VISION

To be a centre of excellence for development and dissemination of knowledge in Applied Sciences, Technology, Engineering and Management for the Nation and beyond.

MISSION

We are committed to value based Education, Research and Consultancy in Engineering and Management and to bring out technically competent, ethically strong and quality professionals to keep our Nation ahead in the competitive knowledge intensive world.

QUALITY POLICY

We are committed to

- Provide value based quality education for the development of students as competent and responsible citizens.
- Contribute to the nation and beyond through research and development
- Continuously improve our services

ME- CONTROL AND INSTRUMENTATION ENGINEERING

VISION

To become a technically competent centre in the domain of Control and Instrumentation Engineering to take care of the national and international needs.

MISSION

Department of Control and Instrumentation Engineering is committed to:

- MS1: To develop innovative, competent, efficient, disciplined and quality Control and Instrumentation Engineers.
- MS2: To produce engineers who can participate in technical advancement and social upliftment of the country.
- MS3: To excel in academic and research activities by facilitating the students to explore the state-of the –art techniques to meet the industrial needs

2018 REGULATIONS

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

Graduates of Control and Instrumentation Engineering will

- PEO1: Excel in professional career with the competency to address the technical needs of society and industrial problems ethically.
- PEO2: Foster research and demonstrate life-long independent and reflective ingenuity in their career.
- PEO3: Exhibit project management skills and ability to work in collaborative, multidisciplinary tasks in their profession.

MAPPING OF MISSION STATEMENTS (MS) WITH PEOs

MS1 3 2	1
MS2 2 3	2
MS3 1 3	3

1 -Slight, 2 -Moderate, 3 -Substantial

PROGRAM OUTCOMES (POs)

Engineering Post Graduates will be able to:

- **PO1:** Carry out research /investigation independently and develop work to solve practical problems.
- **PO2:** Write and present a substantial technical report/document.
- **PO3:** Demonstrate a degree of mastery over the area of Control and Instrumentation Engineering.
- **PO4:** Perform in multidisciplinary environment by maintaining ethics and enhance continuous learning.

PEO\PO	PO1	PO2	PO3	PO4
PEO1	3	1	3	2
PEO2	2	2	1	3
PEO3	2	3	2	3

MAPPING OF PEOs WITH POs

1 – Slight, 2 – Moderate, 3 – Substantial

CURRICULUM BREAKDOWN STRUCTURE UNDER REGULATION 2018

Curriculum Breakdown Structure(CBS)	Curriculum Content (% of total number of credits of the program)	Total number of contact hours	Total number of credits
Basic Science (BS)	5.55	60	4
Program Core(PC)	41.66	480	30
Program Electives(PE)	25.00	270	18
Project(s)/Internships(PR)/Others	27.77	1098	20
		Total	72

Semes ter			Theory/	Theory cum Pra	ctical / Practical			Internship & Projects	Special Courses	Credits
	1	2	3	4	5	6	7	8	9	
I	18AMT15 Applied Mathematics for Control Engineers (BS-3-1-0-4)	18CIC11 Smart Sensors and Its Interfaces (PC-3-0-2-4)	18CIT11 Process Dynamics and Control (PC-3-1-0-4)	18CIT12 Neural Networks and Deep Learning (PC-3-0-0-3)	18CIT13 Linear System Theory (PC-3-1-0-4)	18GET01 Introduction to Research (PC-3-0-0-3)	18CIL Process Dynamics and Control Laboratory (PC-0-0-2-1)			23
II	18CIT21 Multirate and Sparse Signal Processing (PC-3-1-0-4)	18CIT22 Industrial Automation and Networking (PC-3-0-0-3)	18CIC21 Non-Linear System Analysis and Control (PC-3-0-2-4)	Professional Elective-1 (PE-3-0-0-3)	Professional Elective-2 (PE-3-0-0-3)	Professional Elective-3 (PE-3-0-0-3)		18CIP21 Mini Project (PR-0-0-4-2)		22
111	Professional Elective-4 (PE-3-0-0-3)	Professional Elective-5 (PE-3-0-0-3)	Professional Elective-6 (PE-3-0-0-3)					18CIP31 Project Work Phase I (PR-0-0-12-6)		15
IV								18CIP41 Project Work Phase II (PR-0-0-24-		12

KEC R2018: SCHEDULING OF COURSES – ME-CONTROL AND INSTRUMENTATION ENGINEERING

Total Credits: 72

12)

M.E. DEGREE IN CONTROL AND INSTRUMENTATION ENGINEERING

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

SEMESTER - I	
---------------------	--

Course	Course Title	Hours / Week			Cradit	Maximum Marks			CBS	
Code			Т	Р	Creuit	CA	ESE	Total	CDB	
	Theory/Theory with Practical									
18AMT15	Applied Mathematics for Control Engineers	3	1	0	4	50	50	100	PC	
18CIC11	Smart Sensors and Its Interfaces	3	0	2	4	50	50	100	PC	
18CIT11	Process Dynamics and Control	3	1	0	4	50	50	100	PC	
18CIT12	Neural Networks and Deep Learning	3	0	0	3	50	50	100	PC	
18CIT13	Linear System Theory	3	1	0	4	50	50	100	PC	
18GET01	Introduction to Research	3	0	0	3	50	50	100	PC	
	Practical									
18CIL11	Process Dynamics and Control Laboratory	0	0	2	1	100	0	100	PC	
	Total				23					

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

M.E. DEGREE IN CONTROL AND INSTRUMENTATION ENGINEERING CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

SEMESTER – II

Course	Course Title		lours Weel	s / s	Cradit	Maximum Marks			CBS
Code			Т	Р	Cleun	CA	ESE	Total	CDS
	Theory/Theory with Practical								
18CIT21	Multirate and Sparse Signal Processing	3	1	0	4	50	50	100	PC
18CIT22	Industrial Automation and Networking	3	0	0	3	50	50	100	PC
18CIC21	Non-Linear System Analysis and Control	3	0	2	4	50	50	100	PC
	Elective - I	3	0	0	3	50	50	100	PE
	Elective - II	3	0	0	3	50	50	100	PE
	Elective - III	3	0	0	3	50	50	100	PE
	Practical								
18CIP21	Mini Project	0	0	4	2	100	0	100	PR
	Total				22				

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

M.E. DEGREE IN CONTROL AND INSTRUMENTATION ENGINEERING

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

Course	Course Title	Hours / Week			Credit	Maximum Marks			CDS
Code	course rule		Т	Р	Cleun	CA	ESE	Total	CDS
	Theory/Theory with Practical								
	Elective - IV	3	0	0	3	50	50	100	PE
	Elective - V	3	0	0	3	50	50	100	PE
	Elective - VI	3	0	0	3	50	50	100	PE
	Practical								
18CIP31	Project Work Phase I	0	0	12	6	50	50	100	PR
	Total				15				

SEMESTER – III

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

M.E. DEGREE IN CONTROL AND INSTRUMENTATION ENGINEERING

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

SEMESTER – IV

Course	Course Title	Hours / Week			Cradit	Maximum Marks			CBS
Code	course rule		Т	Р	Creuit	CA	ESE	Total	CDS
	Practical								
18CIP41	Project Work Phase II	0	0	24	12	50	50	100	PR
	Total				12				

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

Total Credits: 72

LIST OF PROFESSIONAL ELECTIVES									
Course	Course Title	Но	urs/W	Veek	Credit	CDC			
Code	Course Thie	L	Т	Р	Creat	CBS			
	SEMESTER II	•	•						
18MTC21	Robotics Engineering	3	0	2	4	PE			
18COT21	Wireless Sensor Networks	3	1	0	4	PE			
18MSC21	Machine Learning Techniques	3	0	2	4	PE			
18CIE01	Optimal and Adaptive Control	3	0	0	3	PE			
18CIE02	Advanced Instrumentation System Design	3	0	0	3	PE			
18CIE03	Instrumentation in Automobiles and Building Automation	3	0	0	3	PE			
18CIE04	Bioprocess Instrumentation and Control	3	0	0	3	PE			
18CIE05	Digital Instrumentation	3	0	0	3	PE			
18CIE06	Piping and Instrumentation Design in Process Industries	3	0	0	3	PE			
18CIE07	Applied Industrial Instrumentation	3	0	0	3	PE			
	SEMESTER III								
18MTE13	MEMS Design	3	0	0	3	PE			
18CIE08	Security for SCADA System	3	0	0	3	PE			
18CIE09	Robust Control	3	0	0	3	PE			
18CIE10	Digital System and Logic Synthesis	3	0	0	3	PE			
18CIE11	Computer Vision and Image Processing	3	0	0	3	PE			
18CIE12	Industrial Drives and Control	3	0	0	3	PE			
18CIE13	Embedded FPGA based Control Design	3	0	0	3	PE			
18CIE14	Wireless Embedded Systems	3	0	0	3	PE			
18CIE15	Virtual Instrumentation for Industrial Applications	3	0	0	3	PE			

18AMT15 APPLIED MATHEMATICS FOR CONTROL ENGINEERS							
			L	Т	Р	Cre	edit
			3	1	0	4	1
Prear	nble	This course is to demonstrate various analytical skills i	n appl	ied m	athema	atics	and
		extensive experience with the tactics of problem solving and	d logic	al thin	king a	pplic	able
		in control and instrumentation engineering.					
Prere	quisites	Calculus and Probability.					
UNI	$\Gamma - I$						9
Vect	or Spaces: De	finition - Subspaces - Linear dependence and independence -	Basis	and di	mensi	on -	Row
space	e, Column spac	e and Null Space - Rank and nullity.					
UNI	$\Gamma - II$						9
Inne	r Product Sp	aces: Inner products - Angle and Orthogonality in inner products	oduct	spaces	- Ort	hono	rmal
Base	s - Gram-Schm	idt Process - QR-Decomposition - Orthogonal Projection - Lea	ast squ	are tecl	hnique		
UNI	Γ – III						9
Calc	ulus of Variat	ions: Concept of variation and its properties - Euler's equation	n - Fu	nctiona	al depe	endar	nt on
first	and higher or	der derivatives - Functionals dependant on functions of seve	eral in	depend	lent va	ariab	les -
Varia	ational problem	ns with moving boundaries - Problems with constraints -	Direc	ct met	hods:	Ritz	and
Kant	orovich metho	ds.					
UNI	$\Gamma - IV$						9
Ranc	lom Variable	: Probability function – Moments – Moment generating fun	ctions	and th	eir pro	perti	ies –
Prob	ability distribu	utions: Binomial, Poisson, Geometric, Uniform, Exponer	ntial, (Gamma	a and	No	rmal
distri	butions.						
UNI	$\Gamma - V$						9
Stoch	astic Process C	Classification – Stationary Random process – Markov process – Gau	ssian p	rocess -	- Mark	ov ch	ain –
Auto	Correlation – C	ross correlation– Response of linear system to random input.					,
		Lecture	: 45, T	'utoria	l: 15, ′	Tota	l: 60
REF	ERENCES:						
1.	Howard Anto	n, Chris Rorres, "Elementary Linear Algebra", John Wiley & S	Sons, 2	2010.			
2.	Gupta A.S., '	Calculus of Variations with Applications", 12 th Edition, Pren	ntice H	lall of	India	Pvt.	Ltd.,
	New Delhi, 2	015.	1~		<u> </u>		
3.	Johnson R.A.	, Miller I., and Freund J., "Miller and Freund's Probability a	nd Sta	tistics	tor En	igine	ers",
	9 th Edition, P	earson Education, Asia, 2016.					

Cours	e Oı	utcomes:		BT Mapped			
On cor	nple	etion of the course, the stu	dents will be able to		(Highest Level)		
CO1:	hai	ndle problems in linear al	gebra		Applying (K3)		
CO2:	un	derstand inner product s	e it in various linear system	Applying (K3)			
	related applications						
CO3:	ap	Evaluating (K5)					
	con	ntrol engineering					
CO4:	ide	Applying (K3)					
	pro	oblems					
CO5:	ide	entify responses of linear	systems to any given in	put signal	Applying (K3)		
			Mapping of COs	s with POs			
COs/P	Os	PO1	PO2	PO3	PO4		
CO1		1					
CO2	2	2					
CO3	}	1					
CO4		2					
CO5							
1 – Sli	ght,	2 - Moderate, 3 - Subs	tantial, BT - Bloom's T	Faxonomy			

	18CIC11 SMART SENSORS AND ITS INTERFACE	ES				
		L	Т	Р	Credit	
N 11		3	0	2	4	
Preamble	The course uses a multidisciplinary approach to review recent d smart sensor systems, providing complete coverage of all importan their building blocks and methods of signal processing.	evelop t syste	ments m and	in the design	a field of aspects,	
Prerequisites	Transducer Engineering, Measurements and Instrumentation				<u>.</u>	
UNIT – I					9	
Smart Sensor Architecture of Compensation Sensing film de	Smart Sensor Architecture and Fabrication: Definition - Importance and Adoption of Smart Sensor - Architecture of Smart Sensors: Important components - their features - Amplification - Filters - Converters - Compensation - Information coding / processing - Electrode fabrication: Photolithography - Electroplating Sensing film deposition: Physical and Chemical Vapor - Anodization - Sol-gel.					
UNIT – II					9	
Sensor Interfa HART commu	cing: Data communication - Standards for Smart Sensor Interfaction - Interfacting of Temperature, Pressure, Humidity and Flow se	ce - S ensors.	mart t	ransmi	itter with	
UNIT – III					9	
Laser Interfero measurement: measurement:	meter Displacement Sensor - Synchro / Resolver displacement to Sensor Arrays, Integrated Micro Array - Vision and Image Ser Thermogravimetry	ransdu isors.	cer. Oj Therm	ptical al cor	variables nposition	
UNIT – IV					9	
Environmenta measurement - sensing: Sensin Technologies fo	I Measurement Sensors and Tactile Sensors: Environmental m Satellite imaging and sensing. Aerospace Sensor: Laser Gyroscope og Classification - Simplified Theory for Tactile Sensing - Require or Tactile Sensing.	easure and a ements	ement: ccelero for Ta	Meteo ometer actile S	orological s. Tactile Sensors -	
UNIT – V					9	
Recent Trends Technology - B	s in Sensor Technologies: Film sensors: Thick film and Thin fil io sensors - Sensor network - Multisensor data fusion - Soft sensor.	m - S	ensors	- Clea	an Room	
List of Exercis	es / Experiments :					
1. Design	of signal conditioning circuit for temperature measuring device.					
2. Design	of signal conditioning circuit for smart sensor.					
3. Synchro	Transmitter-Receiver Characteristics.					
4. Position	control using AC servo mechanism.					
5. Realisat	ion of Data Acquisition System.					
	Lecture	:45, P	ractica	al:30, '	Fotal: 75	
REFERENCE	S:		• • •			
1. Bela G. L	ptak, "Instruments Engineers' Handbook Process Measurement and D. "Sensors and Transducers" 2 nd Edition. Prantice Hall of India	Analy	s1s'', E	lsevier	, 2005.	
2.1 attailably3.John G. W	Vebster, "Measurement, Instrumentation and Sensors Handbook", CF	C Pre	ss, 199	8.		

COURSE OUTCOMES:				BT Mapped		
On con	mpletion	(Highest Level)				
CO1:	interpre	Understanding (K2)				
CO2:	explain	Understanding(K2)				
CO3:	carryou suitable	t the measurements sensors	of physical, thermal and	optical variables using	Applying(K3)	
CO4:	employ	sensors for environn	nental, aerospace and tacti	le sensing	Applying(K3)	
CO5:	execute	the various trends in	smart sensors technologie	es for different cases	Applying(K3)	
CO6:	integrat	e signal conditioning	circuit for temperature m	easurements	Analyzing(K4),	
					Precision(S3)	
CO7:	experim	ent position control.	AC servo mechanism		Analyzing(K4),	
					Precision(S3)	
CO8:	make re	alization of DAQ			Applying(K3),	
					Precision(S3)	
			Mapping of COs w	rith POs		
COs/P	POs	PO1	PO2	PO3	PO4	
CO	1	2	2			
CO2	2	2	2			
COS	3	2	2	1	1	
CO4	4	3	3	1	1	
COS	5	3	3	1	1	
COe	5	3	3	3	3	
CO7	7	3	3	3	3	
CO8	3	3	3	3	3	
1 – Sli	ght, 2 – N	Moderate, 3 – Subs	tantial, BT - Bloom's Tax	onomy		

18CIT11 PROCESS DYNAMICS AND CONTROL L Т Р Credit 3 1 4 0 Preamble To provide solution towards better control action for various process applications Process Control, Control Systems Prerequisites UNIT – I 9 Process Modeling and Dynamics: Mathematical modeling: Non-interacting system and Interacting system single conical tank – single spherical tank – mixing process – Thermal systems: CSTR and distillation column. Servo and Regulatory control. UNIT – II 9 Control Actions: Characteristic of ON-OFF, P, P+I, P+D and P+I+D control modes - Electronic controllers -Pneumatic Controllers. Controller Tuning: Process Reaction Curve method, Z-N method, Relay-auto tuning method. 9 UNIT – III Multivariable Systems: Transfer Matrix Representation - Poles and Zeros of MIMO System - Multivariable frequency response analysis - Directions in multivariable systems - Singular value decomposition. Multi-Loop **Regulatory Control:** Introduction - Process Interaction - Pairing of controlled and manipulated variables. 9 UNIT - IV RGA: Properties and Applications of RGA - Decoupling Control - Multi-loop PID Controller - Biggest Log Modulus Tuning Method. Multivariable Regulatory Control: Multivariable IMC - Multivariable DMC -Multivariable MPC - Multiple Model based Predictive Controller. UNIT - V9 Advanced Control Schemes: Feedback and Feed forward control - Ratio control - Cascade control - Split-range control - Inferential control - Selective control. Case Studies: Control Schemes for Distillation Column - CSTR and pH. Lecture:45, Tutorial:15, Total: 60 **REFERENCES:**

1.	Wayne Bequette B., "Process Control: Modeling, Design, and Simulation", Prentice Hall of India, 2004.
2.	Stephanopoulos G., "Chemical Process Control-An Introduction to Theory and Practice", Prentice Hall of
	India, New Delhi, 2008.
3.	Dale E. Seborg, Duncan A. Mellichamp, Thomas F. Edgar, and Francis J. Doyle, "Process Dynamics and
	Control", John Wiley and Sons, 2010.

COUR	SE OUTCOMES:			BT Mapped		
On con	(Highest Level)					
CO1:	O1: develop mathematical modeling for various processes					
CO2:	identify various control a	actions and controller t	uning methods for various	Analyzing(K4)		
	applications					
CO3:	explain the concepts of mu	iltivariable systems and i	multi-loop regulatory control	Understanding(K2)		
	techniques					
CO4:	calculate RGA to analyse	process interactions and	d to describe multi-variable	Applying(K3)		
	regulatory control technique	es				
CO5:	apply various advanced cor	trol schemes for various	applications	Applying(K3)		
		Mapping of COs v	vith POs			
COs/PO	Ds PO1	PO2	PO3	PO4		
CO1	3	3	1	1		
CO2	3	3	2	2		
CO3	2	2				
CO4	3	3	1	1		
CO5	3	3	1	1		
1 – Slig	ght, 2 – Moderate, 3 – Subs	tantial, BT - Bloom's Tax	conomy			

		18CIT12 NEURAL NETWORKS AND DEEP LEARN	NING			
1			L	Т	Р	Credit
			3	0	0	3
Prea	mble	To help the students to master the core concepts of neural	networl	ks, inc	luding	g modern
		techniques for deep learning				
Prere	equisites	Mathematics				
UNI	T - I					9
Mat - No Base	hematical orms - Eige ed GD - Ne	Review: Statistical Concepts - Bayes' Theorem - Random Variable envalues and Eigenvectors, Eigenvalue Decomposition - Gradient sterov Accelerated GD - Stochastic GD.	es - Line Descer	ear Alg nt (GE	gebra -)) - M	Matrices omentum
UNI	T – II					9
Arti	ficial Neu	ral Networks: Characteristics of biological and Artificial neural n	etwork	s. Supe	ervised	llearning
Netv	vork: Hebt	- Perceptron Network, Back Propagation Network.	00000111	. Sup		, iouiiiig
UNI	T – III					9
Neu	ral Netwo	rks: Unsupervised Learning networks: Kohonen Self-Organizing	Featur	e Map	s, Rac	lial Basis
Func	ction, RBF	Neural Networks.		_		
UNI	T – IV					9
UNI Intro	T – IV oduction (o Deep Learning: Review of Machine Learning - Fundamentals of	of Deep	Learn	ing N	9 etworks -
UNI Intro Histo	T – IV oduction to ory of Dec	o Deep Learning: Review of Machine Learning - Fundamentals of the plearning - Applications - Deep Learning Models: Single Laye	of Deep er Perce	Learn eptron	ing N Mode	9 etworks - l (SLP) -
UNI Intro Histo Mult	T – IV oduction to ory of Dec tilayer Perc	o Deep Learning: Review of Machine Learning - Fundamentals of learning - Applications - Deep Learning Models: Single Laye reptron Model (MLP) - Recurrent Neural Networks (RNNs)	of Deep er Perce	Learn eptron	iing N Mode	9 etworks - 1 (SLP) -
UNI Intro Histo Mult	T – IV oduction t ory of Dec tilayer Perc	o Deep Learning: Review of Machine Learning - Fundamentals of plearning - Applications - Deep Learning Models: Single Laye reptron Model (MLP) - Recurrent Neural Networks (RNNs)	of Deep er Perce	Learn eptron	iing N Mode	9 etworks - 1 (SLP) -
UNI Intro Histo Mult UNI	T - IV oduction to ory of Dec tilayer Perce T - V	o Deep Learning: Review of Machine Learning - Fundamentals of ep learning - Applications - Deep Learning Models: Single Laye reptron Model (MLP) - Recurrent Neural Networks (RNNs)	of Deep er Perce	Learn eptron	ing N Mode	9 etworks - 1 (SLP) - 9
UNI Intro Histo Mult UNI Deep Belio	T - IV oduction to ory of Dec tilayer Perce T - V p Learning of Network	o Deep Learning: Review of Machine Learning - Fundamentals of ep learning - Applications - Deep Learning Models: Single Laye eptron Model (MLP) - Recurrent Neural Networks (RNNs) g and Its Applications: Deep Learning Models: Restricted Boltzma s (DBNs) - Convolutional Neural Networks (CNNs) - LeNet, Goold	of Deep er Perce	chines	ing N Mode (RBM	9 etworks - 1 (SLP) - <u>9</u> (s) - Deep
UNI Intro Histo Mult UNI Deep Belio	T - IV oduction t ory of Dec tilayer Perce T - V p Learning ef Network el for stoch	o Deep Learning: Review of Machine Learning - Fundamentals of ep learning - Applications - Deep Learning Models: Single Laye eeptron Model (MLP) - Recurrent Neural Networks (RNNs) g and Its Applications: Deep Learning Models: Restricted Boltzma (DBNs) - Convolutional Neural Networks (CNNs) - LeNet, Goole price prediction - Efficient Medical Image Processing	of Deep er Perce ann Mac eNet - A	Learn eptron chines	iing N Mode (RBM le deej	9 etworks - l (SLP) - 9 (s) - Deep b learning
UNI Intro Histo Mult UNI Deep Belio mode	T - IV oduction to ory of Decentric definition of the second s	o Deep Learning: Review of Machine Learning - Fundamentals of ep learning - Applications - Deep Learning Models: Single Laye eeptron Model (MLP) - Recurrent Neural Networks (RNNs) g and Its Applications: Deep Learning Models: Restricted Boltzma is (DBNs) - Convolutional Neural Networks (CNNs) - LeNet, Goole c price prediction - Efficient Medical Image Processing	of Deep er Perce ann Maa eNet - A	Learn ptron chines	iing N Mode (RBM le deej	9 etworks - 1 (SLP) - 9 (s) - Deep 5 learning
UNI Intro Histo Mult UNI Deep Belie mode	T - IV oduction t ory of Dec tilayer Perce T - V p Learning ef Network el for stoch	o Deep Learning: Review of Machine Learning - Fundamentals of ep learning - Applications - Deep Learning Models: Single Laye eeptron Model (MLP) - Recurrent Neural Networks (RNNs) g and Its Applications: Deep Learning Models: Restricted Boltzma (DBNs) - Convolutional Neural Networks (CNNs) - LeNet, Goole price prediction - Efficient Medical Image Processing	of Deep er Perce ann Mac eNet - A	Learn eptron chines	iing N Mode (RBM le deej	9 etworks - 1 (SLP) - 9 (s) - Deep b learning Total: 45
UNI Intro Histo Mult UNI Deep Belio mode	T - IV oduction t ory of Dec tilayer Perce T - V p Learning ef Network el for stoch FERENCE Dr. Sivan	o Deep Learning: Review of Machine Learning - Fundamentals of ep learning - Applications - Deep Learning Models: Single Laye eeptron Model (MLP) - Recurrent Neural Networks (RNNs) g and Its Applications: Deep Learning Models: Restricted Boltzma is (DBNs) - Convolutional Neural Networks (CNNs) - LeNet, Goole c price prediction - Efficient Medical Image Processing S: andam S.N., and Dr. Deepa S.N., "Principles of Soft Computing", 2	of Deep er Perce ann Maa eNet - A	chines A simp	ing N Mode (RBM le deep ley Inc	9 etworks - 1 (SLP) - 9 (s) - Deep 0 learning Total: 45 tia 2012
UNI Intro Histo Mult UNI Deep Belio mode REF 1. 2.	T - IV oduction t ory of Dec tilayer Perce $T - V$ p Learning ef Network el for stock FERENCE Dr. Sivan Ian Good	 o Deep Learning: Review of Machine Learning - Fundamentals of plearning - Applications - Deep Learning Models: Single Laye reptron Model (MLP) - Recurrent Neural Networks (RNNs) g and Its Applications: Deep Learning Models: Restricted Boltzmates (DBNs) - Convolutional Neural Networks (CNNs) - LeNet, Goole price prediction - Efficient Medical Image Processing S: andam S.N., and Dr. Deepa S.N., "Principles of Soft Computing", 2 fellow, Yoshua Bengio and Aaron Courvillie. "Deep Learning" 	of Deep er Perce ann Mac eNet - A nd Editi The M	• Learn eptron chines A simp on, Wi	ing N Mode (RBM le deep ley Ind	9 etworks - 1 (SLP) - 9 (s) - Deep 5 learning Total: 45 dia, 2012. ambridge
UNI Intro Histo Mult UNI Deep Belio modo REF 1. 2.	T - IV oduction t ory of Dec tilayer Perce $T - V$ p Learning ef Network el for stoch $FERENCE$ Dr. Sivan Ian Good Massachu	 o Deep Learning: Review of Machine Learning - Fundamentals of plearning - Applications - Deep Learning Models: Single Layer reptron Model (MLP) - Recurrent Neural Networks (RNNs) g and Its Applications: Deep Learning Models: Restricted Boltzmass (DBNs) - Convolutional Neural Networks (CNNs) - LeNet, Goole a price prediction - Efficient Medical Image Processing S: andam S.N., and Dr. Deepa S.N., "Principles of Soft Computing", 2 fellow, Yoshua Bengio and Aaron Courvillie, "Deep Learning", setts, London England, 2016. 	of Deep er Perce ann Maa eNet - A nd Editi The M	o Learn eptron chines A simp on, Wi IIT Pr	ing N Mode (RBM le deep ley Ind ess Ca	9 etworks - 1 (SLP) - 9 (s) - Deep 0 learning Total: 45 dia, 2012. ambridge,

COURS	BT Mapped			
On com	(Highest Level)			
CO1: a	Applying(K3)			
CO2: 9	summarize the fundamental	s of artificial neural netwo	orks	Understanding(K2)
CO3: i	implement the various n	eural algorithms for cla	assification and function	Applying(K3)
	approximation			
CO4: 0	explain the architecture mod	lel of deep learning		Understanding(K2)
CO5: 0	execute the new application	requirements in the field	of computer vision	Applying(K3)
		Mapping of COs w	ith POs	
COs/PC	Ds PO1	PO2	PO3	PO4
CO1	3	3	1	1
CO2	2	2		
CO3	3	3	1	1
CO4	2	2		
CO5	3	3	1	1
1 - Slig	ht, $2 - Moderate$, $3 - Subs$	stantial, BT - Bloom's Tax	konomy	

	18CIII 13 LINEAR SYSTEM THEORY			
		Т	Р	Credit
	3	1	0	4
Preamble	To analyze the behavior of linear system in state model and to design state	feedb	ack co	ontrollers
	and observers both in continuous and discrete domain			
Prerequisites	Control systems			
UNIT – I				9
State Modelin	ng in Continuous Domain: Review of state variable representation and sta	ite vari	able	models in
continuous sys	stems. Conversion from transfer function to various state space model - con-	version	n of s	tate space
model to transf	fer function. Applications: DC motor, Inverted pendulum.			
UNIT – II				9
State Modelin	ng in Discrete Domain: Review of Z-Transform - Review of Sampling 7	Theory	- Sa	mple and
Hold circuits -	- Pulse Transfer Function - Sampled Data Control System: transfer function	on mo	del, st	tate space
model. Modifie	ed Z Transform. Applications: DC motor, Inverted pendulum.		,	1
LINIT III				
UINII - III				9
State Solution	is in Continuous and Discrete Domain: Eigen values and eigen vectors - S	State tr	ansiti	9 on matrix
State Solution	is in Continuous and Discrete Domain: Eigen values and eigen vectors - S ies. Solutions of state equations - continuous and discrete - free and forced	State tr	ansiti nses -	9 on matrix - Stability
State Solution and its propert of Sampled Da	Is in Continuous and Discrete Domain: Eigen values and eigen vectors - S ies. Solutions of state equations - continuous and discrete - free and forced ita Control System - Jury's Stability Test - Applications: DC motor, Inverted	State tr l respo l pendu	ansiti nses - ilum.	on matrix - Stability
State Solution and its propert of Sampled Da	is in Continuous and Discrete Domain: Eigen values and eigen vectors - Sties. Solutions of state equations - continuous and discrete - free and forced ata Control System - Jury's Stability Test - Applications: DC motor, Inverted	State tr l respo l pendu	ansiti nses - ılum.	on matrix - Stability
State Solution and its propert of Sampled Da	is in Continuous and Discrete Domain: Eigen values and eigen vectors - Sties. Solutions of state equations - continuous and discrete - free and forced ata Control System - Jury's Stability Test - Applications: DC motor, Inverted	State tr l respo l pendu	ansiti nses 1lum.	on matrix - Stability
State Solution and its propert: of Sampled Da UNIT – IV State Feedbac	is in Continuous and Discrete Domain: Eigen values and eigen vectors - Sties. Solutions of state equations - continuous and discrete - free and forced ata Control System - Jury's Stability Test - Applications: DC motor, Inverted	State tr l respo l pendu bserva	ansiti nses - ılum. bility	on matrix - Stability 9 - relation
State Solution and its propert of Sampled Da UNIT – IV State Feedbac between transf	is in Continuous and Discrete Domain: Eigen values and eigen vectors - Sties. Solutions of state equations - continuous and discrete - free and forced ata Control System - Jury's Stability Test - Applications: DC motor, Inverted k Controllers in Continuous and Discrete Domain: Controllability and of the function and state model - effect of sampling time on controllability and other the function and state model - effect of sampling time on controllability and other the function and state model - effect of sampling time on controllability and other the function and state model - effect of sampling time on controllability and other the function and state model - effect of sampling time on controllability and other the function and state model - effect of sampling time on controllability and other the function and state model - effect of sampling time on controllability and other the function and state model - effect of sampling time on controllability and other the function and state model - effect of sampling time on controllability and other the function and state model - effect of sampling time on controllability and other the function and state model - effect of sampling time on controllability and other the function and state model - effect of sampling time on controllability and other the function and state model - effect of sampling time on controllability and other the function and state model - effect of sampling time on controllability and other the function and state model - effect of sampling time on controllability and other the function and state model - effect of sampling time on controllability and other the function and state model - effect of sampling time on controllability and other the function and state model - effect of sampling time on controllability and other the function and state model - effect of sampling time on control sampling time	State tr l respo l pendu bserva d obse	ansiti nses ilum. bility rvabil	on matrix - Stability - Stability 9 - relation ity - state
State Solution and its propert of Sampled Da UNIT – IV State Feedbac between transfi feedback_contr	Ins in Continuous and Discrete Domain: Eigen values and eigen vectors - Sties. Solutions of state equations - continuous and discrete - free and forced ata Control System - Jury's Stability Test - Applications: DC motor, Inverted Controllers in Continuous and Discrete Domain: Controllability and of the function and state model - effect of sampling time on controllability and rollers. Steady state error in state model - PI feedback controller - I	State tr l respo l pendu bserva d obse	ansiti nses ilum. bility rvabil beat	on matrix - Stability 9 - relation ity - state Control -
State Solution and its propert of Sampled Da UNIT – IV State Feedbac between transfi feedback contr Applications: I	In Solutions and Discrete Domain: Eigen values and eigen vectors - Stees. Solutions of state equations - continuous and discrete - free and forced ata Control System - Jury's Stability Test - Applications: DC motor, Inverted Controllers in Continuous and Discrete Domain: Controllability and offer function and state model - effect of sampling time on controllability and rollers. Steady state error in state model - PI feedback controller - I DC motor, Inverted pendulum.	State tr l respo l pendu bserva d obse Dead	ansiti nses ilum. bility rvabil beat	on matrix - Stability 9 - relation ity - state Control -
State Solution and its propert of Sampled Da UNIT – IV State Feedbac between transf feedback contr Applications: I	In Solutions and Discrete Domain: Eigen values and eigen vectors - Stees. Solutions of state equations - continuous and discrete - free and forced ata Control System - Jury's Stability Test - Applications: DC motor, Inverted Controllers in Continuous and Discrete Domain: Controllability and offer function and state model - effect of sampling time on controllability and rollers. Steady state error in state model - PI feedback controller - I DC motor, Inverted pendulum.	State tr l respo l pendu bserva d obser Dead	ansiti nses ilum. bility rvabil beat	on matrix - Stability 9 - relation ity - state Control -
State Solution and its propert: of Sampled Da UNIT – IV State Feedbac between transfi feedback contr Applications: I	As in Continuous and Discrete Domain: Eigen values and eigen vectors - Sties. Solutions of state equations - continuous and discrete - free and forced ata Control System - Jury's Stability Test - Applications: DC motor, Inverted Controllers in Continuous and Discrete Domain: Controllability and ol fer function and state model - effect of sampling time on controllability and crollers. Steady state error in state model - PI feedback controller - I DC motor, Inverted pendulum.	State tr l respo l pendu bserva d obse Dead	ansiti nses ilum. bility rvabil beat	on matrix - Stability 9 - relation ity - state Control - 9
State Solution and its propert of Sampled Da UNIT – IV State Feedbac between transfi feedback contr Applications: I UNIT – V State Estimat	hs in Continuous and Discrete Domain: Eigen values and eigen vectors - Sties. Solutions of state equations - continuous and discrete - free and forced ata Control System - Jury's Stability Test - Applications: DC motor, Inverted ck Controllers in Continuous and Discrete Domain: Controllability and offer function and state model - effect of sampling time on controllability and rollers. Steady state error in state model - PI feedback controller - I DC motor, Inverted pendulum.	State tr l respo l pendu bserva d obset Dead	ansiti nses ilum. bility rvabil beat	on matrix - Stability 9 - relation ity - state Control - 9 ced order
State Solution and its propert of Sampled Da UNIT – IV State Feedbac between transfi feedback contr Applications: I UNIT – V State Estimat observer - dead	hs in Continuous and Discrete Domain: Eigen values and eigen vectors - Stees. Solutions of state equations - continuous and discrete - free and forced ata Control System - Jury's Stability Test - Applications: DC motor, Inverted ck Controllers in Continuous and Discrete Domain: Controllability and offer function and state model - effect of sampling time on controllability and rollers. Steady state error in state model - PI feedback controller - I DC motor, Inverted pendulum.	State tr l respo l pendu bserva d obse Dead	ansiti nses ilum. bility rvabil beat redu	on matrix - Stability - Stability - relation ity - state Control - Control - 9 ced order timation -
State Solution and its propert of Sampled Da UNIT – IV State Feedbac between transfi feedback cont Applications: I UNIT – V State Estimat observer - dead Kalman filter -	hs in Continuous and Discrete Domain: Eigen values and eigen vectors - Sties. Solutions of state equations - continuous and discrete - free and forced ata Control System - Jury's Stability Test - Applications: DC motor, Inverted ek Controllers in Continuous and Discrete Domain: Controllability and offer function and state model - effect of sampling time on controllability and crollers. Steady state error in state model - PI feedback controller - I DC motor, Inverted pendulum.	State tr I respo I pendu bserva d obser Dead II and an squa	ansiti nses ilum. bility rvabil beat reduce are es	9 on matrix - Stability 9 - relation ity - state Control - Control - 9 ced order timation -
State Solution and its propert of Sampled Da UNIT – IV State Feedbac between transfi feedback contr Applications: I UNIT – V State Estimat observer - dead Kalman filter -	In S in Continuous and Discrete Domain: Eigen values and eigen vectors - Stees. Solutions of state equations - continuous and discrete - free and forced ata Control System - Jury's Stability Test - Applications: DC motor, Inverted C Controllers in Continuous and Discrete Domain: Controllability and of fer function and state model - effect of sampling time on controllability and or rollers. Steady state error in state model - PI feedback controller - I DC motor, Inverted pendulum. I Continuous and Discrete Domain: Deterministic observer - ful d beat observer - stochastic observer: review of random process - least meator - Bucy filter - Applications: DC motor, Inverted pendulum.	State tr I respo I pendu bserva d obset Dead II and an squa	ansiti nses ilum. bility rvabil beat redua redua	on matrix - Stability 9 - relation ity - state Control - 9 ced order timation -
State Solution and its propert of Sampled Da UNIT – IV State Feedbac between transfi feedback contr Applications: I UNIT – V State Estimat observer - dead Kalman filter -	As in Continuous and Discrete Domain: Eigen values and eigen vectors - Sties. Solutions of state equations - continuous and discrete - free and forced ata Control System - Jury's Stability Test - Applications: DC motor, Inverted K Controllers in Continuous and Discrete Domain: Controllability and of fer function and state model - effect of sampling time on controllability and of rollers. Steady state error in state model - PI feedback controller - I DC motor, Inverted pendulum. tors in Continuous and Discrete Domain: Deterministic observer - ful d beat observer - stochastic observer: review of random process - least mea Kalman - Bucy filter - Applications: DC motor, Inverted pendulum.	State tr I respo I pendu bserva d obse Dead II and un squa	ansiti nses ilum. bility rvabil beat reduare es il:15,	on matrix - Stability - Stability - relation ity - state Control - 9 ced orden timation - Total: 60
State Solution and its propert of Sampled Da UNIT – IV State Feedbac between transfi feedback contr Applications: I UNIT – V State Estimat observer - dead Kalman filter -	And a continuous and Discrete Domain: Eigen values and eigen vectors - Seties. Solutions of state equations - continuous and discrete - free and forced ata Control System - Jury's Stability Test - Applications: DC motor, Inverted Controllers in Continuous and Discrete Domain: Controllability and offer function and state model - effect of sampling time on controllability and offer function and state error in state model - PI feedback controller - I DC motor, Inverted pendulum. tors in Continuous and Discrete Domain: Deterministic observer - ful d beat observer - stochastic observer: review of random process - least mea - Kalman - Bucy filter - Applications: DC motor, Inverted pendulum. Lecture:45, T Setemation of the store base base base base base base base bas	State tr I respo I pendu bserva d obser Dead II and an squa	ansiti nses ilum. bility rvabil beat reducare es il:15,	9 on matrix - Stability 9 - relation ity - state Control - 9 ced order timation - Total: 60
State Solutionand its propertiof Sampled DaUNIT – IVState Feedbaccbetween transfifeedback contiApplications: IUNIT – VState Estimatobserver - deadKalman filter -REFERENCE1.Gopal M	As in Continuous and Discrete Domain: Eigen values and eigen vectors - Sties. Solutions of state equations - continuous and discrete - free and forced ata Control System - Jury's Stability Test - Applications: DC motor, Inverted K Controllers in Continuous and Discrete Domain: Controllability and of fer function and state model - effect of sampling time on controllability and of rollers. Steady state error in state model - PI feedback controller - I DC motor, Inverted pendulum. tors in Continuous and Discrete Domain: Deterministic observer - ful d beat observer - stochastic observer: review of random process - least mea Kalman - Bucy filter - Applications: DC motor, Inverted pendulum. Lecture:45, T S: ., "Digital Control and State Variable Methods", 4 th Edition, Tata McGr	State tr I respo I pendu bserva d obser Dead II and an squa ' utoria	ansiti nses ilum. bility rvabil beat reduction reduction are est il:15,	on matrix - Stability 9 - relation ity - state Control - 9 ced order timation - Total: 60 ew Delhi,
State Solutionand its propertionof Sampled DaUNIT – IVState Feedbackbetween transfifeedback contraApplications: IUNIT – VState Estimatobserver - deadKalman filter -REFERENCE1.Gopal M 2014.	In Continuous and Discrete Domain: Eigen values and eigen vectors - Stees. Solutions of state equations - continuous and discrete - free and forced ata Control System - Jury's Stability Test - Applications: DC motor, Inverted K Controllers in Continuous and Discrete Domain: Controllability and offer function and state model - effect of sampling time on controllability and offer function. Steady state error in state model - PI feedback controller - I DC motor, Inverted pendulum. tors in Continuous and Discrete Domain: Deterministic observer - fuld beat observer - stochastic observer: review of random process - least mea - Kalman - Bucy filter - Applications: DC motor, Inverted pendulum. Lecture:45, T S: "	State tr I respo I pendu bserva d obser Dead II and un squa raw-Hi	ansiti nses ilum. bility rvabil beat redu are es il:15,	9 on matrix - Stability 9 - relation ity - state Control - 9 ced order timation - Total: 60 ew Delhi,
OINT – III State Solution and its propertion of Sampled Da UNIT – IV State Feedbacc between transfifeedback contradictions: I UNIT – V State Estimat observer - dead Kalman filter - REFERENCE 1. Gopal M 2014. 2. Richard O	In Continuous and Discrete Domain: Eigen values and eigen vectors - Stees. Solutions of state equations - continuous and discrete - free and forced ata Control System - Jury's Stability Test - Applications: DC motor, Inverted Inverted State Controllers in Continuous and Discrete Domain: Controllability and of fer function and state model - effect of sampling time on controllability and rollers. Steady state error in state model - PI feedback controller - I DC motor, Inverted pendulum. In	State tr I respo I pendu bserva d obser Dead II and an squa ' utoria raw-Hi	ansiti nses ilum. bility rvabil beat reduction reduction are est al:15, Ill, No	on matrix - Stability 9 - relation ity - state Control - 9 ced orden timation - Total: 60 ew Delhi, polications,
OINT – III State Solution and its propertion of Sampled Da UNIT – IV State Feedbacc between transfer teleback contrasting Detween transfer teleback contrasting Applications: I UNIT – V State Estimat observer - dead Kalman filter - REFERENCE 1. Gopal M 2014. 2. Richard C 2013.	As in Continuous and Discrete Domain: Eigen values and eigen vectors - Sties. Solutions of state equations - continuous and discrete - free and forced ata Control System - Jury's Stability Test - Applications: DC motor, Inverted K Controllers in Continuous and Discrete Domain: Controllability and of fer function and state model - effect of sampling time on controllability and rollers. Steady state error in state model - PI feedback controller - I DC motor, Inverted pendulum. tors in Continuous and Discrete Domain: Deterministic observer - fuld beat observer - stochastic observer: review of random process - least meae - Kalman - Bucy filter - Applications: DC motor, Inverted pendulum. Lecture:45, T ES: , "Digital Control and State Variable Methods", 4 th Edition, Tata McGr	State tr I respo I pendu bserva d obser Dead II and an squa ' utoria raw-Hi Pearso	ansiti nses ilum. bility rvabil beat redua redua redua redua n es il:15,	on matrix - Stability 9 - relation ity - state Control - 9 ced order timation - Total: 60 ew Delhi, oblications,
State Solutionand its propertionof Sampled DaUNIT – IVState Feedbackbetween transfefeedback contraApplications: IUNIT – VState Estimatobserver - deadKalman filter -REFERENCE1.Gopal M 2014.2.Richard O 2013.3.Mohinder	hs in Continuous and Discrete Domain: Eigen values and eigen vectors - Steies. Solutions of state equations - continuous and discrete - free and forced ata Control System - Jury's Stability Test - Applications: DC motor, Inverted ek Controllers in Continuous and Discrete Domain: Controllability and of fer function and state model - effect of sampling time on controllability and of trollers. Steady state error in state model - PI feedback controller - I DC motor, Inverted pendulum. tors in Continuous and Discrete Domain: Deterministic observer - ful d beat observer - stochastic observer: review of random process - least mea - Kalman - Bucy filter - Applications: DC motor, Inverted pendulum. Lecture:45, T ES: ., "Digital Control and State Variable Methods", 4 th Edition, Tata McGr C. Dorf and Robert H. Bishop, "Modern Control Systems", 11 th Edition, I	State tr I respo I pendu bserva d obse: Dead II and an squa raw-Hi Pearso ice wi	ansiti nses ilum. bility rvabil beat redu are es il:15, Ill, No n Put th Ma	on matrix - Stability - Stability - relation ity - state Control - 9 ced order timation - Total: 60 ew Delhi, olications, atlab", 4 th

COURS	BT Mapped					
On com	On completion of the course, the students will be able to					
CO1: 1	Applying(K3)					
CO2: a	analyze the state responses of	of continuous and discrete	systems	Analyzing(K4)		
CO3: a	analyze the stability of the sy	stems in continuous and d	liscrete systems	Analyzing(K4)		
CO4: 0	evaluate the performance of	state feedback controllers		Evaluating(K5)		
CO5: i	implement state estimators			Applying(K3)		
		Mapping of COs w	ith POs			
COs/PO	Os PO1	PO2	PO3	PO4		
CO1	3	3	1	1		
CO2	3	3	2	2		
CO3	3	3	2	2		
CO4	3	3	3	3		
CO5	3	3	1	1		
1 - Slight	ht, 2 – Moderate, 3 – Subst	antial, BT - Bloom's Taxo	onomy			

18GET01 INTRODUCTION TO RESEARCH

(Common to Engineering and Technology Branches)

		3	0	0	3	
Preamble	To familiarize the fundamental concepts/techniques adopted in	researc	ch, pro	blem f	ormulation	
	and patenting and to disseminate the process involved in collecti	on, co	nsolida	tion of	published	
	literature and rewriting them in a presentable form using latest to	ools.				
Prerequisites	Nil					

UNIT – I

Concept of Research: Meaning and Significance of Research: Skills, Habits and Attitudes for Research -Time Management - Status of Research in India. Why, How and What a Research is? - Types and Process of Research - Outcome of Research - Sources of Research Problem - Characteristics of a Good Research Problem - Errors in Selecting a Research Problem - Importance of Keywords - Literature Collection – Analysis - Citation Study - Gap Analysis - Problem Formulation Techniques.

UNIT – II

Research Methods and Journals: Interdisciplinary Research - Need for Experimental Investigations - Data Collection Methods - Appropriate Choice of Algorithms / Methodologies / Methods - Measurement and Result Analysis - Investigation of Solutions for Research Problem - Interpretation - Research Limitations. Journals in Science/Engineering - Indexing and Impact factor of Journals - Citations - h Index - i10 Index - Journal Policies - How to Read a Published Paper - Ethical issues Related to Publishing - Plagiarism and Self-Plagiarism.

UNIT – III

Paper Writing and Research Tools: Types of Research Papers - Original Article/Review Paper/Short Communication/Case Study - When and Where to Publish? - Journal Selection Methods. Layout of a Research Paper - Guidelines for Submitting the Research Paper - Review Process - Addressing Reviewer Comments. Use of tools / Techniques for Research - Hands on Training related to Reference Management Software - EndNote, Software for Paper Formatting like LaTeX/MS Office. Introduction to Origin, SPSS, ANOVA etc., Software for detection of Plagiarism.

UNIT – IV

Effective Technical Thesis Writing/Presentation: How to Write a Report - Language and Style - Format of Project Report - Use of Quotations - Method of Transcription Special Elements: Title Page - Abstract - Table of Contents - Headings and Sub-Headings - Footnotes - Tables and Figures - Appendix - Bibliography etc. - Different Reference Formats. Presentation using PPTs.

UNIT – V

Nature of Intellectual Property: Patents - Designs - Trade and Copyright. Process of Patenting and Development: Technological research - innovation - patenting - development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents.

REFERENCES:

- 1. DePoy, Elizabeth, and Laura N. Gitlin, "Introduction to Research-E-Book: Understanding and Applying Multiple Strategies", Elsevier Health Sciences, 2015.
- 2. Walliman, Nicholas, "Research Methods: The basics", Routledge, 2017.
- 3. Bettig Ronald V., "Copyrighting culture: The political economy of intellectual property", Routledge, 2018.

9

Т

L

Ρ

Credit

9

9

9

Total: 45

COURSE OUTCOMES: On completion of the course, the students will be able to					BT Mapped (Highest Level)
CO1:	CO1: list various stages in research/patenting and categorize the quality of journals			Analyzing (K4)	
CO2:	forn	nulate a research problem from pu	blished literature/journal papers		Evaluating (K5)
CO3:	writ	e, present a journal paper/ project	report using latest tools in prope	r format	Creating (K6)
CO4:	sele	ct suitable journal and submit a re	ble journal and submit a research paper		Applying (K3)
		Мар	ping of COs with POs		
COs/I	POs	PO1	PO2		PO3
CO	1	3	2		1
CO	2	3	2		3
CO3 3 3			1		
CO	4	3	2		1
1 - Slig	ght, 2	– Moderate, 3 – Substantial, B	T – Bloom's Taxonomy		

18CIL11 PROCESS DYNAMICS AND CONTROL LABORATORY							
				L	Т	Р	Credit
				0	0	2	1
Preamble	To provide practical	l solution towards better co	ontrol action for variou	is proc	ess ap	plicati	ions
Prerequisites	Process Control, Con	ntrol Systems					
List of Exerc	ises / Experiments :						
1. For th	e First Order Linear S	system, determine the mat	hematical modeling to	o obtai	n the	respoi	nse of the
system	is with different test in	puts and check the servo a	nd regulatory operatio	ns.	1	<i>,</i> 1	C
2. For the	e First Order Non Line	ear System, determine the	mathematical modelin	ng to o	obtain	the re	sponse of
3 For the	a Second Order Linear	Sustem determine the main	thematical modeling t	allolis.	in tha	rachou	nse of the
system	s with different test in	puts and check the servo a	nd regulatory operation	ns	in the	respo	
4. For th	e Second Order Non I	Jinear System, determine 1	he mathematical mod	eling t	o obta	in the	response
of the	systems with different	test inputs and check the s	ervo and regulatory of	peratio	ons.		r
5. Devel	op control schemes for	the heat exchanger and ve	rify their performance	s by si	imulat	ion.	
6. Develo	op control schemes for	the pH neutralization plar	t and verify their perfe	ormane	ces by	simul	ation.
7. For the	e multivariable process	s, determine the controller	parameters using relay	v auto t	tuning	meth	od.
							Total: 30
REFERENC	ES/MANUALS/SOF	FWARES:					
1. Wayne H	Bequette B., "Process C	Control: Modeling, Design	, and Simulation", Prei	ntice H	Iall of	India	, 2004.
2. Stephano	poulos G., "Chemical	Process Control-An Intro	duction to Theory and	l Pract	tice", I	Prentic	e Hall of
India, No	ew Delhi, 2008.	Department of FIE Vengu	Enginagring Collago	2014			
COURSE OI	TCOMES.	repartment of EIE, Kongu	Eligineering College,	2014.	P	T Mo	nnod
On completio	n of the course, the stu	dents will be able to			(Hi	ighest	ppeu Level)
CO1: carry	out modeling and ic	lentify the suitable contr	oller design for var	ious	A	oplying	g(K3),
proce	esses	5	C		P	recisio	on(S3)
CO2: analy	ze servo and regulator	y performances of the sele	cted process		An	alyzin	g(K4),
					P	recisio	n(S3)
CO3: devel	op control schemes fo	r various processes			Aj	oplyin	g(K3),
					P	recisio	n(S3)
			241 DO				
	DO 1	Mapping of COs w	ith POs	Ī			
COS/POS	POI	P02	P03			PO4	
	3	3	3			3	
CO2	3	3	3			3	
CO3	3	3	3			3	
1 – Slight, 2 –	Moderate, 3 – Subs	tantial, BT - Bloom's Taxo	onomy				

		18CIT21 MULTIRATE AND SPARSE SIGNAL PROC	ESSIN	IG		
			L	Т	Р	Credit
			3	1	0	4
Prea	mble	The course aims to state various techniques in discrete random si	ignal p	rocess,	desig	n Wiener
		and Adaptive filtering technique, apply Multirate signal pro-	cessing	g techr	iques,	, analyze
		Uniform and two channel filter banks, explain the concept of S	Sparse	signal	proces	ssing and
		apply the knowledge of advanced digital signal processing techni	iques.	-	-	-
Prere	equisites	Digital Signal Processing				
UNI	T – I					9
Disc matr proce Aver	rete Time ices –Erge esses –Spe age Proces	Random Processes: Random processes: Ensemble averages - odicity-White noise-Parseval's theorem –Wiener Khintchine ectral Factorization Theorem. Special type of Random Proce sses, Autoregressive Processes, Moving Average Processes.	Covar relatio ess: Au	iance a on -Fil utoregr	and Co tering essive	orrelation random Moving
LINI	ти					0
	1 – 11 non and A	donting Filton Wienen Eilten The EID Wienen filtons Eilten	na N			y tion IID
Wien Wien filter	her and A her filter – –FIR adap	Non causal IIR Wiener filter –Causal IIR Wiener filter. Adaptive of the filters –LMS algorithm –Adaptive recursive filter.	ng –N Filter:	Conce	epts of	adaptive
UNI	T – III					9
Mul	tirate Sig	nal Processing and Digital Filter Banks: Introduction-Dec	cimatic	on by	a fac	tor D –
Inter	polation b	y a factor I – Sampling rate conversion by Rational Factor I/D –	Impler	nentati	on of	sampling
rate	conversion	-Multistage implementation of sampling rate conversion. Digital	l Filter	Banks	-Two	o-channel
Quad	drature Min	ror Filter bank: Elimination of Aliasing, Condition for perfect reco	onstruc	ction.		
UNI	T – IV					9
Unif bank Com signa	orm and Two ch pressible s al reconstru	Two Channel Filter Banks and Sparse Signal Processing: Pannel QMF banks –M-Channel QMF Bank. Sparse Signal signal -Over complete dictionaries -Coherence between the base action -Restricted isometric property.	Polypha Proces es -Co	ase for sing: S mpress	m of t Sparse ed ser	the QMF signals- using and
UNI	T - V					9
App	lications:	Adaptive Filters: System Identification or System Modeling-	Echo	Cancel	lation	in Data
Tran	smission c	ver Telephone Channels-Adaptive Noise Cancelling. Multirate	Signal	Proce	ssing:	Subband
Codi	ng of Spe	ech Signals. Biomedical Signal Processing: Selecting an Appro	opriate	Filter	– Re	moval of
Artif	facts in EC	G – Adaptive Cancellation of the Maternal ECG to obtain Fetal EC	CG.			
		Lectur	e:45, 7	<u>Futoria</u>	d:15, '	Fotal: 60
REF	ERENCE	S:				
1.	Monson H Institute o	I. Hayes, "Statistical Digital Signal Processing and Modelling", V f Technology–Atlanta, USA, 2013.	Wiley]	India E	dition	, Georgia
2.	John G. I	Proakis and Dimitris G. Manolakis, "Digital Signal Processing-	-Princi	iples. A	Algori	thms and
	Applicatio	ons", 4 th Edition, Pearson, Massachusetts Institute of Technology.	Cambr	idge, U	JSA, 2	:011.
3.	Rangarai	M. Rangayyan, "Biomedical Signal Analysis A Case Study Appr	roach"	, Wiley	, Univ	versity of
	Calgary, C	Canada, 2014.		, .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	5

COUH	RSE OUTCOMES:	BT Mapped					
On con	mpletion of the course, the st	(Highest Level)					
CO1:	explain the various techniq	Understanding (K2)					
CO2:	analyze wiener and adaptiv	e filters		Analyzing (K4)			
CO3:	analyze the signals through	n multirate signal process	ing and uniform and two	Analyzing (K4)			
	channel filter banks						
CO4:	explain the concept of spar	se signal processing		Understanding (K2)			
CO5:	analyze the real time signa	als by applying advanced	digital signal processing	Analyzing (K4)			
	techniques						
		Mapping of COs v	vith POs				
COs/P	POs PO1	PO2	PO3	PO4			
COI	1 2	2					
CO2	2 3	3	2	2			
CO3	3 3	3	2	2			
CO4	4 2	2					
COS	5 3	3	2	2			
1 - Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT – Blooms Taxonomy						

18CIT22 INDUSTRIAL AUTOMATION AND NETWORKING

9

9

9

9

9

Total • 45

		L	Т	Р	Credit
		3	0	0	3
Preamble	To provide a better solution for an industrial automation with suit	able ha	rdware	e modu	les and
	networking with suitable communication protocols.				
Prerequisites	Digital Logic Circuits, Process Control, Control System				

UNIT – I

PLC and its Programming: Architecture – Ladder logic Vs Relay logic – Timer Functions - Counter Functions – Arithmetic Functions – Logic Functions – Comparison Functions - Program Control Instructions – Sequencer Instructions.

UNIT – II

Distributed Control Systems: Advantages – Various architectures – Local Control Unit (LCU) – Operator Interface – Engineering interface – Types of DCS Displays – Development of Graphical User Interface (GUI).

UNIT – III

Applications of PLC and DCS: Bottle Filling System – Material Handling System – Spray Painting System – Traffic light control. DCS in Power plants – Iron and Steel plants – Chemical plants – Cement plants – Pulp and Paper plants.

UNIT – IV

Data Network Interfaces: EIA 232 / EIA 485/ EIA 422 interface standard – Media access protocol: TCP/IP – Bridges – Routers – Gateways – Standard ETHERNET Configuration.

UNIT – V

Communication Protocols: Field bus: Architecture – Basic requirements of field bus standard – Field bus topology. Profibus: Protocol stack, communication model, Communication objects. AS interface – Device net – Industrial Ethernet

RE	FERENCES:
1.	Webb John W., Reis Ronald A., "Programmable Logic Controllers: Principles and Applications", 3 rd
	Edition, Prentice Hall, New Jersey, 2002.
2.	Lucas Michal P., "Distributed Control Systems", Van Nostrand Reinhold Co., 1986.
3.	Steve Mackay, Edwin Wright, Deon Reynders, "Practical Industrial Data Networks: Design, Installation
	and Troubleshooting" Elsevier 2004

COURS	COURSE OUTCOMES:						
On comp	letion of the course, the stu	(Highest Level)					
CO1: ca	Applying (K3)						
CO2: de	escribe the functional units	of DCS		Understanding (K2)			
CO3: d	evelop PLC and DCS in va	rious applications for auto	omation purpose	Applying (K3)			
CO4: in	CO4: interpret various data network interfaces for various purpose						
CO5: ez	xplain various communicat	tion protocols and their ap	on protocols and their applications				
		Mapping of COs w	ith POs				
COs/POs	PO1	PO2	PO3	PO4			
CO1	3	3	1	1			
CO2	2	2					
CO3	3	3	1	1			
CO4	3	3	2	2			
CO5	2	2					
1 – Slight	1 – Slight, 2 – Moderate, 3 – Substantial BT – Blooms Taxonomy						

	18CIC21 NON-LINEAR SYSTEM ANALYSIS AND C	ONTH	ROL		
		L	Т	P	Credi
		3	0	2	4
Preamble	To investigate possible behaviors of nonlinear systems, inves design control schemes.	tigate	their s	stabilit	y, and t
Prerequisites	Control systems, Linear System Theory				
UNIT – I					
Phase Plane	Analysis: Behaviour of non-linear systems: Jump resonance, Sub-l	narmo	nic osc	illation	-Singula
points-Phase	plane analysis of linear and nonlinear systems - Construction of pl	ase po	ortraits	using	isocline
Limit cycle ar	nalysis.				
-					
UNIT – II					
Describing F	Function Analysis: Typical non-linearities - Describing function	is of t	typical	nonlin	earities
derivation of	describing function for nonlinearities: relay, saturation. Review o	f Nyq	uist cri	terion	for linea
system-Nyqui	st stability criteria for non-linear system-Limit cycle oscillati	ons-A	ccuracy	y of c	lescribin
function meth	iod.		-	, ,	
UNIT – III					
Lyapunoy S	tability Analysis: Nonlinear systems and equilibrium points	- co	oncepts	of s	tability
linearisation a	and local stability-Lyapunov's direct method-Stability analysis of li	inear a	nd non	-linear	system
Construction	of I vanunov functions: Krasovski's theorem and Variable gradient	meth	nd non	mou	sjstem
construction	of Eyapanov functions. Reasovski s incorem and variable gradient	moun	<i>/</i> u .		
UNIT – IV					
Feedback Li	nearization and Sliding Mode Control: Feedback linearization at	nd the	canoni	cal for	m- Inpu
Output lines	arization and Input-State linearization Sliding surfaces-Fil	innov	's cor	structi	on-Dire
implementatio	one of switching control laws and continuous approximation	1990.	Δ nnlice	ations	Inverte
nondulum ba	Il and beam system	15 - 1	appine	ations.	mvente
pendulum, ba	ii and beam system.				
IINIT – V					
Adantive Co	ntrol· Fundamentals-Model Reference Adaptive Control-Self Tu	uning	Regula	ator_ D	Direct ar
indiract adapt	tive control of linear systems. Neural Adaptive control of popli	noor a	vetome	101 - L	licotion
Inuneer adapt	where bell and been systems - Neural Adaptive control of nonin	near s	ystems	- App	meation
inverted pend			D	1.20	T-4-1.7
List of Evons	Lectur	e:45,	Ргасио	cal:50,	1 otal: /
List of Exerc	ises / Experiments :				
1. Obtair contin	uous domain. Discretize the state model and obtain discrete time re	by desponse	eriving e for a s	state step vo	model 1 ltage.
2. Derive MATI	e a model and design a state feedback controller for a liquid LAB.	level	contro	ol syste	em usin
3. Design	n a feedback linearization controller for a liquid level control syster	n usin	g MAT	LAB.	

4. Design a sliding mode controller for an inverted pendulum using MATLAB.

5. Design and implementation of a state feedback controller for CSTR process using MATLAB.

REFERENCES:

1.	Jean-Jacques Slotine and Weiping Li, "Applied Nonlinear Control", 1 st Edition, Prentice-Hall, 1991.
2.	Hassan K. Khalil, "Nonlinear Systems", 3 rd Edition, Prentice-Hall, 2002.

3. Gang Feng and Rogelio Lozano, "Adaptive Control Systems", 1st Edition, Newnes Publisher, 1999.

COUR	RSE OUTCOMES:	BT Mapped					
On con	mpletion of the course, the st	udents will be able to		(Highest Level)			
CO1:	interpret the fundamental be	ehaviours of non-linear sy	stems	Understanding (K2)			
CO2:	analyze non-linear systems	in time and frequency do	nain	Analyzing (K4)			
CO3:	apply the Lyapunov method	Applying (K3)					
CO4:	implement sliding mode co	ntroller for non-linear sys	tems	Applying (K3)			
CO5:	implement adaptive control	ler for non-linear systems		Applying (K3)			
CO6:	perform the state space mod	Applying (K3),					
			Precision (S3)				
CO7:	execute the state response of	f systems		Analyzing (K4),			
				Precision (S3)			
CO8:	demonstrate the performance	e of controllers		Evaluating (K5),			
				Precision (S3)			
		Mapping of COs w	rith POs				
COs/P	POs PO1	PO2	PO3	PO4			
CO1	1 2	2					
CO2	2 3	3	2	2			
CO3	3 3	3	1	1			
CO4	4 3	3	1	1			
CO5	5 3	3	1	1			
COé	6 3	3	3	3			
CO7	7 3	3	3	3			
COS	8 3	3	3	3			
1 - Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT – Blooms Taxonomy						

18MTC21 ROBOTICS ENGINEERING

(Comm	(Common to Mechatronics, CADCAM & Control and Instrumentation Engineering branches)						
		L	Т	Р	Credi	t	
		3	0	2	4		
Preamble	The course on Robotics Engineering is intended to provide a reasonable understanding of robotics and robot anatomy, the mathematics behind kinematics and dynamics of robot. It also involves controlling the robot motion using different control strategies.						
Prerequisites	Bridge Course Mechanical and Applied Mathematics for Mecha	atronic	S				
UNIT – I						9	

Introduction: History of robotics – Robot Anatomy – Robot specifications - Work space – Degree of freedom - Joint types - Types of robots – Precision of movements - End effectors – Dexterity - Robot applications.

UNIT – II

Robot Kinematics: Descriptions: Position, Orientations and translation – Mapping: Changing from frame to frame – Operators: Translations, Rotation and Transformation - Homogeneous Transformation matrices - Forward and Inverse kinematics - Representation of links using Denavit - Hartenberg parameters.

UNIT – III

Velocity and Static Force: Introduction - Linear and angular velocities of a rigid body - Velocity propagation – Derivation of Jacobian matrix for Serial manipulator – Singularities - Static force of serial manipulator.

UNIT – IV

Robot Dynamics: Acceleration of a rigid body - Inertia of a link - Equations of motion for serial manipulators: Euler Lagrange formulation, Newton Euler formulation — Inverse dynamics of serial manipulator.

$\mathbf{UNIT} - \mathbf{V}$

Robot Control: Point to point and Continuous path motions – Joint trajectory Vs Cartesian trajectory – Trajectory planning – Trajectory following - Disturbance rejection – PD and PID control – Computer torque control - Adaptive control – Feedback linearization control.

List of Experiments:

- 1. Study the functions of ABB IRB 1410 industrial robot- components, drive system and end effectors.
- 2. Virtual reality robot programming for different tasks- Painting, Pick and place and switch off intruder alarm.
- 3. Virtual reality robot programming for different tasks- Stacking of blocks and Machining of billets.
- 4. Creation of Tool Centre Point (TCP) and Work Object using ABB IRB 1410 industrial robot.
- 5. Pick and place operation in teach mode using ABB IRB 1410 industrial robot.
- 6. Machine tending operation in teach mode using ABB IRB 1410 industrial robot.
- 7. Robot programming exercises Point-to-point programming.
- 8. Robot programming exercises Continuous path programming.
- 9. Robot programming exercises Path planning in offline mode.
 - 10. Vision based On-line Inspection and sorting of components using ABB IRB 1410 industrial robot.

Lecture: 45, Practical:30, Total: 75

9

9

9

REF	ERENCES	/ MANUALS / SOFT	WARES:				
1. C	broover M.F	P., Weiss M., Magel F	R.N., Odrey N.G. and	Dulta A., "Industrial Re	obotics, Technology,		
P	Programming and Applications", 2 nd Edition, McGraw-Hill Companies, 2012.						
2. S	2. Saeed B. Niku, "Introduction to Robotics: Analysis, Control, Applications", 2 nd Edition, Wiley India Pvt.						
L	.td., 2012.			, th			
3. C	raig John J	., "Introduction to Ro	botics: Mechanics and	Control", 4 th Edition, P	Pearson/Prentice Hall		
P	ublication, 2	2018.		1			
COU	RSE OUT	COMES:			BT Mapped		
On co	(Highest Level)						
COI:	robot end	he industrial manipulat effector	for anatomy and estimation	te the gripping force of	Applying (K3)		
CO2:	develop th	ne forward and inverse	kinematics for serial m	anipulators	Applying (K3)		
CO3:	formulate manipulat	Jacobian matrix for fors	velocity and static f	orce analysis of serial	Applying (K3)		
CO4:	formulate	dynamic equations for	serial manipulators		Applying (K3)		
CO5:	5: apply the scheme of trajectory planning and control for manipulator motion control			Applying (K3)			
CO6:	analyze th	e industrial robot work	cell problems		Analyzing (K4),		
					Manipulation (S2)		
CO7:	develop re	obot programming throu	ugh online /offline mod	le	Creating (K6),		
					Precision (S3)		
CO8:	develop a	n online inspection syst	em using machine vision	on	Creating (K6),		
					Precision (S3)		
			Mapping of COs with	POs			
C	Os/POs	PO1	PO2	PO3	PO4		
	CO1	2		2	2		
	CO2	2		3	3		
	CO3	2		3	3		
	CO4	2		2	2		
	CO5	2		3	3		
	CO6	2	3	2	2		
	CO7	3	3	2	2		
	CO8	3	3	2	2		
$1-\overline{S}$	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy						

18COT21 WIRELESS SENSOR NETWORKS

(Common to Communication Systems, Control and Instrumentation Engineering, Computer Science and Engineering & Information Technology branches)

		3	1	0	4	
Preamble	This course will cover the most recent research topics in wireles	ss sens	or net	vorks a	and IPV	6
	transition. Topics such as MAC layer and PHY layer	functi	onaliti	es, 6I	LoWPA	N
	fundamentals, routing, mobility and other advanced topics are pr	ecisely	v cover	ed.		
Prerequisites	Wireless Networks					
UNIT – I						9

UNIT – I

IEEE 802.15.4 PHY Layer: WSN Introduction, WPAN, network topologies, superframe structure, data transfer model, frame structure, slotted CSMA, IEEE 802.15.4 PHY: frequency range, channel assignments, minimum LIFS and SIFS periods, O-QPSK PPDU format, modulation and spreading. Simulation of data transfer model using Cooja simulator.

UNIT – II

IEEE 802.15.4 MAC Layer: MAC functional description, MAC frame formats and MAC command frames, Simulation of WSN traffic model using Cooja simulator.

UNIT – III

6LoWPAN Fundamentals: 6LoWPAN-Introduction, protocol stack, addressing, L2 forwarding, L3 routing, Header Compression, Fragmentation and Reassembly, Commissioning, Neighbor Discovery. Analyzing of sensor data exchange using Wireshark.

UNIT-IV

6LoWPAN Mobility and Routing: Mobility: types, Mobile IPv6, Proxy MIPv6, NEMO, Routing: Overview, ROLL, border routing, RPL, MRPL, Edge Router Integration (Cooja simulation).

UNIT - V

IPv6 Transition and Application Protocols: IPv4 Interconnectivity: IPv6 transition, IPv6-in-IPv4 tunneling, application protocols: design issues, MQTT-S, ZigBee CAP.

Lecture:45, Tutorial:15, Total: 60

Т

L

Р

Credit

REFERENCES: "IEEE Standard for Local and metropolitan area networks, Part 15.4: Low-Rate Wireless Personal Area 1. Networks (LR-WPANs)", IEEE Computer Society, New York, 5 September 2011.

Shelby and Zach, "6LoWPAN : The Wireless Embedded Internet", 1st Edition, John Wiley & Sons Inc., 2. Hoboken, New Jersey, 2009, ISBN 978-0-470-74799-5.

Holger Karl and Andreas Willig, "Protocols and architectures for wireless sensor networks", John Wiley 3. & Sons Inc., Hoboken, New Jersey, 2005, ISBN 978-0-470-09510-2.

9

9

9

COURS	COURSE OUTCOMES:							
On com	pletion of the course, the stu	(Highest Level)						
CO1:	Understanding (K2)							
CO2:	analyze MAC frame modeli	ng of IEEE 802.15.4 sen	sor devices	Analyzing (K4)				
CO3:	analyze 6LoWPAN architec	ture		Analyzing (K4)				
CO4: •	Evaluating (K5)							
CO5:	apply IPV6 protocols for Io	Γ applications		Applying (K3)				
		Mapping of COs	with POs					
COs/PC	Ds PO1	PO2	PO3	PO4				
CO1	3	3	1	1				
CO2	3	3	2	2				
CO3	3	3	2	2				
CO4 3		3	3	3				
CO5	3	3	1	1				
1 - Slig	1 – Slight, 2 – Moderate, 3 – Substantial BT – Blooms Taxonomy							

18MSC21 MACHINE LEARNING TECHNIQUES

((Common to Computer Science and Engineering, Information Technology, Information Technology (Information Cyber Warfare) & Control and Instrumentation Engineering branches)					
			L	Т	Р	Credit
			3	0	2	4
Prean	nble	Provides a concise introduction to the fundamental concepts of m	achine	e learni	ng an	d popular
		machine learning algorithms.				
Preree	quisites	Nil				
UNIT	<u>I – I</u>					9
Supervised Learning: Definition of Machine Learning - Examples of Machine Learning Applications. Supervised Learning:Learning a Class from Examples - VC Dimension - PAC Learning - Noise - Learning Multiple Classes - Regression - Model Selection and Generalization - Dimensions of a Supervised Machine Learning Algorithm. Dimensionality Reduction: Introduction - Subset Selection – Principal Component Analysis- Feature Embedding - Factor Analysis.						
UNIT	Г — II					9
Tree Class Gauss	And Pro ification a sian Mixtu	babilistic Models: Learning with Trees – Decision Trees – Cor and Regression Trees – Different ways to Combine Classifiers are Models – Nearest Neighbor Methods – Unsupervised Learning	nstruct – Bo – K m	ting Do oosting leans A	ecision – Ba lgorit	n Trees – gging — hm.
UNI	$\Gamma - III$					9
Multi Funct Train	ilayer Pe ions - M ing Procee	rceptrons: Introduction - The Perceptron - Training a Perce ultilayer Perceptrons - MLP as a Universal Approximator - Ba dures - Tuning the Network Size - Dimensionality Reduction - Lean	ptron ckpro ming '	- Lea pagatio Time	rning on Alg	Boolean gorithm -
UNIT	$\Gamma - IV$					9
Kern Kerna - One	el Machi al Trick - class Ker	nes: Introduction - Optimal Separating Hyperplane - Soft Marg Vectorial Kernels - Defining Kernels - Multiple Kernel Learning - nel Machines - Kernel Dimensionality Reduction.	gin Hy Multio	yperpla class K	ne - ernel	v-SVM - Machines
UNI	$\Gamma - \mathbf{V}$					9
Reinforcement Learning: Introduction - Single State Case-Elements of Reinforcement Learning - Model- Based Learning - Temporal Difference Learning - Generalization - Partially Observable States. Design of Machine Learning Experiments: Introduction - Factors, Response, and Strategy of Experimentation - Response Surface Design - Randomization, Replication, and Blocking - Guidelines for Machine Learning Experiments.						
List o	of Exercis	es / Experiments :				
	1. Imp	ementation of linear regression				
	2. Imp	ementation of Decision tree				
	3. Imp	ementation of k-means clustering				
	4. Imp	ementation of k-NN				
	5. Imp	ementation of Backpropagation algorithm				
	6. Con	parison of linear regression and decision tree algorithm for the give	en dat	aset		
	7. Con	parison of kernel functions of Support Vector Machine for the give	en dat	aset		
		Lecture	:45, P	ractica	l:30,	Total: 75
REF	ERENCE	S / MANUALS / SOFTWARES:				
1.	Ethem A	lpaydin, "Introduction to Machine Learning", 3 rd Edition, Prentice	Hall c	of India	, 2014	l
2.	Christop	ner Bishop, "Pattern Recognition and Machine Learning", 2 nd Editi	on, S <mark>r</mark>	oringer	2011	
3.	Willi Rid Packt Pu	chert, Luis Pedro Coelho, "Building Machine Learning Systems blishing Ltd., 2015.	with	Pythor	n", 2 nd	¹ Edition,

COUH	COURSE OUTCOMES:						
On con	mple	etion of the course, the stu	idents will be able to		(Highest Level)		
CO1:	illu	strate the foundations of	machine learning and ap	ply suitable dimensionality	Applying (K3)		
	red	luction techniques for an	application				
CO2:	ma	ke use of supervised met	hods to solve the given p	roblem	Applying (K3)		
CO3:	app	ply neural networks to sol	ve real world problems		Applying (K3)		
CO4:	sol	ve real world problems u	Applying (K3)				
CO5:	sur	nmarize the concepts of r	Analyzing (K4)				
	exp	periments					
CO6:	6: implement various supervised algorithms and evaluate the performance			Analyzing (K4),			
					Precision (S3)		
CO7:	im	plement the unsupervised	algorithms and evaluate	the performance	Analyzing (K4),		
					Precision (S3)		
CO8:	im	plement and compare the	performance of different	t algorithms	Analyzing (K4),		
					Precision (S3)		
			Mapping of COs v	vith POs			
COs/P	Os	PO1	PO2	PO3	PO4		
COI	L	3					
CO2	2	3					
CO3	3	3					
CO4	1	3					
COS	5	3					
COe	5	3			1		
CO7	7	3			1		
CO8	3	3			1		
1 - Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT – Blooms Taxonomy						

18CIE01 OPTIMAL AND ADAPTIVE CONTROL

L	Т	Р	Credit
3	Δ	0	3

Preamble	This course covers the design of optimal controller for linear systems and the concepts of
	adaptive control for nonlinear systems
Prerequisites	Nonlinear system analysis and control

UNIT – I

Optimal Control Formulation: Review of matrix theory, functionals of a single function and several functions-necessary conditions and boundary conditions. The performance measures for optimal control problems Hamiltonian approach-necessary conditions for optimal control- Linear regulator problem-infinite time regulator problem- Applications: DC motor, Inverted pendulum

UNIT – II

Dynamic Programming: Principle of optimality - recurrence relation of dynamic programming for optimal control problem - dynamic programming application to discrete and continuous systems - Hamilton Jacobi Bellman equation.

UNIT – III

System Identification: Review of adaptive control techniques - Model free adaptive control- Non-parametric methods of system identification: Transient analysis, Frequency analysis, correlation analysis. Parametric methods of system identification: Parameter estimation algorithm for linearly and nonlinearly parameterized systems.

UNIT – IV

Model-Free Adaptive Control: Introduction - Dynamic linearization approach of discrete-time nonlinear systems-Model free adaptive control: compact-form dynamic linearization, partial-form dynamic linearization. Stability Analysis.

UNIT – V

Adaptive Dynamic Programming: Problem formulation- Dynamic Programming algorithm for finite horizon problems with known states- Computational limitations- Approximate Dynamic Programming - neural networks for parametric approximation-neuro adaptive critic structure-applications: inverted pendulum, ball and beam system.

REFERENCES:

1.	Dimitri P. Bertsekas, "Dynamic Programming and Optimal Control", Vol. I, 4 th Edition, Athena
	Scientific, 2017.
2.	Zhongsheng Hou, Shangtai Jin, "Model Free Adaptive Control: Theory and Applications", CRC Press,
	2016.
3.	Desineni Subburam Naidu "Optimal Control Systems" CRC Press 2003

9

9

9

9

9

Total: 45

COUR	SE OUTCO	BT Mapped					
On con	npletion of the	e course, the stu	idents will be able to		(Highest Level)		
CO1:	implement of	optimal controll	er for linear systems		Applying (K3)		
CO2:	apply dynam	nic programmin	Applying (K3)				
CO3:	interpret para	ametric and nor	n parametric methods of s	ystem Identification	Understanding (K2)		
CO4:	implement a	daptive control	Applying (K3)				
CO5:	apply adaptiv	ve dynamic pro	Applying (K3)				
			Mapping of COs w	rith POs			
COs/P0	Os	PO1	PO2	PO3	PO4		
CO1		3	3	1	1		
CO2		3	3	1	1		
CO3		2	2				
CO4		3	3	1	1		
CO5		3	3	1	1		
1 – Slig	1 – Slight, 2 – Moderate, 3 – Substantial, BT – Blooms Taxonomy						

18CIE02 ADVANCED INSTRUMENTATION SYSTEM DESIGN						
	[L	Т	Р	Credit	
		3	0	0	3	
Preamble	The objective of this course is to give deep knowledge in electroni	cs dev	ices an	d syst	ems with	
	a focus on sensor systems. It provides knowledge, methods, and to	ols for	mode	ling ar	nd design	
	of Instrumentation systems					
Prerequisites	Industrial Instrumentation, Electronics and digital design circuit					
UNIT – I	9					
Principles of	Analog Signal Conditioning: Signal level and bias changes, linear	izatior	, conv	ersion	, filtering	
and impedanc	e matching, concept of loading - Passive circuits: Divider circuit,	DC Br	idge ci	ircuit,	OP Amp	
circuits for in	nstrumentation: Voltage follower, V/I, I/V, differential amplifier	r instr	umenta	ation a	amplifier,	
Differentiator	integrator, and linearization- Design guidelines.					
UNIT – II					9	
Design of Sig	nal Conditioning Circuits: Temperature transmitter, RTD, thermo	couple	, strain	gauge	e- Design	
considerations						
UNIT – III					9	
Design of Co	ntrol Valve: Valve capacity, valve sizing, pressure drop, cavitatio	n and	flashin	g, ran	geability,	
Control valve	selection factors- Control valve calibration- Digital Control valve d	esign.				
UNIT – IV					0	
$\frac{\text{ONIT} - 1}{\text{Design of } \Delta 1}$	alog Controllers: Electronic controller: Error detector single i	node (ontrol	ler C	omnosite	
mode controll	ers. Design of pneumatic controller – Design consideration	noue v	20111101	ici, c	omposite	
mode controll	Design of produnate controller Design consideration.					
UNIT – V					9	
Converters:	ADC DAC conversion resolution and other characteristics. Design	n of a	Micror	roces	sor based	
Instrumentatio	on System Characteristics of digital data- Digitized value In	terfaci	ng cir	cuits	and data	
acquisition sy	stem	terraer	ing en	Cuito	und dutu	
ucquisition sys				r	Total: 45	
DEFEDENCI	FC.				1 Utal: 43	
1 Johnson	C. D. "Process Control Instrumentation Technology" ^{& th} Edition 1	Prentic	e Hall	2006		
1.JOHHSOH2Norman	A Anderson "Instrumentation for Process Measurement and the	Contro	$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$	2000.		
2. INUIIIIdil	A. Anderson, instrumentation for process measurement and control, CKC press LLC,					

Florida, 1998.
3. Roy D. Choudhury, Shail B. Jain, "Linear Integrated Circuits", 4th Edition, New AGE International Publishers, 2010.

COUR	RSE OUTCOMES:	BT Mapped					
On con	npletion of the course.	the students will be able to		(Highest Level)			
CO1:	interpret the basic co	r different problems	Understanding (K2)				
CO2:	design of signal cond	Applying (K3)					
CO3:	represent the design	procedure of control valve		Understanding (K2)			
CO4:	design and Implemer	Applying (K3)					
CO5:	develop the control d	Applying (K3)					
		Mapping of COs w	vith POs				
COs/P	Os PO1	PO2	PO3	PO4			
CO1	2	2					
CO2	2 3	3	1	1			
CO3	3 2	2					
CO4	4 3	3	1	1			
CO5	5 3	3	1	1			
1 - Slig	1 – Slight, 2 – Moderate, 3 – Substantial, BT – Blooms Taxonomy						

18CIE03 INSTRUMENTATION IN AUTOMOBILES AND BUILDING AUTOMATION								
			L	Т	Р	Credit		
			3	0	0	3		
Pream	nble	To impart the concept of instrumentation in automobiles and autom	mation	in bui	lding.			
Prerec	quisites	Control Systems, Transducers and Smart Instruments						
UNIT	$\mathbf{I} - \mathbf{I}$					9		
Basic	Basics of Electronic Engine Control: Motivation for Electronic Engine Control - Electronic Engine Control							
System	System - Engine Mapping - Electronic Fuel Control System: Engine Control Sequence, Closed Loop Control,							
Open	Loop M	ode - Analysis of Intake Manifold Pressure - Electronic Ignition.						
UNIT	I – II					9		
Senso	ors and	Actuators for Automotive Control System: Automotive Cont	rol Sy	stem .	Applic	ations of		
Senso	ors and A	ctuators - Air Flow Rate Sensor - Engine Crankshaft Angular Posit	tion Se	ensor -	Throt	tle Angle		
Senso	or - Tem	perature Sensors - Sensors for Feedback Control - Automotive En	gine C	ontrol	Actuat	tors.		
UNIT	III					9		
Vehic	ele Motio	on Control: Typical Cruise Control System - Cruise Control Electronic	ronics:	Stepp	er Mo	tor based		
Actua	tor - V	acuum Operated Actuator - Antilock Braking System - Elect	ronic	Susper	nsion	System -		
Electr	onic Stee	ering Control - Global Positioning System						
UNIT	$\Gamma - IV$					9		
Intro	duction	to Building Automation: Building Automation - Control Devices	s - Co	ntrol Si	gnals	- Control		
inform	nation -	Control Logic - Building Systems - Electrical Systems Control I	Device	s - Ele	ctrical	Systems		
Contr	ol Applio	cations - Lighting Systems Control Devices -Lighting Systems Con	trol A	pplicat	ons.			
UNIT	$\Gamma - V$					9		
Appli	ications	of Building Automation Systems: HVAC systems, Security	Syste	em, El	evator	System,		
Autor	nated Bu	ilding Operation.						
					,	Fotal: 45		
REFI	ERENCI	CS:				b		
1.	William	Ribbens, "Understanding Automotive Electronics - An Engineering	ng Pei	spectiv	'e", 7 ^u	¹ Edition,		
]	Butterwo	rth-Heinemann, 2013.						
2.	Reinhold	A. Carlson, Robert A. Di Giandomenico, "Understanding Bu	ilding	Auton	nation	Systems		
((Direct D	vigital Control, Energy Management, Life Safety, Security, Access	Cont	rol, Lig	hting,	Building		
]	Managen	(1001)						
	munugen	ient Programs), R.S. Means Company Inc., 1991.						
3.	John T. V	Wen, Sandipan Mishra, "Intelligent Building Control Systems- A	Surve	y of M	odern	Building		

COUR	RSE OUTCOMES:	BT Mapped					
On cor	mpletion of the course, the s	tudents will be able to		(Highest Level)			
CO1:	comment on the basic con	cepts of Electronic Engine	Control and building	Understanding (K2)			
CO2:	summarize Sensors and A	ve Control System	Understanding (K2)				
CO3:	interpret different vehicle	nterpret different vehicle motion control mechanisms					
CO4:	prepare the automation sy	stems in HVAC, security	, elevator and automated	Applying (K3)			
	building operating systems	5					
CO5:	integrate the automation	Analyzing (K4)					
	systems						
		Mapping of COs v	vith POs				
COs/P	POs PO1	PO2	PO3	PO4			
CO1	1 2	2					
CO2	2 2	2					
CO3	3 2	2					
CO4	4 3	3	1	1			
CO5	5 3	3	2	2			
1 - Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT – Blooms Taxonomy						

18CIE04 BIOPROCESS INSTRUMENTATION AND CONTROL							
		L	Т	Р	Credit		
		3	0	0	3		
Preamble	The course depicts the fulfillment of learning skills from inst	rumen	tation,	in the	e field of		
	Bioprocessing. Biosensors, Bioreactors, Control of Indu	strial	Ferme	ntatior	ns, Food		
	Biotechnology and Process Control concepts were introduced acc	cordin	gly.				
Prerequisites	Transducer Engineering, Process Control and Control Systems.						
UNIT – I	UNIT – I 9						
Overview of I	Bioprocessing: Historical developments of bioprocessing technol	logy-C	verviev	w of th	raditional		
and modern a	applications of biotechnology- Interdisciplinary approach to	biopro	ocessing	g- Ou	tlines of		
integrated biop	rocess-Unit operations in bioprocess.						
UNIT – II					9		
Biosensors: I	ntroduction- Biosensors in process monitoring- Transductior	n Met	hods:	Ampe	rometric,		
Potentiometric	Capacitance and Impedance, Thermal, Optical Fiber Bio	osenso	rs, Su	rface	Plasmon		
Resonance, Pie	zoelectric, Mechanical - Amperometric biosensors based on rede	ox enz	ymes -	Amp	erometric		
glucose bioser	sors for blood glucose monitoring: Diabetes Mellitus, Glucos	e Met	ter: En	zymes	used in		
glucose biosen	sors, mediated electrochemistry, electrochemical measurement, As	ssay pr	otocol.				
$\frac{\text{UNIT} - \text{III}}{\text{D}}$		1	р ·	1 1	9		
Bioreactors: (component parts of bioreactors - Component parts of a typical v	vessel	- Perip	neral j	parts and		
accessories: pe	ristance pumps, medium feed pumps and reservoir bottles, rota	imeter	gas su	ppiy,	sampling		
device - Biorea	ctor instrumentation: Digital controllers - embedded microprocess	sor, pr	ocess c	ontroll	er, direct		
computer contr	of - Common measurement and control systems: speed control, le	mpera	al feet	ntrol, C	CONTROL OF		
gas supply, co	ation End Batch Formentation	contr	oi, faci	ors m	nuencing		
chemostat oper							
UNIT – IV					9		
Control of Inc	ustrial Fermentations: Requirement for control: Microbial grow	th. na	ture of	contro	l. control		
loop strategy -	- Sensors: historical perspective, typical fermentation sensors, c	control	action	-Co	ntrollers:		
Types of cont	rol. control algorithms. PID - Design of a Fermentation Control	rol Sv	stem:	Contro	l system		
objectives, ferr	nentation computer control system architecture, fermentation pla	ant saf	etv - C	Other A	Advanced		
Fermentation	Control Options: knowledge-based systems, artificial neura	al net	works,	meta	aheuristic		
algorithms, mo	deling - Recent Trends in Fermentation Control: New sensor te	chnol	ogy, so	ftware	sensors,		
expansion of	he capability of DDC instrumentation, use of common comm	nunicat	tion pr	otocols	s, use of		
databases for s	orage bioprocess data.		1		, ,		
UNIT – V					9		
Food Biotechr	ology and Process Control: Fermentation technology: Theory, of	equipn	nent, co	ommer	cial food		
fermentations,	effects on food – Process control: Sensors, controllers and PLCs,	neural	netwo	rks, fu	zzy logic		
and robotics, p	roduction control.						
				r	Fotal: 45		
REFERENCE	S:						
1. Rao D.G	, "Introduction to Biochemical Engineering", Chemical Engine	ering	Series,	Tata	McGraw		
Hill, 2007			· =				
2. El-Mansi	E.M.T., Bryce C.F.A, Dahhou B., Sanchez S., Demain A.L., and	Allma	n A.R.	, "Fern	nentation		
Microbio	ogy and Biotechnology", 3 rd Edition, CRC Press, 2012.			• -			
3. Fellows F	J., "Food Processing Technology-Principles and Practice", 3 ¹⁴ Ec	dition,	Woodl	nead P	ublishing		
Ltd., 2015).						

COUR	RSE (BT Mapped			
On con	npleti	ion of the course, the stu	idents will be able to		(Highest Level)
CO1:	relat	te the basic concepts	of bioprocessing in	terms of developments,	Understanding (K2)
	appl	ications, approach and u			
CO2:	inter	rpret the concepts of bio	sensors and applying it fo	or practical problems	Applying (K3)
CO3:	D3: infer various parts of bioreactors and examine the common measurement and				Analyzing (K4)
	cont	rol of various parameter	`S		
CO4:	use a	a fermentation control s	Applying (K3)		
CO5:	influence fermentation technology for food processing and its post-				Evaluating (K5)
	proc	essing operations			
			Mapping of COs v	vith POs	
COs/Po	Os	PO1	PO2	PO3	PO4
CO1	-	2	2		
CO2	2	3	3	1	1
CO3	3	3	3	2	2
CO4	ŀ	3	3	1	1
CO5	5	3	3	3	3
1 – Slig	ght, 2	2 - Moderate, 3 - Subs	stantial, BT – Blooms T	axonomy	

18CIE05 DIGITAL INSTRUMENTATION								
		L	Т	Р	Cred	it		
		3	0	0	3			
Preamble	To understand the principles and concepts of digital instruments and their applications.							
Prerequisites	Digital Logic Circuits, Microprocessors and Microcontrollers							
UNIT – I	9							
D/A and A/D	Converters: D/A converters - binary weighted and R-2R ladde	er type	- D/A	A accu	iracy a	nd		
resolution - A	A/D converters counter ramp, successive approximation, simult	aneous	s, dual	– sl	ope A	./D		
converters -A/I	D accuracy and resolution – sample and hold circuit.							
UNIT – II						9		
Frequency an	d Time Measurement: Frequency counter – decimal counting	and d	isplay	– mu	ltiplexi	ng		
displays - time	base circuitry - counting input events - frequency ratio measurem	nent – j	period	measu	iremen	t –		
time interval a	nd pulse width measurement - phase measurement - scaling - a	ccurac	y – er	rors –	counti	ng		
errors.	errors.							

UNIT – III

Digital Voltmeters and Multimeters: Staircase–ramp and dual slope DVM – successive approximation. DVM - sources of error - quantizing error - automation in voltmeters - automatic polarity indication, ranging and zeroing - fully automatic instrument -digital multimeters - current to voltage and resistance to voltage conversion – AC and RMS measurements – Q-measurement.

UNIT – IV

Oscilloscopes and Recorders: Digital storage oscilloscope - principles and instrumentation - spectrum analyzer – digital recorders and plotters.

UNIT - V

DEFEDENCES.

Microcomputer Based Instruments: Microcomputer compatible D/A and A/D converters – handshake input and output – interfacing keyboard and display – common bus and data communication standards – parallel bus standard, the HPIB or IEEE 488 - serial bus standard - RS 232C and modems - interfacing CRT display - CRT character generator – CRT controllers.

9

9

9

Total: 45

1.	Bouwens A.J., "Digital Instrumentation", McGraw Hill, 1984.					
2.	Helfrick A.D. and Cooper W.D., "Modern Electronic Instrumentation and Measurement Techniques", 3 rd					
	Edition, Prentice Hall India, 1990.					
3.	Hall D.V., "Microprocessors and Digital Systems", 3 rd Edition, McGraw Hill, 1983.					

COUR	SE OUTCOMES:	BT Mapped		
On con	npletion of the course, the st	(Highest Level)		
CO1:	distinguish the characteristi	cs of A/D and D/A conve	erters	Understanding (K2)
CO2:	explain the principles of fre	quency and time measure	ments	Understanding (K2)
CO3:	relate the concept of digital	voltmeters and multimeter	ers	Understanding (K2)
CO4:	experiment with oscilloscop	pes and recorders		Applying (K3)
CO5:	design microcomputer base	d digital instruments		Applying (K3)
		Mapping of COs w	vith POs	
COs/PO	Os PO1	PO2	PO3	PO4
CO1	2	2		
CO2	2	2		
CO3	2	2		
CO4	. 3	3	1	1
CO5	3	3	1	1
1 – Slig	ght, 2 – Moderate, 3 – Sub	stantial, BT – Blooms T	axonomy	

18CIE06 PIPING AND INSTRUMENTATION DESIGN IN PROCESS INDUSTRIES							
	10011		<u>I.</u>	T	P	Cre	dit
			3	0	0	3	
Pre	amble	To study the concepts of Piping and Instrumentation diagram (P8	zID) s	vmbols	. Proc	ess flo	ow
		sheets, Process Flow diagram and to apply P&IDs for different st	ages c	of Proce	ess.		
Pre	requisites	Industrial Instrumentation and Process Control	0				
UN	IT – I						9
Pro	cess Flow	Diagram: Types of Flow sheets, Flow sheet presentation, Flow s	heet s	ymbols	, Line	syml	bols
and	designation	, Block Flow Diagram (BFD) - Process Flow Diagram (PFD) - PF	D syn	nbols.			
UN	IT – II						9
Pip	ing and In	strumentation Diagram: Piping and Instrumentation (P&I) D	iagran	n objec	ctives,	Indu	stry
Co	des and Star	ndard. P& I D Symbols - Line numbering - Line Schedule - P &	& ID (levelop	ment	- Тур	vical
Sta	ges of P & I	D - P &ID for Process Vessels, Absorber and Evaporator.					
UN	IT – III						9
Lo	op Diagram	: Loop Diagrams- Pneumatic Loop – Electronic Loop – Loop d	iagrar	n Term	inal s	ymbo	ls –
Loc	op diagram i	or Pressure Control – Loop Diagram for Flow Control.					
LIN	TT IV						0
	11 – IV ntrol Syster	n for Process Operation: Control systems for Reactors Drivers T	Dictilla	tion co	lumn	and H	9 leat
exc	hangers	The Process Operation. Control systems for Reactors, Dryers, E	/1511110		lullill		icai
ene	inungers.						
UN	IT – V						9
Pla	nt Instrum	entation: Applications of P&ID in design stage – Construction sta	ge – C	Commis	sionir	ng stag	ge –
Op	erating stage	e – Revamping stage. Application of P&I diagrams in HAZOPS an	d Risł	c analys	sis.		-
					,	Total	: 45
RE	FERENCE	S:					
1.	Ernest E. 1	Ludwig, "Applied Process Design for Chemical and Petrochemica	al Plar	nts Vol	-I", 4 ^{tl}	^h Edit	ion,
	Gulf Publi	shing Company, Houston, 2007.			-		
2.	Max S. P	eters and Timmerhaus K.D., "Plant Design and Economics fo	r Che	mical	Engin	eers",	5^{th}
	Edition, M	cGraw Hill Inc., New York, 2011.					
3.	Frederick	A. Meier and Clifford A. Meier, "Instrumentation and control	syster	n docu	menta	tion"	, 1 st
	Edition. IS	A. USA. 2004.					

COU	BT Mapped							
On con	On completion of the course, the students will be able to							
CO1:	app	oly the concept of Pipin	ng and Instrumentation	Diagram and Process Flo	ow Applying (K3)			
	diagram							
CO2:	org	ganize and document the	Instrument symbols an	d P&ID symbols for vario	ous Analyzing (K4)			
	Pro	ocesses						
CO3:	dev	velop loop diagrams for p	ressure, flow and level of	control loops	Applying (K3)			
CO4:	cor	nstruct P&IDs for control	l loops in Reactors, Dr	yers, Distillation column a	and Applying (K3)			
	He	at exchangers						
CO5:	bui	ild P&ID in different desi	gn stages of processes		Applying (K3)			
			Mapping of COs	with POs				
COs/P	Os	PO1	PO2	PO3	PO4			
CO	l	3	3	1	1			
CO2	2	3	3	2	2			
COS	3	3	3	1	1			
CO4		3	3	1	1			
CO	5	3	3	1	1			
1 – Sli	ght,	2 - Moderate, 3 - Subs	tantial, BT – Blooms	Taxonomy				

		18CIE07 APPLIED INDUSTRIAL INSTRUMENTAT	TION				
			L	Т	Р	Credit	1
			3	0	0	3	
Prea	mble	This subject introduces the P&I diagrams for various equipment,	Measu	uring In	nstrum	ents,	
		Safety aspects and calibration techniques used in industries.					
Prere	equisites	Industrial Instrumentation					
UNI	T – I)
Pipiı	ng and l	nstrumentation Diagrams: Application to Industries, identif	ication	n syst	em g	uidelines	',
instr	ument ind	ex, loop identification number, identification letter tables,	instr	ument	line	symbols	,
meas	surement a	nd control devices - and/or function symbols, multipoint, multi	ifuncti	on, an	d mul	tivariable	e
devid	ces and lo	ops - functional diagrams and function symbols: ISA functiona	al diag	gramm	ing, E	quivalen	t
P&II	D Loop, I	Functional Instrument and Electrical Diagrams, Functional Dia	igrami	ning S	ymbo	ls - P&	Ι
Diag	rams for re	otating and static equipments.					
UNI	T – II					9)
Misc	ellaneous	Instrumentation: Boroscopes – Linear and angular position	detec	tion –l	Machi	ne visio	1
techr	nology – n	bise sensors – proximity sensors and limit switches, Tachometers	and an	ngular	speed	sensors -	-
Thic	kness and	limension measurement – shock analysis - weighing systems – we	eight se	ensors.	-		
UNI	T – III)
Insti	ument In	stallation: Installation documentation, safety in design, pipe as	nd tub	be mat	erial,	Electrica	1
Insta	llations in	Potentially Explosive Locations, installation of head flow meters.					
UNI	T – IV					9)
Cali	bration: (alibration of pressure and temperature sensors, hysteresis, auton	natic c	alibrat	ion in	strument	,
calib	ration of s	mart instruments. Testing: Testing of temperature, pressure sensor	s, resp	onse ti	me te	sting, and	1
LCS	R testing.						
UNI	T - V					9)
Safe	ty Instrum	nentation: Electrical and intrinsic safety, Excess flow and regul	lar ch	eck val	ves, I	Explosio	1
supp	ression and	l deluge systems, Flame arrestors, conservation vents and emerger	ncy ve	nt Flar	ne, fir	e, smoke	
leak	and metal	detectors, Relief valves and rapture disks, start-up and shutdown in	nterloc	ks.	,	*	
						Total: 4	5
	FRENCE	S:					-
REF	LINEIUCE						
REF 1.	Bela G. L	ptak, "Process Measurement and Analysis", Vol-I, 4 th Edition, CR	RC Pre	ss, 200	3.		
REF 1. 2.	Bela G. L Considine	ptak, "Process Measurement and Analysis", Vol-I, 4 th Edition, CR D.M., "Hand book of Applied Instrumentation", Tata McGraw-H	RC Pre ill, Ne	ss, 200 w Dell	3. ni, 199	3.	_
REF 1. 2. 3.	Bela G. L Considine William	ptak, "Process Measurement and Analysis", Vol-I, 4 th Edition, CR D.M., "Hand book of Applied Instrumentation", Tata McGraw-H G. Andrew, Williams H.B., "Applied Instrumentation in the Pro	RC Pre ill, Ne cess Ii	ss, 200 w Dell ndustri	3. ni, 199 es: En	3. gineering	

COUH	RSE	BT Mapped			
On con	mple	(Highest Level)			
CO1:	exe	ecute the P&I diagrams o	n process industries	Understanding (K2)	
CO2:	exp	plain the concepts of mea	suring Instruments in in	ndustries	Understanding (K2)
CO3:	inte	erpret the installation to	echniques of various	measuring instruments in	Understanding (K2)
	ind	lustries			
CO4:	im	plement the calibration a	nd testing procedure o	f temperature and pressure	Applying (K3)
	sen	using devices			
CO5:	ide	ntify the causes of hazard	ls and apply the concep	ots of safety in industries	Applying (K3)
			Mapping of COs	with POs	
COs/P	Os	PO1	PO2	PO3	PO4
COI	l	2	2		
CO2	2	2	2		
CO3	3	2	2		
CO4		3	3	1	1
COS	5	3	3	1	1
1 - Sli	ght,	2 - Moderate, 3 - Subs	stantial, BT – Blooms	Taxonomy	

18MTE13 MEMS DESIGN							
(Common to Mechatronics, CADCAM, Engineering Design, VLSI Design, Applied Electronics, Power							
Electronics and Drives & Control and Instrumentation Engineering	g branc	hes)	,				
	L	Τ	Р	Credit			
	3	0	0	3			
Preamble: This course equips the students to understand the concepts of Micro r	nechat	ronics	and	apply the			
knowledge of micro fabrication techniques for various applications.							
Prerequisites: Sensors and Instrumentation and Bridge course mechanical							
UNIT – I				9			
Materials for MEMS and Scaling Laws: Overview - Microsystems and m	icroele	ectron	ics -	Working			
principle of Microsystems - Si as a substrate material - Mechanical properties - Si	ilicon o	compo	ounds	- Silicon			
piezo resistors - Gallium arsenide - Quartz-piezoelectric crystals - Polymer - Scalin	g laws	in M	iniatu	rization.			
	•						
UNIT – II				9			
Micro Sensors, Micro Actuators: Micro sensors - Micro actuation technic	jues -	Mic	ro act	uators –			
Micromotors – Microvalves – Micro grippers – Micro accelerometer: introduction, types, actuating							
principles, design rules, modeling and simulation, verification and testing, applications.							
UNIT – III				9			
Mechanics for Microsystem Design: Static bending of thin plates - Mecha	nical	vibrat	ion -	Thermo			

Mechanics for Microsystem Design: Static bending of thin plates - Mechanical vibration - Thermo mechanics - Thermal stresses - Fracture mechanics - Stress intensity factors, fracture toughness and interfacial fracture mechanics-Thin film Mechanics-Overview of Finite Element Stress Analysis.

UNIT – IV

Fabrication Process and Micromachining: Photolithography - Ion implantation - Diffusion – Oxidation – CVD - Physical vapor deposition - Deposition by epitaxy - Etching process- Bulk Micro manufacturing - Surface micro machining – LIGA –SLIGA.

UNIT – V

Micro System Design, Packaging and Applications: Design considerations - Process design - Mechanical design – Mechanical Design using Finite Element Method-Micro system packaging – Die level - Device level - System level – Packaging techniques - Die preparation - Surface bonding - Wire bonding – Sealing - Applications of micro system in Automotive industry: Bio medical, Aerospace and Telecommunications – CAD tools to design a MEMS device.

REFERENCES:

1.	Tai-Ran Hsu, "MEMS and Microsystems Design and Manufacture", Tata McGraw-Hill, New Delhi,
	2008.
2.	Mohamed Gad-el-Hak, "The MEMS Handbook", CRC Press, 2009.
3.	Bao M.H., "Micromechanical Transducers: Pressure sensors, accelrometers, and gyroscopes", Elsevier,
	New York, 2000.

9

9

Total: 45

COURS	E OUTCOMES:	BT Mapped					
On comp	pletion of the course, the stu	(Highest Level)					
CO1: i	nterpret the concepts of ME	Remembering (K1)					
CO2: e	explain the principles of mic	ain the principles of micro sensors and actuators					
CO3: a	apply the mechanics for micro system design Appl						
CO4: d	lesign and fabrication of mi	Applying (K3)					
CO5: d	lesign of microsystem pack	Applying (K3)					
		Mapping of COs wi	ith POs				
COs/PO	s PO1	PO2	PO3	PO4			
CO1			2				
CO2	1		2				
CO3	2	1	2	1			
CO4	2	2	2	1			
CO5	2	1	2	1			
1 – Sligh	1t, 2 - Moderate, 3 - Subs	tantial, BT - Bloom's Tax	tonomy				

	18CIE08 SECURITY FOR SCADA SYSTEM					
		L	Т	Р	Cred	lit
		3	0	0	3	
Preamble	To examine SCADA system threats and vulnerabilities, the emer	rgence	of pro	tocol s	standar	rds.
	and to know how security controls can be applied to ensu	ire the	e safet	y of	industi	rial
	infrastructures.					
Prerequisites	Industrial automation and Networking					
UNIT – I						9
SCADA System	ms in the Critical Infrastructure: Review of SCADA System Ar	chitec	ture an	d appl	ication	ıs —
overview of SC	CADA System Security Issues - SCADA and IT Convergence - C	Conven	tional	IT Sec	curity a	and
Relevant SCA	DA Issues - SCADA System Desirable Properties - Employ	ment	of SC	ADA	Syster	ms:
Petroleum Refi	ning - The Basic Refining Process - Possible Attack Consequences	s.				
UNIT – II						9
Evolution of S	SCADA Protocols: Review of the OSI Model and TCP/IP Mod	el - So	CADA	Proto	cols: T	Гhe
MODBUS Mo	del - The DNP3 Protocol - UCA 2.0 and IEC61850 Standards -	- Cont	roller A	Area N	Jetwor	:k -
Control and Inf	Cormation Protocol - DeviceNet - ControlNet - EtherNet/IP - FFB 5	59 - Pr	ofibus.			
UNIT – III						9
Security Impl	ications of SCADA Protocols: Firewalls: Packet - Filtering Fin	rewalls	s - Sta	teful I	nspecti	ion
Firewalls - Pre-	oxy Firewalls. Demilitarized Zone: Single Firewall DMZ - De	ual Fi	rewall	DMZ	. Gene	eral
Firewall Rules	for Different Services - Virtual Private Networks.					
UNIT – IV						9
SCADA Vuln	erabilities and Attacks: SCADA Risk Components: Risk M	Manag	ement	Comp	ponents	s -
Assessing the	Risk - Mitigating the Risk. SCADA Threats - SCADA Attack	Rout	es - T	ypical	Attacl	ker

SC As Privilege Goals.

$\mathbf{UNIT} - \mathbf{V}$

SCADA Security Methods and Techniques: SCADA Security Mechanisms - Improving Cyber security of SCADA Networks - Implementing Security Improvements SCADA Intrusion Detection Systems - Types of Intrusion Detection Systems - Network-Based and Host-Based IDS - Signature-Based and Anomaly-Based IDS- SCADA Audit Logs.

9

Total: 45

REFERENCES:

1.	Robert Radvanovsky and Jacob Brodsky, "Handbook of SCADA/Control Systems Security", 2 nd
	Edition, CRC Press, 2016.
2.	Eric Knapp, Joel Thomas Langill, "Industrial Network Security", 2 nd Edition, Syngress (Elsevier), 2014.
3.	Ronald L. Krutz, "Securing SCADA Systems", John Wiley & Sons, 2005.

COURSE	COUTCOMES:	BT Mapped						
On compl	etion of the course, the stu	(Highest Level)						
CO1: su	mmarize the general secu	rity issues in SCADA sys	stems	Understanding (K2)				
CO2: an	alyze the different SCAE	A protocols for automati	on	Applying (K3)				
CO3: ex	amine the various security	y implications of SCADA	a protocols	Analyzing (K4)				
CO4: an	alyze the significance of	SCADA risk and threat c	components	Analyzing (K4)				
CO5: ou	tline the SCADA security	Understanding (K2)						
		Mapping of COs w	vith POs					
COs/POs	PO1	PO2	PO3	PO4				
CO1	2	2						
CO2	3	3	1	1				
CO3	3	3	2	2				
CO4	3	3	2	2				
CO5	2	2						
1 – Slight	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy							

18CIE09 ROBUST CONTROL							
		L	Т	Р	Credit		
		3	0	0	3		
Preamble	This course covers the internal stability analysis of interconnec	ted sy	stems,	robust	stability		
	and robust performance.						
Prerequisites	Linear System Theory						
UNIT – I					9		
Introduction:	Introduction to concepts of model uncertainty: parametric, dynam	nic unc	ertaint	y. Fun	damental		
concept of ro	oustness-relationship between physical systems and mathema	tical r	nodels.	Math	nematical		
background: no	rms for vectors, matrices, signals, and systems. Singular value de	comp	osition	- appli	ication to		
perturbation an	alysis.						
UNIT – II					9		
Robustness P	roblems: Linear fractional transformations and canonical forms	s-perfo	rmance	e meas	sured via		
(induced) norm	s-robust stability and performance problems. Solution of SISO rob	oustnes	ss prob	lems.			
UNIT – III					9		
Analysis of R	obustness: Stability analysis- gamma stability- testing sets- Kha	aritonc	on's the	eorem-	stability		
radius-structure	d singular value for robustness analysis of MIMO systems.						
UNIT – IV					9		
Computer- Ai	ded Analysis Techniques: Conversion of robustness problems	to car	nonical	M∆fo	orm-small		
gain theorem a	nd approximate computation of μ via efficient upper and lower	bounds	s-comp	uter ai	ded tools		
for μ analysis b	ased on the µ Tools Matlab toolbox.						
UNIT – V					9		
Synthesis and	Controller Design: Optimal controller design: H2 and H ∞ optima	al cont	rol-sca	led Ho	o optimal		
control probler	ns and μ synthesis - computer aided tools to implement D,	G-K i	teration	n for a	advanced		
controller desig	n. Design case studies: Inverted pendulum, CSTR.						
				r	Fotal: 45		
REFERENCE	S:						
1. Mackenot	h U., "Robust Control Systems", Springer, Verlag, London 2010.						
2 7hon K a	nd John C. Doyle "Essentials of Robust Control" PHI 1998						

Zhon K. and John C. Doyle, "Essentials of Robust Control", PHI, 1998.
 Bhattacharya S.P. and Chapellat H., "Robust Control - The Parametric Approach", Prentice Hall, 1995.

COURSI	BT Mapped						
On comp	On completion of the course, the students will be able to						
CO1: ex	xplain the mathematical for	oundations of robust contro	1	Understanding (K2)			
CO2: ca	arryout the robust perform	ance of SISO systems		Applying (K3)			
CO3: ex	cecute the robust stability	Applying (K3)					
CO4: in	terpret the computer aided	l tools for robust control ar	nalysis	Understanding (K2)			
CO5: ir	nplement robust control al	Applying (K3)					
		Mapping of COs wi	th POs				
COs/POs	PO1	PO2	PO3	PO4			
CO1	2	2					
CO2	3	3	1	1			
CO3	3	3	1	1			
CO4	2	2					
CO5	3	3	1	1			
1 – Slight	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy						

	18CIE10 DIGITAL SYSTEM AND LOGIC SYNTHE	SIS			
		L	Т	Р	Credit
		3	0	0	3
Preamble	To impart the knowledge of digital design and logic synthesis for co	ontrol	circuits	5	
Prerequisites	Digital Logic Circuits				
UNIT – I					9
Sequential Cir	cuit Design: Analysis of clocked synchronous sequential circuits a	nd mo	deling-	- State	diagram,
state table, stat	e table assignment and reduction-Design of synchronous sequentia	l circu	its, des	sign of	fiterative
circuits-ASM c	hart and realization using ASM.				
					r
UNIT – II					9
Asynchronous	Sequential Circuit Design: Analysis of asynchronous sequential c	ircuit -	– Flow	table	reduction
– Races – State	assignment-Transition table and problems in transition table- Design	n of as	ynchro	nous s	sequential
circuit-Static, d	ynamic and essential hazards – Designing vending machine controlle	er.			
UNIT - III		•	<u> </u>		
Synchronous	Design using Programmable Devices: Programming logic d	evice	Tamili	es:	FPGA –
Configurable I	Logic Blocks- Logic Cell Afray- Inputs/Outputs Blocks- Program	mmad	le Inte	rconne	set point-
Switching wat	IX – AIIIIX AC 4000 series and Villex FFGA.				
IINIT – IV					0
System Design	using VHDL · VHDL operators – Arrays – Concurrent and seque	ntial s	tateme	nts _ I	Packages-
Data flow– Be	havioral – Structural modeling – Compilation and simulation of V	HDL	code -	- Reali	ization of
combinational	and sequential circuits using HDL – Design of simple microprocesso	r	couc	Iteun	Lution of
		-			
UNIT – V					9
Threshold Lo	gic in Digital Design: Introduction-The threshold element-const	tructio	n of t	hresho	old gates-
implementation	of Boolean functions using threshold gates- multigate systems.				0
÷				I	Total: 45
REFERENCE	S:				
1. Donald D	. Givone, "Digital Principles and Design", 1st Edition, Tata McGraw	-Hill, 2	2003.		
2. Charles H	. Roth Jr, "Digital Systems Design using VHDL", Thomson Learnin	g, 200	4.		
3. Manjita S	rivastava, Mahesh C. Srivastava, Atul K. Srivastava, "Digital Desi	gn: H	DL-Ba	sed Aj	pproach",
1 st Edition	a, Cengage Learning, 2010.				

COURSI	BT Mapped						
On comp	On completion of the course, the students will be able to						
CO1: de	esign synchronous sequent	ial circuits		Applying (K3)			
CO2: de	esign asynchronous sequer	tial circuits		Applying (K3)			
CO3: de	evelop programming for d	igital circuits with VHDL	4	Applying (K3)			
CO4: in	O4: implement logics in FPGA						
CO5: co	onstruct threshold for logic	gates		Applying (K3)			
		Mapping of COs w	ith POs				
COs/POs	PO1	PO2	PO3	PO4			
CO1	3	3	1	1			
CO2	3	3	1	1			
CO3	3	3	1	1			
CO4 3		3	1	1			
CO5	3	3	1	1			
1 – Slight	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy						

18CIE11 COMPUTER VISION AND IMAGE PROCESSING									
	L T P Cr								
		3 0 0 3							
Preamble	To introduce the concepts needed to understand the image signals	signals, from their acquisition until							
	their processing, through the important questions of signal representation and approximation								
	occurring during data transmission or interpretation.								
Prerequisites	Digital Image Processing								
UNIT – I						9			
Introduction	A simple Image Model-Elements of Digital Image Processing-A	pplica	tions o	f Digi	tal in	nage			
processing-Ele	ements of visual perception: luminance, brightness, contrast, hue, s	aturati	on, Ma	ach ba	nd eff	fect,			
Simultaneous	contrast, Theory of 2D Sampling. Image Transforms: Need for	image	transf	forms-2	2D: D)FT,			
DST, DCT, H	AAR, KL, SVD and Wavelet transforms and problems.								
UNIT – II						9			
Image Enhar	cement: Introduction – Enhancement by point processing – Spa	tial fil	tering:	smoot	thing	and			
sharpening fil	ters-Automatic Image Enhancement-Enhancement in frequency d	lomain	: low	pass, l	high _l	pass			
and homomo	rphic filtering - Image Enhancement using Differential Evolution	ution.	Imag	e Res	torat	ion:			
Degradation r	nodel, Algebraic approach to Restoration: Unconstrained and Cor	nstrain	ed rest	oratior	n, Inv	erse			
filtering: Form	nulation, Removal of blur caused by Uniform Linear Motion, Wi	ener f	ilter-A	utomat	tic In	nage			
Restoration.									

UNIT – III

Image Segmentation: Classification of image-segmentation techniques - Region approach to image segmentation - Clustering techniques-- Image segmentation based on thersholding - Active contour -Watershed transformation - Texture based segmentation - Atlas based segmentation-Wavelet based segmentation-Compressed Sensing: Introduction- Image and its processing - problems - Energy Based methods of image processing-Real time object detection. Mathematical Morphology: Structuring elements - Standard binary morphological operations: Erosion, dilation, opening and closing - Hit (or) miss transforms.

UNIT - IV

Image Compression: Need for image compression - Run-length coding - Huffman coding - Arithmetic coding - Transform-based compression -Vector quantization - Block Truncation Coding - Wavelet based image compression-New Trends in Image Data Compression. Compressed Sensing: Introduction- Image and its processing - problems - Energy Based methods of image processing-Real time application in Compressed Sensing.

UNIT - V

Image Registration: Registration: Preprocessing, Feature selection: points, lines, regions and templates. Feature correspondence: Point pattern matching, Line matching, Region matching, and Template matching. Transformation functions: Similarity transformation and Affine transformation. Image Fusion: Introduction -Pixel Fusion, Multiresolution based fusion: Wavelet fusion. Applications: IMAQ Vision: Pattern matching, Instrument readers, Real time detection of object on webcam.

Total: 45

9

9

RE	FERENCES:
1.	Gonzalez Rafel C. and Woods Richard E., "Digital Image Processing", 2 nd Edition, Prentice Hall, New
	York, 2006.
2.	Jayaraman S., Esakkirajan S. and Veerakumar T., "Digital Image Processing", 1 st Edition, Tata
	McGraw-Hill, New Delhi, 2009.
3.	Soman K.P. and Ramanathan R., "Digital Signal and Image Processing – The Sparse Way", 1 st Edition,
	ISA Publishers Amrita University Combatore 2012

COU	RSE	OUTCOMES:			BT Mapped		
On con	On completion of the course, the students will be able to						
CO1:	car	ryout the image forma	tion and the role of	human visual system in	Applying (K3)		
	per	ception of gray and color	· images				
CO2:	pre	dict image processing te	chniques in both the spa	atial and frequency domains	Understanding (K2)		
	usi	ng various transform tech	niques				
CO3:	fine	d knowledge in real time	detection of object in in	nage segmentation	Applying (K3)		
CO4:	inte	Applying (K3)					
CO5:	apr	oly the various concepts i	n image registration and	l fusion	Applying (K3)		
			Mapping of COs	with POs			
COs/P	Os	PO1	PO2	PO3	PO4		
CO	1	3	3	1	1		
CO2	2	2	2				
CO3	3	3	3	1	1		
CO4	1	3	3	1	1		
COS	5	3	3	1	1		
1 – Sli	ght,	2 - Moderate, 3 - Subs	stantial, BT - Bloom's T	axonomy			

18CIE12 INDUSTRIAL DRIVES AND CONTROL Т Р L Credit 3 0 0 3 To understand the principle and characteristics of controlled DC and AC Motor drives Preamble Prerequisites **Electrical Machines** UNIT – I 9 Phase Controlled DC Motor Drives: Single phase controlled converter-Three phase controlled Converter with Freewheeling, Converter configuration for a Four quadrant DC Motor Drive, Two quadrant Three Phase Converter Controlled DC Motor Drive, Two quadrant DC Motor Drive with Field Weakening, Converter selection and Characteristics. UNIT – II 9 Chopper Controlled DC Motor Drives: Principles of operation of chopper, Four quadrant chopper fed DC drives, Chopper for Inversion, Closed loop operation of Speed and Current controlled chopper fed DC drives, Applications: Forklift trucks, Hoists and Elevators. UNIT – III 9 Converter Fed AC Drives: VSI fed Induction motor drives, Braking and multi quadrant operation of VSI fed induction motor drives, Variable frequency control from a current sources, Closed loop control of CSI fed Induction motor drives, Self controlled synchronous motor drive employing load commutated thyristor inverter, Compare VSI and CSI drives performance. UNIT – IV 9 Control and Estimation of Induction Motor Drives: Induction motor control with small signal model, Open loop V/F control, Speed control with slip regulation, Speed control with torque and flux control, Adaptive control: Self tunning control-Sliding trajectory control of a vector drive. UNIT - V9 Case Study: Solar powered pump drives, Battery powered vehicles, Electric Traction Services, Calculation of traction drive rating and energy consumption, Conventional dc and ac traction drives, Diesel Electric Traction systems. Total: 45

RE	FERENCES:
1.	Bose B.K., "Power Electronics and Motor Drives-Advances and Trends", 1 st Edition, IEEE Press, 2006.
2.	Gopal K. Dubey, "Fundamentals of Electrical Drives", 2 nd Edition, Narosa Publishing House, 2018.
3.	Buxbaum A. Schierau, and Staughen K., "A design of control systems for DC drives", 1st Edition,
	Springer-Verlag, Berlin, 1990.

COUR	SE OUTCOMES:	BT Mapped					
On con	npletion of the course, the st	(Highest Level)					
CO1:	illustrate the selection and o	Applying (K3)					
CO2:	construct the applications o	f chopper fed DC drives		Applying (K3)			
CO3:	distinguish the characteristi	cs of various Industrial AC	drives	Analyzing (K4)			
CO4:	infer suitable control and es	Analyzing (K4)					
CO5:	demonstrate various types of	of electrical drive applicatio	ns	Applying (K3)			
		Mapping of COs wit	th POs				
COs/PO	Os PO1	PO2	PO3	PO4			
CO1	3	3	1	1			
CO2	3	3	1	1			
CO3	3	3	2	2			
CO4	3	3	2	2			
CO5	3	3	1	1			
1 - Slig	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy						

	18CIE13 EMBEDDED FPGA BASED CONTROL DESIGN								
L T P Cro									
			3	0	0	3			
Prea	mble	Discuss the various aspects of FPGA interfacing with examples	and sa	mple o	codes	giving an			
		overview of VLSI technology, digital circuits design w	ith Ve	erilog,	prog	ramming,			
		components with real-world interfacing example							
Prer	equisites	Digital Logic Circuits							
UNI	$\mathbf{T} - \mathbf{I}$					9			
Ele Tool Glot	Elements of Embedded FPGA Design: Abstraction Level – Embedded System Design Flow – Design Tools. ALTERA's Cyclone FPGA: Logic Array Blocks, Logic Elements, Interconnect, Embedded Memory, Global Clock Network, I/O structure.								
UNI	T - H		X 7 1	C (<u> </u>			
Ver Gate	e Level Mo	del – Dataflow Model – Behaviour Model – Switch Level Model –	Value Tasks	and Fu	m, Da	ta Types. 1s.			
UNI	T - III					9			
Desi	ign of Uti	lity Hardware Cores: Library Management – Basic I/O De	vice H	andlin	g – F	requency			
D1V1	ders $-$ SSI	D – LCD Display – Keyboard Interface Logic– VGA Interface	Logic.	HDL	Simula	ation and			
Synt	inesis – De	sign Prototype – Mixed level design with QUARIUS II.							
TINI						0			
Eml	1 - 1 = 1	PCA System Development Environment · NIOS II Processor	Conf	iourah	ility fe	9 atures of			
NIO	S II Proce	ssor Architecture Instruction Set- Alternative cores System on a	Progra	mmah	le Chir	n (SOPC)			
build	der overvie	w = Architecture, Functions of SOPC builder Integrated Develop	ment F	Enviror	nment	(IDE)			
Oun					intent	(IDL).			
UNI	T - V					9			
Eml	bedded Fl	PGA – Control Design: Embedded Design Steps: Processor	r selec	tion -	- Inter	rfacing –			
Dev	eloping So	ftware. Filter design: Filter concepts – FIR filter Hardware Imple	ementa	tion –	FIR E	mbedded			
Impl	lementation	n – Building the FIR Filter. Microcontroller – System Platform, N	Microco	ontroll	er Arc	hitecture.			
Case	e Studies: A	utomated Meter Reading System; Digital Camera.							
					,	Total: 45			
REF	FERENCE	S:							
1.	Zainalabe	din Navabi, "Embedded core design with FPGAs", 1 st Edition, Ta	ta McC	Braw H	[ill, 20	08.			
2.	Samir Pa	Initkar, "Verilog HDL: A Guide to Digital Design and Synt	hesis",	3^{rd} E	dition,	Pearson			
3	Populd S	, New Delli, 2000.	Dlatfor	m ED	3 Λαι Ι	Dringinlag			
5.	and Practi	ces", Morgan Kuafmann – Elsevier Publisher, 2010.	i latioi	III I'I'V	JAS. I	merpies			

COURSE	BT Mapped						
On comple	On completion of the course, the students will be able to						
CO1: exp	plain the essential elemen	ts of embedded FPGA des	sign	Understanding (K2)			
CO2: im	plement FPGA programn	ning for digital structures		Applying (K3)			
CO3: car	CO3: carry out interface with other hardware cores using modern EDA tools						
CO4: cla	ssify FPGA systems fron	Understanding (K2)					
CO5: tes	t an embedded system wi	th FPGA		Applying (K3)			
		Mapping of COs wi	ith POs				
COs/POs	PO1	PO2	PO3	PO4			
CO1	2	2					
CO2	3	3	1	1			
CO3	3	3	1	1			
CO4	2	2					
CO5	3	3	1	1			
1 – Slight,	I – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy						

18CIE14 WIRELESS EMBEDDED SYSTEMS

							3	UU	3	
Preamble	To understan	Fo understand the principles and concepts of wireless embedded systems.								
Prerequisites	Microprocess	Microprocessors and Microcontrollers, Embedded Systems								
UNIT – I										9
Introduction to Wireless Embedded Systems: Overview of embedded systems, their hardware,					are,					
hardware/software interface, energy vs. power, and networking.										

UNIT – II

Microcontrollers Vs. Processors: MSP430, ARM A* and Cortex M*, sensors, wireless, duty cycling, flash vs. RAM, one-wire, I2C, SPI, GPIO - Threads and events, hardware considerations, programming models, state management, tasks, protothreads, fibers.

UNIT – III

Energy and Power Management: Energy and power; batteries, sleep current, wakeup latency, triggers, relative power costs and lifetime breakdown, circuit design, clocks, harvesting, markets vs. fundamentals Storage; EEPROM, NOR/NAND flash, [PFM]RAM, blocks, pages, erase, abstractions, delay tolerance, indexing, Sensing; energy considerations, data rates, buffering.

UNIT – IV

Introduction to Wireless Transceivers: Introduction to ZIGBEE/BTLE/LORA/WIFI/WIMAX. **LORA** – Networking, physical layer model, symbols, multipath, LQI/RSSI, channel hopping, FEC, link layer, addressing, acknowledgements, routing, queueing, reliability

UNIT – V

Programming Models: Programming Models; isolation/safety, data centric, databases, scripting, frameworks. TinyOS - Programming mechanism - Application Development – Porting on Microcontroller.

Total: 45

9

9

9

1. Marko Hannikainen, Timo D. Hamalainen and Ville Kaseva, "Low-Power Wireless Sensor Network Protocols Services and Applications" Springer 2012	
Protocols Services and Applications" Springer 2012	Caseva, "Low-Power Wireless Sensor Networks:
rocoros, services and reprications, springer, 2012.	
2. Philip Levis, David Gay, "Tiny OS Programming", 1 st Edition, Cambridge University Press, Springe	Edition, Cambridge University Press, Springer,
2009.	
3. Michael Barr, Anthony Massa, "Programming Embedded Systems: With C and GNU Development	ded Systems: With C and GNU Development",
2 nd Edition, O'reilly Publishers, USA, 2006.	

COURS	SE OUTCOMES:	BT Mapped				
On com	(Highest Level)					
CO1: a	aware about the different w	Understanding (K2)				
	Wireless Sensor Networks					
CO2: i	interpret the different protoc	Understanding (K2)				
CO3: 0	experiment the different alg	Analyzing (K4)				
CO4: i	implement OS based Embed	Analyzing (K4)				
CO5: 0	develop Wireless Embedded	Applying (K3)				
Mapping of COs with POs						
COs/PO	PO1	PO2	PO3	PO4		
CO1	2	2				
CO2	2	2				
CO3	3	3	2	2		
CO4	3	3	2	2		
CO5	3	3	1	1		
1 – Slight, 2 – Moderate, 3 – Substantial BT – Blooms Taxonomy						

18CIE15 VIRTUAL INSTRUMENTATION FOR INDUSTRIAL APPLICATIONS

(Common to Control and Instrumentation Engineering, Embedded Systems, Applied Electronics & Power Electronics Drives branches)

		L T P (Credit	
		3	0	0	3
Preamble To impart knowledge about advanced tools in virtual instrumentation to develop new industrial applications					ndustrial
Prerequisites	Virtual Instrumentation				
UNIT – I					9
Graphical Sys	tem Design Programming Concepts: G-Programming- debugging	techni	ques-L	loops:	For loop,
While Loop, S	hift registers-Structures: Case Structure, Sequence Structure, Event	Struct	ure, T	imed S	Structure-
UNIT – II					9
Data Acquisit	ion and Interfacing: Data Acquisition in LabVIEW-Hardware in	stallati	on and	l confi	iguration-
DAQ compone	nts-DAQ signal Accessory-DAQ Assistant-DAQ Hardware-DAQ So	oftware).		
UNIT – III					9
GSD Program	ming Toolkits: Signal Processing and Analysis-Control System De	esign a	nd Sir	nulatio	on-Digital
Filter Design-S	pectral Measurements-Report generation-PID Control-Biomedical S	tartup	kit.		
UNIT – IV					9
VI Applicatio	ns Part I: Material Handling System -Fiber-Optic Component	Inspec	tion U	sing I	ntegrated
Vision and Mo	tion Components-Internet-Ready Power Network Analyzer for Powe	er Qual	ity Me	asurer	nents and
Monitoring.					
UNII – V VI Application	a Dort He Developing Domesta Front Danel Lah VIEW Application	a Ilai		Time	9
VI Application	Applications in LabyIEW Client Server Applications in Laby	V = USL	ng the	1 Mate	I LOOP to
Magguramont of	nd Instrumentation in Virtual Environments	/ 16 // -	Ineura	II INCL	NOIKS IOI
ivicasurement a	nd nistiumentation in virtual Environments.				Total • 45
REFERENCE	۶.				101411 40
1 Iovitha Ia	prome "Virtual Instrumentation using LabVIFW" 3 rd Edition Pl	HI Lea	rnino	Pvt I	td New
Delhi 201	2	II Lot		1 vt. 1	<i>Ad.</i> , 110 <i>W</i>
2 Sumathi	S. Surekha P. "LabVIEW based Advanced Instrumentation Sys	stems"	Sprir	oer S	cience &
Business	Media, 2007.		, Spin	-901 D	cience a
3. Saniav G	upta Joseph John "Virtual Instrumentation using LabVIEW" 2 nd	Editio	n. Tata	a McG	raw Hill
2010.		0	, 1 40		

COURSE OUTCOMES:					BT Mapped		
On con	(Highest Level)						
CO1:	apply structured	pply structured programming concepts in developing VI programs and employ					
	various debugging techniques						
CO2:	CO2: interface hardware devices with software using DAQ system						
CO3:	design, impleme	Applying (K3)					
CO4:	CO4: apply knowledge on various tools in practical works						
CO5:	Applying (K3)						
Mapping of COs with POs							
COs/P	POs PO	1	PO2	PO3	PO4		
CO	1 3		3	1	1		
CO2	2 3	3 3 1		1			
CO3	3 3		3	1	1		
CO4	4 3		3	1	1		
CO	5 3		3	1	1		
1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy							