring antenna - Antenna radiation hazards. mas and Advanced Antennas: Multiband antennas - Phased array s - Fractal antenna.	•			- Antenn
Antenna Mea test range Des UNIT – V Special Anter Smart antenna List of Exerci 1. Desigr	ign - Concept of EMC measuring antenna - Antenna radiation hazards. mas and Advanced Antennas: Multiband antennas - Phased array s - Fractal antenna. ses / Experiments :	•			- Antenn
Antenna Mea test range Des UNIT – V Special Anter Smart antenna List of Exerci 1. Desigr 2. Desigr	ign - Concept of EMC measuring antenna - Antenna radiation hazards. mas and Advanced Antennas: Multiband antennas - Phased array s - Fractal antenna. ses / Experiments : of half wave dipole	•			- Antenn
Antenna Mea test range Des UNIT – V Special Anter Smart antenna List of Exerci 1. Desigr 2. Desigr 3. Desigr	ign - Concept of EMC measuring antenna - Antenna radiation hazards. mas and Advanced Antennas: Multiband antennas - Phased array s - Fractal antenna. ses / Experiments : of half wave dipole of horn antenna	•			- Antenn
Antenna Mea test range Des UNIT – V Special Anten Smart antenna List of Exerct 1. Design 2. Design 3. Design 4. Design	ign - Concept of EMC measuring antenna - Antenna radiation hazards. mas and Advanced Antennas: Multiband antennas - Phased array s - Fractal antenna. ses / Experiments : of half wave dipole of horn antenna of slot antenna of patch antenna	anten			- Antenn
Antenna Mea test range Des UNIT – V Special Anter Smart antenna List of Exerci 1. Desigr 2. Desigr 3. Desigr 4. Desigr 5. Transr	ign - Concept of EMC measuring antenna - Antenna radiation hazards. mas and Advanced Antennas: Multiband antennas - Phased array s - Fractal antenna. ses / Experiments : of half wave dipole of horn antenna of slot antenna of patch antenna hission line parameters and antenna Measurement using Network Anal	anten			- Antenn
Antenna Mea test range Des UNIT – V Special Anten Smart antenna List of Exerci 1. Design 2. Design 3. Design 4. Design 5. Transn 6. Design	ign - Concept of EMC measuring antenna - Antenna radiation hazards. mas and Advanced Antennas: Multiband antennas - Phased array s - Fractal antenna. ses / Experiments : of half wave dipole of horn antenna of slot antenna of slot antenna nission line parameters and antenna Measurement using Network Anal and simulation of dual band antennas	anten			- Antenn
Antenna Mea test range Des UNIT – V Special Anten Smart antenna List of Exerci 1. Design 2. Design 3. Design 4. Design 5. Transn 6. Design	ign - Concept of EMC measuring antenna - Antenna radiation hazards. mas and Advanced Antennas: Multiband antennas - Phased array s - Fractal antenna. ses / Experiments : of half wave dipole of horn antenna of slot antenna of slot antenna nission line parameters and antenna Measurement using Network Anal and simulation of dual band antennas and simulation of multiband antennas	anten	na - M		- Antenna
Antenna Mea test range Des UNIT – V Special Anten Smart antenna List of Exerct 1. Desigr 2. Desigr 3. Desigr 4. Desigr 5. Transr 6. Desigr 7. Desigr	ign - Concept of EMC measuring antenna - Antenna radiation hazards. mas and Advanced Antennas: Multiband antennas - Phased array s - Fractal antenna. ses / Experiments : of half wave dipole of horn antenna of slot antenna of slot antenna nission line parameters and antenna Measurement using Network Anal and simulation of dual band antennas and simulation of multiband antennas Lecture:	anten	na - M		- Antenna
Antenna Mea test range Des UNIT – V Special Anter Smart antenna List of Exerci 1. Desigr 2. Desigr 3. Desigr 4. Desigr 5. Transr 6. Desigr 7. Desigr	ign - Concept of EMC measuring antenna - Antenna radiation hazards. mas and Advanced Antennas: Multiband antennas - Phased array s - Fractal antenna. ses / Experiments : of half wave dipole of horn antenna of slot antenna of slot antenna nission line parameters and antenna Measurement using Network Anal and simulation of dual band antennas and simulation of multiband antennas ES:	anten	na - M		- Antenna
Antenna Mea test range Des UNIT – V Special Anten Smart antenna List of Exerce 1. Desigr 2. Desigr 3. Desigr 4. Desigr 5. Transm 6. Desigr 7. Desigr 8. EFERENC 1. Constant	ign - Concept of EMC measuring antenna - Antenna radiation hazards. mas and Advanced Antennas: Multiband antennas - Phased array s - Fractal antenna. ses / Experiments : of half wave dipole of horn antenna of slot antenna of slot antenna nission line parameters and antenna Measurement using Network Anal and simulation of dual band antennas and simulation of multiband antennas Lecture:	anten lyzer : 45, P	na - M	[obile	- Antenna antenna Total: 7
Antenna Mea test range Des UNIT – V Special Anten Smart antenna List of Exerct 1. Design 2. Design 3. Design 4. Design 5. Transn 6. Design 7. Design REFERENC 1. Constant 2. John D.	ign - Concept of EMC measuring antenna - Antenna radiation hazards. mas and Advanced Antennas: Multiband antennas - Phased array s - Fractal antenna. ses / Experiments : of half wave dipole of horn antenna of slot antenna of slot antenna nission line parameters and antenna Measurement using Network Anal and simulation of dual band antennas and simulation of multiband antennas Experiments: Lecture: ES: ine A. Balanis, "Antenna Theory", 4 th Edition, Wiley-Inderscience, 20	anten ayzer :45, P 16. AcGra	na - M ractica	[obile al:30,	- Antenna antenna Total: 7
Antenna Mea test range Des UNIT – V Special Anten Smart antenna List of Exerci 1. Design 2. Design 3. Design 4. Design 5. Transn 6. Design 7. Design 7. Design REFERENCI 1. Constant 2. John D. 1 3. Warren I	ign - Concept of EMC measuring antenna - Antenna radiation hazards. mas and Advanced Antennas: Multiband antennas - Phased array s - Fractal antenna. ses / Experiments : of half wave dipole of horn antenna of slot antenna of patch antenna nission line parameters and antenna Measurement using Network Anal and simulation of dual band antennas and simulation of multiband antennas ES: ine A. Balanis, "Antenna Theory", 4 th Edition, Wiley-Inderscience, 20 Kraus and Ronald J. Marhefka, "Antenna for All Applications", Tata M	anten ayzer :45, P 16. AcGra	na - M ractica	[obile al:30,	- Antenna antenna Total: 7

COUI	RSE OUT	COMES:					BT	Mapped	
On co	mpletion of	of the course, the	students will be	able to			(Hig	hest Level)	
CO1:	apply the	e concept of vecto	or potential to de	erive the radiate	d field from ante	nna	App	lying (K3)	
CO2:	analyze t		Anal	yzing (K4)					
CO3:	deisgn arrays of linear and microstrip antenna							Creating (K6)	
CO4:	measure the antenna parameters and analyze for radiation hazards							uating (K5)	
CO5:	design th	e multiband ante	nnas and smart	antennas for we	earable devices		Crea	ating (K6)	
CO6:	design li	near antennas and	d analyze the rad	diation pattern			Anal	yzing (K4),	
							Prec	cision (S3)	
CO7:	design a	nd analyze the rad	diation character	ristics of apertur	e antennas			yzing (K4),	
							Prec	cision (S3)	
CO8:	analyze t	he radiation char	acteristics of m	ultiband patch a	ntennas			uating(K5),	
							Pree	cision(S3)	
			Mappi	ing of COs with	POs				
CO	s/POs	PO1	PO2	PO3	PO4	PO5		PO6	
(201	3	2	2	2				
(CO2		3	3					
(CO3	3	2	3					
(CO4			3	3			2	
(CO5			3	3				
(CO6	3	1	3	2			2	
C	CO7	3	2	2	2			2	
(CO8	2	2		2			2	
1 – Sli	ght, 2 – M	Ioderate, 3 – Su	ıbstantial, BT –	Bloom's Taxor	iomy				

	18COC13 DIGITAL COMMUNICATION TECHNIQUES	The second secon	~	
		T	<u>P</u>	Credi
D 11		0	2	4
Preamble	To provide the essential knowledge in the digital modulation technic	1		
D · · ·	viterbi coding and turbo coding for efficient transmission and better im	pleme	ntatio	n
Prerequisites	Communication Engineering			
UNIT – I	l Non Cohamant Communications Cohamant masimum Octioner and		in M	
	d Non Coherent Communication: Coherent receivers - Optimum rec nd Demodulation - Non coherent receivers in random phase channels			
	Rician channels - Partially coherent receivers - DPSK - M PSK - BER Per			
Kayleigii allu I	Richan channels - I athany concretent receivers - DI SK - WI I SK - BER I E	11011116	IIICE A	111a1 y 515.
UNIT – II				
	d Modulation: Coded modulation for bandwidth constrained chan	nels -	Trel	lis code
	Set Partitioning Four state Trellis coded modulation with 8 PSK signal con			
UNIT – III				
OFDM Mod	ulation: Generation of sub carriers using the IFFT Guard time and	1 Cycl	lic Ex	tension
Windowing.	Ũ	2		
	ng: Introduction - Turbo Encoder - Turbo Decoder - Iterative Turbo	Deco	ding	Principl
Turbo Codin	ng: Introduction - Turbo Encoder - Turbo Decoder - Iterative Turbo Of The MAP Algorithm - The Soft Output Viterbi Algorithm (SOVA).	Deco	ding	Principl
Turbo Codin Modifications		Deco	ding	Principl
Turbo Codin Modifications UNIT – V	Of The MAP Algorithm - The Soft Output Viterbi Algorithm (SOVA).		_	Principl
Turbo Codin Modifications UNIT – V			_	Principl
Turbo Codin Modifications UNIT – V Time Coding	Of The MAP Algorithm - The Soft Output Viterbi Algorithm (SOVA). Maximum ratio combining - Space time Block Codes - Space time Trel		_	Principl
Turbo Codin Modifications UNIT – V Time Coding List of Exerci	Of The MAP Algorithm - The Soft Output Viterbi Algorithm (SOVA). : Maximum ratio combining - Space time Block Codes - Space time Trel ises / Experiments :	lis coc	les.	
Turbo Codin Modifications UNIT – V Time Coding List of Exerci 1. Baseba	Of The MAP Algorithm - The Soft Output Viterbi Algorithm (SOVA). : Maximum ratio combining - Space time Block Codes - Space time Trelineses / Experiments : and communication using raised cosine spectrum pulse – roll off rate –	lis coc	les.	
Turbo Codin Modifications UNIT – V Time Coding List of Exerci 1. Baseba pulse –	Of The MAP Algorithm - The Soft Output Viterbi Algorithm (SOVA). Maximum ratio combining - Space time Block Codes - Space time Trelinies / Experiments : and communication using raised cosine spectrum pulse – roll off rate – - behaviour of timing acquisition algorithm	lis coc charae	les. cterist	ics of R
Turbo Codin Modifications UNIT – V Time Coding List of Exerci 1. Baseba pulse – 2. To stu	Of The MAP Algorithm - The Soft Output Viterbi Algorithm (SOVA). : Maximum ratio combining - Space time Block Codes - Space time Trelinies / Experiments : and communication using raised cosine spectrum pulse – roll off rate – - behaviour of timing acquisition algorithm dy a robust timing acquisition algorithm for OFDM – Fractional freque	lis coc charae	les. cterist	ics of R
Turbo Codin Modifications UNIT – V Time Coding List of Exerci 1. Baseba pulse – 2. To stud integer	Of The MAP Algorithm - The Soft Output Viterbi Algorithm (SOVA). Maximum ratio combining - Space time Block Codes - Space time Treliness / Experiments : and communication using raised cosine spectrum pulse – roll off rate – - behaviour of timing acquisition algorithm dy a robust timing acquisition algorithm for OFDM – Fractional freque c part of frequency offset	lis coc charae	les. cterist	ics of R
Turbo Codin Modifications UNIT – V Time Coding List of Exerci 1. Baseba pulse – 2. To stud integer	Of The MAP Algorithm - The Soft Output Viterbi Algorithm (SOVA). Maximum ratio combining - Space time Block Codes - Space time Trelinies / Experiments : and communication using raised cosine spectrum pulse – roll off rate – behaviour of timing acquisition algorithm dy a robust timing acquisition algorithm for OFDM – Fractional freque c part of frequency offset nulate the QPSK transmitter and receiver – Phase and Frequency offset	llis coc charac ency o	les. cterist ffset -	ics of R - estima
Turbo Codin Modifications UNIT – V Time Coding List of Exerci 1. Baseba pulse – 2. To stu- integer 3. To sim	Of The MAP Algorithm - The Soft Output Viterbi Algorithm (SOVA). Maximum ratio combining - Space time Block Codes - Space time Trelling States / Experiments : and communication using raised cosine spectrum pulse – roll off rate – behaviour of timing acquisition algorithm dy a robust timing acquisition algorithm for OFDM – Fractional freque part of frequency offset mulate the QPSK transmitter and receiver – Phase and Frequency offset Lecture:45, Phase 2010	llis coc charac ency o	les. cterist ffset -	ics of R - estima
Turbo Codin Modifications UNIT – V Time Coding List of Exerci 1. Baseba pulse – 2. To stu- integer 3. To sim	Of The MAP Algorithm - The Soft Output Viterbi Algorithm (SOVA). : Maximum ratio combining - Space time Block Codes - Space time Trell ises / Experiments : and communication using raised cosine spectrum pulse – roll off rate – - behaviour of timing acquisition algorithm dy a robust timing acquisition algorithm for OFDM – Fractional freque r part of frequency offset mulate the QPSK transmitter and receiver – Phase and Frequency offset Lecture:45, Ph ES/ MANUALS/ SOFTWARES:	llis coc charac ency o	les. cterist ffset -	ics of R - estima
Turbo Codin Modifications UNIT – V Time Coding List of Exerci 1. Baseba pulse – 2. To studinteger 3. To sim REFERENCI 1. Bernard	Of The MAP Algorithm - The Soft Output Viterbi Algorithm (SOVA). Maximum ratio combining - Space time Block Codes - Space time Trell ises / Experiments : and communication using raised cosine spectrum pulse – roll off rate – - behaviour of timing acquisition algorithm dy a robust timing acquisition algorithm for OFDM – Fractional freque - part of frequency offset nulate the QPSK transmitter and receiver – Phase and Frequency offset Lecture:45, Pr ES/ MANUALS/ SOFTWARES: Sklar, "Digital Communications", 2 nd Edition, Pearson Education, 2001.	lis coc charac ency o ractic	les. cterist ffset - al:30,	ics of R - estima
Turbo Codin Modifications UNIT – V Time Coding List of Exerci 1. Baseba pulse – 2. To stu- integer 3. To sim REFERENCI 1. Bernard 2 2. John G. I	Of The MAP Algorithm - The Soft Output Viterbi Algorithm (SOVA). Maximum ratio combining - Space time Block Codes - Space time Trelling is / Experiments : and communication using raised cosine spectrum pulse – roll off rate – - behaviour of timing acquisition algorithm dy a robust timing acquisition algorithm for OFDM – Fractional freque - part of frequency offset - ulate the QPSK transmitter and receiver – Phase and Frequency offset - Lecture:45, Pr ES/ MANUALS/ SOFTWARES: Sklar, "Digital Communications", 2 nd Edition, Pearson Education, 2001. Proakis, "Digital Communication", 4 th Edition, Mc Graw Hill Publication	lis coc charac ency o ractic	les. cterist ffset - al:30,	ics of R - estima Total: '
Turbo Codin Modifications UNIT – V Time Coding List of Exerci 1. Baseba pulse – 2. To stur integer 3. To sim REFERENCI 1. Bernard 2. John G. I 3. Richard	Of The MAP Algorithm - The Soft Output Viterbi Algorithm (SOVA). Maximum ratio combining - Space time Block Codes - Space time Trelises / Experiments : and communication using raised cosine spectrum pulse – roll off rate – behaviour of timing acquisition algorithm dy a robust timing acquisition algorithm for OFDM – Fractional freque part of frequency offset nulate the QPSK transmitter and receiver – Phase and Frequency offset Lecture:45, Pr ES/ MANUALS/ SOFTWARES: Sklar, "Digital Communications", 2 nd Edition, Pearson Education, 2001. Proakis, "Digital Communication", 4 th Edition, Mc Graw Hill Publication. Van Nee and Ramjee Prasad, "OFDM for Multimedia Communicat	lis coc charac ency o ractic	les. cterist ffset - al:30,	ics of R - estima Total: '
Turbo Codin Modifications UNIT – V Time Coding List of Exerci 1. Baseba pulse – 2. To stur integer 3. To sim REFERENCI 1. Bernard 1 2. John G. I 3. Richard Publicati	Of The MAP Algorithm - The Soft Output Viterbi Algorithm (SOVA). Maximum ratio combining - Space time Block Codes - Space time Trelling is / Experiments : and communication using raised cosine spectrum pulse – roll off rate – - behaviour of timing acquisition algorithm dy a robust timing acquisition algorithm for OFDM – Fractional freque - part of frequency offset - ulate the QPSK transmitter and receiver – Phase and Frequency offset - Lecture:45, Pr ES/ MANUALS/ SOFTWARES: Sklar, "Digital Communications", 2 nd Edition, Pearson Education, 2001. Proakis, "Digital Communication", 4 th Edition, Mc Graw Hill Publication	lis coc charac ency o ractica , 2001 tions",	les. cterist ffset - al:30, Arteo	ics of R - estima Total: '

1		FCOMES:	the stadents		-			BT Mapped
CO1:	<i>*</i>	of the course, fferent comm				tion		(Highest Level)
				-				Understanding (K2)
CO2:	compre	hend the Trell	J	Understanding (K2)				
CO3:	demons	trate knowled		Applying (K3)				
CO4:	implem	ent Turbo and	Viterbi enco	der technique	es			Applying (K3)
CO5:	analyze	block codes i	n communica	tion systems				Analyzing (K4)
CO6:	evaluate	e the temporal	behaviour of	baseband sig	gnals through	simulation		Evaluating (K5),
								Precision (S3)
CO7:	analyse	the performan	nce of OFDM	against frequ	uency offset			Analyzing (K4),
								Precision (S3)
CO8:	introdu	ce phase and	d frequency	offset in (QPSK and a	analyse the Bl	ER	Analyzing(K4),
	perform	ance						Precision(S3)
			Ν	Iapping of C	Os with POs			
CO	s/POs	PO1	PO2	PO3	PO4	PO5		PO6
C	201	2			2	3		
C	202	2			3			
C	203	3			3	1		
C	CO4	3				3		
C	205	3		3		3		
C	CO6		2	3		3		
C	207		2	3	3	3		
C	208		3	3	2	3		
1 - Sli	ght, $\overline{2-1}$	Moderate, 3	– Substantial	, BT – Bloor	n's Taxonomy	У		

	18COT12 STATISTICAL SIGNAL PROCESSING	T	n	Crad	:4
		<u>T</u>	P 0	Credi 4	It
Draamhla				-	
Preamble	To appraise the advanced topics in digital signal processing such a	as wien	er mite	ers, pow	ver
Prerequisites	spectrum estimation, signal modeling and adaptive filtering. Digital Signal Processing				
UNIT – I	Digital Signal Processing				9
	dom Signal Processing: Discrete time random process - Random proc	ress: En	semble	e averao	
	ocess - Stationary process - The autocovariance and autocorrelation			0	
	ne power spectrum. Filtering random process - Spectral factorization				
Wiener Khintc					
UNIT – II					9
	ric Methods: Periodogram - Performance of periodogram - Modified				
	lch's Method. Parametric Methods: AR model - Yule-Walker Met	thod - I	Levins	on-Durb	oin
Algorithms - M	MA Model - ARMA Model.				
UNIT – III		C14	NT		9
Wiener Filters	s: The FIR Wiener filter - Least mean squared error criterion - IIR Wie				al
Wiener Filters IIR Wiener filt	ter - The causal IIR Wiener filter. Adaptive Filter: Concepts of adaptive				al
Wiener Filters IIR Wiener filt	1				al
Wiener Filters IIR Wiener filt filters - LMS a	ter - The causal IIR Wiener filter. Adaptive Filter: Concepts of adaptive				al e
Wiener Filters IIR Wiener filt filters - LMS a UNIT – IV	ter - The causal IIR Wiener filter. Adaptive Filter: Concepts of adaptive algorithm - Adaptive recursive filters.	ve filter	- FIR	adaptive	al e 9
Wiener Filters IIR Wiener filt filters - LMS a UNIT – IV Linear Predic	ter - The causal IIR Wiener filter. Adaptive Filter: Concepts of adaptive algorithm - Adaptive recursive filters. ction and Optimum Linear Filters: Innovations Representation o	ve filter	- FIR tionary	adaptive 7 Rando	al e 9 om
Wiener Filters IIR Wiener filt filters - LMS a UNIT – IV Linear Predic Process - Forw	ter - The causal IIR Wiener filter. Adaptive Filter: Concepts of adaptive algorithm - Adaptive recursive filters. ction and Optimum Linear Filters: Innovations Representation of ward and Backward linear prediction - Solution of the Normal Equation	ve filter	- FIR tionary	adaptive 7 Rando	al e 9 om
Wiener Filters IIR Wiener filt filters - LMS a UNIT – IV Linear Predic Process - Forw	ter - The causal IIR Wiener filter. Adaptive Filter: Concepts of adaptive algorithm - Adaptive recursive filters. ction and Optimum Linear Filters: Innovations Representation o	ve filter	- FIR tionary	adaptive 7 Rando	al e 9 om
Wiener Filters IIR Wiener filt filters - LMS a UNIT – IV Linear Predic Process - Forw prediction - Er	ter - The causal IIR Wiener filter. Adaptive Filter: Concepts of adaptive algorithm - Adaptive recursive filters. ction and Optimum Linear Filters: Innovations Representation of ward and Backward linear prediction - Solution of the Normal Equation	ve filter	- FIR tionary	adaptive 7 Rando	al e 9 om ear
Wiener Filters IIR Wiener filt filters - LMS a UNIT – IV Linear Predic Process - Forw prediction - Err UNIT – V	ter - The causal IIR Wiener filter. Adaptive Filter: Concepts of adaptive algorithm - Adaptive recursive filters. ction and Optimum Linear Filters: Innovations Representation of vard and Backward linear prediction - Solution of the Normal Equation rror Filter - AR Lattice and ARMA Lattice - Ladder Filters.	ve filter of a Sta ons - Pro	- FIR tionary	adaptive 7 Rando 8 of line	al e 9 om ear 9
Wiener Filters IIR Wiener filt filters - LMS a UNIT – IV Linear Predic Process - Forw prediction - Err UNIT – V Multirate Dig	ter - The causal IIR Wiener filter. Adaptive Filter: Concepts of adaptive algorithm - Adaptive recursive filters. ction and Optimum Linear Filters: Innovations Representation of ward and Backward linear prediction - Solution of the Normal Equation rror Filter - AR Lattice and ARMA Lattice - Ladder Filters. gital Signal Processing: Introduction - Decimation by a Factor D - Inte	ve filter of a Sta ons - Pro erpolatic	- FIR tionary opertie n by a	adaptive 7 Rando s of line Factor	al e 9 om ear 9 I -
Wiener Filters IIR Wiener filt filters - LMS a UNIT – IV Linear Predic Process - Forw prediction - Err UNIT – V Multirate Dig Sampling Rate	ter - The causal IIR Wiener filter. Adaptive Filter: Concepts of adaptive algorithm - Adaptive recursive filters. ction and Optimum Linear Filters: Innovations Representation of ward and Backward linear prediction - Solution of the Normal Equation rror Filter - AR Lattice and ARMA Lattice - Ladder Filters. gital Signal Processing: Introduction - Decimation by a Factor D - Inte e Conversion by a Rational Factor I/D - Implementation for sampling	ve filter of a Sta ons - Pro erpolatic g rate Co	- FIR tionary opertie n by a onversi	Adaptive Rando s of line Factor ion - Po	al e 9 om ear 9 I - oly
Wiener Filters IIR Wiener filt filters - LMS a UNIT – IV Linear Predic Process - Forw prediction - Err UNIT – V Multirate Dig Sampling Rate phase filter s	ter - The causal IIR Wiener filter. Adaptive Filter: Concepts of adaptive algorithm - Adaptive recursive filters. ction and Optimum Linear Filters: Innovations Representation of ward and Backward linear prediction - Solution of the Normal Equation rror Filter - AR Lattice and ARMA Lattice - Ladder Filters. gital Signal Processing: Introduction - Decimation by a Factor D - Inte e Conversion by a Rational Factor I/D - Implementation for sampling structures - Multistage Implementation of Sampling Rate Conver	ve filter of a Sta ons - Pro erpolatic g rate Co	- FIR tionary opertie n by a onversi	Adaptive Rando s of line Factor ion - Po	al e 9 om ear 9 I -
Wiener Filters IIR Wiener filt filters - LMS a UNIT – IV Linear Predic Process - Forw prediction - Err UNIT – V Multirate Dig Sampling Rate phase filter s	ter - The causal IIR Wiener filter. Adaptive Filter: Concepts of adaptive algorithm - Adaptive recursive filters. ction and Optimum Linear Filters: Innovations Representation of ward and Backward linear prediction - Solution of the Normal Equation rror Filter - AR Lattice and ARMA Lattice - Ladder Filters. gital Signal Processing: Introduction - Decimation by a Factor D - Inte e Conversion by a Rational Factor I/D - Implementation for sampling structures - Multistage Implementation of Sampling Rate Conver Bandpass Signals - Applications of Multirate Signal Processing.	ve filter of a Sta ons - Pro erpolatic g rate Co rsion -	- FIR tionary opertie on by a onversi Samp	Adaptive Rando s of line Factor ion - Po ling Ra	al e 9 om ear 9 I - oly ate
Wiener Filters IIR Wiener filt filters - LMS a UNIT – IV Linear Predic Process - Forw prediction - Err UNIT – V Multirate Dig Sampling Rate phase filter s	ter - The causal IIR Wiener filter. Adaptive Filter: Concepts of adaptive algorithm - Adaptive recursive filters. ction and Optimum Linear Filters: Innovations Representation of ward and Backward linear prediction - Solution of the Normal Equation rror Filter - AR Lattice and ARMA Lattice - Ladder Filters. gital Signal Processing: Introduction - Decimation by a Factor D - Inte e Conversion by a Rational Factor I/D - Implementation for sampling structures - Multistage Implementation of Sampling Rate Conver Bandpass Signals - Applications of Multirate Signal Processing. Lecture:45,	ve filter of a Sta ons - Pro erpolatic g rate Co rsion -	- FIR tionary opertie on by a onversi Samp	Adaptive Rando s of line Factor ion - Po ling Ra	al e 9 om ear 9 I - oly ate
Wiener Filters IIR Wiener filt filters - LMS a UNIT – IV Linear Predic Process - Forw prediction - Err UNIT – V Multirate Dig Sampling Rate phase filter s Conversion of REFERENCE	ter - The causal IIR Wiener filter. Adaptive Filter: Concepts of adaptive algorithm - Adaptive recursive filters. ction and Optimum Linear Filters: Innovations Representation of ward and Backward linear prediction - Solution of the Normal Equation rror Filter - AR Lattice and ARMA Lattice - Ladder Filters. gital Signal Processing: Introduction - Decimation by a Factor D - Inte e Conversion by a Rational Factor I/D - Implementation for sampling structures - Multistage Implementation of Sampling Rate Conver Bandpass Signals - Applications of Multirate Signal Processing. Lecture:45, ES:	ve filter of a Sta ons - Pro erpolation g rate Co csion - Tutor	- FIR tionary opertie n by a onversi Samp al:15,	Adaptive Rando s of line Factor ion - Po ling Ra Total: (al e 9 0m ear I - oly ate 60
Wiener FiltersIIR Wiener filtfilters - LMS aUNIT – IVLinear PredicProcess - Forwprediction - ErrUNIT – VMultirate DigSampling Ratephase filter sConversion ofREFERENCE1.Hayes, M1996.	ter - The causal IIR Wiener filter. Adaptive Filter: Concepts of adaptive algorithm - Adaptive recursive filters. ction and Optimum Linear Filters: Innovations Representation of ward and Backward linear prediction - Solution of the Normal Equation rror Filter - AR Lattice and ARMA Lattice - Ladder Filters. gital Signal Processing: Introduction - Decimation by a Factor D - Inte e Conversion by a Rational Factor I/D - Implementation for sampling structures - Multistage Implementation of Sampling Rate Conver Bandpass Signals - Applications of Multirate Signal Processing. Lecture:45, ES: Monson H., "Statistical Digital Signal processing and Modeling", John	ve filter of a Sta ons - Pro erpolatic g rate Co csion - Tutor n Wiley	- FIR tionary opertie on by a onversi Samp al:15, and S	Adaptive A Rando s of line Factor ion - Po ling Ra Total: (Sons, Ind	al e 9 0m ear 9 I - oly ate 60
Wiener FiltersIIR Wiener filtfilters - LMS aUNIT – IVLinear PredicProcess - Forwprediction - ErrUNIT – VMultirate DigSampling Ratephase filter sConversion ofREFERENCE1.Hayes, M1996.	ter - The causal IIR Wiener filter. Adaptive Filter: Concepts of adaptive algorithm - Adaptive recursive filters. ction and Optimum Linear Filters: Innovations Representation of ward and Backward linear prediction - Solution of the Normal Equation rror Filter - AR Lattice and ARMA Lattice - Ladder Filters. gital Signal Processing: Introduction - Decimation by a Factor D - Inte e Conversion by a Rational Factor I/D - Implementation for sampling structures - Multistage Implementation of Sampling Rate Conver Bandpass Signals - Applications of Multirate Signal Processing. Lecture:45, ES:	ve filter of a Sta ons - Pro erpolatic g rate Co csion - Tutor n Wiley	- FIR tionary opertie on by a onversi Samp al:15, and S	Adaptive A Rando s of line Factor ion - Po ling Ra Total: (Sons, Ind	al e 9 0m ear 9 I - oly ate 60
Wiener FiltersIIR Wiener filtfilters - LMS aUNIT – IVLinear PredicProcess - Forwprediction - ErrUNIT – VMultirate DigSampling Ratephase filter sConversion ofREFERENCE1.Hayes, M1996.2.Proakis JApplication	ter - The causal IIR Wiener filter. Adaptive Filter: Concepts of adaptive algorithm - Adaptive recursive filters. ction and Optimum Linear Filters: Innovations Representation of ward and Backward linear prediction - Solution of the Normal Equation rror Filter - AR Lattice and ARMA Lattice - Ladder Filters. gital Signal Processing: Introduction - Decimation by a Factor D - Inte e Conversion by a Rational Factor I/D - Implementation for sampling structures - Multistage Implementation of Sampling Rate Conver Bandpass Signals - Applications of Multirate Signal Processing. Lecture:45, ES: Monson H., "Statistical Digital Signal processing and Modeling", John	ve filter of a Sta ons - Pro erpolatic g rate Co sion - Tutor n Wiley nciples	- FIR tionary opertie on by a onversi Samp al:15, and S Algor	Adaptive A Rando s of line Factor ion - Po ling Ra Total: Gons, Ind ithms a	al e 9 0m ear 1 - oly ate 60

COUI	RSE OUTC	COMES:					BT	' Mapped
On co	mpletion of	the course, the	students will be	e able to			(Hig	hest Level)
CO1:	infer the c	oncepts of discr	ete random sig	nal processing			Unders	standing (K2)
CO2:		nd analyze the	power spectrun	n using parame	etric and non -		Anal	lyzing (K4)
	parametrie	e approach						
CO3:	design FII	R and IIR wiene	r filter and com	prehend the dealers	sign procedure	of	App	lying (K3)
	adaptive I	LMS and RLS fi	lters					
CO4:	compute	the filter coeffic	ients for lattice	structure			Арр	lying (K3)
CO5:	interpret t	he concepts of	multirate signal	l processing			Unders	standing (K2)
			Маррії	ng of COs with	POs			
CC	Os/POs	PO1	PO2	PO3	PO4	Р	05	PO6
(201	3						
(CO2	3					2	
(CO3	3						
(CO4	3	2					
(CO5	3					2	
1 - Sli	ght, 2 – Mo	oderate, 3 – Su	bstantial, BT -	– Bloom's Taxo	onomy			

18MWE02 INFORMATION THEORY AND CODING

(Common to Information Technology (Information Cyber Warfare), Information Technology & Communication Systems branches)

		3	0	0	3
Preamble	Information Theory and Coding deals with concept of information	on and	its effi	cient,	error-free
	and secure delivery of information using binary data streams.	It also	o provi	des a	complete
	understanding of error-control coding techniques over noisy com	imunic	ation c	hannel	l .
Prerequisites	Communication Networks/Systems				
UNIT – I					9

 $\mathbf{UNIT} - \mathbf{I}$

Source Coding: Introduction to Information theory – Uncertainty and Information – Entropy and Average Mutual Information – Information Measure for Continuous Random Variables – Source coding theorem – Huffman Coding - Shannon-Fano-Elias Coding - Arithmetic Coding - Lempel - Ziv Algorithm - Run Length Encoding and the PCX Format – Rate Distortion Function

UNIT – II

Channel Capacity and Coding: Introduction - Channel Model - Channel Capacity - Channel Coding -Information Capacity Theorem - Error control coding: Introduction to Error Correction Codes - Basic Definitions - Matrix Description of Linear Block Codes - Equivalent Codes - Parity Check Matrix -Decoding of Linear Block Code - Syndrome Decoding - Error Probability after Coding - Perfect Codes -Hamming Codes - Low Density Parity Check (LDPC) Codes - Optimal Linear Codes - Maximum Distance Separable (MDS) Codes

UNIT – III

Cyclic Codes: Introduction to the Cyclic Codes - Polynomials - Division Algorithm for Polynomials - A Method for Generating Cyclic Codes - Matrix Description of Cyclic Codes - Burst Error Correction - Fire Codes - Golay Codes - Cyclic Redundancy Check (CRC) Codes - Circuit Implementation of Cyclic Codes

UNIT - IV

Bose-Chaudhuri Hocquenghem (BCH) Codes: Introduction to BCH Code - Primitive Elements - Minimal Polynomials - Generator Polynomials in Terms of Minimal Polynomials - Some Examples of BCH Codes -Decoding of BCH codes - Reed-Solomon Codes - Implementation of Reed -Solomon Encoders and Decoders - Performance of RS Codes Over Real Channels - Nested Codes

UNIT – V

Convolutional Codes: Introduction to Convolutional Codes - Tree Codes and Trellis Codes - Polynomial Description of Convolution Codes - Distance Notions for Convolutional Codes - The Generating Function -Matrix Description of Convolutional Codes - Viterbi Decoding and Convolutional Codes - Distance Bounds for Convolutional Codes - Turbo Codes

Total: 45

REFERENCES:

Andrew J. Viterbi, Jim K. Omura, "Principles of Digital Communication and Coding", 4th Edition, 2. Courier Corporation, 2018.

John G. Proakis, Masoud Salehi, "Digital Communications", 5th Edition, McGraw Hill, 2008. 3.

9

9

9

9

Т

L

P

Credit

COU	RSE	OUTCOMES:					B	Г Mapped	
On con	On completion of the course, the students will be able to						(Hig	ghest Level)	
CO1:	O1: outline the principles behind an efficient, correct and secure transmission of							standing (K2)	
	digi	ital data stream							
CO2:	reco	ognize the basics	of error-coding te	echniques			Ana	lyzing (K4)	
CO3:	con	struct the know	ledge about the	encoding and	decoding of digi	tal data	Ap	olying (K3)	
	stre	ams							
CO4:	exa	mine the perform	ance requirement	ts of various codi	ng techniques		Ana	lyzing (K4)	
CO5:	take	e part in to condu	ct research in info	ormation theory b	by the professiona	lls	Evaluating (K5)		
			Ma	pping of COs w	ith POs				
COs/F	POs	PO1	PO2	PO3	PO4	PO	5	PO6	
CO	1	3			3				
CO	2	3			3				
CO	3	3		2	2				
CO4 2 3									
CO	5	3				2			
1 - Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy								

18COC21 DIGITAL COMMUNICATION RECEIVERS

L	Т	Р	Credit
3	0	2	4

Lecture:45, Practical:30, Total: 75

Preamble	To design Digital communication receiver systems that is used for the transmission of
	information from source to destination. A detailed quantitative framework for digital receiver
	techniques is addressed.
Prerequisites	Analog and Digital Communication

UNIT – I

Digital Modulation Schemes: Representation of digitally modulated signals; Memory less modulation methods – PAM, Phase Modulation, QAM; Multidimensional signaling – orthogonal signaling, Hadamard signals; Signaling schemes with memory-Continuous Phase FSK, Continuous Phase Modulation – Minimum Shift Keying, Offset QPSK.

UNIT – II

Baseband Signal Processing – Synchronization: Carrier and signal synchronization: Carrier Phase estimation – PLL, Decision directed loops; Symbol Timing estimation – Maximum likelihood and Non-Decision directed timing estimation; Joint estimation.

UNIT – III

Baseband Signal Processing – Equalization: Adaptive Equalization: Zero forcing algorithm, LMS algorithm, adaptive decision-feedback equalizer and Equalization of Trellis-coded signals. Kalman algorithm, Blind equalizers and Stochastic gradient algorithm.

UNIT – IV

Optimum Receivers in AWGN: Optimum detection for AWGN channel – Correlation demodulator, matched filter, Maximum likelihood sequence detector, Optimum receiver for CPM signals, M-ary orthogonal signals, envelope detectors for M-ary and correlated binary signals.

UNIT – V

Optimum Receivers for Fading Channel: Optimum detection for fading channel – Characterization of fading multiple channels, statistical models, flat and frequency selective fading, diversity technique, The RAKE demodulator, Receiver structure for channel with ISI.

List of Exercises / Experiments :

- 1. Power spectrum of memory less modulation simulation
- 2. Power spectrum of signaling with memory simulation
- 3. Simulation of LMS, zero forcing equalizers
- 4. Simulation of decision feedback equalizers
- 5. BER analysis with optimum detectors in AWGN and fading channel
- 6. Simulation of Diversity techniques

REFERENCES / MANUALS / SOFTWARES:

1. John G. Proakis, "Digital Communication", 5th Edition, McGraw-Hill, New York, 2008.

- 2. Simon M.K., Hinedi S.M. and Lindsey Acirc W.C., "Digital Communication Techniques", Prentice Hall of India, 1998.
- 3. Simon Marvin, "Digital communication over fading channel: An unified approach to performance Analysis", 2nd Edition, John Wiley, New York, 2004.

9

9

9

9

9

COU	COURSE OUTCOMES:							
On con	mple	tion of the cou	urse, the studer	nts will be able	e to			(Highest Level)
CO1:	analyze the memory and memoryless digital modulation schemes							Analyzing (K4)
CO2:		luate the powe	er spectrum of	the memory a	and memoryles	ss digital modulat	tion	Applying (K3)
CO3:	esti	mate the timir	ng information	in the receive	ed signals for s	synchronisation		Remembering (K1)
CO4:					iques in the re			Analyzing (K4)
CO5:	-	plement the op	timum receive	rs in the prese	ence of AWGN	N and fading		Creating (K6)
CO6:	ana	lyze the powe	r requirement	in various dig	ital modulatio	n schemes		Analyzing (K4), Manipulation (S2)
CO7:		lyze the perfo		receiver with	various equa	lizer under noisy	and	Analyzing (K4), Manipulation (S2)
CO8:		lyze the BER	-	for digital n	nodulation scl	hemes under vari	ous	Analyzing (K4), Manipulation (S2)
				Mapping of	f COs with PO	Os		
COs/F	POs	PO1	PO2	PO3	PO4	PO5		PO6
CO	1	3			2			
CO	2		2		3			
CO	3	3						
CO	4				3			
CO	CO5 3							
CO	CO6 2 3							
CO	7				3			
COS	8					3		
1 - Sli	ght, ź	2 – Moderate,	3 – Substan	tial, BT - Blo	oom's Taxono	my		

18COT21 WIRELESS SENSOR NETWORKS

(Common to Communication Systems, Control and Instrumentation Engineering, Computer Science and Engineering & Information Technology branches)

		3	1	0	4
Preamble	This course will cover the most recent research topics in wireles	ss sens	or net	works a	and IPV6
	transition. Topics such as MAC layer and PHY layer	functi	onaliti	es, 6I	LoWPAN
	fundamentals, routing, mobility and other advanced topics are pr	recisely	cover	ed.	
Prerequisites	Wireless Networks				
UNIT – I					9

UNIT – I

IEEE 802.15.4 PHY Layer: WSN Introduction, WPAN, network topologies, superframe structure, data transfer model, frame structure, slotted CSMA, IEEE 802.15.4 PHY: frequency range, channel assignments, minimum LIFS and SIFS periods, O-QPSK PPDU format, modulation and spreading. Simulation of data transfer model using Cooja simulator.

UNIT – II

IEEE 802.15.4 MAC Layer: MAC functional description, MAC frame formats and MAC command frames, Simulation of WSN traffic model using Cooja simulator.

UNIT – III

6LoWPAN Fundamentals: 6LoWPAN-Introduction, protocol stack, addressing, L2 forwarding, L3 routing, Header Compression, Fragmentation and Reassembly, Commissioning, Neighbor Discovery. Analyzing of sensor data exchange using Wireshark.

UNIT - IV

6LoWPAN Mobility and Routing: Mobility: types, Mobile IPv6, Proxy MIPv6, NEMO, Routing: Overview, ROLL, border routing, RPL, MRPL, Edge Router Integration (Cooja simulation).

UNIT - V

IPv6 Transition and Application Protocols: IPv4 Interconnectivity: IPv6 transition, IPv6-in-IPv4 tunneling, application protocols: design issues, MQTT-S, ZigBee CAP.

Lecture:45, Tutorial:15, Total: 60

Т

L

Р

Credit

9

9

9

9

REFERENCES:

- "IEEE Standard for Local and metropolitan area networks, Part 15.4: Low-Rate Wireless Personal Area 1. Networks (LR-WPANs)", IEEE Computer Society, New York, 5 September 2011.
- Shelby and Zach, "6LoWPAN : The Wireless Embedded Internet", 1st Edition, John Wiley & Sons Inc., 2. Hoboken, New Jersey, 2009, ISBN 978-0-470-74799-5.
- Holger Karl and Andreas Willig, "Protocols and architectures for wireless sensor networks", John Wiley 3. & Sons Inc., Hoboken, New Jersey, 2005, ISBN 978-0-470-09510-2.

COURSE	COURSE OUTCOMES:								
On comple	On completion of the course, the students will be able to						(Highest Level)		
CO1: int	erpret the physica	l layer functiona	lities of IEEE 802	2.15.4 sensor dev	vices	Understanding (K	2)		
CO2: an	alyze MAC frame	modeling of IEI	EE 802.15.4 sense	or devices		Analyzing (K4))		
CO3: an	alyze 6LoWPAN	architecture				Analyzing (K4))		
CO4: va	lidate the routing	protocol perform	ance of 6LoWPA	N devices		Evaluating (K5))		
CO5: ap	ply IPV6 protocol	ls for IoT applica	tions			Applying (K3)			
		Ma	pping of COs wi	ith POs					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1				3					
CO2	3	3							
CO3	3	3			3				
CO4	CO4 3								
CO5	CO5 3								
1 – Slight,	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy								

18MWE03 MULTIMEDIA COMPRESSION TECHNIQUES

(Common to Information Technology (Information and Cyber Warfare), Information Technology & Communication Systems branches)

T

Р

Credit

9

9

9

9

Total: 45

L

		3	0	0	3
Preamble	The aims of this course are to study methods for handling and co	ompre	ssing v	various	s kinds of
	data, such as text, images, audio and video data and understand of	lata co	mpres	sion te	echniques
	for multimedia and other applications, in particular to the Interne	t.			
Prerequisite	Computer Networks				
IINIT _ I					0

Introduction: Special features of Multimedia – Graphics and Image Data Representations – Popular File formats - Fundamental Concepts in Video - Digital Audio - Storage requirements for multimedia applications -Need for Compression - Lossy & Lossless compression techniques- Overview of Source Models - Source coding - Scalar and Vector quantization

UNIT – II

Text Compression: Compression techniques: Shannon- Fano coding –Huffman coding – Adaptive Huffman Coding – Arithmetic coding – Dictionary techniques: LZW algorithm

UNIT – III

Audio Compression: Audio compression techniques $-\mu$ - Law and A-Law companding- Differential Encoding –DPCM- ADPCM – DM – Optimal Predictors and Optimal Quantization –Application to speech coding: G.722 - Application to audio coding : MPEG audio, Speech compression techniques : Formants and **CELP** Vocoders

UNIT - IV

Image Compression : Transform Coding: JPEG Standard – Sub band coding algorithms – Design of Filter banks - Implementation using filters- Wavelet based compression: EZW- SPIHT coders - JPEG 2000 standards- JBIG- JBIG2 standards

UNIT - V

Video Compression: Video compression Based on Motion Compensation - Search for Motion Vectors -H.261 - MPEG Video Coding I: MPEG - 1 and 2 - MPEG Video Coding II: MPEG - 4: Object Based Visual Coding –Synthetic Object Coding –Object types-Profiles and Levels – MPEG 7.

REFERENCES:

Morgan Kauffman, Khalid Sayood, "Introduction to Data Compression", 2nd Edition, Harcourt India, 1. 2000.

- David Salomon, "Data Compression The Complete Reference", 2nd Edition, Springer Verlag New York 2. Inc., 2001.
- Mark S. Drew, Ze-Nian Li, "Fundamentals of Multimedia", 2nd Edition, PHI, 2005. 3.

COUI	COURSE OUTCOMES:							
On co	On completion of the course, the students will be able to						BT Mapped (Highest Level)	
CO1:	1: summarize scalar and vector quantization theory and also to represent the Understanding (K2) multimedia data in different formats for various applications						Understanding (K2)	
CO2:		ke use of differe	nt coding techni	ques and apply	various algorithi	ns for text	Applying (K3)	
CO3:	1	ntify the various lications	s audio and spe	ech compressio	n techniques fo	r practical	Applying (K3)	
CO4:	1	e part in ima pression technic		-	d also to impl	ement the	Analyzing (K4)	
CO5:	con	npare various vi	deo compression	algorithms for p	practical applicat	ions	Evaluating (K5)	
			Ma	pping of COs w	vith POs			
COs/F	POs	PO1	PO2	PO3	PO4	PO5	PO6	
CO	1	3						
CO	2	3	2		2			
CO	CO3 3 3 3							
CO	CO4 3 (
CO5 3 (
1 - Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy							

18MWC22 NETWORK SECURITY ESSENTIALS

(Common to Information Technology (Information Cyber Warfare), Communication Systems & Embedded Systems branches)

		3	0	2	4
Preamble	To introduce the security problems associated with malicious	softw	are and	1 intru	iders and
	familiarize the network security controls that help to protect the u	ısabili	ty, inte	grity, 1	reliability
	and safety of the network infrastructure and the data that travels the	rough	it.		
Prerequisites	Computer Networks				

UNIT – I

Introduction: Characteristics of Networks, Need for network security, Intruders, Malicious Software, Reconnaissance, Eavesdropping, wiretapping, impersonation, traffic analysis, website defacement, DOS, active code or mobile code attacks, OSI Security Architecture, Security Services, Model for Network Security.

UNIT – II

Cryptography and Key Distribution: Classical Encryption Techniques, Symmetric Encryption Principles, Symmetric Encryption Algorithms, DES, AES, Stream Ciphers, Block Cipher Modes of Operation, Public Key Cryptography Principles, Public Key Cryptographic Algorithms, RSA,ECC, Key Distribution using Symmetric and Asymmetric Encryption, Kerberos, X.509, Public Key Infrastructure, trust models, revocation, directories.

UNIT – III

Message Authentication and Digital Signatures: Requirement of Authentication Functions, Message Authentication Codes, Hash and MAC Algorithms, MD2, MD4, MD5, SHA, HMAC, CMAC, Whirlpool, Address bases authentication, password based authentication, trusted intermediaries, digital Signatures, Digital Signature Standard.

UNIT – IV

IP Security, Transport Layer Security: IP Sec, Authentication header, Encapsulating Security Payload, IKE, ISAKMP/IKE Encoding, Web Security Issues, Secure Sockets Layer, Transport Layer Security, Negotiating cipher suites, compression methods, encoding, HTTPS, Secure Shell.

UNIT – V

Network Security Applications: Electronic Mail Security, Privacy enhanced mail, PGP, SMIME, Authorization and Access control, Firewalls, Intrusion Detection and Prevention Systems, Honeypots, honetnets, scanning and analysis tools, Antivirus Software, Virtual Private Network.

List of Exercises / Experiments :

- 1. Implement the following substitution and transposition techniques concepts
 - a. Playfair Cipher
 - b. Column Transformation
- 2. Implement Hill Cipher Technique
- 3. Implement the RSA Asymmetric key algorithm
- 4. Implement the Diffie Hellman Asymmetric key algorithm
- 5. Implement the Digital Signature standard algorithm
- 6. Setup a honey pot and monitor the honey pot on network (KF Sensor)
- 7. Demonstrate Intrusion Detection System (IDS) using any tool (snort or any other s/w)

Lecture: 45, Practical: 30, Total: 75

Т

L

P

Credit

9

9

9

9

9

REFERENCES / MANUALS / SOFTWARES:							
	1. William Stallings, "Cryptography and Network Security Principles and Practices", 6 th Edition, Prentice						
Ha	Hall, 2013.						
2. Be	ehrouz A.F	ourouzan, "Crypto	graphy and Networ	rk Security", 2 nd Ec	lition, Tat	a McGrav	w-Hill, 2012.
3. Ch	narlie Kaufn	nan, RadiaPeralma	n, Mike Speciner,	"Network Security	: Private c	communi	cation in public
		lition, Prentice Hal	l, 2002.				
	SE OUTCO						Mapped
On com	pletion of the	he course, the stude	ents will be able to			(Hig	ghest Level)
CO1:		e attacks against ne	etwork infrastructur	re and the sources of	of	Under	standing (K2)
	attacks						
CO2:		0 1 1	es of conventional	encryption and pu	blic key	App	plying (K3)
	encryption						
CO3:		Ŭ	<u>.</u>	d for authentication			standing (K2)
CO4:			security controls av	ailable to protect th	ne	Under	standing (K2)
		frastructure					
CO5:	-		urity controls to	safeguard the	network	App	olying (K3)
	infrastruct						
CO6:	practice th	e different types of	symmetric key cr	yptographic algorit	hms		olying (K3),
~ ~ ~ ~							cision (S3)
CO7:	implement	t the various types a	asymmetric key cry	yptographic algorit	nms		plying (K3),
000	1 (1 1:00	C C' 11 1	• . • • •			cision (S3)
CO8:	demonstra	te the different type	es of firewalls and	intrusion detection	system		olying (K3), cision (S3)
			Mapping of CO)a with DAa		FIC	
CO	s/POs	PO1	PO2	PO3	PC)/	PO5
	CO1		102				105
		3		3	3		
	CO2	3		3	3	8	
C	203	3		3	3	3	
C	CO4	3		3	3	3	
C	CO5	3		3	3	}	
C	CO6	3	2	3	3	3	1
	CO7	3	2	3	3	3	1
	CO8	3	2	3	3	3	1
1 – Slig	ht, 2 - Mod	erate, 3 – Substan	ntial, BT - Bloom'	's Taxonomy			

18COE01 CDMA ENGINEERING

		L	1	I	Clean	
		3	0	0	3	
Preamble	To inculcate the knowledge of spread spectrum applications in CI	DMA e	enginee	ering.		
Prerequisites	Digital Communication					
UNIT – I					9)

 UNIT – I
 9

 Principles of Code Division Multiple Access: Spread spectrum technique – Direct sequence and frequency hopping spread spectrum communication system – PN codes and Walsh codes – Rake receiver – Capacity – Effects of loading, sectorization and voice activity – Power control – Hand off – Link structure – Forward link – Pilot, synchronization, paging and traffic channels – Reverse Link – access and traffic channel

UNIT – II

Call Processing and Traffic: Call processing states – Initialization, idle, access and traffic states – Forward link and Reverse link analysis - Calculation of Ec/Io and Eb/No – Traffic intensity – Grade of Service – Erlang-B and C models

UNIT – III

WCDMA Basics: Protocol architecture, principles of physical layer, Spreading codes and modulation-Introduction- channelization codes- Scrambling codes-modulation- uplink , downlink spreading and modulation

UNIT – IV

OFDMA and MC-CDMA: OFDM principles , Frequency hopping in OFDMA - OFDMA system description – Channel coding, modulation, time and frequency synchronization, Combination of OFDM and CDMA - MC-CDMA, MT-CDMA and MC-DS CDMA systems - Difference between OFDMA and MC-CDMA

UNIT – V

Optical CDMA: Families of Prime Codes- Prime code, Generalized and Extended Prime Codes, Experimental demonstration of Optical CDMA, Synchronization of Optical CDMA networks-Cross-correlation properties, Application, Temporal-Spatial CDMA Optical Network, Multiwavelength Optical CDMA networks

REFERENCES:

1.	Samuel C. Yang, "CDMA RF System Engineering", 1 st Edition, Artech House, 1998.
2.	Richard Van Nee and Ramjee Prasad, "OFDM for Wireless Multimedia Communication", 1 st Edition, Artech
	House, 2004.
3.	Khaled Fazal and Stephen Kaiser, "Multicarrier and Spread Spectrum Systems", 2 nd Edition, Wiley, 2008.

9

9

9

9

I T P Credit

Total: 45

COUR	COURSE OUTCOMES: BT Mapped								
On completion of the course, the students will be able to							(Highest Level)		
CO1:	•								
CO2:	CO2: apply basic principles behind radio resource management techniques such as power control, channel allocation and handoffs in different CDMA techniques						Applying (K3)		
CO3:									
CO4:					Analyzing (K4)				
	con								
CO5:	CO5: analyze the prime codes temporal and spatial CDMA optical networks				Analyzing (K4)				
	Mapping of COs with POs								
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6		
CO	1	3				3			
CO2	2		3	2					
CO3 3 2									
CO4 3									
CO	CO5 3 2						2		
1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy									

18COE02 STATISTICAL DETECTION THEORY								
L T P Credit								
	3							
Preamble To understand Statistical Information Processing in particular Detection Theory								
fundamental to many branches of communications like Radar & Pattern Recognition.								
Prerequisites Random Process Applications and Theory								
UNIT – I	9							
Introduction and Statistical Detection Theory: Introduction – Detection theory in Signal Processing -	- The							
Mathematical Detection Problem - Neyman Pearson (NP) Theorem and Proof - Receiver oper	ating							
characteristics – Minimum probability of Error – Bayes Risk – Multiple Hypothesis Testing.								
UNIT – II	9							
Decision Theory for Deterministic Signals: Decision theory - Matched filters - Development of Detection	tor –							
Performance of Matched filter - Generalized Matched filters - Performance of Generalized Matched fil	ter –							
Multiple signals - Binary case - Performance for Binary case - M ary case - Signal processing examples								
UNIT – III	9							
Random Signal Detection: Introduction - Estimator correlator - Linear model - Estimator correlator								
large data records - General Gaussian detection - Signal processing example - Tapped delay line cha	annel							
model.								
UNIT – IV 9								
Decision Theory – Unknown PDF: Introduction – Composite hypothesis testing – Bayesian approach and								
Generalized likelihood ratio test – Multiple hypothesis testing – Aymptotic PDF of GLRT								
UNIT – V	9							

Deterministic Signals with Unknown Parameters: Signal modeling and detection performance – Unknown amplitude – GLRT & Bayesian approach – Sinusoidal detection – Amplitude – Amplitude and Phase – Amplitude, Phase and Frequency – Classical linear model.

	Total: 45
RE	FERENCES:
1.	Steven M. Kay, "Fundamentals of Statistical Signal Processing: Detection Theory", 1 st Edition, Prentice
	Hall Signal Processing Series, Upper Saddle River, NJ 2001.
2.	Harry L. Van Trees, "Detection, Estimation, and Modulation Theory", 2 nd Edition, John Wiley & Sons,
	2001.
3.	Arthur Giordano, "Detection and Estimation Theory and its Applications", 1 st Edition, Prentice Hall,
	2006.

COURSE OUTCOMES: BT Mapped								
On completion of the course, the students will be able to							(Highest Level)	
CO1:	CO1: apply the basics of the mathematical detection problem							
CO2:	CO2: demonstrate the role of matched filters in decision theory							
CO3:	demonstrate knowledge in random signal detection techniques						Applying (K3)	
CO4:	: design & implement Bayesian & GRLT techniques						Applying (K3)	
CO5:	CO5: analyze unknown parameter detection techniques				Analyzing (K4)			
Mapping of COs with POs								
COs/F	Os	PO1	PO2	PO3	PO4	PO5	PO6	
CO	1	3			2			
CO	2	3						
CO3 2 3								
CO4 3								
CO5 3								
1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy								

18COE03 TCP/IP NETWORKS

L	Т	P	Credit			
3	0	0	3			

		v	v	v	e
Preamble	Preamble To comprehend the layered protocol architecture defining IP networks. Emphasis is based o				
	next generation systems and traffic management.				
Prerequisites	Data Communication Networks				
UNIT – I					9

Introduction: Internet history and architecture, OSI layering, MAC and LLC Issues: Techniques for multiple access, Adaptive LLC mechanisms for wireless links, Internet Routing Architecture: Internet Service Providers and Peering.

UNIT – II

Flow/Congestion Control: Implementation, modeling, fairness, stability, open-loop vs closed-loop vs hybrid, traffic specification (LBAP, leaky-bucket), window vs rate, hop-by-hop vs end-to-end,implicit vs explicit feedback, aggregate flow control, reliable multicast. TCP variants (Tahoe, Reno, Vegas, New-Reno, SACK)

UNIT – III

Routing: Implementation, stability/convergence, link-state vs distance-vector vs link-vector, conventional routing, Routing Information Protocol (RIP), Open Shortest Path First (OSPF), Multicast OSPF (MOSPF), Distance Vector Multicast Routing Protocol (DVMRP), BGP instability, Fair queuing, TCP congestion control, TCP variants, Random Early Detect, TCP RTT estimation, Fast retransmit, Fast recovery.

UNIT – IV

IP Next Generation: IP Next Layer (IPNL), IPV6 features, including transition, Mobile IPV6 operation, Models to support(WLAN) network roaming, IPV6 transition methods, Advanced IP routing and multihoming, IP Multicast. Traffic Management: Utility function, traffic models (for Internet), self-similarity, traffic classes (BE, GS), service models (DiffServ, IntServ), class-based allocation, controls at different time scales, renegotiation (RCBR), signaling (RSVP, ATM signaling), resource translation/mapping, admission control (worst-case, statistical, measurement-based), pricing, Capacity planning.

$\mathbf{UNIT} - \mathbf{V}$

Traffic Management: Integrated Services, Resource Reservation Protocol (RSVP), Differentiated Services, Wireless TCP, Mobile IP, Multicast routing, Scalable Multicast routing: Core Based Trees (CBT), Protocol Independent Multicast (PIM), Pragmatic General Multicast (PGM), Scalable Reliable Multicast, Overlay Networks, Peer-to-Peer Networks.

REFERENCES:

Total: 45

1.	Larry Peterson and Bruce Davie, "Computer Networks: A Systems Approach", 5 th Edition,
	Morgan Kaufmann, 2014.
2.	Jim Kurose and Keith Ross, "Computer Networking: A Top-Down Approach Featuring the
	Internet", 6 th Edition, Addison-Wesley, 2012.

3. Keshav S., "An Engineering Approach to Computer Networking", 5th Edition, Pearson Education, 2002.

9

9

9

9

COURSE OUTCOMES: BT Mapped									
On completion of the course, the students will be able to							(Highest Level)		
CO1:	CO1: analyze TCP/IP model in internet architectures						Analyzing (K4)		
CO2:	implement the Cong	Applying (K3)							
CO3:	CO3: analyze various routing techniques used in communication networks Analy						nalyzing (K4)		
CO4:	O4: compare the multi-hop and multicast for next generation IP network					Unde	Understanding (K2)		
CO5:	CO5: analyze traffic management in networks				Analyzing (K4)				
	Mapping of COs with POs								
COs/POs PO1 PO2 PO3 PO4 PO5 PO6						PO6			
CO1	3				2		1		
CO2	3			2	2		2		
CO3	CO3 3 2						2		
CO4 3 1 2 2									
CO5	CO5 1 3					2			
1 - Slig	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy								

18COE04 ELECTROMAGNETIC INTERFERENCE AND COMPATIBILITY

(Common to Communication Systems, VLSI Design, Applied Electronics &

Power Electronics and Drives branches)

			-	-	0-00	
		3	0	0	3	
Preamble	To expose the basics and fundamentals of Electromagnetic Inter	ference	e and C	Compa	tibility	in /
	Communication System Design and to know the concepts of EM	AI Cou	ipling	Princip	ples, E	MI
	Measurements and Control techniques and the methodologies of H	EMI ba	sed PC	B des	ign.	
Prerequisites	Electromagnetic Principles					
UNIT – I						9

EMI Environment: EMI/EMC concepts and definitions, Sources of EMI, conducted and radiated EMI, Transient EMI, Time domain Vs Frequency domain EMI, Units of measurement parameters, Emission and immunity concepts, ESD.

UNIT – II

EMI Coupling Principles: Conducted, Radiated and Transient Coupling, Common Impedance Ground Coupling, Radiated Common Mode and Ground Loop Coupling, Radiated Differential Mode Coupling, Near Field Cable to Cable Coupling, Power Mains and Power Supply coupling.

UNIT – III

EMI/EMC Standards and Measurements: Civilian standards - FCC, CISPR, I EC, EN, Military standards -MIL STD 461D/462, EMI Test Instruments /Systems, EMI Shielded Chamber, Open Area Test Site, TEM Cell, Sensors/Injectors/Couplers, Test beds for ESD and EFT, Military Test Method and Procedures (462).

UNIT – IV

EMI Control Techniques: EMI Control Techniques : Shielding, Filtering, Grounding, Bonding, Isolation Transformer, Transient Suppressors, Cable Routing, Signal Control, Component Selection and Mounting

UNIT - V

EMC Design of PCBs: PCB Traces Cross Talk, Impedance Control, Power Distribution Decoupling, Zoning, Motherboard Designs and Propagation Delay Performance Models.

REFERENCES:

1.	Ott W. Henry, "Noise Reduction Techniques in Electronic Systems", 2 nd Edition, John Wiley & Sons,
	New York, 2008.

2. Kodali V.P., "Engineering EMC Principles, Measurements and Technologies", 2nd Edition, IEEE Press, London, 2006.

Keiser Bernhard, "Principles of Electromagnetic Compatibility", 3rd Edition, Artech House, Dedham, 3. 1987.

9

Total: 45

9

9

9

L T P Credit

COU	COURSE OUTCOMES: BT Mapped								
On con	On completion of the course, the students will be able to (Highest Level)								
CO1: estimate the EMI and analyze in time domain and frequency domain Analyzing (K4)									
CO2:	con	npare the various	EMI coupling m	nethods			Evaluating (K5)		
CO3:	con	duct the EMI me	asurement for ci	vilian and milita	y appliances		Analyzing (K4)		
CO4:	dev	ice the EMI con	trol techniques				Applying (K3)		
CO5: evaluate the PCB'S and motherboards EMI performance and design the EMC Creating (K6)							Creating (K6)		
circuits									
Mapping of COs with POs									
COs/F	Os	PO1	PO2	PO3	PO4	PO5	PO6		
CO1 3 2 2 1									
CO2 1 2 3									
CO3 2 3 2 2 3									
CO4 2 3 2									
CO	5			2	1	3	2		
1 - Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy								

	18COE05 SATELLITE COMMUNICATION SYSTE	EMS			
		L	Т	Р	Credit
		3	0	0	3
Preamble	To provide an insight into the basic of orbital mechanics, varia	ous sut	osystem	ns in a	a satellite
	communication system and current applications based on access te	echniq	ues		
Prerequisites	Communication Systems				
UNIT – I					9
	anics: Growth of Satellite Communication - Kepler's laws of mot		-	•	
	v services, Orbit Equations, Orbit Description, Locating the Sat				
-	rth, Orbital Elements-Look Angle Determination and Visibility -				
	, Launch Vehicles, Orbital Effects in Communication Syste				
	e launch vehicles and propulsion mechanisms - spectrum alloc	ations	for sa	tellite	systems,
Energy Disper	sal, propagation characteristics of fixed and mobile satellite links.				
UNIT – II			~		9
-	b Systems: Spacecraft Subsystems, station keeping- Altitude and				
1	Telemetry and Tracking, Power, Systems, Communication		,		1 '
	ipment Reliability, atmospheric losses Earth Stations, antennas,		ing sys	tem,	terrestrial
interface, diffe	rent types of interference, interference specification and protection	ratio.			
UNIT – III		11 1		D 1	9
	: The Space Link: Satellite Link Design: Satellite uplink - dow		-		
	Theory, System Noise Temp, G/T Ratio, Noise Figure; Downlink	Desig	n - Des	agn o	1 Salenne
Links for Spec	ified C/N - Microwave Propagation on Satellite to Earth.				
UNIT – IV					9
	ss Techniques: Single access vs. multiple access (MA). Classic	al M	techr	innec	-
	e channel per carrier (SCPC) access - Code division multiple				
assignment te	•		55 (CL	, ivii i)	Demand
	innquos.				
UNIT – V					9
	of Satellite Access Techniques: ATM via satellite. TCP/IP via sa	atellite	- INTI	EL SA	
11	Systems, LEO and Non Geostationary satellite systems.		11111		1 301103
					Total: 45
REFERENC	78:				1 Jun 75
	Pratt and Charles W. Bostian, "Satellite Communications", 2 nd E	dition	Iohn	Wiley	& Sons
2003.	Tutt and charles (7. Dostan, Satellite Communications, 2. L	ann011,	50111	,, ney	α 50115,
	Pritchard, Hendri G. Suyderhood, Robert A. Nelson, "Satelli	te Co	nmunia	cation	Systems
	ng", 2 nd Edition, Prentice Hall, New Jersey, 1993.			auon	5,500115
	15, 2 Lation, Hentee Hun, New Selbey, 1775.				

Dennis Roddy, "Satellite Communications", 4th Edition, Mc Graw Hill International Editions, 2006.

COUR	COURSE OUTCOMES: BT Mapped							
On con	On completion of the course, the students will be able to						(Highest Level)	
CO1:	CO1: comprehend the knowledge obtained in orbital mechanics for satellite Applying (K3) communication							
CO2:	CO2: identify the subsystems involved in spacecraft and techniques in tracking of the Applying (K3) satellites							
CO3:	eluc	cidate the design	procedure for an	Earth station			Applying (K3)	
CO4:								
CO5: apply the multiple access techniques for the satellite systems Applying (K							Applying (K3)	
			Ma	pping of COs w	ith POs			
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	l	3	2					
CO2	CO2 2 2 3							
CO3	3	2		2		3	2	
CO4	1	3				2		
COS	5			3	2		2	
1 - Slig	ght, 2	2 – Moderate,	3 – Substantial,	BT - Bloom's Ta	ixonomy			

18COE06 MOBILE AD-HOC NETWORKS

		3	0	0	3	3
Preamble	This course will cover the most recent research topics in multi-h	op net	works.	Topi	cs suc	h as
	MAC layer fundamentals, routing protocols, Congestion c	ontrol	algori	thm	and	QoS
	framework are precisely covered.					
Prerequisites	Wireless Networks					
UNIT – I						9

$\mathbf{UNIT} - \mathbf{I}$

Overview: Introduction to Ad Hoc Networks: Introduction – Issues in Adhoc wireless networks; Definition, characteristics - features, applications. Adhoc Mobility Models: - entity and group models

UNIT – II

MAC Protocols: Design issues, goals and classification. Contention based protocols and reservation based protocols

UNIT – III

Routing Protocols: Table driven routing- OLSR, on demand routing- AODV, Hybrid routing: ZRP, Geographic routing: LAR, Secure routing and power aware routing.

UNIT – IV

Transport Layer: Issues and goals in designing, Adhoc transport protocols, TCP over Adhoc wireless networks, other transport layer protocol for Adhoc Wireless networks. Independent congestion control approach- Vegas Plus, W-Vegas and WFCC.

UNIT - V

Quality of Service: Introduction, issues and challenges, classification, QoS framework for Adhoc wireless networks. Integration of Multi-hop ad hoc network with other wired and wireless networks.

Total: 45

Т

L

Р

Credit

9

9

9

9

REFERENCES:

1.	Siva Ram Murthy C. and Manoj B.S., "Adhoc Wireless Networks Architectures and Protocols", 3rd
	Impression, Pearson Education, 2008.

Charles E. Perkins, "Ad hoc Networking", 1st Impression, Pearson Education, 2008. 2.

3. Stefano Basagni J., Marco Conti, Silvia Giordano and Ivan Stojmenovic, "Mobile Adhoc Networking", 1st Edition, Wiley - IEEE Press, 2005.

COU	COURSE OUTCOMES: BT Mapped								
On con	mple	(Highest Level)							
CO1:	CO1: analyze the multi-hop wireless devices performances under diverse mobile Analyzing (K4) conditions								
CO2:	ana	lyze the MAC la	yer functionalitie	es of multi-hop d	evices		Analyzing (K4)		
CO3:	ana	lyze the routing a	algorithms perfor	rmance on multi-	hop wireless net	works	Analyzing (K4)		
CO4:									
CO5:	CO5: apply a suitable QoS framework for the given channel model Applying (K3								
	Mapping of COs with POs								
COs/F	POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO	1	3	3						
CO	2		3						
CO	CO3 3 3								
CO	CO4 3								
CO	5					3			
1 - Sli	ght, ź	2 – Moderate, 3	3 – Substantial,	BT - Bloom's Ta	axonomy				

	18COE07 MULTICARRIER COMMUNICATION	IS			
		L	Т	Р	Credit
		3	0	0	3
Preamble	To appraise the transceiver architectures, impairments of methodologies to overcome the issues.		ss cha	nnel	and the
Prerequisites	Digital Communication, Wireless Communication, Signals and Systematic	tems			
UNIT – I					9
Projections, C	to Multicarrier Systems: Linear Algebra: Vector Spaces, Linear Orthogonality, Eigen Decomposition, Quadratic forms, Digital Con- ation, Optimal Detection, ISI channels, Equalization		-		-
UNIT – II					9
	Fundamentals: Motivation, OFDM, Subcarrier notion, Role	of F	FT. P	arallel	-
	and detection, OFDM Transmitter Optimization: Adaptive Modulat				••••••
				0	
UNIT – III					9
	Receivers: SNR gap analysis, Bit loading algorithms, Linear preco	ding. (Coded	OFDN	I. OFDM
	rithms: Synchronization, Sensitivity to timing and frequency errors	U,			,
UNIT – IV					9
	mation and Equalization: Zero forcing and MMSE algorithms tems: OFDMA, SCFDMA, Distributed and localized mapping.	, Train	ing se	quenc	e design,
UNIT – V					9
Multicarrier	Diversity: Multiuser diversity, Resource allocation algorithms, App	olicatio	ns to c	ellular	systems,
MIMO-OFDN	I: Fundamental MIMO concepts, Spatial diversity, Spatial Multiplex	ing, Sp	ace Fre	quenc	y coding
				-	Total: 45
REFERENC	ES:				
	"Linear Algebra and Applications", 4th Edition, New York Academi	c, 2006	<i>5</i> .		
2. Tse D. an 2013.	d Vishwanath P., "Fundamentals of Wireless Communications", 7				lge Press,

 Chiueh T.D. and Tsai P.Y., "OFDM Baseband Receiver Design for Wireless Communications", 1st Edition, Wiley, 2007.

COU	COURSE OUTCOMES: BT Mapped								
On con	mple	(Highest Level)							
CO1:	app	ly the concepts of	f linear algebra t	o multicarrier co	mmunication		Applying (K3)		
CO2:	use	FFT to design O	FDM for high da	ata rate and low d	ata rate require	nent	Creating (K6)		
CO3:	ana	lyze the multic	arrier receiver p	performance for	different amou	unt of bit	Evaluating (K5)		
	loading and encoding and handle the timing error issue with suitable synchronization								
CO4:	CO4: perform the channel estimation and equalization for multi-user systems Evaluating (K5)								
CO5: analyze the diversity schemes propsed for multiuser scenario Analyze						Analyzing (K4)			
	Mapping of COs with POs								
COs/F	POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO	1	3							
CO	CO2 3 2 3								
CO.	CO3 3 3 3								
CO	CO4 2 2 3 3								
CO	5	2	2		3	3			
1 - Sli	ght, i	2 – Moderate,	3 – Substantial,	BT - Bloom's Ta	ixonomy				

3 0 0 3 Preamble To invoke the types of spread spectrum technologies used in narrow band and broad wireless systems and to analyze the spread spectrum system in the noisy channel. Prerequisites Digital Communication, Cellular and Mobile Communication UNIT - I Performance Characterization of Digital Data Transmission: Detection of binary signals in AWQ Quadrature multiplexed signaling schemes - Equalization of digital data transmission syste Communication in the presence of pulse noise jamming - Low probability detection scheme. UNIT - II Spread Spectrum Systems: Direct sequence spread spectrum methods employing BPSK, QPSK and M Frequency Hop spread spectrum methods - Coherent slow frequency Hop technique - Non coherent slow fast frequency Hop spread spectrum techniques - Hybrid DS/FH spread spectrum. UNIT - III Binary Shift Register Sequences for Spread Spectrum Systems: Definition - PN sequence gene fundamentals - Maximal length sequences - Properties, Power spectrum and Polynomial tables for max length sequences - Gold codes - Rapid Acquisition systems - Non-linear code generators. UNIT - IV Synchronization of Spread Spectrum Systems: Optimal tracking of wideband signals - Code tracking I for FHSS - Optimum synchronization techniques - Synchronization using a matched filter - Synchroniz by estimating the received spreading code. UNIT - V Performance of Spread Spectrum System: SS Systems communications models - Performance wit coding under AWGN - spread spectrum systems performances with forward error correction - Block cod Convolutional coding and specific error co		18COE08 SPREAD SPECTRUM COMMUNICATION	ON			
Preamble To invoke the types of spread spectrum technologies used in narrow band and broad wireless systems and to analyze the spread spectrum system in the noisy channel. Prerequisites Digital Communication, Cellular and Mobile Communication UNIT - I Performance Characterization of Digital Data Transmission: Detection of binary signals in AWQ Quadrature multiplexed signaling schemes - Equalization of digital data transmission syste Communication in the presence of pulse noise jamming - Low probability detection scheme. UNIT - II Spread Spectrum Systems: Direct sequence spread spectrum methods employing BPSK, QPSK and M Frequency Hop spread spectrum methods - Coherent slow frequency Hop technique - Non coherent slow fast frequency Hop spread spectrum techniques - Hybrid DS/FH spread spectrum. UNIT - III Binary Shift Register Sequences for Spread Spectrum Systems: Definition - PN sequence gene fundamentals - Maximal length sequences - Properties, Power spectrum and Polynomial tables for max length sequences - Gold codes - Rapid Acquisition systems - Non-linear code generators. UNIT - IV Synchronization of Spread Spectrum Systems: Optimal tracking of wideband signals - Code tracking I for FHSS - Optimum synchronization techniques - Synchronization using a matched filter - Synchroniz by estimating the received spreading code. UNIT - V Performance of Spread Spectrum System: SS Systems communications models - Performance wit coding under AWGN - spread spectrum systems performances with forward error correction - Block cod Convolutional coding and specific error correcting codes - Interleaving - Random coding bounds		[L	Т	Р	Credit
wireless systems and to analyze the spread spectrum system in the noisy channel. Prerequisites Digital Communication, Cellular and Mobile Communication UNIT - I Performance Characterization of Digital Data Transmission: Detection of binary signals in AWQ Quadrature multiplexed signaling schemes - Equalization of digital data transmission syste Communication in the presence of pulse noise jamming - Low probability detection scheme. UNIT - II Spread Spectrum Systems: Direct sequence spread spectrum methods employing BPSK, QPSK and M Frequency Hop spread spectrum methods - Coherent slow frequency Hop technique - Non coherent slow fast frequency Hop spread spectrum techniques - Hybrid DS/FH spread spectrum. UNIT - III Binary Shift Register Sequences for Spread Spectrum Systems: Definition - PN sequence gene fundamentals - Maximal length sequences - Properties, Power spectrum and Polynomial tables for max length sequences - Gold codes - Rapid Acquisition systems - Non-linear code generators. UNIT - IV Synchronization of Spread Spectrum Systems: Optimal tracking of wideband signals - Code tracking I for FHSS - Optimum synchronization techniques - Synchronization using a matched filter - Synchroniz by estimating the received spreading code. UNIT - V Performance of Spread Spectrum Systems: SS Systems communications models - Performance wit coding under AWGN - spread spectrum systems performances with forward error correction - Block cod Convolutional coding and specific error correcting codes - Interleaving - Random coding bounds Tota			3	0	0	3
Prerequisites Digital Communication, Cellular and Mobile Communication UNIT - I Performance Characterization of Digital Data Transmission: Detection of binary signals in AWQ Quadrature multiplexed signaling schemes - Equalization of digital data transmission syste Communication in the presence of pulse noise jamming - Low probability detection scheme. UNIT - II Spread Spectrum Systems: Direct sequence spread spectrum methods employing BPSK, QPSK and M Frequency Hop spread spectrum methods - Coherent slow frequency Hop technique - Non coherent slow fast frequency Hop spread spectrum techniques - Hybrid DS/FH spread spectrum. UNIT - III Binary Shift Register Sequences for Spread Spectrum Systems: Definition - PN sequence gene fundamentals - Maximal length sequences - Properties, Power spectrum and Polynomial tables for max length sequences - Gold codes - Rapid Acquisition systems - Non-linear code generators. UNIT - IV Synchronization of Spread Spectrum Systems: Optimal tracking of wideband signals - Code tracking I for FHSS - Optimum synchronization techniques - Synchronization using a matched filter - Synchroniz by estimating the received spreading code. UNIT - V Performance of Spread Spectrum System: SS Systems communications models - Performance wit coding under AWGN - spread spectrum systems performances with forward error correction - Block cod Convolutional coding and specific error correcting codes - Interleaving - Random coding bounds Tota	Preamble	To invoke the types of spread spectrum technologies used in n	arrow	band a	and bi	oad band
UNIT - I Performance Characterization of Digital Data Transmission: Detection of binary signals in AWQ Quadrature multiplexed signaling schemes - Equalization of digital data transmission syste Communication in the presence of pulse noise jamming - Low probability detection scheme. UNIT - II Spread Spectrum Systems: Direct sequence spread spectrum methods employing BPSK, QPSK and M Frequency Hop spread spectrum methods - Coherent slow frequency Hop technique - Non coherent slow fast frequency Hop spread spectrum techniques - Hybrid DS/FH spread spectrum. UNIT - III Binary Shift Register Sequences for Spread Spectrum Systems: Definition - PN sequence gene fundamentals - Maximal length sequences - Properties, Power spectrum and Polynomial tables for max length sequences - Gold codes - Rapid Acquisition systems - Non-linear code generators. UNIT - IV Synchronization of Spread Spectrum Systems: Optimal tracking of wideband signals - Code tracking I for FHSS - Optimum synchronization techniques - Synchronization using a matched filter - Synchroniz by estimating the received spreading code. UNIT - V Performance of Spread Spectrum System: SS Systems communications models - Performance wit coding under AWGN - spread spectrum systems performances with forward error correction - Block cod Convolutional coding and specific error correcting codes - Interleaving - Random coding bounds Tota		wireless systems and to analyze the spread spectrum system in the	e noisy	chann	el.	
Performance Characterization of Digital Data Transmission: Detection of binary signals in AWQ Quadrature multiplexed signaling schemes - Equalization of digital data transmission syste Communication in the presence of pulse noise jamming - Low probability detection scheme. UNIT - II Spread Spectrum Systems: Direct sequence spread spectrum methods employing BPSK, QPSK and M Frequency Hop spread spectrum methods - Coherent slow frequency Hop technique - Non coherent slow fast frequency Hop spread spectrum techniques - Hybrid DS/FH spread spectrum. UNIT - III Binary Shift Register Sequences for Spread Spectrum Systems: Definition - PN sequence gene fundamentals - Maximal length sequences - Properties, Power spectrum and Polynomial tables for max length sequences - Gold codes - Rapid Acquisition systems - Non-linear code generators. UNIT - IV Synchronization of Spread Spectrum Systems: Optimal tracking of wideband signals - Code tracking I for FHSS - Optimum synchronization techniques - Synchronization using a matched filter - Synchroniz by estimating the received spreading code. UNIT - V Performance of Spread Spectrum Systems: SS Systems communications models - Performance wit coding under AWGN - spread spectrum systems performances with forward error correction - Block cod Convolutional coding and specific error correcting codes - Interleaving - Random coding bounds Tota Tota	Prerequisites	Digital Communication, Cellular and Mobile Communication				
Quadrature multiplexed signaling schemes - Equalization of digital data transmission syste Communication in the presence of pulse noise jamming - Low probability detection scheme. UNIT - II Spread Spectrum Systems: Direct sequence spread spectrum methods employing BPSK, QPSK and M Frequency Hop spread spectrum methods - Coherent slow frequency Hop technique - Non coherent slow fast frequency Hop spread spectrum techniques - Hybrid DS/FH spread spectrum. UNIT - III Binary Shift Register Sequences for Spread Spectrum Systems: Definition - PN sequence gene fundamentals - Maximal length sequences - Properties, Power spectrum and Polynomial tables for max length sequences - Gold codes - Rapid Acquisition systems - Non-linear code generators. UNIT - IV Synchronization of Spread Spectrum Systems: Optimal tracking of wideband signals - Code tracking I for FHSS - Optimum synchronization techniques - Synchronization using a matched filter - Synchroniz by estimating the received spreading code. UNIT - V Performance of Spread Spectrum System: SS Systems communications models - Performance wit coding under AWGN - spread spectrum systems performances with forward error correction - Block cod Convolutional coding and specific error correcting codes - Interleaving - Random coding bounds Tota	UNIT – I					9
Communication in the presence of pulse noise jamming - Low probability detection scheme. UNIT - II Spread Spectrum Systems: Direct sequence spread spectrum methods employing BPSK, QPSK and M Frequency Hop spread spectrum methods - Coherent slow frequency Hop technique - Non coherent slow fast frequency Hop spread spectrum techniques - Hybrid DS/FH spread spectrum. UNIT - III Binary Shift Register Sequences for Spread Spectrum Systems: Definition - PN sequence gene fundamentals - Maximal length sequences - Properties, Power spectrum and Polynomial tables for max length sequences - Gold codes - Rapid Acquisition systems - Non-linear code generators. UNIT - IV Synchronization of Spread Spectrum Systems: Optimal tracking of wideband signals - Code tracking I for FHSS - Optimum synchronization techniques - Synchronization using a matched filter - Synchroniz by estimating the received spreading code. UNIT - V Performance of Spread Spectrum System: SS Systems communications models - Performance wit coding under AWGN - spread spectrum systems performances with forward error correction - Block cod Convolutional coding and specific error correcting codes - Interleaving - Random coding bounds Tota		8				
UNIT – II Spread Spectrum Systems: Direct sequence spread spectrum methods employing BPSK, QPSK and M Frequency Hop spread spectrum methods - Coherent slow frequency Hop technique - Non coherent slow fast frequency Hop spread spectrum techniques - Hybrid DS/FH spread spectrum. UNIT – III Binary Shift Register Sequences for Spread Spectrum Systems: Definition - PN sequence gene fundamentals - Maximal length sequences - Properties, Power spectrum and Polynomial tables for max length sequences - Gold codes - Rapid Acquisition systems - Non-linear code generators. UNIT – IV Synchronization of Spread Spectrum Systems: Optimal tracking of wideband signals - Code tracking I for FHSS - Optimum synchronization techniques - Synchronization using a matched filter - Synchroniz by estimating the received spreading code. UNIT – V Performance of Spread Spectrum System: SS Systems communications models - Performance wit coding under AWGN - spread spectrum systems performances with forward error correction - Block cod Convolutional coding and specific error correcting codes - Interleaving - Random coding bounds Tota	•				sion	system -
Spread Spectrum Systems: Direct sequence spread spectrum methods employing BPSK, QPSK and M Frequency Hop spread spectrum methods - Coherent slow frequency Hop technique - Non coherent slow fast frequency Hop spread spectrum techniques - Hybrid DS/FH spread spectrum. UNIT – III Binary Shift Register Sequences for Spread Spectrum Systems: Definition - PN sequence gene fundamentals - Maximal length sequences - Properties, Power spectrum and Polynomial tables for max length sequences - Gold codes - Rapid Acquisition systems - Non-linear code generators. UNIT – IV Synchronization of Spread Spectrum Systems: Optimal tracking of wideband signals - Code tracking I for FHSS - Optimum synchronization techniques - Synchronization using a matched filter - Synchroniz by estimating the received spreading code. UNIT – V Performance of Spread Spectrum System: SS Systems communications models - Performance wit coding under AWGN - spread spectrum systems performances with forward error correction - Block cod Convolutional coding and specific error correcting codes - Interleaving - Random coding bounds Tota	Communication	n in the presence of pulse noise jamming - Low probability detection	on sch	eme.		
Spread Spectrum Systems: Direct sequence spread spectrum methods employing BPSK, QPSK and M Frequency Hop spread spectrum methods - Coherent slow frequency Hop technique - Non coherent slow fast frequency Hop spread spectrum techniques - Hybrid DS/FH spread spectrum. UNIT – III Binary Shift Register Sequences for Spread Spectrum Systems: Definition - PN sequence gene fundamentals - Maximal length sequences - Properties, Power spectrum and Polynomial tables for max length sequences - Gold codes - Rapid Acquisition systems - Non-linear code generators. UNIT – IV Synchronization of Spread Spectrum Systems: Optimal tracking of wideband signals - Code tracking I for FHSS - Optimum synchronization techniques - Synchronization using a matched filter - Synchroniz by estimating the received spreading code. UNIT – V Performance of Spread Spectrum System: SS Systems communications models - Performance wit coding under AWGN - spread spectrum systems performances with forward error correction - Block cod Convolutional coding and specific error correcting codes - Interleaving - Random coding bounds Tota						
Frequency Hop spread spectrum methods - Coherent slow frequency Hop technique - Non coherent slow fast frequency Hop spread spectrum techniques - Hybrid DS/FH spread spectrum. UNIT – III Binary Shift Register Sequences for Spread Spectrum Systems: Definition - PN sequence gene fundamentals - Maximal length sequences - Properties, Power spectrum and Polynomial tables for max length sequences - Gold codes - Rapid Acquisition systems - Non-linear code generators. UNIT – IV Synchronization of Spread Spectrum Systems: Optimal tracking of wideband signals - Code tracking I for FHSS - Optimum synchronization techniques - Synchronization using a matched filter - Synchroniz by estimating the received spreading code. UNIT – V Performance of Spread Spectrum System: SS Systems communications models - Performance wit coding under AWGN - spread spectrum systems performances with forward error correction - Block cod Convolutional coding and specific error correcting codes - Interleaving - Random coding bounds Tota						9
fast frequency Hop spread spectrum techniques - Hybrid DS/FH spread spectrum. UNIT - III Binary Shift Register Sequences for Spread Spectrum Systems: Definition - PN sequence gene fundamentals - Maximal length sequences - Properties, Power spectrum and Polynomial tables for max length sequences - Gold codes - Rapid Acquisition systems - Non-linear code generators. UNIT - IV Synchronization of Spread Spectrum Systems: Optimal tracking of wideband signals - Code tracking I for FHSS - Optimum synchronization techniques - Synchronization using a matched filter - Synchroniz by estimating the received spreading code. UNIT - V Performance of Spread Spectrum System: SS Systems communications models - Performance wit coding under AWGN - spread spectrum systems performances with forward error correction - Block cod Convolutional coding and specific error correcting codes - Interleaving - Random coding bounds Tota REFERENCES:						
UNIT - III Binary Shift Register Sequences for Spread Spectrum Systems: Definition - PN sequence gene fundamentals - Maximal length sequences - Properties, Power spectrum and Polynomial tables for max length sequences - Gold codes - Rapid Acquisition systems - Non-linear code generators. UNIT - IV Synchronization of Spread Spectrum Systems: Optimal tracking of wideband signals - Code tracking I for FHSS - Optimum synchronization techniques - Synchronization using a matched filter - Synchroniz by estimating the received spreading code. UNIT - V Performance of Spread Spectrum System: SS Systems communications models - Performance wit coding under AWGN - spread spectrum systems performances with forward error correction - Block cod Convolutional coding and specific error correcting codes - Interleaving - Random coding bounds Tota REFERENCES:				Non co	herent	slow and
Binary Shift Register Sequences for Spread Spectrum Systems: Definition - PN sequence gene fundamentals - Maximal length sequences - Properties, Power spectrum and Polynomial tables for max length sequences - Gold codes - Rapid Acquisition systems - Non-linear code generators. UNIT – IV	fast frequency	Hop spread spectrum techniques - Hybrid DS/FH spread spectrum.	•			
Binary Shift Register Sequences for Spread Spectrum Systems: Definition - PN sequence gene fundamentals - Maximal length sequences - Properties, Power spectrum and Polynomial tables for max length sequences - Gold codes - Rapid Acquisition systems - Non-linear code generators. UNIT – IV						
fundamentals - Maximal length sequences - Properties, Power spectrum and Polynomial tables for max length sequences - Gold codes - Rapid Acquisition systems - Non-linear code generators. UNIT – IV Synchronization of Spread Spectrum Systems: Optimal tracking of wideband signals - Code tracking I for FHSS - Optimum synchronization techniques - Synchronization using a matched filter - Synchroniz by estimating the received spreading code. UNIT – V Performance of Spread Spectrum System: SS Systems communications models - Performance wit coding under AWGN - spread spectrum systems performances with forward error correction - Block cod Convolutional coding and specific error correcting codes - Interleaving - Random coding bounds Tota REFERENCES:						9
length sequences - Gold codes - Rapid Acquisition systems - Non-linear code generators. UNIT - IV Synchronization of Spread Spectrum Systems: Optimal tracking of wideband signals - Code tracking I for FHSS - Optimum synchronization techniques - Synchronization using a matched filter - Synchroniz by estimating the received spreading code. UNIT - V Performance of Spread Spectrum System: SS Systems communications models - Performance with coding under AWGN - spread spectrum systems performances with forward error correction - Block cod Convolutional coding and specific error correcting codes - Interleaving - Random coding bounds Tota REFERENCES:						
UNIT – IV Synchronization of Spread Spectrum Systems: Optimal tracking of wideband signals - Code tracking I for FHSS - Optimum synchronization techniques - Synchronization using a matched filter - Synchroniz by estimating the received spreading code. UNIT – V Performance of Spread Spectrum System: SS Systems communications models - Performance wit coding under AWGN - spread spectrum systems performances with forward error correction - Block cod Convolutional coding and specific error correcting codes - Interleaving - Random coding bounds Tota REFERENCES:					les for	maximal
Synchronization of Spread Spectrum Systems: Optimal tracking of wideband signals - Code tracking I for FHSS - Optimum synchronization techniques - Synchronization using a matched filter - Synchronization by estimating the received spreading code. UNIT – V Performance of Spread Spectrum System: SS Systems communications models - Performance with coding under AWGN - spread spectrum systems performances with forward error correction - Block cod Convolutional coding and specific error correcting codes - Interleaving - Random coding bounds Tota REFERENCES:	length sequent	es - Gold codes - Rapid Acquisition systems - Non-linear code gen	erator	s.		
Synchronization of Spread Spectrum Systems: Optimal tracking of wideband signals - Code tracking I for FHSS - Optimum synchronization techniques - Synchronization using a matched filter - Synchronization by estimating the received spreading code. UNIT – V Performance of Spread Spectrum System: SS Systems communications models - Performance with coding under AWGN - spread spectrum systems performances with forward error correction - Block cod Convolutional coding and specific error correcting codes - Interleaving - Random coding bounds Tota REFERENCES:						
for FHSS - Optimum synchronization techniques - Synchronization using a matched filter - Synchronization by estimating the received spreading code. UNIT - V Performance of Spread Spectrum System: SS Systems communications models - Performance with coding under AWGN - spread spectrum systems performances with forward error correction - Block cod Convolutional coding and specific error correcting codes - Interleaving - Random coding bounds Tota REFERENCES:						9
by estimating the received spreading code. UNIT – V Performance of Spread Spectrum System: SS Systems communications models - Performance wit coding under AWGN - spread spectrum systems performances with forward error correction - Block cod Convolutional coding and specific error correcting codes - Interleaving - Random coding bounds Tota REFERENCES:						
UNIT – V Performance of Spread Spectrum System: SS Systems communications models - Performance with coding under AWGN - spread spectrum systems performances with forward error correction - Block cod Convolutional coding and specific error correcting codes - Interleaving - Random coding bounds Tota REFERENCES:			ched fi	ilter - S	Synch	ronization
Performance of Spread Spectrum System: SS Systems communications models - Performance with coding under AWGN - spread spectrum systems performances with forward error correction - Block cod Convolutional coding and specific error correcting codes - Interleaving - Random coding bounds Total REFERENCES:	by estimating	he received spreading code.				
Performance of Spread Spectrum System: SS Systems communications models - Performance with coding under AWGN - spread spectrum systems performances with forward error correction - Block cod Convolutional coding and specific error correcting codes - Interleaving - Random coding bounds Total REFERENCES:						
coding under AWGN - spread spectrum systems performances with forward error correction - Block cod Convolutional coding and specific error correcting codes - Interleaving - Random coding bounds Tota REFERENCES:			1 1	D C		9
Convolutional coding and specific error correcting codes - Interleaving - Random coding bounds Tota REFERENCES:						
Tota Tota						c coding -
REFERENCES:	Convolutional	coding and specific error correcting codes - Interleaving - Random	codin	g boun	ds	
						Total: 45
1. Ziemer R.E., Peterson R.L. and David E. Borth, "Introduction to Spread Spectrum Communications						
Edition, Published by Pearson Education Pvt. Ltd., 2005.						-+
2. Dr. Kamilo Feher, "Wireless Digital Communications - Modulation and Spread Spectrum Application	1. Ziemer R.	E., Peterson R.L. and David E. Borth, "Introduction to Spread Spe	ctrum	Comn	nunica	tions", 1 st
1 st Edition, Prentice Hall of India, 2009.	1. Ziemer R. Edition, P	E., Peterson R.L. and David E. Borth, "Introduction to Spread Spe ublished by Pearson Education Pvt. Ltd., 2005.				
3. Mosa Ali Abu-Rgheff, "Introduction to CDMA Wireless Communications", 1 st Edition, Elsevier 2007.	 Ziemer R Edition, P Dr. Kamil 	E., Peterson R.L. and David E. Borth, "Introduction to Spread Spe ublished by Pearson Education Pvt. Ltd., 2005. o Feher, "Wireless Digital Communications – Modulation and Spre				

COUR	COURSE OUTCOMES: BT Mapped							
On cor	On completion of the course, the students will be able to (Highe							
CO1:								
CO2:	ana	lyze the characte	ristics of spread	spectrum system	8		Analyzing (K4)	
CO3:	CO3: generate the spreading codes suitable for spread spectrum communication Creating (K6)							
CO4:	ana	lyze the synchro	nization techniq	ues used for sprea	ad spectrum syst	ems	Analyzing (K4)	
CO5: analyze the performance of spread spectrum system with and without channel Analyzing (K4)							Analyzing (K4)	
	Mapping of COs with POs							
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	
CO	1		2		3			
CO2	CO2 3 2 2							
CO3	CO3 3 3 3							
CO ₂	CO4 3 2 2							
COS	5	3		2	3			
1 - Sli	ght, 2	2 – Moderate,	3 – Substantial,	BT - Bloom's Ta	ixonomy			

18COE09 DSP PROCESSOR ARCHITECTURE AND PROGRAMMING

(Common to Communication Systems, VLSI Design & Embedded Systems branches)

		_	-	-	010410
		2	0	2	3
Preamble	To design the parameters of filters and implement it in real time	DSP h	ardwar	e.	
Prerequisites	Digital Signal Processing				

UNIT – I

Fundamentals of Programmable DSPs: Multiplier and Multiplier accumulator (MAC) – Modified Bus Structures and Memory access in Programmable DSPs – Multiple access memory – Multi-port memory – VLIW architecture- Pipelining – Special Addressing modes in P-DSPs – On chip Peripherals

UNIT – II

TMS320C54XX: Fundamentals of Programmable DSPs - Architecture of TMS320C54X-54X Buses-Memory organization-Computational Units-Pipeline operation-On-chip peripherals – Address Generation Units- Addressing modes and instruction set- assembly language instructions -Introduction to Code Composer studio

UNIT – III

TMS320C6X: Architecture of TMS320C6X – Computational units-Addressing modes –Memory architecture- pipeline operation- instruction set- assembly language instructions

UNIT – IV

Blackfin Processor(BF537): Architecture of BF537- Computational units - Internal Memory organization-System interrupts – Direct Memory Access- on-chip peripherals-ALU-MAC-DAG Units-Addressing modes-Assembly language instructions- Timers –Interrupts-Serial ports-UART-Simple programs

$\mathbf{UNIT} - \mathbf{V}$

Applications Using TMS320C54X/C6X/BF537: Program development - Software Development Tools- The Assembler and the Assembly Source File Filter design- Linker and Memory Allocation -DSP Software Development Steps- Speech Digitization-Encoding and Decoding-Image compression-Restoration-Adaptive Echo cancellation-Modulation

List of Experiments:

- 1. Basic Signal operations using 54x.
- 2. Convolution using c54x and c6713x
- 3. FIR and IIR filter using C6713
- 4. Basic operations and convolution using BF 537
- 5. Speech and Audio application development using BF537

REFERENCES / MANUALS / SOFTWARES:

- 1. Sen M. Kuo, Woon–Seng S. Gan, "Digital Signal Processors: Architecture, Implementation and Applications", 1st Edition, Prentice Hall, 2009.
- 2. Woon-Seng Gan, Sen M. Kuo, "Embedded Signal Processing with the Microsignal Architecture", John Wiley & Sons Inc. Publications, 2007.

6

Lecture: 30, Practical: 30, Total: 60

6

6

6

6

COUR	RSE	OUTCOMES:					B	T Mapped	
On con	nple	tion of the course	e, the students wi	ll be able to			(Hi	ghest Level)	
CO1:			epts of DSP proce				Unde	rstanding (K2)	
CO2:	app	ly programming	g concepts to de	evelop simple a	nd real time ap	plications	Ap	plying (K3)	
	programs using c54x processor								
CO3:							Ap	plying (K3)	
		ng c6x processor							
CO4:			g concepts to de	evelop simple a	ind real time ap	plications	Ap	plying (K3)	
	usir								
CO5:			ance of DSP proc			BF537		alyzing (K4)	
CO6:	den	nonstrate the con	cepts of DSP using	ng DSP processo	or			plying (K3),	
								ipulation (S2)	
CO7:	desi	ign digital filters	using DSP proce	essors				plying (K3),	
~ ~ ~ ~								ipulation (S2)	
CO8:	den	nonstrate speech/	audio applicatior	is using DSP pro	ocessor			Applying (K3),	
							Man	ipulation (S2)	
				pping of COs w		I			
COs/P		PO1	PO2	PO3	PO4	PO5		PO6	
CO		3				2			
CO2		3				3			
CO		3				3			
CO		3				3			
CO		3	3			3			
CO		3				3			
CO		3				3			
COS		3				3			
1 - Sli	ght, ź	2 - Moderate, 2	3 – Substantial,	BT - Bloom's T	axonomy				

18VLE12 NATURE INSPIRED OPTIMIZATION TECHNIQUES

(Common to VLSI Design, Communication Systems, Embedded Systems,

Computer Science and Engineering & Mechatronics branches)

		3	0	0	3
Preamble	To acquaint and familiarize with different types of optim	nizatio	n tech	niques	, solving
	optimization problems, implementing computational technique	es, abs	stractin	g matl	nematical
	results and proofs etc.				
Prerequisites	Linear algebra and Calculus				
TINITO T					0

UNIT – I

Introduction to Algorithms: Newton's Method – Optimization - Search for Optimality - No-Free-Lunch Theorems - Nature-Inspired Metaheuristics - Brief History of Metaheuristics. **Analysis of Algorithms:** Introduction - Analysis of Optimization Algorithms - Nature-Inspired Algorithms - Parameter Tuning and Parameter Control.

UNIT – II

Simulated Annealing: Annealing and Boltzmann Distribution - Parameters - SA Algorithm - Unconstrained Optimization - Basic Convergence Properties - SA Behavior in Practice - Stochastic Tunneling. **Genetic Algorithms** : Introduction - Genetic Algorithms - Role of Genetic Operators - Choice of Parameters - GA Variants - Schema Theorem - Convergence Analysis

UNIT – III

Particle Swarm Optimization: Swarm Intelligence - PSO Algorithm - Accelerated PSO – Implementation - Convergence Analysis - Binary PSO – Problems. **Cat Swarm Optimization:** Natural Process of the Cat Swarm - Optimization Algorithm – Flowchart - Performance of the CSO Algorithm.

UNIT – IV

TLBO Algorithm: Introduction - Mapping a Classroom into the Teaching-Learning-Based optimization – Flowchart- Problems. **Cuckoo Search:** Cuckoo Life Style - Details of COA – flowchart - Cuckoos' Initial Residence Locations - Cuckoos' Egg Laying Approach - Cuckoos Immigration - Capabilities of COA. **Bat Algorithms:** Echolocation of Bats - Bat Algorithms – Implementation - Binary Bat Algorithms - Variants of the Bat Algorithm - Convergence Analysis.

UNIT – V

Other Algorithms: Ant Algorithms - Bee-Inspired Algorithms - Harmony Search - Hybrid Algorithms.

Total: 45

REFERENCES:

- Xin-She Yang, "Nature-Inspired Optimization Algorithms", 1st Edition, Elsevier, 2014.
 Omid Bozorg-Haddad, "Advanced Optimization by Nature-Inspired Algorithms" Springer Volume 720, 2018.
- 3. Srikanta Patnaik, Xin-She Yang, Kazumi Nakamatsu, "Nature-Inspired Computing and Optimization Theory and Applications", Springer Series, 2017.

9

9

9

9

T P Credit

L

COUR	RSE OUTC	COMES:						Г Mapped	
On cor	npletion of	the course, the s	students will be	e able to			(Hig	ghest Level)	
CO1:	infer the b	asic concepts of	optimization to	echniques			Under	Understanding (K2)	
CO2: identify the parameter which is to be optimized for an application					Ana	Analyzing (K4)			
CO3:	analyze ar	d develop math	ematical model	of different op	timization algo	rithms	Ana	lyzing (K4)	
CO4:	select suit	able optimizatio	n algorithm for	a real time app	lication		Ap	olying (K3)	
CO5:	recommen	d solutions, ana	lyses, and limit	tations of model	S		Ana	lyzing (K4)	
			Mappir	ng of COs with	POs				
CC)s/POs	PO1	PO2	PO3	PO4	PC	D5	PO6	
(CO1	3	3	2	2	2	2	3	
(CO2			2	3	2	2		
(CO3			2	3	2	2		
(CO4 3 3		3	3					
(CO5			2	3	2	2		
1 - Sli	ght, 2 – Mc	oderate, 3 – Su	bstantial, BT -	- Bloom's Taxor	nomy	±			

		Т	Р	Credit
	3	0	0	3
Preamble	To demonstrate knowledge in basics of estimation and advanced topi	ics lik	ke Bl	LUE and
	maximum likelihood estimation techniques are covered.			
Prerequisites	Random Process Applications & Theory.			
UNIT – I				9
Introduction	and Minimum Variance Unbiased Estimation: Introduction - Es	stimati	ion i	n Signa
	The mathematical estimation problem – Assessing estimator performance – U			
– Minimum v	variance criterion - Existence of the minimum variance unbiased estimate	or – E	Exten	sion to a
vector paramet	ter.			
UNIT – II				9
Estimation – (Cramer Rao Lower Bound: Introduction – Estimator accuracy considera	tions -	– Cra	amer Rac
lower bound -	- General CRLB for signals in White Gaussian Noise - Transformation	on of	Para	meters -
Extension to a	vector parameter - CRLB for the general Gaussian case - Signal Processing	g exan	nples	
		<u> </u>	•	
UNIT – III				9
				2
Linear Mode	Is and General Minimum Variance Unbiased Estimation: Introductio	on – I	Defin	
				ition and
properties - I	Is and General Minimum Variance Unbiased Estimation: Introductio Linear model examples – Extensions to the Linear Model. Sufficient stics – using sufficiency to find the MVU estimator.			ition and
properties - I	Linear model examples – Extensions to the Linear Model. Sufficient			ition and
properties – I sufficient statis UNIT – IV	Linear model examples – Extensions to the Linear Model. Sufficient stics – using sufficiency to find the MVU estimator.	statist	tics -	ition and – finding
properties – I sufficient statis UNIT – IV	Linear model examples – Extensions to the Linear Model. Sufficient	statist	tics -	ition and – finding
properties – I sufficient statis UNIT – IV Best Linear U	Linear model examples – Extensions to the Linear Model. Sufficient stics – using sufficiency to find the MVU estimator.	statist	tics -	ition and – finding
properties – I sufficient statis UNIT – IV Best Linear U	Linear model examples – Extensions to the Linear Model. Sufficient stics – using sufficiency to find the MVU estimator. Unbiased Estimators (BLUE): Introduction – definition of the BLUE – F	statist	tics -	ition and – finding 9
properties – I sufficient statis UNIT – IV Best Linear U	Linear model examples – Extensions to the Linear Model. Sufficient stics – using sufficiency to find the MVU estimator. Unbiased Estimators (BLUE): Introduction – definition of the BLUE – F	statist	tics -	ition and – finding
properties – I sufficient statis UNIT – IV Best Linear U Extension to a UNIT – V	Linear model examples – Extensions to the Linear Model. Sufficient stics – using sufficiency to find the MVU estimator. Unbiased Estimators (BLUE): Introduction – definition of the BLUE – F	statist Finding	g the	ition and – finding BLUE –
properties – I sufficient statis UNIT – IV Best Linear U Extension to a UNIT – V Maximum Li	Linear model examples – Extensions to the Linear Model. Sufficient stics – using sufficiency to find the MVU estimator. Unbiased Estimators (BLUE): Introduction – definition of the BLUE – F vector parameter – Signal Processing examples. ikelihood Estimation (MLE): Introduction – Example illustration – fi	statist Finding	g the	ition and – finding BLUE – BLUE – 9 MLE –
properties – I sufficient statis UNIT – IV Best Linear U Extension to a UNIT – V Maximum Li Properties of	Linear model examples – Extensions to the Linear Model. Sufficient stics – using sufficiency to find the MVU estimator. Unbiased Estimators (BLUE): Introduction – definition of the BLUE – F vector parameter – Signal Processing examples.	statist Finding	g the	ition and – finding BLUE – BLUE – 9 MLE –
properties – I sufficient statis UNIT – IV Best Linear U Extension to a UNIT – V Maximum Li Properties of	Linear model examples – Extensions to the Linear Model. Sufficient stics – using sufficiency to find the MVU estimator. Unbiased Estimators (BLUE): Introduction – definition of the BLUE – F vector parameter – Signal Processing examples. ikelihood Estimation (MLE): Introduction – Example illustration – fi the MLE – MLE for Transformed Parameters – Numerical determinat	statist Finding	g the	ition and – finding BLUE – BLUE – 9 MLE –
properties – I sufficient statis UNIT – IV Best Linear U Extension to a UNIT – V Maximum Li Properties of	Linear model examples – Extensions to the Linear Model. Sufficient stics – using sufficiency to find the MVU estimator. Unbiased Estimators (BLUE): Introduction – definition of the BLUE – F vector parameter – Signal Processing examples. ikelihood Estimation (MLE): Introduction – Example illustration – fr the MLE – MLE for Transformed Parameters – Numerical determinat vector parameter – Signal Processing examples.	statist Finding	g the	ition and – finding BLUE - BLUE - MLE - MLE -
properties – I sufficient statis UNIT – IV Best Linear U Extension to a UNIT – V Maximum Li Properties of Extension to a REFERENCE	Linear model examples – Extensions to the Linear Model. Sufficient stics – using sufficiency to find the MVU estimator. Unbiased Estimators (BLUE): Introduction – definition of the BLUE – F vector parameter – Signal Processing examples. ikelihood Estimation (MLE): Introduction – Example illustration – fr the MLE – MLE for Transformed Parameters – Numerical determinat vector parameter – Signal Processing examples.	statist Finding Finding	g the g the f the	ition and findin BLUE BLUE MLE MLE Total: 4

Prentice Hall Signal Processing Series, Upper Saddle River, NJ 1998.
2. Harry L. Van Trees, "Detection, Estimation, and Modulation Theory", 2nd Edition, John Wiley & Sons, 2013.

Vincent Poor H., "An Introduction to Signal Detection and Estimation", 2nd Edition, Springer, 1994.

1	RSE OUTC							Mapped		
On co		the course, the					(Hig	hest Level)		
CO1:	analyze m	inimum varianc	e unbiased appi	roach to estimat	ion		Analyzing (K4)			
CO2:	analyze th	e role of Crame	ole of Cramer Rao lower bound in estimation					Analyzing (K4)		
CO3:	demonstra	te knowledge ir	linear models	for estimation			App	lying (K3)		
CO4:	analyze be	est linear unbias	ed estimators (H	BLUE)			Anal	yzing (K4)		
CO5:						Anal	yzing (K4)			
			Mappir	ng of COs with	POs					
CC	Os/POs	PO1	PO2	PO3	PO4	PO	95	PO6		
(CO1	3								
(CO2	3								
CO3						3				
(CO4					3				
(CO5	3								
1 – Sli	ight, 2 – Mo	oderate, 3 – Su	bstantial, BT -	– Blooms Taxor	nomy					

	18COE11 MICROWAVE INTEGRATED CIRCUIT	_		F	<u>a</u>
	-	L	Т	Р	Credit
		3	0	0	3
Preamble	To design and fabricate microstrip components in the field of w	vireles	s com	munic	ation like
	satellite communications and mobile applications.				
Prerequisites	Microwave Engineering				
UNIT – I					9
Microstrip Co	omponents: Introduction, Fabrication process of MMIC, Hybrid	MIC	s, Prop	agatir	ng modes
Directional con	uplers, branch line couplers, Microstrip circulators, Phase shifters, I	solato	rs. Intr	oduct	ion to slo
	nar wave guide, Introduction to coupled Microstrip.				
1					
UNIT – II					9
	ne Analysis: Analysis of MIC by conformal transformation, Hyb	rid m	ode an	alvsis	
	troduction to slot line and coplanar wave guide., Even and odd				
	Lumped elements for MICs, Comparison with distributed circuits F				
nserts.	Europed cicinents for writes, comparison with distributed circuits r	CITOII	lagneti	c subs	trates and
1150115.					
UNIT – III					9
	tability and asin analysis matching tashnisyas, maatiyaly match			daala	
-	tability and gain analysis, matching techniques, reactively match	leu an	ipiniei	desig	gii, Powe
amplifier, LNA	<u>1.</u>				
	1				
UNIT – IV					. 9
	nd Mixers: Oscillators: Design principles, active device CAD		-		0 0
	ign, phase noise, MMIC_VCO, mixers-Analysis of mixer circuits	s-Dio	le mix	ers-A	ctive FET
Mixers.					
					,
UNIT – V					9
Integrated Ar	ntennas and Microwave Measurement Techniques: Integrated	anten	na sele	ection,	photoni
oand gap ant	ennas, micro machined antenna, micro electro mechanical systematical systematicas systematical systematicas	stem	antenn	las, n	nicrowave
measurements	test fixture measurements, probe station measurements, thermal ar	nd cry	ogenic	meas	urements
	ield probing techniques.	5	C		
1					Total: 4
REFERENCE	ES:				
	r Goyal, "Monolithic MIC; Technology and Design", Artech House.	1989)		
	n I.D. and Lucyszyn S., "RFIC and MMIC Design and Technolog			on of	Flectrica
		5у, П	isututi		Licence

- Engineers, 2001. Gupta K.C. and Amarjit Singh, "Microwave Integrated Circuits", John Wiley, New York, 1975. 3.

COURSE OUT							Г Mapped	
On completion of	the course, the	students will be	e able to			(Hig	ghest Level)	
CO1: apply the	passive compon	ents for MIC				Ap	Applying(K3)	
CO2: analyze the different modes in MIC					Ana	lyzing (K4)		
CO3: analyze th	e stability, gain	and impedance	e matching techn	iques of amplif	ïers	Ana	lyzing (K4)	
CO4: analyze th	e diode mixer a	nd active FET	mixer circuits			Ana	lyzing (K4)	
CO5: evaluate t	he radiation cha	racteristics of in	ntegrated antenn	as in MIC		Eva	luating(K5)	
		Mappi	ng of COs with	POs				
COs/POs	PO1	PO2	PO3	PO4	PC	D5	PO6	
CO1	2		3				2	
CO2	2		3				2	
CO3	3 3]]	l	3			
CO4	3		3				3	
CO5	3		3		3		3	
1 - Slight, 2 - Mo	oderate, 3 – Su	bstantial, BT	– Blooms Taxor	nomy				

	18COE12 RF SYSTEM DESIGN	F	T	
		T 0	<u>Р</u> 0	Credit 3
Preamble		v	v	•
Preamble	To provide strong fundamentals in the area of RF passive circuit design Both circuit and system level perspective will be addressed, supported by			•
	techniques, modeling of passive components and resonant circuits.	y imped	lance	matching
Prerequisites	Analog and Digital Communication and Linear Integrated Circuits			
UNIT – I	Analog and Digital Communication and Enical Integrated Circuits			9
	cs, Transceiver Specifications and Architectures: CMOS: Introduction to	o MOS	SFET	-
	al, shot, flicker, popcorn noise transceviver Specifications: Two port Noise			
	P3, Sensitivity, SFDR, Phase noise - Specification distribution over a	-		-
	rchitectures: Receiver: Homodyne, Heterodyne, Image reject, Low IF Archi			
Direct upconv	ersion, Two step up conversion.			
UNIT – II				9
Impedance M	Iatching and Amplifiers: S- parameters with Smith chart, Passive IC con	nponen	ts - Ii	mpedance
	vorks, Amplifiers: Common Gate, Common Source Amplifiers – OC Time c			
estimation and	l enhancement – High frequency amplifier design, Low Noise Amplifiers: Po	ower m	natch a	and Noise
			iateri e	
match – Single	e ended and Differential LNAs - Terminated with Resistors and Source Deg			
match – Single	e ended and Differential LNAs – Terminated with Resistors and Source Deg			
match – Single	e ended and Differential LNAs – Terminated with Resistors and Source Deg			
UNIT – III Feedback Sys	stems and Power Amplifiers: Feedback Systems: Stability of feedback systems	stems:	on LN Gain a	VAs. 9 and phase
UNIT – III Feedback Sys margin, Root-J	stems and Power Amplifiers: Feedback Systems: Stability of feedback systems techniques – Time and Frequency domain considerations Compensations	stems:	on LN Gain a	VAs. 9 and phase
UNIT – III Feedback Sys margin, Root-J	stems and Power Amplifiers: Feedback Systems: Stability of feedback systems	stems:	on LN Gain a	VAs. 9 and phase
UNIT – III Feedback Sys margin, Root-J Amplifiers: Ge	stems and Power Amplifiers: Feedback Systems: Stability of feedback systems techniques – Time and Frequency domain considerations Compensations	stems:	on LN Gain a	VAs. 9 and phase es- Power
UNIT – III Feedback Sys margin, Root-J Amplifiers: Ge UNIT – IV	stems and Power Amplifiers: Feedback Systems: Stability of feedback systems techniques – Time and Frequency domain considerations Compensationer and Brequency and F amplifiers – ACPR metric.	stems: (on Tecl	on LN Gain a hnique	VAs. 9 and phase es- Power 9
UNIT – III Feedback Sys margin, Root-J Amplifiers: Ge UNIT – IV PLL and Free	stems and Power Amplifiers: Feedback Systems: Stability of feedback systems and Power Amplifiers: Feedback Systems: Stability of feedback systems techniques – Time and Frequency domain considerations Compensationer and model – Class A, AB, B, C, D, E and F amplifiers – ACPR metric.	stems: (on Tech detector	on LN Gain a hnique	VAs. 9 and phase es- Power 9 pop filters
UNIT – III Feedback Sys margin, Root-I Amplifiers: Ge UNIT – IV PLL and Free and Charge p	stems and Power Amplifiers: Feedback Systems: Stability of feedback systems techniques – Time and Frequency domain considerations Compensationer and Brequency and F amplifiers – ACPR metric.	stems: (on Tech detector	on LN Gain a hnique	VAs. 9 and phase es- Power 9 pop filters
UNIT – III Feedback Sys margin, Root-J Amplifiers: Ge UNIT – IV PLL and Free and Charge p	stems and Power Amplifiers: Feedback Systems: Stability of feedback systems and Power Amplifiers: Feedback Systems: Stability of feedback systems techniques – Time and Frequency domain considerations Compensationer and model – Class A, AB, B, C, D, E and F amplifiers – ACPR metric.	stems: (on Tech detector	on LN Gain a hnique	VAs. 9 and phase es- Power 9 pop filters
UNIT – III Feedback Sys margin, Root-J Amplifiers: Ge UNIT – IV PLL and Free and Charge p synthesizers.	stems and Power Amplifiers: Feedback Systems: Stability of feedback systems and Power Amplifiers: Feedback Systems: Stability of feedback systems techniques – Time and Frequency domain considerations Compensationer and model – Class A, AB, B, C, D, E and F amplifiers – ACPR metric.	stems: (on Tech detector	on LN Gain a hnique	VAs. 9 and phase es- Power 9 oop filters Frequency
UNIT – III Feedback Sys margin, Root-J Amplifiers: Ge UNIT – IV PLL and Free and Charge p synthesizers. UNIT – V	stems and Power Amplifiers: Feedback Systems: Stability of feedback systems and Power Amplifiers: Feedback Systems: Stability of feedback systems and Feedback Systems and Feedback and Feedback systems and Feedback and Feedback and Feedback systems and Feedback and Feedback and Feedback Systems and Feedback and Feedb	stems: (on Tecl detector	on LN Gain a hnique rs –Le gital F	VAs. 9 and phase es- Power 9 oop filters Frequency 9
UNIT – III Feedback Sys margin, Root-J Amplifiers: Ge UNIT – IV PLL and Free and Charge p synthesizers. UNIT – V Mixer: Charac	stems and Power Amplifiers: Feedback Systems: Stability of feedback systems and Power Amplifiers: Feedback Systems: Stability of feedback systems and Frequency domain considerations Compensationer and Four and	stems: (on Tech detector ect Dig	on LN Gain a hnique rs –Lc gital F Single	VAs. 9 and phase es- Power 9 oop filters Frequency 9 balanced
UNIT – III Feedback Sys margin, Root-J Amplifiers: Ge UNIT – IV PLL and Free and Charge p synthesizers. UNIT – V Mixer: Charae and double ba	stems and Power Amplifiers: Feedback Systems: Stability of feedback systems and Power Amplifiers: Feedback Systems: Stability of feedback systems and Feedba	stems: (on Tech detector ect Dig	on LN Gain a hnique rs –Lc gital F Single	VAs. 9 and phase es- Power 9 oop filters Frequency 9 balanced
UNIT – III Feedback Sys margin, Root-J Amplifiers: Ge UNIT – IV PLL and Free and Charge p synthesizers. UNIT – V Mixer: Charac and double ba	stems and Power Amplifiers: Feedback Systems: Stability of feedback systems and Power Amplifiers: Feedback Systems: Stability of feedback systems and Frequency domain considerations Compensationer and Four and	stems: (on Tech detector ect Dig	on LN Gain a hnique rs –Le gital F Single ts osc	VAs. 9 and phase es- Power 9 0 op filters Frequency 9 balanced cillators –
UNIT – III Feedback Sys margin, Root-J Amplifiers: Ge UNIT – IV PLL and Free and Charge p synthesizers. UNIT – V Mixer: Charac and double ba Resonators – T	stems and Power Amplifiers: Feedback Systems: Stability of feedback systems and Power Amplifiers: Feedback Systems: Stability of feedback systems and Fequency domain considerations Compensation eneral model – Class A, AB, B, C, D, E and F amplifiers – ACPR metric. quency Synthesizers: PLL: Linearised Model – Noise properties – Phase of powers Frequency Synthesizers: Integer-N frequency synthesizers – Directeristics – Non-linear based mixers: Quadratic mixers – Multiplier based malanced mixers – subsampling mixers, Oscillators: Describing Functions, Funed Oscillators – Negative resistance oscillators – Phase noise.	stems: (on Tech detector ect Dig	on LN Gain a hnique rs –Le gital F Single ts osc	VAs. 9 and phase es- Power 9 oop filters Frequency 9 balanced
UNIT – III Feedback Sys margin, Root-I Amplifiers: Ge UNIT – IV PLL and Free and Charge p synthesizers. UNIT – V Mixer: Charac and double ba Resonators – 7 REFERENCI	stems and Power Amplifiers: Feedback Systems: Stability of feedback systems and Power Amplifiers: Feedback Systems: Stability of feedback systems compensation considerations Compensation energy model – Class A, AB, B, C, D, E and F amplifiers – ACPR metric. quency Synthesizers: PLL: Linearised Model – Noise properties – Phase of powers Frequency Synthesizers: Integer-N frequency synthesizers – Directeristics – Non-linear based mixers: Quadratic mixers – Multiplier based malanced mixers – subsampling mixers, Oscillators: Describing Functions, Funed Oscillators – Negative resistance oscillators – Phase noise.	enerati stems: (on Tecl detector ect Dig	on LN Gain a hnique rs –Lo gital F Single ts osc	VAs. 9 and phase es- Power 9 pop filters Frequency 9 balanced cillators – Total: 45
UNIT – III Feedback Sys margin, Root-I Amplifiers: Ge UNIT – IV PLL and Free and Charge p synthesizers. UNIT – V Mixer: Charac and double ba Resonators – 7 REFERENCI	stems and Power Amplifiers: Feedback Systems: Stability of feedback systems: locus techniques – Time and Frequency domain considerations Compensationer and model – Class A, AB, B, C, D, E and F amplifiers – ACPR metric. quency Synthesizers: PLL: Linearised Model – Noise properties – Phase comps Frequency Synthesizers: Integer-N frequency synthesizers – Directeristics – Non-linear based mixers: Quadratic mixers – Multiplier based malanced mixers – subsampling mixers, Oscillators: Describing Functions, Funed Oscillators – Negative resistance oscillators – Phase noise. ES: H., "Design of CMOS RF Integrated Circuits", 2 nd Edition, C	enerati stems: (on Tecl detector ect Dig	on LN Gain a hnique rs –Lo gital F Single ts osc	VAs. 9 and phase es- Power 9 pop filters Frequency 9 balanced cillators – Total: 45
UNIT – III Feedback Sys margin, Root-I Amplifiers: Ge UNIT – IV PLL and Free and Charge p synthesizers. UNIT – V Mixer: Charac and double ba Resonators – T REFERENCI 1. Lee T.H Press, 20	stems and Power Amplifiers: Feedback Systems: Stability of feedback systems and Power Amplifiers: Feedback Systems: Stability of feedback systems compensation of the system of the syst	enerati stems: (on Tecl detector ect Dig ixers: S Colpit	on LN Gain a hnique rs –Le gital F Single ts osc	VAs. 9 and phase es- Power 9 poop filters Frequency 9 balanced cillators – Total: 45 Jniversity
UNIT – III Feedback Sys margin, Root-J Amplifiers: Ge UNIT – IV PLL and Free and Charge p synthesizers. UNIT – V Mixer: Charac and double ba Resonators – T REFERENCI 1. Lee T.H Press, 20	stems and Power Amplifiers: Feedback Systems: Stability of feedback systems: locus techniques – Time and Frequency domain considerations Compensationer and model – Class A, AB, B, C, D, E and F amplifiers – ACPR metric. quency Synthesizers: PLL: Linearised Model – Noise properties – Phase composes Frequency Synthesizers: Integer-N frequency synthesizers – Directeristics – Non-linear based mixers: Quadratic mixers – Multiplier based malanced mixers – subsampling mixers, Oscillators: Describing Functions, Funed Oscillators – Negative resistance oscillators – Phase noise. ES: H., "Design of CMOS RF Integrated Circuits", 2 nd Edition, C 04. s and Michiel Steyaert, "CMOS Wireless Transceiver Design", 1 st Edition	enerati stems: (on Tecl detector ect Dig ixers: S Colpit	on LN Gain a hnique rs –Le gital F Single ts osc	VAs. 9 and phase es- Power 9 poop filters Frequency 9 balanced cillators – Total: 45 Jniversity

	RSE OUTC							Mapped
On con	mpletion of	the course, the	students will be	e able to			(Hig	hest Level)
CO1:	compare t	he performance	of homodyne a	nd heterodyne t	ransceiver		Eval	uating (K5)
CO2:	design inp	out and output n	naterials microv	wave and analy	ze the performation	ance of	Cre	ating (K6)
	single end	ended and double ended LNF						
CO3:							Ana	lyzing (K4)
CO4:	model the	PLL and desig	n the frequency	y synthesizer			Cre	ating (K6)
CO5:	analyze th	e characteristics	of mixers and	design the RF c	arrier oscillatio	ns	Ana	lyzing (K4)
			Марріі	ng of COs with	POs			
CC	Os/POs	PO1	PO2	PO3	PO4	PC)5	PO6
(CO1		3		3			
(CO2	3		3	3			
(CO3 3							
(CO4	3 3 2						
(CO5	3		3	3			
1 - Sli	ight, 2 – Mo	oderate, 3 – Su	bstantial, BT	– Blooms Taxor	nomy	4	I	

18COE13 DIGITAL IMAGE PROCESSING AND MULTI RESOLUTION ANALYSIS

(Common to Communication Systems, Mechatronics, Information Technology & Applied Electronics branches)

		3	0	0	3
Preamble	To analyze the images in frequency domain and to perfo	rm va	rious	operat	ions like
	enhancement, Restoration, Compression, Registration and Multi	resolut	tion an	alysis.	
Prerequisites	Digital Signal Processing				
UNIT – I					9

Image Transforms: Orthogonal transforms - FT, DST, DCT, Hartley, Walsh hadamard, Haar, Radon, Slant Wavelet, KL, SVD and their properties.

UNIT – II

Image Enhancement and Restoration: Image enhancement - Point operations - contrast stretching clipping and thresholding - digital negative intensity level slicing - bit extraction. Histogram processing histogram equalisation -modification. Spatial operations – smoothing spatial filters, sharpening spatial filters. Transform operations. Color image enhancement. Image Restoration - degradation model, Noise models, Unconstrained and Constrained restoration, Inverse filtering - removal of blur caused by uniform linear motion, Wiener filtering, Restoration by SVD and Homomorphic filtering

UNIT – III

Image Compression: Image Compression – Need for data compression – Run length encoding – Huffman coding – Arithmetic coding – predictive coding- transform based compression, - vector quantization – block truncation coding. Image Segmentation: Point, Edge and line detection -thresholding-Region based approach Image Representation: boundary based – region based and intensity based description

UNIT - IV

Registration and Multivalued Image Processing: Registration – geometric transformation – registration by mutual information Mutivalued image processing - colour image processing - colour image enhancementsatellite image processing- radiometric correction – other errors- multi spectral image enhancement- medical image processing - image fusion.

UNIT - V

Wavelets and Multiresolution Processing: Image Pyramids – Subband coding – The Haar Transform – Multiresolution Expansion – Series Expansion – Scaling Function – Wavelet Function – Wavelet Transform in One Dimension- The Wavelet Series Expansion - The Discrete Wavelet Transform - The Continuous Wavelet Transform - The Fast Wavelet Transform - Wavelet transform in two dimensions- Applications in image denoising and compression.

	10tal: 45
RE	FERENCES:
1.	Gonzalez Rafel C. and Woods Richard E., "Digital Image Processing", 4th Edition, Prentice Hall, New
	York, 2017.
2.	Chanda B., Dutta Majumder D., "Digital Image Processing and Analysis", 2 nd Edition, PHI Learning,
	2011.
3.	Abdeljalil Ouahabi, "Signal and Image Multiresolution Analysis", John Wiley & Sons, 2012.
4.	Rosenfield Azriel and Kak Avinash C., "Digital Picture Processing", 2 nd Edition, Academic Press Inc.,
	New York, 1982.

9

9

Total: 45

9

9

T P

L

Credit

COU	RSE OUTC	COMES:					BT Mapped	
On con	mpletion of	the course, the s	students will be	able to			(Highest Level)	
CO1:								
CO2:	CO2: model the systems to enhance and restore the image optimally Applying (K3)							
CO3:								
CO4:	apply the o	concepts of regi	stration to fuse	images of vario	ous modalities		Applying (K3)	
CO5:	analyze th	e images in one	dimension and	two dimension	simultaneously		Analyzing (K4)	
			Mappin	ng of COs with	POs			
CC	Ds/POs	PO1	PO2	PO3	PO4	PO5	PO6	
(CO1	3	1					
(CO2	3	2			2		
(CO3 3 2 2				2			
(CO4 3		2			2	1	
(CO5 3		3 2		2	1		
1 - Sli	ght, 2 – Mo	oderate, 3 – Su	bstantial, BT -	- Blooms Taxo	nomy			

18COE14 INDUSTRIAL DATA COMMUNICATION

Т

L

Р

Credit

9

9

9

9

9

Total: 45

(Common to Communication Systems & Mechatronics branches)

		3	0	0	3	
Preamble	To appreciate industrial control protocol and layers involved in it	and us	se suita	ıble pr	otocol	
	for various conditioning methods					
Duene guiaites	Computer Communication Networks, Windows Networks					

Prerequisites Computer Communication Networks, Wireless Networks

UNIT – I

Modbus: Modbus-Overview, protocol structure, Modbus troubleshooting – common problems-detailed troubleshooting: Modbus plus-protocol overview, common problems/faults-detailed troubleshooting. Modbus II-protocol architecture.

UNIT – II

DNP 3 and IEC 60870-5: DNP 3-Overview, physical layer, data link layer, transport layer, application layer; IEC 60870-5 – standard-protocol architecture, physical layer, data link layer, application layer

UNIT – III

Industrial Ethernet: 10Mbps Ethernet - Medium-access-control – signalling - Frame-format, transmission - reception. 802.2LLC- 100Mbps - Media-access – Autonegotiation – Industrial - Ethernet troubleshooting.

UNIT – IV

AS-Interface and Devicenet: As-interface-overview, physical layer, data link layer-Device Net-physical layer, data link layer, application layer.

UNIT – V

Data Highway Plus and HART: Data highway plus (DH 485)-overview; HART-protocol overview, physical layer, data link layer and application layer

REFERENCES:

1.	Deon Reynders, Steve Mackay and Edvin Wright, "Practical Industrial Data Communication: Best
	Practice Technique", 1 st Edition, Elsevier, 2005.
2.	Deon Reynders, Steve Mackay and Edvin, "Practical Industrial Data Network Design and Installation",
	1 st Edition, Elsevier, 2004.
2	

3. https://www.moxa.com/doc/man/Industrial_Protocols_Users_Guide_6e.pdf

COUF	RSE OUTC	COMES:					BJ	Mapped	
On con	n completion of the course, the students will be able to O1: apply the concepts of Modbus used in modern data communication							hest Level)	
								olying (K3)	
CO2:	CO2: apply industry standard communication protocol for various conditioning methods						g Applying (K3)		
CO3:							Ana	lyzing (K4)	
CO4:	examine n	eed for AS-inte	rface and its var	rious layers		ĺ	Ana	lyzing (K4)	
CO5:	implemen	nt Data Highway	/ plus and HAR	T protocol in in	Idustry		App	Applying (K3)	
			Mappir	ng of COs with	POs				
CC	Os/POs	PO1	PO2	PO3	PO4	PC)5	PO6	
(CO1	3	3					2	
(CO2			3	3	3	5	3	
(CO3		3						
(CO4 3								
(CO5		3		3				
1 - Sli	ght, 2 – Mc	oderate, 3 – Su	ıbstantial BT –	- Blooms Taxon	iomy				

18COE15 WIRELESS SYSTEMS AND STANDARDS Т L Р Credit 0 3 0 3 To focus on various wireless standards and systems applicable to random access techniques. Preamble Prerequisites Wireless Networks UNIT – I 9 Wireless Systems: Global System for Mobile Communication - Frequency Bands and Channels - Frames -Identity Numbers - Layers, Planes and Interfaces of GSM - International Mobile Telecommunications (IMT-2000) - Spectrum Allocation - Services provided by 3G Cellular Systems - Harmonized 3G Systems. UNIT – II 9 The IEEE 802.11 Standard: Introduction to IEEE 802.11 – General Description – Medium Access Control (MAC) for the IEEE 802.11 Wireless LANs - Physical Layer for IEEE 802.11 Wireless LANs; Radio systems – Physical Layer for IEEE 802.11 Wireless LANs – IR Systems – Conclusions and Applications. UNIT – III 9 The HIPERLAN Standard: Introduction - Terminology – Physical Layer -HIPERLAN Channel access Control (CAC) - HIPERLAN Medium Access Control (MAC) - Conclusions on HIPERLAN Type 1 -Future Brand Standards. UNIT - IV9

Future Standard and Trends: The Evolution of HIPERLAN – The Evolution of IEEE 802.11 – Forthcoming IR Standards – Other RF Standards: Digital Enhanced Cordless Technology (DECT) –Bluetooth – Wireless ATM (WATM) – Home RF.

UNIT – V

Recent Advances: Introduction – Ultra Wide Band (UWB) Technology – Characteristics – Signal Propagation – Current Status and Applications – Advantages – Disadvantages – Challenges and Future Directions.

Total: 45

9

REI	TERENCES:
1.	Assuncion Santamaria, Francisco Lopez-Hernandez, "Wireless LAN Standards and
	Applications", Artech House, 2001.
2.	Dharma Prakash Agarwal and Qing-Anzeng, "Introduction to Wireless and Mobile Systems", 3rd
	Edition,
	Vikas Publishing House, New Delhi, 2010.
3.	Neeli Prasad and Anand Prasad, "WLAN System and Wireless IP for Next Generation
	Communications", 1 st Edition, Artec House, 2002.

COURS	SE OUTC	OMES:					B	Г Mapped		
On com	pletion of	the course, the	students will be	e able to			(Hig	ghest Level)		
CO1: i	CO1: interpret the physical layer functionalities of baseband signaling schemes for							Applying (K3)		
5	global system for mobile communication									
CO2: a										
CO3: a								lyzing (K4)		
CO4: a								lyzing (K4)		
CO5: a	apply the r	ecent advances	in UWB techno	ology			Ap	plying (K3)		
			Марріі	ng of COs with	POs					
COs	/POs	PO1	PO2	PO3	PO4	PC	D5	PO6		
CO	01	2			3	2	2	2		
CO	02	3	2		2	3	3	2		
CO	CO3 3 1		2	1		2				
CO4 2		2		3]	l	•		
CO	05	3		2		2	2	2		
1 – Sligl	ht, 2 – Mo	derate, 3 – Su	bstantial, BT	– Blooms Taxor	nomy					

	L	Т	Р	Credit
	3	0	0	3
Preamble	This course will cover the most recent research topics in satellite naviga	tional	system	s. Topics
	such as receiver processing, propagation impact, GLONASS, GALILEO	, BEID	OU, (QZSS and
	IRNSS satellite systems are precisely covered.			
Prerequisites	Satellite Communication			
UNIT – I				9
	and Satellite Signals: Satellite revolution, principle of satellite navigation heric Propagation, Satnav Signal Characteristics, Satellite Navigation Signal			11
UNIT – II				9
Receiver Proc	essing, Error Sources and Characterization: Correlator Output SNR, Ef	fective	C/N0	, And I/S
	and Error Characterization			,
UNIT – III				
UNIT – III Satellite Nav	igation Systems: GPS History and Plans, GPS Description, Satellite	-Based	Aug	
Satellite Nav	igation Systems: GPS History and Plans, GPS Description, Satellite NASS, GALILEO, BEIDOU SYSTEM, QZSS, IRNSS	-Based	Aug	mentation
Satellite Nav		-Based	Aug	
Satellite Nav Systems, GLO		-Based	Aug	mentatio
Satellite Nav Systems, GLO UNIT – IV				mentatio
Satellite Nav Systems, GLO UNIT – IV	NASS, GALILEO, BEIDOU SYSTEM, QZSS, IRNSS			mentation
Satellite Nav Systems, GLO UNIT – IV Receiver Proc	NASS, GALILEO, BEIDOU SYSTEM, QZSS, IRNSS			mentation
Satellite Nav Systems, GLO UNIT – IV Receiver Proc	NASS, GALILEO, BEIDOU SYSTEM, QZSS, IRNSS			mentation
Satellite Nav Systems, GLO UNIT – IV Receiver Pro- and time calcu UNIT – V	NASS, GALILEO, BEIDOU SYSTEM, QZSS, IRNSS	ing, po	osition	mentation , velocity
Satellite Nav Systems, GLO UNIT – IV Receiver Pro- and time calcu UNIT – V Specialized T	NASS, GALILEO, BEIDOU SYSTEM, QZSS, IRNSS	ing, po	osition	mentation , velocity
Satellite Nav Systems, GLO UNIT – IV Receiver Pro- and time calcu UNIT – V Specialized T	NASS, GALILEO, BEIDOU SYSTEM, QZSS, IRNSS cessing: Receiver front end architecture and frequency plans, Code track lation Copics: Interference, multipath, augmentations using differential satellite	ing, po	osition	, velocity
Satellite Nav Systems, GLO UNIT – IV Receiver Pro- and time calcu UNIT – V Specialized T satellite naviga REFERENCI	NASS, GALILEO, BEIDOU SYSTEM, QZSS, IRNSS	ing, po e navi	osition	mentation , velocity , assisted Total: 4
Satellite Nav Systems, GLO UNIT – IV Receiver Pro- and time calcu UNIT – V Specialized T satellite naviga REFERENCI	NASS, GALILEO, BEIDOU SYSTEM, QZSS, IRNSS cessing: Receiver front end architecture and frequency plans, Code track lation Copics: Interference, multipath, augmentations using differential satellite ation, integrated receiver processing	ing, po e navi	osition	mentation , velocity , assisted Total: 4
Satellite Nav Systems, GLO UNIT – IV Receiver Pro- and time calcu UNIT – V Specialized T satellite naviga REFERENCI	NASS, GALILEO, BEIDOU SYSTEM, QZSS, IRNSS cessing: Receiver front end architecture and frequency plans, Code track lation Copics: Interference, multipath, augmentations using differential satellite ation, integrated receiver processing ES: Betz, "Engineering Satellite-Based Navigation and Timing," 1 st Edition	ing, po e navi	osition	mentation , velocity , assisted Total: 4
Satellite Nav Systems, GLO UNIT – IV Receiver Pro- and time calcu UNIT – V Specialized T satellite naviga REFERENCI 1. John W. Publisher	NASS, GALILEO, BEIDOU SYSTEM, QZSS, IRNSS cessing: Receiver front end architecture and frequency plans, Code track lation Copics: Interference, multipath, augmentations using differential satellite ation, integrated receiver processing ES: Betz, "Engineering Satellite-Based Navigation and Timing," 1 st Edition	ing, po e navi , John	osition gation Wiley	mentation , velocity , assisted Total: 4: y & Son
Satellite Nav Systems, GLO UNIT – IV Receiver Proo and time calcu UNIT – V Specialized T satellite naviga REFERENCI 1. John W. Publisher 2. Kaplan H House, 2	NASS, GALILEO, BEIDOU SYSTEM, QZSS, IRNSS cessing: Receiver front end architecture and frequency plans, Code track lation Copics: Interference, multipath, augmentations using differential satellite ation, integrated receiver processing ES: Betz, "Engineering Satellite-Based Navigation and Timing," 1 st Edition ; 2015. E.D. and Hegarty C., "Understanding GPS: Principles and Applications"	ing, po e navi , John ", 2 nd	osition gation Wiley Editio	mentation , velocity , assisted Total: 4: y & Son

COU	RSE OUTC	COMES:					B	Г Mapped	
On con	mpletion of	the course, the s	students will be	e able to			(Hig	ghest Level)	
CO1:	apply the	knowledge obta	ined in the sat	ellite navigation	n signal charact	eristics	Ap	olying (K3)	
	and the effects of Doppler and of Ionospheric Propagation								
CO2:									
CO3:	compare the current Satellite Navigation Systems Understanding (K2)								
CO4:	analyze th	e satellite navig	gation signal p	rocessing in the	e receivers in te	erms of	Ana	lyzing (K4)	
	time, velo	city and positior	a calculation						
CO5:	analyze th	e effect of inter	rference and n	nultipath to imp	plement the pro	cessing	Analyzing (K4)		
	techniques	s in the receiver							
			Mappi	ng of COs with	POs				
CC	Os/POs	PO1	PO2	PO3	PO4	PC)5	PO6	
(CO1	3							
(CO2		3						
(CO3 3								
CO4			3			3	3		
CO5						3	3		
1 - Sli	ight, 2 – Mo	oderate, 3 – Su	bstantial, BT	– Blooms Taxo	nomy				

18COE17 SPEECH AND AUDIO SIGNAL PROCESSING
L T P Credit
Preamble To learn about speech and language sciences, such as linguistics, phonetics and
psychoacoustics and also deal with different algorithms for analysis of speech signals.
Prerequisites Digital Signal Processing
UNIT – I 6
Mechanism of Speech: Speech production mechanism – Nature of Speech signal – Discrete time modelling
of Speech production – Representation of Speech signals – Classification of Speech sounds – Phones –
Phonemes – Phonetic and Phonemic alphabets – Articulatory features. Music production – Auditory
perception – Anatomical pathways from the ear to the perception of sound – Peripheral auditory system –
Psycho acoustics
UNIT – II 6
Feature Extraction: Features, Feature Extraction and Pattern Comparison Techniques: Speech distortion
measures- mathematical and perceptual - Log-Spectral Distance, Cepstral analysis, LPC, PLP and MFCC
Coefficients
UNIT – III 6
Time and Frequency Domain Methods for Speech Processing: Time domain parameters of Speech signal
- Methods for extracting the parameters: Energy, Average Magnitude - Zero crossing Rate (ZCR)- Silence
Discrimination using ZCR and energy.
UNIT – IV 6
Speech Modeling and Synthesis: Hidden Markov Model (HMM) for speech recognition, Viterbi algorithm,
Training and testing using HMMs, Adapting to variability in speech (DTW), Language models
UNIT – V 6
Speaker Recognition: Issues in speaker recognition and speech synthesis of different speakers. Text to
speech conversion, Calculating acoustic parameters, synthesized speech output performance and
characteristics of text to speech, Voice processing hardware and software architecture
List of Experiments:

- 1. Recording a speech signal and analyzing its characteristics and its frequency components
- 2. Extracting features from the recorded speech signal using LPC, PLP, MFCC
- 3. Time and Frequency Domain analysis of a signal using MATLAB
- 4. Modeling a speech signal using Hidden Markov Model
- 5. Developing an application (Speaker Recognition, Speech Identification)

Lecture: 30, Practical: 30, Total: 60

REFERENCES:

- 1. Lawrence Rabiner and Biing-Hwang Juang, "Fundamentals of Speech Recognition", Pearson Education, 2003.
- 2. Ben Gold and Nelson Morgan, "Speech and Audio Signal Processing, Processing and Perception of Speech and Music", Wiley- India Edition, 2006.
- 3. Daniel Jurafsky and James H. Martin, "Speech and Language Processing An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition", Pearson Education, 2002.

COU	RSE OUTO	COMES:					B	Г Mapped	
On con	mpletion of	the course, the	students will be	able to				ghest Level)	
CO1:	qualitative	ely describe the	mechanisms of	human speech	production and	how the	Under	standing (K2)	
	=		fferent classes	of speech so	unds determin	es their			
		haracteristics							
CO2:	identify and apply the suitable algorithm and extract the speech signal feature for further processing						Applying (K3)		
<u> </u>									
CO3:			<u> </u>		icy domain para	ameters		lyzing (K4)	
CO4:			ng Hidden Mark					lyzing (K4)	
CO5:			ognize and syntl		types of speake	ers		eating (K6)	
CO6:	analyze th	e frequency cor	nponents of a sp	peech signal				lyzing (K4),	
							Mani	pulation (S2)	
CO7:	extract the	e features and de	evelop a model f	for a speech sig	nal		Applying (K3),		
							Mani	Manipulation (S2)	
CO8:	develop a	speech applicat	ion				Applying (K3),		
							Precision (S3)		
			Mappin	ng of COs with	POs				
CC	Os/POs	PO1	PO2	PO3	PO4	PO	5	PO6	
(CO1	3				2			
(CO2	3	2			3			
(CO3	3	2			3			
(CO4	3	2			3		3	
CO5 3 3					3		3		
(CO6	3	3			3		3	
(CO7	3	3			3		3	
(CO8	3	3			3		3	
1 - Sli	ght, 2 – Mo	oderate, 3 – Su	ıbstantial, BT -	– Blooms Taxor	nomy				