VISION

To be a centre of excellence for development and dissemination of knowledge in Applied Sciences, Technology, Engineering and Management for the Nation and beyond.

MISSION

We are committed to value based Education, Research and Consultancy in Engineering and Management and to bring out technically competent, ethically strong and quality professionals to keep our Nation ahead in the competitive knowledge intensive world.

QUALITY POLICY

We are committed to

- Provide value based quality education for the development of students as competent and responsible citizens.
- Contribute to the nation and beyond through research and development
- Continuously improve our services

DEPARTMENT OF CHEMICAL ENGINEERING

VISION

To be a centre of excellence for development and dissemination of knowledge in Chemical Engineering for the Nation and beyond

MISSION

Department of Chemical Engineering is committed to:

- MS1: Impart knowledge to students at all levels through a vibrant, dynamic and state of the art intellectual delivery to ensure the creation of a complete Chemical Engineer with a high sense of social responsibility and professional ethics
- MS2: Synergize the efforts of the students and faculty to evolve innovative engineering practices and teaching methodologies
- MS3: Generate an environment of continuous learning and research

2018 REGULATIONS

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

Post Graduates of Chemical Engineering will

- PEO1: Take up professional assignments in design and development of advanced chemical engineering processes, products and equipment by engaging in lifelong learning and advanced research
- PEO2: Develop viable solutions for real time problems in chemical process industries with a vision towards a sustainable future
- PEO3: Exhibit their technical, soft and managerial skills to improve engineering practices for teaching and learning

MAPPING OF MISSION STATEMENTS (MS) WITH PEOS

MS\PEO	PEO1	PEO2	PEO3
MS1	2	3	3
MS2	2	2	2
MS3	3	3	2

1 – Slight, 2 – Moderate, 3 – Substantial

PROGRAM OUTCOMES (POs)

Engineering Post Graduates will be able to:

- PO1: Carry out research /investigation and development work to solve practical problems
- PO2: Write and present a substantial technical report/document
- **PO3:** Understand the requirement of the industry and perform effectively with the managerial skills
- **PO4:** Design and develop advanced chemical processes, products and equipments for the benefit of society through research and continuous learning efforts
- **PO5:** Improvise and apply their knowledge in various frontiers of chemical engineering and evolve as a successful leader/ teacher / technocrat and scientist

PEO\PO	PO1	PO2	PO3	PO4	PO5
PEO1	3	2	2	3	3
PEO2	1	2	3	3	3
PEO3	2	3	3	2	2
				~ 1	

MAPPING OF PEOs WITH POs AND PSOs

1 – Slight, 2 – Moderate, 3 – Substantial

CURRICULUM BREAKDOWN STRUCTURE UNDER REGULATION 2018

Curriculum Breakdown System	Curriculum content (% of total number of credits of the program)	Total number of contact hours	Total number of credits
Program Core (PC)	47.22	540	34
Program Electives (PE)	25.00	270	18
Project(s)/Internships(PR)/Others	27.78	300	20
		Total credits	72

KEC R2018: SCHEDULING OF COURSES – MTech (Chemical)

Semes ter		Т	heory/ Theory cum P	ractical / Practical			Internship & Projects	Special Courses	Credits
	1	2	3	4	5	6	7	8	
I	18MHT11 Momentum Heat and Mass Transfer (PC-3-1-0-4)	18MHT12 Chemical Reaction Engineering and Reactor Dynamics (PC-3-1-0-4)	18MHT13 Chemical Process Design (PC-3-0-0-3)	18MHC11 Modeling in Chemical Engineering (PC-3-0-2-4)	18MHC12 Computer Control of Processes (PC-3-0-2-4)	18MHT14 Environmental Impact Assessment (PC-3-0-0-3)			22
П	18MHT21 Chemical Equipment Design (PC-3-1-0-4)	18MHC21 Advanced Mass Transfer Operations (PC-3-0-2-4)	18MHT22 Chemical Engineering Thermodynamics (PC-3-0-0-3)	Professional Elective - I (PE-3-0-0-3)	Professional Elective - II (PE-3-0-0-3)	Professional Elective - III (PE-3-0-0-3)	18MHP21 Mini Project (PR-0-0-4-2)		22
111	Professional Elective - IV (PE-3-0-0-3)	Professional Elective - V (PE-3-0-0-3)	Professional Elective - VI (PE-3-0-0-3)	18MHL31 Technical Analysis Laboratory (PR-0-0-2-1)			18MHP31 Project Work Phase I (PR-0-0-12-6)		16
IV							18MHP41 Project work Phase II (PR-0-0-24-12)		12

Total Credits: 72

M.Tech. DEGREE IN CHEMICAL ENGINEERING

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

SEMESTER – I

Course	Course Title		lours Weel		Credit	Maximum Marks			CBS
Code	Course The	L	Т	Р	creuit	CA	ESE	Total	CDD
	Theory/Theory with Practical								
18MHT11	Momentum Heat and Mass Transfer	3	1	0	4	50	50	100	PC
18MHT12	Chemical Reaction Engineering and Reactor Dynamics	3	1	0	4	50	50	100	PC
18MHT13	Chemical Process Design	3	0	0	3	50	50	100	PC
18MHC11	Modeling in Chemical Engineering	3	0	2	4	50	50	100	PC
18MHC12	Computer Control of Processes	3	0	2	4	50	50	100	PC
18MHT14	Environmental Impact Assessment	3	0	0	3	50	50	100	PC
	Total				22				

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

M.Tech. DEGREE IN CHEMICAL ENGINEERING

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

SEMESTER – II

Course	Course Title		lours Weel		Credit	Maximum Marks			CBS
Code	Course The	L	Т	Р	creat	CA	ESE	Total	010
	Theory/Theory with Practical								
18MHT21	Chemical Equipment Design	3	1	0	4	50	50	100	PC
18MHC21	Advanced Mass Transfer Operations	3	0	2	4	50	50	100	PC
18MHT22	Chemical Engineering Thermodynamics	3	0	0	3	50	50	100	PC
	Elective - I	3	0	0	3	50	50	100	PE
	Elective - II	3	0	0	3	50	50	100	PE
	Elective - III	3	0	0	3	50	50	100	PE
	Practical								
18MHP21	Mini Project	0	0	4	2	100	0	100	PR
	Total	•	•	•	22				

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

M.Tech. DEGREE IN CHEMICAL ENGINEERING

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

Course	Course Title		lours Weel		Credit	Maximum Marks			CBS
Code		L	Т	Р	creat	CA	ESE	Total	CDS
	Theory/Theory with Practical								
	Elective - IV	3	0	0	3	50	50	100	PE
	Elective - V	3	0	0	3	50	50	100	PE
	Elective - VI	3	0	0	3	50	50	100	PE
	Practical								
18MHL31	Technical Analysis Laboratory	0	0	2	1	100	0	100	PC
18MHP31	Project Work Phase I	0	0	12	6	50	50	100	PR
	Total	•			16				

SEMESTER – III

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

M.Tech. DEGREE IN CHEMICAL ENGINEERING

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

SEMESTER – IV

Course Code	Course Title	Hours / Week		Credit	Maximum Marks			CBS	
		L	Т	Р	Crean	CA	ESE	Total	CDB
	Practical								
18MHP41	Project Work Phase II	0	0	24	12	50	50	100	PR
	Total	•	•	•	12				

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

Total Credits: 72

	LIST OF PROFESSIONAL ELECTI	VES				
Course		Но	urs/W	/eek		CDC
Code	Course Title	L	Т	Р	Credit	CBS
	SEMESTER II					
18MHE01	Advanced Fluidization Engineering	3	0	0	3	PE
18MHE02	Energy Management in Chemical Industries	3	0	0	3	PE
18MHE03	Project Engineering of Process Plants	3	0	0	3	PE
18MHE04	Advanced Separation Techniques	3	0	0	3	PE
18MHE05	Computational Fluid Dynamics	3	0	0	3	PE
18MHE06	Mixing Technology	3	0	0	3	PE
18MHE07	Process Instrumentation and Automation	3	0	0	3	PE
18MHE08	Process Intensification	3	0	0	3	PE
18MHE09	Risk Analysis	3	0	0	3	PE
	SEMESTER III					
18MHE10	Chemical Product Design	3	0	0	3	PE
18MHE11	Process Optimization Techniques	3	0	0	3	PE
18MHE12	Bioprocess Engineering	3	0	0	3	PE
18MHE13	Multiphase Flow	3	0	0	3	PE
18MHE14	Piping Flow sheeting Process and Instrumentation Diagrams	3	0	0	3	PE
18MHE15	Industrial Wastewater Treatment	3	0	0	3	PE
18MHE16	Advanced Materials for Chemical Engineers	3	0	0	3	PE
18MHE17	Industrial Drying	3	0	0	3	PE
18MHE18	Design and Analysis of Experiments	3	0	0	3	PE

	18MHT11 MOMENTUM, HEAT AND MASS TRANS	SFER			
		L	Т	Р	Credit
		3	1	0	4
Preamble	This course provides the student with a vast knowledge about	the tra	ansport	of m	omentum
	mass and energy.				
Prerequisites	Nil				
UNIT – I					9
	Phenomenological equations and transport properties - Rheo				
	ations - Differential and Integral equations - Shell balance appre				
	x and velocity distribution for flow of Newtonian and Non-Newto	onian f	fluids i	n pipe	es, planes,
slits and annul	IS.				
UNIT – II					9
0.	fass Transfer in Laminar Flow: Heat flux and temperature d				
	al, nuclear, viscous and chemical - Forced and free convection - N	Mass f	flux an	d con	centration
profile for diff	sion in stagnant gas - Systems involving reactions.				
UNIT – III					9
	of Equations of Change: Development of equations of change and				
- Mass and I	eat transfer problems discussed under shell balance by ap	oplicat	tions of	of equ	ation of
change.					
UNIT – IV					
Tumbulant EL					9
	w: Comparison of laminar and turbulent flows - Time-smooth		•		hange for
incompressible	fluids - Time smoothed velocity - Temperature profile near		•		hange for
incompressible	1		•		hange for
incompressible Expressions fo	fluids - Time smoothed velocity - Temperature profile near		•		hange for Empirical
incompressible Expressions fo UNIT – V	fluids - Time smoothed velocity - Temperature profile near turbulent momentum, heat and mass flux.	r a w	all - S	Semi-	hange for Empirical
incompressible Expressions fo UNIT – V Macroscopic	fluids - Time smoothed velocity - Temperature profile near turbulent momentum, heat and mass flux. Balance for Steady State System: Macroscopic momentum a	r a w	all - S	Semi-	hange for Empirical 9 - Overall
incompressible Expressions fo UNIT – V Macroscopic energy and me	fluids - Time smoothed velocity - Temperature profile near r turbulent momentum, heat and mass flux. Balance for Steady State System: Macroscopic momentum a chanical balance - Pressure rise and friction losses in sudden enla	r a w	all - S	Semi-	hange for Empirical 9 - Overall
incompressible Expressions fo UNIT – V Macroscopic energy and me	fluids - Time smoothed velocity - Temperature profile near r turbulent momentum, heat and mass flux. Balance for Steady State System: Macroscopic momentum a chanical balance - Pressure rise and friction losses in sudden enla ector - Isothermal flow of a liquid through an orifice.	r a w nd ma argeme	all - S ass bal ent - Pe	Semi- lance	hange for Empirical 9 - Overall ance of a
incompressible Expressions fo UNIT – V Macroscopic energy and me liquid-liquid ej	fluids - Time smoothed velocity - Temperature profile near r turbulent momentum, heat and mass flux. Balance for Steady State System: Macroscopic momentum a chanical balance - Pressure rise and friction losses in sudden enla ector - Isothermal flow of a liquid through an orifice. Lecture	r a w nd ma argeme	all - S ass bal ent - Pe	Semi- lance	hange for Empirical 9 - Overall
incompressible Expressions fo UNIT – V Macroscopic energy and me liquid-liquid ej REFERENCE	fluids - Time smoothed velocity - Temperature profile near r turbulent momentum, heat and mass flux. Balance for Steady State System: Macroscopic momentum a chanical balance - Pressure rise and friction losses in sudden enla ector - Isothermal flow of a liquid through an orifice. Lecture S:	nd ma nd ma argeme e:45, T	all - S ass bal ent - Pe	Semi- lance erform ll:15,	hange for Empirical 9 - Overall aance of a Total: 60
incompressible Expressions fo UNIT – V Macroscopic energy and me liquid-liquid ej REFERENCE 1. Bird R.B.	fluids - Time smoothed velocity - Temperature profile near r turbulent momentum, heat and mass flux. Balance for Steady State System: Macroscopic momentum a chanical balance - Pressure rise and friction losses in sudden enla ector - Isothermal flow of a liquid through an orifice. Lecture S: , Stewart W.E. and Lightfoot E.N., "Transport Phenomena", Revi	nd ma nd ma argeme e:45, T	all - S ass bal ent - Pe	Semi- lance erform ll:15,	hange for Empirical 9 - Overall aance of a Total: 60
incompressible Expressions fo UNIT – V Macroscopic energy and me liquid-liquid ej REFERENCH 1. Bird R.B & Sons, 2	fluids - Time smoothed velocity - Temperature profile near r turbulent momentum, heat and mass flux. Balance for Steady State System: Macroscopic momentum a chanical balance - Pressure rise and friction losses in sudden enla ector - Isothermal flow of a liquid through an orifice. Lecture S: , Stewart W.E. and Lightfoot E.N., "Transport Phenomena", Revi	nd ma urgeme ::45, T ised 2 ^r	ass bal ent - Pe F utoria	Semi- lance erform d:15, on, Jc	hange for Empirical 9 - Overall ance of a Total: 60

COUI	RSE OUT	COMES:				BT Mapped
On co	mpletion o	f the course, the stu	idents will be able	to		(Highest Level)
CO1:	energy f	rom a first princ	behind the transp ciples perspective m transport problem	and apply the sl		Applying (K3)
CO2:	apply the problems	-	pproach to solve	energy and ma	ss transport	Applying (K3)
CO3:	utilize eq		Applying (K3)			
CO4:	apply the		Applying (K3)			
CO5:	develop r	nacroscopic balanc	e for steady state s	ystem		Applying (K3)
			Mapping of	COs with POs		
CC	Os/POs	PO1	PO2	PO3	PO4	PO5
(CO1	3			3	2
(CO2	3			3	2
(CO3	3			3	2
(CO4	3			3	2
(CO5	3			3	2
1 - Sli	ight, 2 – M	oderate, 3 – Subs	stantial, BT - Bloo	m's Taxonomy		

18M	HT12 CHEMICAL REACTION ENGINEERING AND REACT	'OR]	DYNA	MICS	1
		L	Т	Р	Credit
		3	1	0	4
Preamble	This course provides an overview about the exploitation of chemic scale and gives vast understanding about the design and operations o				
Prerequisites	Nil				
UNIT – I					9
industrial catal Catalysts deact	talysis: Classification of Catalysis - Homogeneous, Heterogeneous, tic processes - Preparation of catalysis - Laboratory Techniques - Chivation – Poisons - Sintering of catalysts - Pore mouth plugging and u ctivation - Catalyst regeneration - Inhibition.	naract	erizatio	on of o	catalysts -
UNIT – II					9
Equation - Lan	talysts: Adsorption isotherms - Langmuir Model - Tempkin Model - gmiur Hinshel - Wood Model - Rideal - Eely Mechanism - Reversing the set of	ible-			
UNIT – III					9
coefficients in	usion Effects in Heterogeneous Reactions: Fixed bed Reactors: packed beds - Quantitative treatment of external transport effects - I lectivity - Modeling diffusion with and without reaction - Construction	Effec	t of ex	ternal	transport
UNIT – IV					9
Correlations - I	Reactors: Mass and Heat Transfer Correlations - Slurry bed Effect of mass transfer on observed rate - Calculation of Global rate - Reactors - Surry reactors and Trickle bed reactor.				
UNIT – V					9
Gas-solid Nor	-catalytic Reactors: Models for explaining the kinetics - Volu istances and rate controlling steps - Time for complete conversion for	singl	e and n	nixed	models - sizes.
		:45, [Futoria	ıl:15,	Total: 60
REFERENCE		X 7 1	1001		
1. Smith J.N 2. Fogler H. 2008.	I., "Chemical Engineering Kinetics", 3 rd Edition, McGraw-Hill, New S., "Elements of Chemical Reaction Engineering", 4 th Edition, Prentic	Y OFK	, 1981. ll of Ind	dia, N	ew Delhi,

COUI	RSE OUTC	COMES:				BT Mapped
On co	mpletion of	the course, the stude	ents will be able to	0		(Highest Level)
CO1:						
CO2:	explain the	Analyzing (K4)				
CO3:	analyze va	Analyzing (K4)				
CO4:	compare t	he different rate con	trolling mechanis	ms in reactor design	l	Analyzing (K5)
CO5:	design cat	alytic and multi-pha	se reactors			Applying (K3)
			Mapping of	COs with POs		
CC	Os/POs	PO1	PO2	PO3	PO4	PO5
(CO1	2	2	1		1
(CO2	2	1	2		
(CO3	2	1		1	
(CO4	1			3	1
(CO5 2 3		3	1		
1 - Sli	ight, 2 – Mo	oderate, 3 – Substa	ntial, BT - Bloom	's Taxonomy	***************************************	

	18MHT13 CHEMICAL PROCESS DESIGN	T	т	р	Cradit
		L 3	<u>Т</u> 0	<u>Р</u> 0	Credit 3
Preamble	This course provides knowledge in selection of a series of p	~	Ľ – – – – – – – – – – – – – – – – – – –	~	
Preamole	interconnection in a flow sheet. It enables the students to		0	-	
	development of process design.	0 111	ake ut		is uurin
Droroquisitos	Nil				
Prerequisites UNIT – I					
	to Process Design: Chemical products - Process creation - Simul	latio	n to or	aint th	
	6 1				-
	hierarchy of chemical process design and integration - Approaches	s to pi	rocess	design	- Desig
layout importa	nce in Projects.				
	T				
UNIT – II		т 1	1. 1		1 1
	actors: Reactor performance: Reaction path - Reaction systems - I				
	tions: Equilibrium, temperature, pressure, phase and concentration	on - I	Reactor	r confi	guration
L'emperature c	control - Catalyst degradation.				
i emperadare e					
UNIT – III					
UNIT – III Choice of Se	parators and Synthesis of Reactor – Separation Systems: Sep				ogeneou
UNIT – III Choice of Se mixtures - Ho	parators and Synthesis of Reactor – Separation Systems: Sep mogenous fluid mixtures - Selection and choice of distillation - Al				ogeneou
UNIT – III Choice of Se mixtures - Ho	parators and Synthesis of Reactor – Separation Systems: Sep				ogeneou
UNIT – III Choice of Se mixtures - Ho Dryers - React	parators and Synthesis of Reactor – Separation Systems: Sep mogenous fluid mixtures - Selection and choice of distillation - Al				ogeneou oorators
UNIT – III Choice of Se mixtures - Ho Dryers - React UNIT – IV	parators and Synthesis of Reactor – Separation Systems: Sep mogenous fluid mixtures - Selection and choice of distillation - Al tion - Separation and recycle system for batch process.	Absor	ption -	- Evap	ogeneou
UNIT – III Choice of Se mixtures - Ho Dryers - React UNIT – IV Distillation Se	parators and Synthesis of Reactor – Separation Systems: Sep mogenous fluid mixtures - Selection and choice of distillation - Al- tion - Separation and recycle system for batch process. equencing: Distillation sequencing using single columns - Practical	Absor l cons	ption -	- Evap - Usin	ogeneou porators g colum
UNIT – III Choice of Se mixtures - Ho Dryers - React UNIT – IV Distillation Se with more tha	parators and Synthesis of Reactor – Separation Systems: Sep mogenous fluid mixtures - Selection and choice of distillation - Al- tion - Separation and recycle system for batch process. equencing: Distillation sequencing using single columns - Practical an two products - Distillation sequencing using Thermal Coupling	Absor	ption - strains Retrofi	- Evap - Usin t of d	ogeneou porators g colum istillatio
UNIT – III Choice of Se mixtures - Ho Dryers - React UNIT – IV Distillation Se with more tha sequences and	parators and Synthesis of Reactor – Separation Systems: Sep mogenous fluid mixtures - Selection and choice of distillation - Al- tion - Separation and recycle system for batch process. equencing: Distillation sequencing using single columns - Practical an two products - Distillation sequencing using Thermal Coupling Optimization of a reducible structure - Introduction to sequencing	Absor	ption - strains Retrofi	- Evap - Usin t of d	ogeneou porators g colum istillatio
UNIT – III Choice of Se mixtures - Ho Dryers - React UNIT – IV Distillation Se with more tha sequences and	parators and Synthesis of Reactor – Separation Systems: Sep mogenous fluid mixtures - Selection and choice of distillation - Al- tion - Separation and recycle system for batch process. equencing: Distillation sequencing using single columns - Practical an two products - Distillation sequencing using Thermal Coupling	Absor	ption - strains Retrofi	- Evap - Usin t of d	ogeneou porators g colum istillatio
UNIT – III Choice of Se mixtures - Ho Dryers - React UNIT – IV Distillation Se with more tha sequences and Pressure shift	parators and Synthesis of Reactor – Separation Systems: Sep mogenous fluid mixtures - Selection and choice of distillation - Al- tion - Separation and recycle system for batch process. equencing: Distillation sequencing using single columns - Practical an two products - Distillation sequencing using Thermal Coupling Optimization of a reducible structure - Introduction to sequencing	Absor	ption - strains Retrofi	- Evap - Usin t of d	ogeneou porators g colum istillatio stillatior
UNIT – III Choice of Se mixtures - Ho Dryers - React UNIT – IV Distillation Se with more that sequences and Pressure shift	parators and Synthesis of Reactor – Separation Systems: Sep mogenous fluid mixtures - Selection and choice of distillation - Al- tion - Separation and recycle system for batch process. equencing: Distillation sequencing using single columns - Practical an two products - Distillation sequencing using Thermal Coupling Optimization of a reducible structure - Introduction to sequencing - Use of an entrainer and membrane separation.	Absor l cons ng -] for	ption - strains Retrofi azeotro	- Evap - Usin t of d opic di	ogeneou porators g colum istillation stillation
UNIT – III Choice of Se mixtures - Ho Dryers - React UNIT – IV Distillation Se with more that sequences and Pressure shift UNIT – V Heat Exchan	 parators and Synthesis of Reactor – Separation Systems: Sep mogenous fluid mixtures - Selection and choice of distillation - Altion - Separation and recycle system for batch process. equencing: Distillation sequencing using single columns - Practical an two products - Distillation sequencing using Thermal Coupling Optimization of a reducible structure - Introduction to sequencing - Use of an entrainer and membrane separation. ger Network Analysis: Energy targets: Heat recovery pinch - T 	Absor l cons ng - l for Thres	ption - strains Retrofi azeotro	- Evap - Usin t of d opic di	g colum istillation ms - Th
UNIT – III Choice of Se mixtures - Ho Dryers - React UNIT – IV Distillation Se with more tha sequences and Pressure shift UNIT – V Heat Exchan problem table	parators and Synthesis of Reactor – Separation Systems: Sep mogenous fluid mixtures - Selection and choice of distillation - Al- tion - Separation and recycle system for batch process. equencing: Distillation sequencing using single columns - Practical an two products - Distillation sequencing using Thermal Coupling Optimization of a reducible structure - Introduction to sequencing - Use of an entrainer and membrane separation. ger Network Analysis: Energy targets: Heat recovery pinch - T algorithm - Utilities selection - Capital and total cost targets: Numbe	Absor l cons ng - 1 for Thres per of	ption - strains Retrofi azeotro shold p heat ez	- Evar - Usin t of d opic di	g colum istillation ms - Th
UNIT – III Choice of Se mixtures - Ho Dryers - React UNIT – IV Distillation Se with more tha sequences and Pressure shift UNIT – V Heat Exchan problem table	 parators and Synthesis of Reactor – Separation Systems: Sep mogenous fluid mixtures - Selection and choice of distillation - Altion - Separation and recycle system for batch process. equencing: Distillation sequencing using single columns - Practical an two products - Distillation sequencing using Thermal Coupling Optimization of a reducible structure - Introduction to sequencing - Use of an entrainer and membrane separation. ger Network Analysis: Energy targets: Heat recovery pinch - T 	Absor l cons ng - 1 for Thres per of	ption - strains Retrofi azeotro shold p heat ez	- Evap - Usin t of d opic di problem schang	g colum istillation ms - Th ger units
UNIT – III Choice of Se mixtures - Ho Dryers - React UNIT – IV Distillation Se with more tha sequences and Pressure shift UNIT – V Heat Exchan problem table	parators and Synthesis of Reactor – Separation Systems: Sep mogenous fluid mixtures - Selection and choice of distillation - Al- tion - Separation and recycle system for batch process. equencing: Distillation sequencing using single columns - Practical an two products - Distillation sequencing using Thermal Coupling Optimization of a reducible structure - Introduction to sequencing - Use of an entrainer and membrane separation. ger Network Analysis: Energy targets: Heat recovery pinch - T algorithm - Utilities selection - Capital and total cost targets: Numbe	Absor l cons ng - 1 for Thres per of	ption - strains Retrofi azeotro shold p heat ez	- Evap - Usin t of d opic di problem schang	g colum istillation ms - Th
UNIT – III Choice of Se mixtures - Ho Dryers - React UNIT – IV Distillation Se with more tha sequences and Pressure shift UNIT – V Heat Exchan problem table Heat exchange	parators and Synthesis of Reactor – Separation Systems: Sep mogenous fluid mixtures - Selection and choice of distillation - Al- tion - Separation and recycle system for batch process. equencing: Distillation sequencing using single columns - Practical an two products - Distillation sequencing using Thermal Coupling Optimization of a reducible structure - Introduction to sequencing - Use of an entrainer and membrane separation. ger Network Analysis: Energy targets: Heat recovery pinch - T algorithm - Utilities selection - Capital and total cost targets: Numbe e area targets - Number of shells targets - Capital cost targets - Total optimized	Absor l cons ng - l for Thres per of l cost	ption - strains Retrofi azeotro shold p heat ex targets	- Evap - Usin t of d opic di problem schang	g colum istillation ms - Th ger units
UNIT – III Choice of Se mixtures - Ho Dryers - React UNIT – IV Distillation Se with more that sequences and Pressure shift UNIT – V Heat Exchan problem table Heat exchange REFERENCI 1. Robin Sr	parators and Synthesis of Reactor – Separation Systems: Sep mogenous fluid mixtures - Selection and choice of distillation - Altion - Separation and recycle system for batch process. equencing: Distillation sequencing using single columns - Practical an two products - Distillation sequencing using Thermal Coupling. Optimization of a reducible structure - Introduction to sequencing - Use of an entrainer and membrane separation. ger Network Analysis: Energy targets: Heat recovery pinch - T algorithm - Utilities selection - Capital and total cost targets: Numbe e area targets - Number of shells targets - Capital cost targets - Total of ES: nith, "Chemical Process Design and Integration", Wiley India Pvt. Little	Absor l cons ng - l for Thres per of l cost	ption - strains Retrofi azeotro shold p heat ex targets 2005.	- Evap - Usin t of d opic di problem xchang	g colum istillation ms - Th ger units
UNIT – III Choice of Se mixtures - Ho Dryers - React UNIT – IV Distillation Se with more that sequences and Pressure shift UNIT – V Heat Exchan problem table Heat exchange REFERENCI 1. Robin Sr	parators and Synthesis of Reactor – Separation Systems: Sep mogenous fluid mixtures - Selection and choice of distillation - Al- tion - Separation and recycle system for batch process. equencing: Distillation sequencing using single columns - Practical an two products - Distillation sequencing using Thermal Coupling Optimization of a reducible structure - Introduction to sequencing - Use of an entrainer and membrane separation. ger Network Analysis: Energy targets: Heat recovery pinch - T algorithm - Utilities selection - Capital and total cost targets: Numbe e area targets - Number of shells targets - Capital cost targets - Total optimized	Absor l cons ng - l for Thres per of l cost	ption - strains Retrofi azeotro shold p heat ex targets 2005.	- Evap - Usin t of d opic di problem xchang	g colum istillation ms - Th ger units
UNIT – IIIChoice of Semixtures - HoDryers - ReactUNIT – IVDistillation Sewith more thatsequences andPressure shiftUNIT – VHeat Exchanproblem tableHeat exchangeREFERENCI1.Robin Sr2.Douglas	parators and Synthesis of Reactor – Separation Systems: Sep mogenous fluid mixtures - Selection and choice of distillation - Altion - Separation and recycle system for batch process. equencing: Distillation sequencing using single columns - Practical an two products - Distillation sequencing using Thermal Coupling. Optimization of a reducible structure - Introduction to sequencing - Use of an entrainer and membrane separation. ger Network Analysis: Energy targets: Heat recovery pinch - T algorithm - Utilities selection - Capital and total cost targets: Numbe e area targets - Number of shells targets - Capital cost targets - Total of ES: nith, "Chemical Process Design and Integration", Wiley India Pvt. Little	Absor l cons ng - 1 for Thres ber of l cost	ption - strains Retrofi azeotro shold p heat ex targets 2005. York, 1	- Evap - Usin t of d ppic di problem schang s.	ogeneou porators g colum istillation stillation ms - Th ger units Total: 4

COUI	RSE OUT	COMES:				BT Mapped
On co	mpletion of	f the course, the stud	lents will be able	to		(Highest Level)
CO1:	-	the fundamentals	-	ocess design and	apply the	Applying (K3)
	approache	es to process design				
CO2:	choose an	nd synthesize reactor	ſS			Applying (K3)
CO3:	select sep		Applying (K3)			
CO4:	perform d		Applying (K3)			
CO5:	analyze t	he performance of	heat exchanger i	network based on	energy and	Analyzing (K4)
	capital co	st targets				
			Mapping of (COs with POs		
CC	Os/POs	PO1	PO2	PO3	PO4	PO5
(CO1	2	1	2	3	3
(CO2	3	1	2	3	2
(CO3	2	1	2	3	2
(CO4	3	1	3	2	2
(CO5	3	1	3	2	2
1 – Sli	ght, $2 - M$	oderate, 3 – Subst	antial, BT - Bloor	n's Taxonomy		

	18MHC11 MODELING IN CHEMICAL ENGINEER	ING				
		L	Т	Р	Credi	t
		3	0	2	4	
Preamble	This course makes the students knowledgeable in different asp			-		
	process systems & familiarizes with the numerical simulation					
	operations, separation processes and reactors. They will also	acquir	e kno	wledge	e on th	ne
Prerequisites	fundamental concepts of recent techniques in process simulation. Nil					
UNIT – I	ÎNII					9
	to Fundamentals of Process Modeling: Introduction - Physica	l mod	elino	- Matl	nematic	
	ts classification - Chemical systems modeling - Principles of form		0			
-	building - Boundary conditions - Black box principles - Fundame		-			
	ations - Energy equation - Equation of Motion - Transport equa					
Equilibrium rel	ations - Chemical kinetics.					
UNIT – II						9
	d Flow Operations: The process and the model aspects of : Mixed	l vesse	l.lamir	ar flov	v in pip	
	ank, Cone shaped tank, Mixing tank, Stirred tank heater, Two stir				1 1	
	ters, Interacting and Non-interacting tanks, Agitated tank for solid d			ŕ		0
UNIT – III						9
	Modeling of Reactors: The Process and the model aspects of Ba	tch rea	octor 7	Րութույթ	r reacto	
	ar reactor, CSTR, CSTR with cooling jacket, Two CSTRs, Serie					
	riable holdup, CSTR – isothermal and non-isothermal, Continuous s					,
	· · · · · · · · · · · · · · · · · · ·					
UNIT – IV			£11-	.1	C'are	9
	paration Processes: Mathematical model aspects of Multi comporizer - Refinery debutanizer column - Ideal binary distillation of					
	imn - Gas liquid bubble reactor - Solvent extraction - Steady state					
	umn - Triple effect evaporator - Forward and backward feed - Doubl	-	-		-	-
A				C		
UNIT – V		• •	L 1		1.1	9
	ation: Process Simulation - Scope - Formulation of a problem - Stepproach for steady state process - Process Simulator - Organizati	1	-			
	lation environment - Products, intuitive and interactive process mo					
-	ecture - ASPEN PLUS: Unit operation models - Selection of EOS	-	-			
	k – Training, modes and applications.					
List of Experi	nontc					
<u> </u>	s of Physical Properties and Thermodynamic Equilibrium Diagram (onstri	iction			
	ion of physical property for a non data bank component	constru				
	ion of heat exchanger using ASPEN PLUS by short cut and detailed	l metho	hd			
	ion of Mixer and Flash separator		λ			
	ion of RCSTR Model					
	ion of RPLUG Model					
	ion of Distillation Column					
	ion and analysis of absorption/extraction column					
	ity analysis of absorption/extraction column					
	ion of simple flow sheet problems					
	Lecture:	45 Pr	actica	J• 30 '	Totel· 7	75
	Lecture.	тJ, I I	actica		ivial.	15

REFERENCES: 1. Babu B.V., "Process Plant Simulation", Oxford University Press, New Delhi, 2004. 2. Luyben W.L., "Process Modeling, Simulation and Control for Chemical Engineers", 2 nd Edition, McG Hill Book Company, New York, 1990. 3. Amiya K. Jana, "Chemical Process Modeling and Computer Simulation", Prentice Hall of India, 2017. 4. Gaikwad R.W. and Dhirendra, "Process Modeling and Simulation", 2 nd Edition, Denett and Company Nagpur, 2010. COURSE OUTCOMES: On completion of the course, the students will be able to	
 Luyben W.L., "Process Modeling, Simulation and Control for Chemical Engineers", 2nd Edition, McG Hill Book Company, New York, 1990. Amiya K. Jana, "Chemical Process Modeling and Computer Simulation", Prentice Hall of India, 2017. Gaikwad R.W. and Dhirendra, "Process Modeling and Simulation", 2nd Edition, Denett and Compa Nagpur, 2010. 	
 Hill Book Company, New York, 1990. 3. Amiya K. Jana, "Chemical Process Modeling and Computer Simulation", Prentice Hall of India, 2017. 4. Gaikwad R.W. and Dhirendra, "Process Modeling and Simulation", 2nd Edition, Denett and Company Nagpur, 2010. COURSE OUTCOMES: BT Mapped	
 Gaikwad R.W. and Dhirendra, "Process Modeling and Simulation", 2nd Edition, Denett and Compa Nagpur, 2010. COURSE OUTCOMES: BT Mapped 	ıny,
 Gaikwad R.W. and Dhirendra, "Process Modeling and Simulation", 2nd Edition, Denett and Compa Nagpur, 2010. COURSE OUTCOMES: BT Mapped 	uny,
COURSE OUTCOMES: BT Mapped	
TI T	
TI T	
)
CO1: apply the concepts of various mathematical models and fundamentals laws Applying (K3)	
CO1:appry the concepts of various mathematical models and rundamentals rawsApprying (K3)CO2:develop mathematical models for various chemical systemsAnalyzing (K4)	
CO2:develop mathematical models for various types of reactorsAnalyzing (K4CO3:develop mathematical models for various types of reactorsAnalyzing (K4	
CO4: build up mathematical models for distillation and separation columns Applying (K3)	
CO5: apply the concepts of simulations and novel techniques to simulate complex Applying (K3)	
systems	
CO6:estimate the unknown physical properties and analyze themApplying (K3)	
Imitation (S1)	
CO7: perform the simulation of heat and mass transfer equipment Applying (K3)	,
Manipulation (S	
CO8: perform the simulation of reactors and carry out sensitivity analysis Applying (K3)	,
Manipulation (S	2)
Mapping of COs with POs	
COs/POs PO1 PO2 PO3 PO4 PO5	
CO1 2 2 2 2	
CO2 2 1 3 2	
CO3 2 1 3 2	
CO4 1 1 3 2	
CO5 3 3	
CO6 2 1 3 1	
CO7 2 1 3 1	
CO8 2 1 3 1	
1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy	/

	18MHC12 COMPUTER CONTROL OF PROCESSES			
		Т	Р	Credit
	3	0	2	4
Preamble	This course enables the students to acquire basic knowledge in recent of chemical processes, proper input - output pairing for multiple single in controllers and gain exposure on process control with digital computers.			U
Prerequisites	Nil			
UNIT – I				9
	ontrol Strategies: Advanced control loops - Cascade, split range and sele Ratio control - Adaptive and inferential control.	ective	contr	ol - Feed
UNIT – II				9
	del Control: Model based control - Development and design of IMC structure stable and unstable process - Model Predictive Control - Dynamic matrix of able systems.			
UNIT – III				9
array and app	le Control: MIMO systems - Control loop interaction - General pairing prol			-
operability - D	blication - Multivariable control - Zeros and performance limitations - Direct Decoupling.	tional	sensi	tivity and
	=	tional	sensi	-
UNIT – IV	Decoupling.			9
UNIT – IV Discrete Syst	=			9
UNIT – IV Discrete Syst system - Stabi	Decoupling. tems: Z - Transform and inverse Z - Transform properties - Discrete - Time F			9 f dynamic
UNIT – IV Discrete Syst system - Stabi UNIT – V	Decoupling. tems: Z - Transform and inverse Z - Transform properties - Discrete - Time F ility analysis of discrete time system.	Respo	nse of	9 f dynamic 9
UNIT – IV Discrete Syst system - Stabi UNIT – V Digital Feedl	Decoupling. tems: Z - Transform and inverse Z - Transform properties - Discrete - Time F ility analysis of discrete time system. back Controllers: Closed Loop System Stability - Design of digital feed	Respo	nse of	9 f dynamic 9
UNIT – IV Discrete Syst system - Stabi UNIT – V Digital Feedl	Decoupling. tems: Z - Transform and inverse Z - Transform properties - Discrete - Time F ility analysis of discrete time system.	Respo	nse of	9 f dynamic 9
UNIT – IV Discrete Syst system - Stabi UNIT – V Digital Feedl	Decoupling. tems: Z - Transform and inverse Z - Transform properties - Discrete - Time F ility analysis of discrete time system. back Controllers: Closed Loop System Stability - Design of digital feedl kimation of classical controllers - Effect of Sampling.	Respo	nse of	9 f dynamic 9
UNIT – IV Discrete Syst system - Stabi UNIT – V Digital Feedl digital approx List of Exper	Decoupling. tems: Z - Transform and inverse Z - Transform properties - Discrete - Time F ility analysis of discrete time system. back Controllers: Closed Loop System Stability - Design of digital feedl kimation of classical controllers - Effect of Sampling.	Respo	nse of	9 f dynamic 9
UNIT – IV Discrete Syst system - Stabi UNIT – V Digital Feedl digital approx List of Exper 1. Feed F	Decoupling. tems: Z - Transform and inverse Z - Transform properties - Discrete - Time F ility analysis of discrete time system. back Controllers: Closed Loop System Stability - Design of digital feedl kimation of classical controllers - Effect of Sampling. riments:	Respo	nse of	9 f dynamic 9
UNIT – IV Discrete Syst system - Stabi UNIT – V Digital Feedl digital approx List of Exper 1. Feed F 2. Ratio (Decoupling. tems: Z - Transform and inverse Z - Transform properties - Discrete - Time F ility analysis of discrete time system. back Controllers: Closed Loop System Stability - Design of digital feedl kimation of classical controllers - Effect of Sampling. riments: Forward Control System Controller	Respo	nse of	9 f dynamic 9
UNIT – IV Discrete Syst system - Stabi UNIT – V Digital Feedl digital approx List of Exper 1. Feed F 2. Ratio (3. Tempe	Decoupling. tems: Z - Transform and inverse Z - Transform properties - Discrete - Time F ility analysis of discrete time system. back Controllers: Closed Loop System Stability - Design of digital feedl kimation of classical controllers - Effect of Sampling. riments: Forward Control System Controller erature Control Loop	Respo	nse of	9 f dynamic 9
UNIT – IV Discrete Syst system - Stabi UNIT – V Digital Feedb digital approx List of Exper 1. Feed F 2. Ratio (3. Tempe 4. Pressu	Decoupling. tems: Z - Transform and inverse Z - Transform properties - Discrete - Time F ility analysis of discrete time system. back Controllers: Closed Loop System Stability - Design of digital feedle kimation of classical controllers - Effect of Sampling. riments: Forward Control System Controller erature Control Loop ure Control Loop	Respo	nse of	9 f dynamic 9
UNIT – IV Discrete Syst system - Stabi UNIT – V Digital Feedh digital approx List of Exper 1. Feed F 2. Ratio (3. Tempe 4. Pressu 5. Level (Decoupling. tems: Z - Transform and inverse Z - Transform properties - Discrete - Time F ility analysis of discrete time system. back Controllers: Closed Loop System Stability - Design of digital feedl kimation of classical controllers - Effect of Sampling. riments: Forward Control System Control System Control Loop Ire Control Loop Control Loop	Respo	nse of	9 f dynamic 9
UNIT – IV Discrete Syste system - Stabi UNIT – V Digital Feedle digital approx List of Exper 1. Feed F 2. Ratio (3. Tempe 4. Pressu 5. Level (6. Flow (Decoupling. tems: Z - Transform and inverse Z - Transform properties - Discrete - Time F ility analysis of discrete time system. back Controllers: Closed Loop System Stability - Design of digital feedl kimation of classical controllers - Effect of Sampling. riments: Forward Control System Control Loop Ire Control Loop Control Loop Control Loop Control Loop	Respo	nse of	9 f dynamic 9
UNIT – IV Discrete Syste system - Stabi UNIT – V Digital Feedle digital approx List of Exper 1. Feed F 2. Ratio (3. Temper 4. Pressu 5. Level (6. Flow (7. Interac	Decoupling. tems: Z - Transform and inverse Z - Transform properties - Discrete - Time F ility analysis of discrete time system. back Controllers: Closed Loop System Stability - Design of digital feedl kimation of classical controllers - Effect of Sampling. riments: Forward Control System Controller erature Control Loop ure Control Loop	Respo	nse of	9 f dynamic 9
UNIT – IV Discrete Syst system - Stabi UNIT – V Digital Feedl digital approx List of Exper 1. Feed F 2. Ratio (3. Tempo 4. Pressu 5. Level (6. Flow (7. Interac 8. Stabili	Decoupling. tems: Z - Transform and inverse Z - Transform properties - Discrete - Time F ility analysis of discrete time system. back Controllers: Closed Loop System Stability - Design of digital feedl kimation of classical controllers - Effect of Sampling. riments: Forward Control System Controller erature Control Loop tre Control Loop Control Loop Control Loop Control Loop cting & Non Interacting System ity analysis of control system	Respo	nse of	9 f dynamic 9
UNIT – IV Discrete Syst system - Stabi UNIT – V Digital Feedl digital approx List of Exper 1. Feed F 2. Ratio (3. Tempe 4. Pressu 5. Level (6. Flow (7. Interac 8. Stabili 9. Tuning	Decoupling. tems: Z - Transform and inverse Z - Transform properties - Discrete - Time F ility analysis of discrete time system. back Controllers: Closed Loop System Stability - Design of digital feedl kimation of classical controllers - Effect of Sampling. riments: Forward Control System Controller erature Control Loop ure Control Loop	Respo	nse of	9 f dynamic 9

REFERENCES:	
1. Stephanopoulos G., "Chemical Process Control: An Introduction to Theory and Practice", 1 st E	dition,
Prentice Hall of India, New Delhi, 2015.	
2. Wayne Bequette B., "Process Control: Modeling, Design, and Simulation", Prentice Hall of India	ı, New
Delhi, 2012.	
3. Kannan M. Moudgalya, "Digital Process Control", John Wiley & Sons Ltd., 2007.	
4. Chidambaram M., "Computer Control of Processes", Alpha Science International Ltd., 2002.	
COURSE OUTCOMES: BT Mappe	ed
On completion of the course, the students will be able to (Highest Le	
CO1: apply the different control configuration for chemical process Applying (F	X3)
CO2: exhibit the model based control for a system Applying (H	(3)
CO3: apply the knowledge for controlling MIMO system and analyze the sensitivity Analyzing (I	K4)
CO4: apply the principles of Z transform for solving discrete systems Applying (H	K3)
CO5: perform the stability of closed loop system and understand the design of digital Evaluating (K5)
feedback controller	10
CO6: estimate the control parameters in interacting and non-interacting tanks Applying (K	
CO7:perform experiments on various control loops and analyze their stabilityManipulationCO7:perform experiments on various control loops and analyze their stabilityApplying (K	. ,
Manipulation	
CO8: execute the tuning of controllers and perform the simulation of control loops Applying (K	
Manipulation	· ·
Mapping of COs with POs	
COs/POs PO1 PO2 PO3 PO4 PO5	5
CO1 2 1 2 2	
CO2 2 2 2 2	
CO3 3 1 2 3 3	
CO4 1 2 2	
CO5 2 1 2 3 3	
CO6 1 1 1	
CO7 2 1 1 1	
CO8 2 1 1 1	
1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy	

	L	Т	Р	Credit
		0	0	3
Preamble	This course outlines the means to verify environmental impacts ar	-	in pre	dicted of
	permitted limits and also acquire knowledge on how to take actions to	manag	e una	nticipated
	impacts and unforeseen changes.			
Prerequisi	tes Nil			
UNIT – I				9
	EIA: Introduction to EIA Audit of Environment and Industries - Input information ental Management planning.	tion - F	lant o	peration
UNIT – I				9
	Society: EIA and industrial development and Economic growth - Social is	ssues -	Waste	e Stream
impact on	water bodies.			
	T			i
Planning	and Audit: Environmental Impact Assessment planning - Activities, Methodol			
Planning Impact A	1			ronmenta
Planning Impact A control bo	and Audit: Environmental Impact Assessment planning - Activities, Methodol sessment - Role of Environmental Engineering firm - Role of Regulatory a ards - Role of the Public.			ronmenta pollution
Planning Impact A control bo UNIT – I	and Audit: Environmental Impact Assessment planning - Activities, Methodol sessment - Role of Environmental Engineering firm - Role of Regulatory a ards - Role of the Public.	agencie	s and	ronmenta pollution
Planning Impact A control bo UNIT – I Environn approach	and Audit: Environmental Impact Assessment planning - Activities, Methodol sessment - Role of Environmental Engineering firm - Role of Regulatory a ards - Role of the Public.	ge of st	s and	ronmenta pollution - Genera
Planning Impact A control bo UNIT – I Environn approach - Reports	 Audit: Environmental Impact Assessment planning - Activities, Methodol sessment - Role of Environmental Engineering firm - Role of Regulatory a ards - Role of the Public. W Introduction - Environmental information Purpose and advantation of environmental Auditing - Audit programs in India - Auditing program in match the Environmental audit studies. 	ge of st	s and	ronmenta pollution - Genera Industrie
Planning Impact A control bo UNIT – I Environn approach - Reports UNIT – V	and Audit: Environmental Impact Assessment planning - Activities, Methodol assessment - Role of Environmental Engineering firm - Role of Regulatory a ards - Role of the Public. V tental Audit: Introduction - Environmental information Purpose and advantation for the Environmental audit studies.	ge of st jor poll	s and udies uting	ronmenta pollution - Genera Industrie
Planning Impact A control bo UNIT – I Environn approach - Reports UNIT – V Legislatio and Envir	 Audit: Environmental Impact Assessment planning - Activities, Methodol sessment - Role of Environmental Engineering firm - Role of Regulatory a ards - Role of the Public. W Introduction - Environmental information Purpose and advantation of environmental Auditing - Audit programs in India - Auditing program in match the Environmental audit studies. 	ge of st jor poll	s and udies uting titutio	ronmenta pollution - Genera Industrie n of India
Planning Impact A control bo UNIT – I Environn approach - Reports UNIT – V Legislatio and Enviro	and Audit: Environmental Impact Assessment planning - Activities, Methodol assessment - Role of Environmental Engineering firm - Role of Regulatory a ards - Role of the Public. V mental Audit: Introduction - Environmental information Purpose and advanta of environmental Auditing - Audit programs in India - Auditing program in ma of the Environmental audit studies. ns Supporting Environment: Pollution prevention and control laws and acts onment - Constitution protection to Environment laws - Administrative and 1 nmental production - Indian Standards.	ge of st jor poll	s and udies uting titutio ve arr	ronmenta pollution - Genera Industrie n of India angemen
Planning Impact A control bo UNIT – I Environn approach - Reports UNIT – V Legislatic and Envir for Enviro	and Audit: Environmental Impact Assessment planning - Activities, Methodol assessment - Role of Environmental Engineering firm - Role of Regulatory a ards - Role of the Public. V mental Audit: Introduction - Environmental information Purpose and advanta of environmental Auditing - Audit programs in India - Auditing program in ma of the Environmental audit studies. ns Supporting Environment: Pollution prevention and control laws and acts onment - Constitution protection to Environment laws - Administrative and 1 nmental production - Indian Standards.	ge of st jor poll s: Cons egislati	s and udies uting titutio ve arr	ronmenta pollution - Genera Industrie n of India rangemen Total: 4
Impact A control bo UNIT – I Environn approach - Reports UNIT – V Legislatic and Envir for Enviro REFERE 1. Cant 1996	and Audit: Environmental Impact Assessment planning - Activities, Methodol assessment - Role of Environmental Engineering firm - Role of Regulatory a ards - Role of the Public. V mental Audit: Introduction - Environmental information Purpose and advantage of environmental Auditing - Audit programs in India - Auditing program in mage of the Environmental audit studies. Image: Supporting Environment: Pollution prevention and control laws and acts onment - Constitution protection to Environment laws - Administrative and I nmental production - Indian Standards. NCES: er Larry W., "Environment Impact Assessment", 2 nd Edition, McGraw-Hill I	ge of st jor poll s: Cons egislati	s and udies uting titutio ve arr ers, N	ronmenta pollution - Genera Industrie n of India angemen Total: 4 few York

COUI	RSE OUTC	OMES:				BT Mapped		
On con	On completion of the course, the students will be able to CO1: apply the concept of EIA and management planning for a process industry							
CO1:	apply the c	ndustry	Applying (K3)					
CO2:	examine the bodies	examine the role of EIA on economic growth and the impacts of wastes on water bodies						
CO3:	demonstra	te the role of differe	ent agencies on EIA	Δ		Applying (K3)		
CO4:	categorize	the concept of audi	t program for diffe	rent polluting indu	stries	Analyzing (K4)		
CO5:	employ di	fferent laws to prev	ent and control poll	ution in environm	ent	Applying (K3)		
			Mapping of C	COs with POs				
CC	Ds/POs	PO1	PO2	PO3	PO4	PO5		
(CO1	1		3				
(CO2	1		3				
(CO3	1		3				
(CO4 1 2 3							
(CO5 1 3							
1 – Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy							

	18MHT21 CHEMICAL EQUIPMENT DESIGN				
		L	Т	Р	Credit
		3	1	0	4
Preamble	This course provides a basic understanding of design parameter design procedures for commonly used process equipment exchangers, distillation column, absorption column, extractor, cry dryers. The concepts and skills learnt in process calculations, the transfer, mass transfer and heat transfer will be utilized.	like ystalli:	pressur zer, co	e ves oling (ssel, heat
Pre-requisites	Nil				
UNIT - I					9
equations, Fail	ssure Vessel: Introduction- pressure vessel codes and standards- l ure mode in pressure vessel. Design of pressure vessels under c gn of storage vessel.				
UNIT – II Design of Hes	It Transfer Equipment: Process design of Shell and tube heat e	exchar	nger d	ouble	9 pipe heat
	timation of individual and overall heat transfer coefficient, estimati evaporator – calculation of steam requirement and heat transfer are		pressu	re dro	p. Design
UNIT – III			C	1	-
Design of Ma column diamet	ss Transfer Equipment: Design of distillation column- Determiner and height – McCabe Thiele and Ponchon Savarit method. Des diameter and height, Absorption factor – estimation of number of p	sign of	f absor	ption	of stages,
Design of Ma column diamet Calculation of	er and height – McCabe Thiele and Ponchon Savarit method. Des	sign of	f absor	ption	of stages, column –
Design of Ma column diamet Calculation of UNIT – IV	er and height – McCabe Thiele and Ponchon Savarit method. Des diameter and height, Absorption factor – estimation of number of p	sign of lates r	f absor equired	ption d.	of stages, column –
Design of Ma column diamet Calculation of UNIT – IV Design of Ext of solvent, equ	er and height – McCabe Thiele and Ponchon Savarit method. Des diameter and height, Absorption factor – estimation of number of pr ractor and Crystallizer: Extractor - Industrial applications of liqui ipment used for liquid-liquid extraction, process design of counter ed in determination of number of stages. Design of crystallizers – I	sign of lates r uid-lic currer	f absor required juid ex nt mult	ption d. tractic	column – 9 on, choice extractor
Design of Ma column diamet Calculation of UNIT – IV Design of Ext of solvent, equ – steps involve number of sect	er and height – McCabe Thiele and Ponchon Savarit method. Des diameter and height, Absorption factor – estimation of number of pr ractor and Crystallizer: Extractor - Industrial applications of liqui ipment used for liquid-liquid extraction, process design of counter ed in determination of number of stages. Design of crystallizers – I	sign of lates r uid-lic currer	f absor required juid ex nt mult	ption d. tractic	of stages, column – 9 on, choice extractor
Design of Ma column diamet Calculation of UNIT – IV Design of Ext of solvent, equ – steps involve number of sect UNIT – V	er and height – McCabe Thiele and Ponchon Savarit method. Des diameter and height, Absorption factor – estimation of number of pr ractor and Crystallizer: Extractor - Industrial applications of liqui ipment used for liquid-liquid extraction, process design of counter ed in determination of number of stages. Design of crystallizers – I	sign of lates r uid-lic curren Deterr	f absor required juid ex nt mult ninatio	ption d. tractic istage n of le	of stages, column – 9 on, choice extractor ength and
Design of Ma column diamet Calculation of UNIT – IV Design of Ext of solvent, equ - steps involve number of sect UNIT – V Design of Mis	er and height – McCabe Thiele and Ponchon Savarit method. Des diameter and height, Absorption factor – estimation of number of pr ractor and Crystallizer: Extractor - Industrial applications of liqu ipment used for liquid-liquid extraction, process design of counter ed in determination of number of stages. Design of crystallizers – I ions.	sign of lates r uid-lic curren Deterr of HT	f absor required juid ex nt mult ninatio	ption d. tractic istage n of le	of stages, column – 9 on, choice extractor ength and 9 eight and
Design of Ma column diamet Calculation of UNIT – IV Design of Ext of solvent, equ – steps involve number of sect UNIT – V Design of Mis diameter. Desi parameters. Desi	er and height – McCabe Thiele and Ponchon Savarit method. Des diameter and height, Absorption factor – estimation of number of pr ractor and Crystallizer: Extractor - Industrial applications of liqui ipment used for liquid-liquid extraction, process design of counter ed in determination of number of stages. Design of crystallizers – I ions. scellaneous Equipment: Design of cooling tower - Calculation	sign of lates r uid-lic curren Deterr of HT ler and	f absor required juid ex nt mult ninatio	ption d. tractic istage n of le	of stages, column – 9 on, choice extractor ength and geight and of various
Design of Ma column diamet Calculation of UNIT – IV Design of Ext of solvent, equ – steps involve number of sect UNIT – V Design of Mis diameter. Desig parameters. Designed dryer – cal	rer and height – McCabe Thiele and Ponchon Savarit method. Des diameter and height, Absorption factor – estimation of number of pr ractor and Crystallizer: Extractor - Industrial applications of liquid ipment used for liquid-liquid extraction, process design of counter ed in determination of number of stages. Design of crystallizers – I ions. scellaneous Equipment: Design of cooling tower - Calculation of gn of Reboiler – Typical design procedure for thermosyphon reboile esign of dryers – Design of rotary dryer – Estimation of length an culation of diameter of distributor grid and disengagement zone. Lecture	sign of lates r uid-lic curren Deterr of HT ler and nd dian	f absor required juid ex nt mult ninatio	ption d. tractic istage n of le CU, H ation of Desig	of stages, column – 9 on, choice extractor ength and geight and of various
Design of Ma column diamet Calculation of UNIT – IV Design of Ext of solvent, equ – steps involve number of sect UNIT – V Design of Mis diameter. Desi parameters. Desi bed dryer – cal	rer and height – McCabe Thiele and Ponchon Savarit method. Des diameter and height, Absorption factor – estimation of number of pr ractor and Crystallizer: Extractor - Industrial applications of liquid ipment used for liquid-liquid extraction, process design of counter ed in determination of number of stages. Design of crystallizers – I ions. scellaneous Equipment: Design of cooling tower - Calculation of gn of Reboiler – Typical design procedure for thermosyphon reboile esign of dryers – Design of rotary dryer – Estimation of length an culation of diameter of distributor grid and disengagement zone. Lecture	sign of lates r uid-lic curren Deterr of HT ler and dian re:45,	f absor required juid ex nt mult ninatio TU, NT l estima meter, Tutori	ption d. tractic istage n of le CU, H ation of Desig	of stages column - on, choice extractor ength and eight and of various n of fluid Total:60

- 2.
- Kern D.Q., "Process Heat Transfer", International Student Edition, McGraw Hill, 2002. Mahajani V.V. and Umarji S.B., Joshi's "Process Equipment Design", 4th Edition, Macmillan Publishers 3. India Ltd., New Delhi, 2010.

COUI	RSE OUTC	COMES:				BT Mapped
On co	mpletion of	the course, the stud	ents will be able to)		(Highest Level)
CO1:	determine	the plate thickness	and various stress	analysis of vessels	s under combined	Applying (K3)
	loading an	d high pressure				
CO2:						Applying (K3)
	and estimate the steam requirement and heat transfer area for a single effect					
~ ~ ~	evaporator					
CO3:		tillation column us	0		arit methods and	Applying (K3)
		ne diameter, height	*			
CO4:	•	e concepts involve		-		Analyzing (K4)
	······	ns, estimating the n	······	<u>-</u>		
CO5:	examine the	he process of design	of cooling towers	, rotary and fluid b	ed dryers	Analyzing (K4)
			Mapping of (COs with POs		
CC	Os/POs	PO1	PO2	PO3	PO4	PO5
(CO1	1			3	
(CO2	1			3	
(CO3	1			3	
CO4 1		1			3	
(CO5	1			3	
1 – Sli	ght, 2 – Mo	derate, 3 – Substa	ntial, BT - Bloom	's Taxonomy		

	18MHC21 ADVANCED MASS TRANSFER OPERATI	IONS	5		
		L	Т	Р	Credit
		3	0	2	4
Preamble	This course provides an understanding of the multicomponent s distillation columns, Complex columns and system of columns ar multicomponent separation analysis.	-			
Prerequisites	Nil				
UNIT – I					9
•	amic Relationships for Multicomponent Mixtures: Calculation ent mixtures, Equation of state and its usage in prediction of K valution of state.				-
	to Multicomponent Distillation: Separation of multicomponent tage, Multi stage separation of binary mixtures, Separation of multic			•	
UNIT – III					9
v	Azeotropic and Extractive Distillation Column: Qualitative charactive column. Systems of columns in the service of separating mixtures			0	1
UNIT – IV					9
	d Extraction: Stage wise calculations for multi component with n xed solvents. Liquid-liquid extraction with chemical reaction	nultip	ole feed	d strea	ms using
UNIT – V					9
-	conent Gas Absorption: Horton-Franklin method, Edmister method, the and without chemical reaction, model solutions by Dankwerts, Bri				0
List of Expe	riments:				
	mination of the activity coefficients and Van Laar constant for the gexperiments	given	system	n by po	erforming
bottor	ation of Height Equivalent to a Theoretical Plate and find out % rec n products of given system under total reflux conditions		-		
steam	mination of vaporization efficiency (Ev) and Thermal efficiency (Et) distillation apparatus	t) of t	he give	en syst	tem using
5. Verify	mination of the diffusivity of the given liquid to air ring the Raleigh's equation for the given system using simple distillat action of Simple Leaching studies	tion s	etup		
	action of liquid-liquid extraction studies and plot binodal curve for the	e give	en terns	arv svo	tem
	ing the concept of surface evaporation and finding the constants of Hi				
•	ation of Mass transfer co-efficient using Wetted wall column	mus	Lquuti		
	ation of Mass transfer co-efficient using packed absorption column				
	Lecture :	:45. P	ractic	al:30.	Total: 75
REFERENC		- , -			
	B.K., "Principles of Mass Transfer and Separation Processes", Prenti	ice H	all Indi	a Lea	rning Pvt.
2. Treyba	ll Robert E., "Mass Transfer Operations", 3 rd Edition, McGraw-Hill B	Book	Compa	ny, 19	80.
3. Ross John V	Taylor R. Krishna, "Multicomponent Mass Transfer", Wiley Series Viley & Sons, New York, 1993.	s in (Chemic	al Eng	gineering,
	d, Charles Donald, "Fundamentals of Multicomponent Distillation",	, Mc	Graw-H	Hill, N	ew York,

COURSE OUTCOMES:						BT Mapped	
On con	mpletion of	the course, the stuc	lents will be able to)		(Highest Level)	
CO1:	calculate V	VLE data and entha	lpies for multicom	ponent mixtures		Applying (K3)	
CO2:	perform ca	alculations in Multi	component distilla	tion		Applying (K3)	
CO3:	forming az				-	Applying (K3)	
CO4:	solve prob extraction	olems in multi cor	nponent with mult	iple feed streams	in Liquid-liquid	Applying (K3)	
CO5:	solve prob	lems for multi con	nponent gas absorp	tion		Applying (K3)	
CO6:		ne performance of c			n equipment	Evaluating (K5),	
		-		-		Manipulation (S2)	
CO7:	generate V	LE and LLE data f	for different system	s and analyze ther	n	Analyzing (K4),	
						Precision (S3)	
CO8:	assess the	performance of sin	nple/packed/steam	distillation units		Analyzing (K4),	
						Manipulation (S2)	
			Mapping of (COs with POs			
CC	Os/POs	PO1	PO2	PO3	PO4	PO5	
(CO1	2			3	2	
(CO2	2			3	2	
(CO3	2			3	2	
(CO4	2			3	2	
(CO5	2			3	2	
(CO6	2		1	2	1	
(CO7	2		1	2	1	
(CO8	2		1	2	1	
1 – Sli	ght, 2 – Mo	derate, 3 – Substa	antial, BT - Bloom	's Taxonomy			

18MHT22 CHEMICAL ENGINEERING THERMODYNAMICS

L	Т	Р	Credit
3	0	0	3

		•	v	v	•	
Preamble	This course presents the laws of thermodynamics and their applic	ations	in proc	ess ind	dustries	\$
Prerequisites	Nil					
TINITT I						0

Laws of Thermodynamics: Basic concepts; first law of thermodynamics - applications to closed and open systems; second law of thermodynamics; Carnot theorem; applications of second law to the feasibility analysis of devices and processes; evaluation of entropy change - mixing and separation of gases, mixing and separation of liquids, heating and cooling of process fluids.

UNIT – II

Properties of Solutions: Molar properties and partial molar properties; methods for determination of partial molar properties; ideal and non-ideal solutions; Gibbs-Duhem equation; mixing of liquids - volume change, enthalpy change, Gibbs free energy change.

UNIT – III

Phase Equilibrium: Vapour-liquid equilibrium; fugacity and fugacity coefficient; activity and activity coefficient; Raoult's law; modified Raoult's law; phase diagram of binary system; models for excess Gibbs free energy - Margules two-suffix equation, Van Laar equation, Wilson equation; criterion for equilibrium between phases in multi-component non-reacting system in terms of chemical potential and fugacity; thermodynamic consistency test of VLE data.

UNIT – IV

Chemical Reaction Equilibrium: Thermodynamic analysis of chemical reactions – single reactions, simultaneous parallel reactions, prediction of equilibrium composition of reaction mixture; homogeneous gas phase reactions; homogeneous liquid phase reactions; standard Gibbs free energy change and reaction equilibrium constant; evaluation of standard free energy change; evaluation of equilibrium constant.

UNIT – V

Refrigeration and Liquefaction: Refrigeration principles; Carnot refrigeration cycle; methods of refrigeration – vapour compression refrigeration, absorption refrigeration; evaluation of COP and capacity of refrigeration cycles; air refrigeration; refrigerants for low temperature refrigeration; ozone depletion potential of refrigerants; liquefaction of gases; methods for liquefaction of gases – Claude liquefaction process; Linde liquefaction process.

REFERENCES:

1.	Smith J.M., Van Ness H.C., Abbott M.M., Swihart M.T., "Introduction to Chemical Engineering
	Thermodynamics", 8 th Edition, McGraw-Hill Education, 2017.
2.	Kyle B.G., "Chemical and Process Thermodynamics", 3 rd Edition, Pearson Education India, 2015.
3.	Tassios D.P., "Applied Chemical Engineering Thermodynamics", Springer-Verlag, Berlin Heidelberg
	GmbH 2014

Total: 45

 $\frac{9}{\text{of}}$

9

9

9

COUI	BT Mapped						
On con	mpletion of	the course, the stud	ents will be able to	0		(Highest Level)	
CO1:	apply the l	aws of thermodyna	mics to engineerir	ig systems		Applying (K3)	
CO2:	evaluate th	e partial molar pro	perties and molar	properties of solution	ns	Evaluating (K5)	
CO3:	apply phase equilibrium concepts in the fields of separation of systems involving Applying (K3) vapour and liquid, and test the thermodynamic consistency of experimental VLE data						
CO4:	analyze the homogeneous chemical reactions and predict the equilibrium Analyzing (K5) composition						
CO5:	evaluate th		Evaluating (K5)				
			Mapping of	COs with POs			
CC	Ds/POs	PO1	PO2	PO3	PO4	PO5	
(CO1	3	1	1	1	1	
(CO2	3	1		1	1	
(CO3	3	1		2	1	
(CO4	3	1		1	1	
(CO5 3 1 1				1		
1 – Sli	ght, 2 – Mo	derate, 3 – Substa	ntial, BT - Bloom	's Taxonomy			

	18MHL31	TECHNICAL A	NALYSIS LABO	DRATORY		
				L	T P	Credit
	T			0	0 2	1
Preamble	This course covers	•	•			
Prerequisites	determine experime	intally the various	properties of the w	vaste water, Por	ymers, chei	meals etc.
List of Experim	<u>.</u>					
1. UV Spe	ctro photometer: Ana	llvsis of Iron. Coba	alt. etc. in the give	n sample.		
1	nation of BOD, COL			1		
	s of water: pH, Cond	-				
·	Photometer: Determin	•		1		
5. Nephelo	ometer: Determination	n of Turbidity.				
	tometric Titrations.					
7. Potentio	metric Titrations.					
8. Oswald	Viscometer: Viscosi	ty Measurement fo	r Polymer solution	18.		
	dynamic Parameters	•	•			
	nation of Melting an			amples.		
	Absorption Spectros	01		1	ater.	
	(IR) spectroscopic a	1				
		, ,	1			Total: 30
COURSE OUT					BT M	lapped
	of the course, the stu					st Level)
-	and the principles		•	mine physical,		ng (K3),
	al and biological prop					ion (S1)
	e the physical and		es of organic con	mpounds using		ing (K5),
	instrumental analyse					ation (S2)
CO3: examine	e the kinetics and me	chanism of chemic	al reactions			ing (K4),
					Imitati	ion (S1)
		Mapping of (COs with POs			
COs/POs	PO1	PO2	PO3	PO4		PO5
CO1	2	2		2		1
CO2	2	2		2		1
CO3	3	2		2		1
1 - Slight, 2 - N	Moderate, 3 – Subs	antial, BT - Bloor	n's Taxonomy			

	18MHE01 ADVANCED FLUIDIZATION ENGINEER	RING				
		L	Т	Р	Cre	dit
		3	0	0	3	
Preamble:	This course provides an overview about the fluidization phenom	iena ar	nd tech	nology	y. It gi	ives
	vast knowledge about flow regimes, hydrodynamics of bubbli	ing, tu	rbulen	t, fast	fluidi	ized
	beds and pneumatic conveying.					
Prerequisites:	Nil					
UNIT – I						9
Applications o	f Fluidised Beds: Introduction, Industrial application of fluidised	beds, p	ohysica	l opera	ations	and
reactions		_	-	-		
UNIT – II						9
Mapping of Re	gimes and Dense Bed: Fixed beds of particles, types of fluidization	on with	out car	ryovei	and v	with
carryover of par	ticles, mapping of fluidization regimes, distributor types, Davidson m	nodel f	or gas f	low at	bubbl	les
UNIT – III						9
Heat and Mas	s Transfer in Fluidised Bed Systems: Heat and Mass transfer	betwee	en fluic	l and s	solid.	Gas
conversion in bu	bbling beds. Heat transfer between fluidised bed and surfaces.					
UNIT – IV						9
Elutriation and	d Entrainment: RTD and distribution of solids in a fluidised bed,	circul	ation s	ystems	- circ	cuits
for the circulation	n of solids, flow of gas- solid mixtures in downcomers, flow in pneu	matic	transpo	rt lines	5.	
UNIT – V						
						9
Design of Flu	idised Bed Systems: Three-phase fluidisation, design of fluidi	zation	colum	ns for	phys	-
0	idised Bed Systems: Three-phase fluidisation, design of fluidi ytic and non- catalytic reactions.	zation	colum	ns for	phys	-

REFERENCES:

Kunii Diazo and Levenspiel O., "Fluidization Engineering", 2nd Edition, Butterworth Heinemann, 1991.
 Davidson J.F. and Harrison, "Fluidisation", Academic Press, London, 1990.

COU	BT Mapped							
On con	mpletion of	the course, the stud	dents will be able	to		(Highest Level)		
CO1:	survey var	ious applications o	of fluidized beds in	n industries		Analyzing (K4)		
CO2:	explain the	types of fluidization	on, fluidizing regin	nes and develop mo	del for gas flow	Applying (K3)		
CO3:		he concept of he		sfer between fluid	l and solid and	Applying (K3)		
CO4:		the design parame e solid flow distrib		n systems		Analyzing (K4)		
CO5:	design flu	idization columns f	for physical operation	tions and reactions		Applying (K3)		
	Mapping of COs with POs							
CC	Os/POs	PO1	PO2	PO3	PO4	PO5		
(CO1	1	1	1		1		
(CO2	2	2	2				
CO3		1	2	2	1			
CO4		1	2	2	2	1		
(CO5 1 1 2			1				
1 – Sli	ight, 2 – Mo	oderate, 3 – Subst	antial, BT - Bloor	n's Taxonomy				

	18MHE02 ENERGY MANAGEMENT IN CHEMICAL IND	DUST	RIES			
		L	Т	Р	Credi	it
		3	0	0	3	
Preamble:	This course gives a broad overview about renewable and non-r	renewa	able er	ergy 1	resource	es,
	energy consumption, planning, energy audit and optimization.	It also	outlin	es the	e need f	or
	energy recovery and heat recovery techniques.					
Prerequisites:	Nil					
UNIT – I						9
General: Ener	gy Resources: Coal, Petroleum, Natural gas; Reserves and Depletio	on, nee	ed for c	onser	vation	
UNIT – II						9
Power Genera	tion: Fossil-fueled power plants: components, advanced cycles; N	Nuclea	r-fuele	d pow	er plan	ts:
	y, radioactivity, nuclear reactors, nuclear fuel cycle, fusion;					
Generation Pro	cess: Economical and technical efficiency, Socio economic factor				•	
	.					-
UNIT – III						9
Alternative E	nergy: Renewable Sources: Hydropower, wind energy, geotherma	l ener	gy, tida	al pow	ver. oce	an
	ocean thermal power, solar Energy, biomass energy; Issues ar			-		
renewable ener			U		U	
UNIT – IV						9
	umption and Audit: Various types of Energy audit, Advantage	es of	each t	ype; I	Bureau	of
	ncy; Energy Conservation act of 2001. Concept of monitoring ar					
reporting tech	iques, waste avoidance, prioritizing. Exergy Analysis			Ū		
UNIT – V						9
Optimisation	Techniques in Energy Management: Recovery of waste he	eat us	sing re	cuper	ative a	nd
-	eat exchangers; optimum shell and tube exchanger networks, evap		-	-		
generator syste			5	,		
						15
generator syste					Total:	43
	S:				Total:	43
REFERENCI		avlor 4	& Fran			
REFERENCI	S: ohn and Weir Tony, "Renewable Energy Sources", 2 nd Edition, Ta	aylor a	& Fran			

2. Fay James A. and Golomb Dan S., "Energy and the Environment", Oxford University Press, Inc., New York, 2002.

3. Beggs Clive, "Energy: Management Supply and Conservation", Butterworth-Heinemann, Oxford, 2002.

COUI	RSE OUTC	OMES:				BT Mapped	
On co	mpletion of	the course, the stud	ents will be able to			(Highest Level)	
CO1:	employ the	e knowledge about	various energy reso	ources and their de	pletion	Applying (K3)	
CO2:	compute generation	the efficiency an systems	d socio-economic	e factor in conv	ventional power	Applying (K3)	
CO3:		the importance of e issues and challer	0 0	y from alternativ	e resources and	Analyzing (K4)	
CO4:							
CO5:	develop he		Applying (K3)				
			Mapping of C	COs with POs			
CC	Os/POs	PO1	PO2	PO3	PO4	PO5	
(CO1	1	1	1		1	
(CO2	2	2	2			
CO3		1	2	2	1		
CO4		1	2	2	2	1	
(CO5 1 1 2					1	
1 – Sli	ght, 2 – Mo	derate, 3 – Substa	ntial, BT - Bloom	's Taxonomy			

18MHE03	PROJECT	ENGINEERING	OF PROCESS	PLANTS
---------	---------	-------------	------------	--------

L	Т	Р	Credit
3	0	0	3

Preamble:This course introduces the basic concepts of Project Engineering and Management to the
students to enable them to apply these techniques during the construction of chemical process
plants. After undergoing this course, students will be able to develop PERT/CPM networks,
prepare project reports and evaluate the economic viability of projectsPrerequisites:Nil

Prerequisites: UNIT – I

Project Identification and Process Planning: Project definition, Project Profile and standards, Feedback information (MIS), Evaluation and Modification, Selection, Criteria. Planning the process, Strategic and Managerial Planning, Organizing the process planning.

UNIT – II

Project Engineering: Economic Balancing, Network Planning, Methods (PERT/CPM), Engineering Flow Diagrams, Cost requirements, Analysis and Estimation of Process Feasibilities (Technical/Economical) Analysis, Application of reliability theory.

UNIT – III

Engineering Management: Plant Engineering Management, Objectives, Programme, Control, Plant Location and Site Selection, Layout diagrams, Selection and procurement of equipment and machineries, Installation, Decommissioning, Commissioning and performance appraisal, Strategies choice and Influence, Product planning and development, Provision and maintenance of service facilities.

UNIT – IV

Financial Aspects: Cost and Costing, Cost Control systems, Cost – Benefit Ratio Analysis, Project Budgeting, Capital Requirements, capital Market, Cash Flow Analysis, Break even strategies. Defining project financing, typical project stages, setting up a basic project finance structure, risk management in context of project financing.

UNIT – V

Legal Aspects of Business Enterprises: Government regulations on procurement of raw materials and its allocation. Export – Import regulations, Pricing policy, Industrial licensing procedure, Excise and other commercial taxes, Policies on depreciation and corporate tax, Labour laws, Social welfare legal measurements, Factory act, Regulations of Pollution Control Board.

REFERENCES:

 Peters M.S. and Timmerhaus K.D., "Plant Design and Economics for Chemical Engineers", McGraw Hill (ISE), 2002.
 Clements T. and Gido L., "Effective Project Management", Thomson Education Press, New Delhi, 2007.
 Pathi P.K., "Labour and Industrial Laws", 2nd Edition, Prentice Hall India, 2012.

9

9

9

9

9

Total: 45

COURSE OUTCOMES:						BT Mapped		
On completion of the course, the students will be able to						(Highest Level)		
CO1:	CO1: apply the concepts in project engineering and management					Applying (K3)		
CO2:	CO2: perform balance sheets, process feasibility analysis and network diagrams					Applying (K3)		
CO3:	explain plant engineering management, plant location and layout and select equipment and machineries for process industries					Applying (K3)		
CO4:	analyze the projects using cash flow, break-even analysis and acquire knowledge in project financing					Analyzing (K4)		
CO5:	5: apply the legal aspects of business enterprises			Applying (K3)				
	Mapping of COs with POs							
COs/POs		PO1	PO2	PO3	PO4	PO5		
	CO1	1	2	3	1	1		
CO2		1	2	3	1	1		
CO3		1	2	3	1	1		
CO4		1	2	3	1	1		
CO5		1	2	3	1	1		
1 – Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy							

	18MHE04 ADVANCED SEPARATION TECHNIQUES			
		Т	Р	Credit
	3	0	0	3
Preamble:	This course highlights the recent advancements in separation technique	ues ar	nd pro	ovides an
	exposure with the selection criteria of membrane materials, adsorbents, et	tc.		
Prerequisites:	Nil			
UNIT – I				9
Recent Advar	ncements in Separation Techniques: Recent advances in separation techni	niques	base	d on size
	ties, ionic properties and other special characteristics of substances. process			
equipment use	ed in cross flow filtration, cross flow electro filtration and dual functional	l filter	. surfa	ace based
solid - liquid s	eparations involving a second liquid, sirofloc filter.			
UNIT – II				9
Membranes a	and Modules: Types and choice of membranes; membrane manufacturing	techni	ques;	plate and
rame, tubular,	, spiral wound and hollow fiber membrane reactors and their relative merits	s.		
UNIT – III				C
				9
	Processes: Dialysis, reverse osmosis, nanofiltration, ultrafiltration, and	l micr	ofiltra	-
Membrane P	Processes: Dialysis, reverse osmosis, nanofiltration, ultrafiltration, and is: design of the reverse osmosis plant - cleaning of membrane - econ			ation and
Membrane P donnan dialys	rocesses: Dialysis, reverse osmosis, nanofiltration, ultrafiltration, and is; design of the reverse osmosis plant - cleaning of membrane - econ			ation and
Membrane P donnan dialys				ation and
Membrane P donnan dialys operations.				ation and
Membrane P donnan dialys operations. UNIT – IV	is; design of the reverse osmosis plant - cleaning of membrane - econ	nomics	s of n	ation and nembrane
Membrane P donnan dialys operations. UNIT – IV Adsorption at	is; design of the reverse osmosis plant - cleaning of membrane - econ nd Ionic Separations: Adsorption based Processes: Types and choice of	nomics f adsor	s of n	ation and nembrane 9 , Affinity
Membrane P donnan dialys operations. UNIT – IV Adsorption an chromatograph	is; design of the reverse osmosis plant - cleaning of membrane - econ nd Ionic Separations: Adsorption based Processes: Types and choice of ny and immuno chromatography; Ionic Separation Processes: Working p	f adsor	s of n rbents	ation and nembrane 9 , Affinity ontrolling
Membrane P donnan dialys operations. UNIT – IV Adsorption an chromatograph factors, equipt	is; design of the reverse osmosis plant - cleaning of membrane - econ nd Ionic Separations: Adsorption based Processes: Types and choice of	f adsor	s of n rbents	ation and nembrane 9 , Affinity ontrolling
Membrane P donnan dialys operations. UNIT – IV Adsorption an chromatograph factors, equipt	is; design of the reverse osmosis plant - cleaning of membrane - econ nd Ionic Separations: Adsorption based Processes: Types and choice of ny and immuno chromatography; Ionic Separation Processes: Working p	f adsor	s of n rbents	ation and nembrane 9 , Affinity ontrolling
Membrane P donnan dialys operations. UNIT – IV Adsorption an chromatograph factors, equipn dialysis.	is; design of the reverse osmosis plant - cleaning of membrane - econ nd Ionic Separations: Adsorption based Processes: Types and choice of ny and immuno chromatography; Ionic Separation Processes: Working p	f adsor	s of n rbents	ation and nembrane 9 , Affinity ontrolling
Membrane P donnan dialys operations. UNIT – IV Adsorption an chromatograph factors, equipt dialysis. UNIT – V	is; design of the reverse osmosis plant - cleaning of membrane - econ nd Ionic Separations: Adsorption based Processes: Types and choice of ny and immuno chromatography; Ionic Separation Processes: Working p nent employed for electrophoresis, dielectrophoresis, ion exchange chroma	f adsor princip atograj	bents bents ble, co phy an	ation and nembrane 9 , Affinity ontrolling nd electro
Membrane P donnan dialys operations. UNIT – IV Adsorption an chromatograph factors, equipm dialysis. UNIT – V Other Techni	is; design of the reverse osmosis plant - cleaning of membrane - econ nd Ionic Separations: Adsorption based Processes: Types and choice of hy and immuno chromatography; Ionic Separation Processes: Working p nent employed for electrophoresis, dielectrophoresis, ion exchange chroma ques: Separations involving lyophilisation, pervaporation and permeation t	f adsor princip atograj	bents bents ple, co phy au ques f	ation and nembrane 9 , Affinity ontrolling nd electro 9 for solids
Membrane P donnan dialys operations. UNIT – IV Adsorption an chromatograph factors, equipridialysis. UNIT – V Other Techni liquids and ga	is; design of the reverse osmosis plant - cleaning of membrane - econ nd Ionic Separations: Adsorption based Processes: Types and choice of hy and immuno chromatography; Ionic Separation Processes: Working p nent employed for electrophoresis, dielectrophoresis, ion exchange chroma ques: Separations involving lyophilisation, pervaporation and permeation to ases; zone melting; adductive crystallization; foam separation; supercritic	f adsor princip atograj	bents bents ple, co phy au ques f	ation and nembrane 9 , Affinity ontrolling nd electro 9 for solids
Membrane P donnan dialys operations. UNIT – IV Adsorption an chromatograph factors, equipridialysis. UNIT – V Other Techni liquids and ga	is; design of the reverse osmosis plant - cleaning of membrane - econ nd Ionic Separations: Adsorption based Processes: Types and choice of hy and immuno chromatography; Ionic Separation Processes: Working p nent employed for electrophoresis, dielectrophoresis, ion exchange chroma ques: Separations involving lyophilisation, pervaporation and permeation to	f adsor princip atograj	bents bents ble, co phy an ques f uid e	ation and nembrane 9 , Affinity ontrolling nd electro 9 for solids, xtraction
Membrane P donnan dialys operations. UNIT – IV Adsorption an chromatograph factors, equipn dialysis. UNIT – V Other Techni liquids and ga Industrial efflu	is; design of the reverse osmosis plant - cleaning of membrane - econ nd Ionic Separations: Adsorption based Processes: Types and choice of hy and immuno chromatography; Ionic Separation Processes: Working p nent employed for electrophoresis, dielectrophoresis, ion exchange chroma ques: Separations involving lyophilisation, pervaporation and permeation to ases; zone melting; adductive crystallization; foam separation; supercriti- tent treatment by modern techniques	f adsor princip atograj	bents bents ble, co phy an ques f uid e	ation and nembrane 9 , Affinity ontrolling nd electro 9 for solids, xtraction
Membrane P donnan dialys operations. UNIT – IV Adsorption an chromatograph factors, equipt dialysis. UNIT – V Other Techni liquids and ga Industrial efflu REFERENCI	is; design of the reverse osmosis plant - cleaning of membrane - econ nd Ionic Separations: Adsorption based Processes: Types and choice of ny and immuno chromatography; Ionic Separation Processes: Working p nent employed for electrophoresis, dielectrophoresis, ion exchange chroma ques: Separations involving lyophilisation, pervaporation and permeation to ases; zone melting; adductive crystallization; foam separation; supercriti- tent treatment by modern techniques ES:	f adsor princip atograp technic ical fl	bents ble, co phy au ques f uid e	ation and nembrane 9 , Affinity ontrolling nd electro 9 For solids, xtraction; Total: 45
Membrane P donnan dialys operations. UNIT – IV Adsorption an chromatograph factors, equipt dialysis. UNIT – V Other Techni liquids and ga Industrial efflu REFERENCI 1. Perry Ro	is; design of the reverse osmosis plant - cleaning of membrane - econ nd Ionic Separations: Adsorption based Processes: Types and choice of hy and immuno chromatography; Ionic Separation Processes: Working p nent employed for electrophoresis, dielectrophoresis, ion exchange chroma ques: Separations involving lyophilisation, pervaporation and permeation to ases; zone melting; adductive crystallization; foam separation; supercriti- tent treatment by modern techniques	f adsor princip atograp technic ical fl	bents ble, co phy au ques f uid e	ation and nembrane 9 , Affinity ontrolling nd electro 9 For solids xtraction Total: 45
Membrane P donnan dialys operations. UNIT – IV Adsorption an chromatograph factors, equipm dialysis. UNIT – V Other Techni liquids and ga Industrial efflu REFERENCI 1. Perry Ro 2007.	is; design of the reverse osmosis plant - cleaning of membrane - econ nd Ionic Separations: Adsorption based Processes: Types and choice of hy and immuno chromatography; Ionic Separation Processes: Working p nent employed for electrophoresis, dielectrophoresis, ion exchange chroma ques: Separations involving lyophilisation, pervaporation and permeation to ases; zone melting; adductive crystallization; foam separation; supercriti- tent treatment by modern techniques ES: bert H., "Perry's Chemical Engineers' Hand Book", 8 th Edition, McGr	f adsor princip atograp technid ical fl	bents bents ble, co phy an ques f uid e	ation and nembrane 9 , Affinity ontrolling nd electro for solids xtraction Total: 45 ew York
Membrane P donnan dialys operations. UNIT – IV Adsorption an chromatograph factors, equipm dialysis. UNIT – V Other Techni liquids and ga Industrial efflu REFERENCI 1. Perry Ro 2007. 2. Scott K.	is; design of the reverse osmosis plant - cleaning of membrane - econ nd Ionic Separations: Adsorption based Processes: Types and choice of hy and immuno chromatography; Ionic Separation Processes: Working p nent employed for electrophoresis, dielectrophoresis, ion exchange chroma ques: Separations involving lyophilisation, pervaporation and permeation to ases; zone melting; adductive crystallization; foam separation; supercriti- tent treatment by modern techniques ES: bert H., "Perry's Chemical Engineers' Hand Book", 8 th Edition, McGr . and Hughe R., "Industrial Membrane Separation Technology", Bla	f adsor princip atograp technid ical fl	bents bents ble, co phy an ques f uid e	ation and nembrane 9 , Affinity ontrolling nd electro 2 for solids, xtraction; Total: 45 ew York,
Membrane P donnan dialys operations. UNIT – IV Adsorption an chromatograph factors, equipm dialysis. UNIT – V Other Techni liquids and ga Industrial efflu REFERENCI 1. Perry Ro 2007. 2. Scott K. Professio	is; design of the reverse osmosis plant - cleaning of membrane - econ nd Ionic Separations: Adsorption based Processes: Types and choice of hy and immuno chromatography; Ionic Separation Processes: Working p nent employed for electrophoresis, dielectrophoresis, ion exchange chroma ques: Separations involving lyophilisation, pervaporation and permeation to ases; zone melting; adductive crystallization; foam separation; supercriti- tent treatment by modern techniques ES: bert H., "Perry's Chemical Engineers' Hand Book", 8 th Edition, McGr	f adsor princip atograj technid ical fl	s of n bents ple, co phy an ques f uid e ill, No Acade	ation and nembrane 9 , Affinity ontrolling nd electro 2 for solids, xtraction Total: 45 ew York, emic and

Publications, New York, 1996.

COURSE OUTCOMES: BT Map						BT Mapped	
On completion of the course, the students will be able to					(Highest Level)		
CO1:	apply the	recent developmen	its in separation tecl	hniques		Applying (K3)	
CO2:	2: analyze various membrane modules and their uses				Analyzing (K4)		
CO3:	: apply membrane processes for various applications					Applying (K3)	
CO4:	apply adsorption and ionic separation processes					Applying (K3)	
CO5:	: make use of advanced separation methods for various applications			Applying (K3)			
Mapping of COs with POs							
COs/POs PO1 PO2 PO3 PO4 PO5					PO5		
(CO1	2		1	2	2	
CO2		2		1	2	2	
CO3		2		1	2	2	
CO4		2		1	2	2	
CO5		2		1	2	2	
1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy							

18MHE05 COMPUTATIONAL FLUID DYNAMICS

(Common to Chemical Engineering and Food Technology branches)

L

Т

Р

Credit

		3	0	0	3
Preamble:	With the advent of high speed computing, CFD has become an	1 integ	ral par	t of en	gineering
	design, simulation and performance analysis. This course dea	ls with	h the f	undam	ientals of
	CFD, grid generation, meshing and solution techniques using Fi	nite V	olume	Metho	d.
Prerequisites:	Nil				

UNIT – I

Conservation Laws of Fluid Motion and Boundary Conditions: Governing equations of fluid flow and heat transfer, equations of state, Navier-Stokes equations for Newtonian fluid, conservative form of governing equations of flow, differential and integral forms of general transport equations, classification of physical behavior.

UNIT – II

Finite Volume Method for Diffusion and Convective- Diffusion Problems: Finite volume method for onedimensional, two-dimensional and three-dimensional steady state diffusion, steady one-dimensional convection and diffusion, the central differencing scheme. Properties of discretization schemes, assessment of the central differencing scheme for convection-diffusion problems, the upwind differencing scheme, the hybrid differencing scheme, the power-law scheme, higher order differencing schemes for convectiondiffusion problems - QUICK scheme.

UNIT – III

Solution Algorithms for Pressure-Velocity Coupling in Steady Flows: Staggered grid, momentum equations, SIMPLE algorithm, assembly of a complete method, SIMPLER, SIMPLEC, and PISO algorithms; Solution of discretised equations: tri-diagonal matrix algorithm, application of TDMA to two-dimensional and three-dimensional problems.

UNIT – IV

Finite Volume Method for Unsteady Flows: One-dimensional unsteady state heat conduction, implicit method for two-and three-dimensional problems, discretisation of transient convection-diffusion equation, transient convection-diffusion using QUICK differencing scheme, solution procedures for unsteady flow calculations, steady state calculations using pseudo-transient approach.

UNIT – V

Turbulence and its Modeling: Transition from laminar to turbulent flow, effect of turbulence on properties of the mean flow, Reynolds-averaged Navier-Stokes equations and classical turbulence models, mixing length model, k-ɛ model, Reynolds Stress model and Algebraic Stress model.

REFERENCES:

- Versteeg H.K. and Malalasekara W., "An Introduction to Computational Fluid Dynamics: The Finite 1. Volume Method", 2nd Edition, Pearson Education Ltd., 2007. Anderson John D., "Computational Fluid Dynamics - The Basics with Applications", 1st Edition, Tata-2.
- McGraw Hill Publisher, 2012.

9

Total: 45

9

9

9

COUI	BT Mapped							
On co	On completion of the course, the students will be able to							
CO1:	apply the l	knowledge of C.F.I	D techniques in dev	eloping fluid flow	models	Applying (K3)		
CO2:		te volume method n diffusion problem	for developing sol	ution of steady sta	ate diffusion and	Applying (K3)		
CO3:	1	demonstrate the application of SIMPLER, SIMPLEC and PISO algorithms for solution of industrial and R & D problems						
CO4:		pply the knowledge of algorithms in solving unsteady flow heat conduction and onvection diffusion processes						
CO5:	demonstra	te the application of	of turbulent flows an	nd models in simul	ation packages	Applying (K3)		
			Mapping of (COs with POs				
CC	Os/POs	PO1	PO2	PO3	PO4	PO5		
(CO1	2		1	2	2		
(CO2	2		2	3	3		
(CO3	3						
(CO4 2 2 3			3				
(CO5 1 1 2							
1 - Sli	ght, 2 – Mo	derate, 3 – Subst	antial, BT - Bloom'	s Taxonomy				

18MHE06 MIXING TECHNOLOGY

L	Т	Р	Credit
3	0	0	3

Preamble:	This course gives a vast knowledge about the importance of mixing in process industries and
	technical aspects of mixing
Prerequisites:	Nil

UNIT – I

Introduction: Agitation and mixing, Impeller types and flow pattern, Impeller Power Number, Power correlation for Newtonian and Non Newtonian Liquids. Fundamentals of Blending and Emulsion

UNIT – II

Flow Patterns, Fluid Velocities and Mixing in Agitated Vessel: Relationship between flow pattern, fluid velocities, flow rates and mixing, Impeller discharge rates, Batch mixing and continuous mixing in agitated vessel, Flow regime and flow map in agitated vessel

UNIT – III

Mass Transfer: Dispersion in mass transfer, Measurement of physical properties of fluid dispersion, mechanics of dispersion of fluids, Theory of mass transfer in continuous phases, continuous phase heat and mass transfer properties of dispersion

UNIT – IV

Suspension of Solids: Variable which affects uniformity of solid suspension, impellers and circulation patterns- Effects of vessel and auxiliary equipment on suspension, operating techniques, extrapolation of small-scale tests

UNIT – V

Equipment Selection and Sizing: Principles of similarity, design correlations, Common rules of thumb, agitation intensity, Scaling based on tests Procedure for scale-up, Design and selection of agitator-case study

Total: 45

9

9

9

9

9

REFERENCES:

Uhl V.W. and Gray J.B., "Mixing Theory and Practice", Volume I, II & III, Academic Press Inc., 1966.
 James Y. Oldshue, "Fluid Mixing Technology", McGraw Hill, 1983.

3. Shinji Nagata, "Mixing Principles and Applications", John Wiley & Sons Inc., 1975.

4. Gay B. Tatterson, "Fluid Mixing and Gas Dispersion in Agitated Tank", McGraw Hill, 1997.

COU	COURSE OUTCOMES:						
On coi	On completion of the course, the students will be able to						
CO1:	explain the	e fundamentals of m	ixing process and o	develop power cor	relation	Applying (K3)	
CO2:	describe fl	ow patterns in varie	ous agitation and m	nixing operations a	and develop flow	Applying (K3)	
	regimes						
CO3:	familiarize	e mass transfer cha	racteristics of mixi	ng ana analyzing f	luid dispersion	Analyzing (K4)	
CO4:	analyze so	lid suspension of 1	nixing vessels			Analyzing (K4)	
CO5:	apply the s	scale up methods fo	r agitation and mix	ing equipment		Applying (K3)	
	Mapping of COs with POs						
CC	Os/POs	PO1	PO2	PO3	PO4	PO5	
(CO1	1			2	2	
(CO2	1			2	2	
(CO3	3			3	3	
(CO4 3 3						
(CO5 3 2 3				3		
1 - Sli	ght, 2 – Mo	derate, 3 – Substa	ntial, BT - Bloom's	s Taxonomy			

	18MHE07 PROCESS INSTRUMENTATION AND AUTOMATION	
	L T P	Credit
	3 0 0	3
Preamble:	The purpose of this course is to introduce the key concepts in automatic con	
	instrumentation of process plants. Also to make the students understand the fundame	
	instruments for measuring temperature, pressure, flow, level, etc. The primary objective	
	this course is to provide knowledge about the fundamentals of automation and	various
<u> </u>	automation systems used in industry such as PLC, DCS and SCADA.	
Prerequisites:	Nil	
UNIT – I		9
	on: Principles of measurement and classification of process control instruments; temp	
	flow, liquid level, velocity, fluid density, viscosity. Instrument scaling; sensors; tran	ismitters
ind control val	ves; instrumentation symbols and labels.	
UNIT – II		9
	ning: Evaluation criteria –IAE, ISE, ITAE and ¹ /4 decay ratio -Tuning:-Process reaction	-
	•	
Distributed C	Control System (DCS): Evolution -Different architectures -Local control unit - (ors to be considered in selecting DCS.	
		9 Operator 9
Distributed C Interface –Fact UNIT – IV Programmabl Architecture –	ors to be considered in selecting DCS. e Logic Controllers (PLC): Evolution of PLC –Sequential and Programmable cont Programming of PLC –Relay logic and Ladder logic –Functional blocks –Commu	Operator 9 rollers –
Distributed C Interface –Fact UNIT – IV Programmabl Architecture – Networks for P	ors to be considered in selecting DCS. e Logic Controllers (PLC): Evolution of PLC –Sequential and Programmable cont Programming of PLC –Relay logic and Ladder logic –Functional blocks –Commu	Operator 9 rollers –
Distributed C Interface – Fact UNIT – IV Programmabl Architecture – Networks for P UNIT – V SCADA: Rem	ors to be considered in selecting DCS. e Logic Controllers (PLC): Evolution of PLC –Sequential and Programmable cont Programming of PLC –Relay logic and Ladder logic –Functional blocks –Commu LC. note terminal units, Master station, Data acquisition, Supervisory control, Commu	Operator 9 rollers – inication 9
Distributed C Interface –Fact UNIT – IV Programmabl Architecture – Networks for P UNIT – V SCADA: Rem	ors to be considered in selecting DCS. e Logic Controllers (PLC): Evolution of PLC –Sequential and Programmable cont Programming of PLC –Relay logic and Ladder logic –Functional blocks –Commu LC. ote terminal units, Master station, Data acquisition, Supervisory control, Commu Dpen SCADA protocols -Direct digital control.	Operator 9 rollers – inication 9 inication 9
Distributed C Interface –Fact UNIT – IV Programmabl Architecture – Networks for P UNIT – V SCADA: Rem	ors to be considered in selecting DCS. e Logic Controllers (PLC): Evolution of PLC –Sequential and Programmable cont Programming of PLC –Relay logic and Ladder logic –Functional blocks –Commu LC. note terminal units, Master station, Data acquisition, Supervisory control, Commu Dpen SCADA protocols -Direct digital control.	Operator 9 rollers – inication 9
Distributed C Interface –Fact UNIT – IV Programmabl Architecture – Networks for P UNIT – V SCADA: Rem architectures -C REFERENCE	ors to be considered in selecting DCS. e Logic Controllers (PLC): Evolution of PLC –Sequential and Programmable cont Programming of PLC –Relay logic and Ladder logic –Functional blocks –Commu LC. note terminal units, Master station, Data acquisition, Supervisory control, Commu Dpen SCADA protocols -Direct digital control.	Operator 9 rollers – inication 9 inication
Distributed C Interface –Fact UNIT – IV Programmabl Architecture – Networks for P UNIT – V SCADA: Rem architectures -C REFERENCE 1. Nakara 1 1993.	ors to be considered in selecting DCS. e Logic Controllers (PLC): Evolution of PLC –Sequential and Programmable cont Programming of PLC –Relay logic and Ladder logic –Functional blocks –Commu LC. note terminal units, Master station, Data acquisition, Supervisory control, Commu Dpen SCADA protocols -Direct digital control. S:	Operator 9 rollers – inication 9 inication 7 otal: 45

Ltd., New Delhi, 1994.

COU	COURSE OUTCOMES:							
On co	On completion of the course, the students will be able to							
CO1:	employ th strategies	employ the concept of measurement systems, automation and advanced contro strategies						
CO2:	assess the	methods of controll	er tuning			Evaluating (K5)		
CO3:	analyze th	e knowledge in sele	ction of DCS			Analyzing (K4)		
CO4:	inspect the	e concepts of PLC at	nd its applications			Analyzing (K4)		
CO5:	utilize the	principles of SCAD	A and its protocol	S		Applying (K3)		
	Mapping of COs with POs							
CC	Os/POs	PO1	PO2	PO3	PO4	PO5		
	CO1			1	3			
	CO2	1		1	3			
	CO3			1	3			
	CO4 1 3							
	CO5 1 1 3							
1 - Sli	ight, 2 – Mo	derate, 3 – Substa	ntial, BT - Bloom'	s Taxonomy				

18MHE08 PROCESS INTENSIFICATION

L	4	Т	Р	Credit
3		0	0	3

	5 0 0 5				
Preamble	Process Intensification is a collective term which refers to cutting edge technologies				
	implicated to improve the performance of a chemical industry. This course throws light upon				
	various intensification techniques and their applications				
Prerequisites	Nil				

UNIT – I **Overview of Intensification and Miniaturized Equipment:** Introduction - Philosophy, opportunities and merits of Process Intensification; Miniaturization - effects of miniaturized equipment, Implementation of micro systems, Pitfalls and Solutions.

UNIT – II

Intensification of Mixing Operation: Flow patterns in reactors, Mixing in stirred tanks: Scale up of mixing, Heat transfer. Principle and applications of High - Gravity Fields Atomizer, Ultra sound Atomization, Nebulizers, High intensity inline Mixers, Static mixers, Ejectors, Tee mixers, Rotor stator mixers, Higee reactors.

UNIT – III

Intensification of Heat Transfer Operations: Compact heat exchangers - Classifications, Heat transfer and Pressure drop in Plate, Spiral and micro channel Heat exchangers, Finned heat exchangers, Phase change heat exchangers, Regenerative heat exchangers for energy conservation, Selection of heat exchanger technology.

UNIT – IV

Process Integration: Combined systems: Integration of heat exchangers in separation systems, Principle and applications of Reactive absorption, Reactive distillation and Reactive Extraction.

UNIT - V

Advanced Fields: Intensification for energy conservation; Sono-chemical systems- Cavitation reactors, Sono-crystallization; Microwave assisted processes, Supercritical fluids in chemical processes. Total· 45

REF	ERENCES:
1.	Stankiewicz A. and Moulijn, "Reengineering the Chemical Process Plants, Process Intensification",
	Marcel Dekker, 2003.
2.	Reay D, Ramshaw C, Harvey A., "Process Intensification", 2 nd Edition, Butterworth Heinemann,
	2013.

9

9

9

9

9

COUI	COURSE OUTCOMES: BT Mapped						
On co	On completion of the course, the students will be able to						
CO1:	apply the	philosophy of proc	ess intensification i	in mini and micro	systems	Applying (K3)	
CO2:	make use	of novel mixers to	improve mixing op	perations		Applying (K3)	
CO3:	employ co	mpact heat exchai	nger and study the c	conservation of en	ergy in them	Applying (K3)	
CO4:	apply the	concepts of proces	s integration in sepa	aration systems		Applying (K3)	
CO5:	attribute t	he role of ultra sou	nd and microwave	assisted processes		Analyzing (K4)	
			Mapping of C	COs with POs			
CC	Os/POs	PO1	PO2	PO3	PO4	PO5	
(CO1	2		3	2	2	
(CO2	2		3	2	2	
(CO3	2		3	2	2	
(CO4	1		3	3	3	
(CO5 2 3 3					3	
1 – Sli	ight, 2 – Mo	oderate, 3 – Subs	tantial, BT - Bloom	i's Taxonomy			

 Greenberg Harris R. and Cramer Joseph J., "Risk Assessment and Risk Management for the Chemical Process Industry", Stone & Webster Engineering Corporation, 1991.

COURSE OUTCOMES: BT Ma							
On co	On completion of the course, the students will be able to						
CO1:	demonstra	te the awareness o	n the importance o	f Risk assessment		Applying (K3)	
CO2:	apply the	methodology of ris	k assessment			Applying (K3)	
CO3:	analyze th	e safety in various	processes			Analyzing (K4)	
CO4:	analyze ar	nd evaluate the risk	and safety costs			Analyzing (K4)	
CO5:	survey var	ious accidents and	analyze the risks			Analyzing (K4)	
			Mapping of (COs with POs			
CC	Os/POs	PO1	PO2	PO3	PO4	PO5	
(CO1	3	2	1			
(CO2	2	3				
(CO3	3	2				
(CO4 2 2						
(CO5 3 3						
1 – Sli	ight, 2 – Mo	oderate, 3 – Subst	tantial, BT - Bloon	n's Taxonomy			

		L	Т	P	Credit
		3	0	0	3
Preamble	This course provides understanding of changes in chemical indu	ustry a	and ho	w thes	e changes
	affect employment.				
Prerequisites	Nil				
UNIT – I					9
Needs and S	Specifications: Customer needs, Consumer Products, Converti	ng ne	eeds to	o spec	ifications,
Revising prod	uct specifications.				
UNIT – II					9
Source and S	Screening of Ideas: Human sources of ideas, Chemical sources	of id	eas, S	orting	the ideas,
Screening the	ideas.				
UNIT – III					9
Selection Crit	teria: Selection based on thermodynamics, Selection based on Kin	etics,	Loss c	bjectiv	ve criteria,
Risk associate	d with product selection.				
UNIT – IV					9
Manufacturi	ng Strategy: Intellectual property, Collection of missing inform	matior	n, Fina	al spec	ifications,
Development	of Microstructured products, Device manufacture and Related appr	oach s	strateg	у	
UNIT – V					9
Speciality C	hemical Manufacture and Economic Considerations: First	t step	os tow	ard p	roduction,
Separation, Sp	ecialty Scale - up. Product versus Process design, Process Econom	ics, E	conom	ics for	products.
					Total: 45
REFERENC	ES:				
1. Cussler	E.L. and Moggridge G.D., "Chemical Product Design", Cambridge	Unive	ersity I	Press, 2	2001.
2. Richard	Turton and Richard C. Bailie, "Analysis, Synthesis and Desig	gn of	Chem	ical P	rocesses",
	Hall, New Jersey, 2003.				
3. Stanley	M. Walas, "Chemical Process Equipment Selection and Desig	gn", E	Butterw	orth-H	einemann

Stattey M. Walas, "Chemical Process I Publishers, 2001. ign', Butter nent Se

	e Outcome	es: The course, the stu	lents will be able	to		BT Mapped (Highest Level)		
CO1:	· *	the specifications for		Understanding (K2)				
CO2:		generate, sort and screen product design ideas						
CO3:	apply the	rmodynamic and ki	netic knowledge	for the selection of	products	Applying (K3)		
CO4:	apply de specificat	evice manufacturir tions	ng strategies to	quantify and m	eet out the	Applying (K3)		
CO5:	perform e	economic analysis of	of chemical produ	ct design		Evaluating (K5)		
			Mapping of	COs with POs				
CO	s/POs	PO1	PO2	PO3	PO4	PO5		
C	201	2	1	2	3	3		
C	202	3	1	2	3	2		
C	CO3	2	1	2	3	2		
C	CO4	3	1	3	2	2		
C	CO5	3	1	3	2	2		
1 - Slig	ght, $2 - Mo$	oderate, 3 – Subst	antial, BT - Bloor	m's Taxonomy				

			r.	Г	Р	Cree	lit
		3	(0	0	3	
Prea	amble	Optimization is an integral part in design and operation of a proc					
		provides knowledge about the fundamentals of optimization technique	ies ar	nd it	s appli	cation	s ir
		process industries.					
	requisites	Nil					
	IT – I						ç
	-	ots of Optimization: Problem formulation, degree of freedom anal	ysis,	obje	ective	function	ons
con	straints and	d feasible region, types of optimization problems.					
	IT – II						9
		nconstrained Optimization: Convex and concave functions unconstr	ained	NL	P, Sca	nning	anc
brac	eketing pro	cedures, Newton's method, Quasi-Newton's method.					
	IT – II						Ģ
Nor	n-linear C	onstrained and Multi-Objective Optimization: Direct substitution,					ing
Nor Pen	1-linear C alty, Barri	er and Augmented Lagrangian Methods, weighted Sum of Squares m					ing
Nor Pen	1-linear C alty, Barri						ing
Nor Pen met	1-linear C alty, Barri hod and G	er and Augmented Lagrangian Methods, weighted Sum of Squares m					ing ain
Nor Pen met	i-linear C alty, Barri hod and G IT – IV	er and Augmented Lagrangian Methods, weighted Sum of Squares moal attainment.	ethoc	l, E∣	psilon		ing ain
Nor Pen met UN	h-linear C alty, Barri hod and G IT – IV ear Progr	er and Augmented Lagrangian Methods, weighted Sum of Squares moal attainment. amming and Dynamic Programming: Simplex method, Barrier me	ethoc	l, E∣	psilon		ing ain
Nor Pen met UN	h-linear C alty, Barri hod and G IT – IV ear Progr	er and Augmented Lagrangian Methods, weighted Sum of Squares moal attainment.	ethoc	l, E∣	psilon		ing ain
Nor Pen met UN Lin	h-linear C alty, Barri hod and G IT – IV ear Progr oduction to	er and Augmented Lagrangian Methods, weighted Sum of Squares moal attainment. amming and Dynamic Programming: Simplex method, Barrier me	ethoc	l, E∣	psilon		ing ain Sis
Nor Pen met UN Lin Intro	h-linear C alty, Barri hod and G IT – IV ear Progr oduction to IT – V	er and Augmented Lagrangian Methods, weighted Sum of Squares m oal attainment. amming and Dynamic Programming: Simplex method, Barrier me o integer and mixed integer programming.	ethoc thod,	1, Ej sen	psilon	constra	ing ain sis
Nor Pen met UN Lin Intro UN	h-linear C alty, Barri hod and G IT – IV ear Progr oduction to IT – V plications	er and Augmented Lagrangian Methods, weighted Sum of Squares moal attainment. amming and Dynamic Programming: Simplex method, Barrier method integer programming. of Optimization in Chemical Engineering: Heat transfer and energy	ethoc thod,	1, Ej sen	psilon	constra	ing ain sis
Nor Pen met UN Lin Intro UN	h-linear C alty, Barri hod and G IT – IV ear Progr oduction to IT – V plications	er and Augmented Lagrangian Methods, weighted Sum of Squares moal attainment. amming and Dynamic Programming: Simplex method, Barrier method, integer and mixed integer programming.	ethoc thod,	1, Ej sen	psilon sitivity ation, s	constra analy	ing ain sis
Nor Pen met UN Lin Intro UN Apj proc	h-linear C alty, Barri hod and G IT – IV ear Progr oduction to IT – V plications cesses and	er and Augmented Lagrangian Methods, weighted Sum of Squares moal attainment. amming and Dynamic Programming: Simplex method, Barrier method integer programming. of Optimization in Chemical Engineering: Heat transfer and energy chemical reactor design and operation	ethoc thod,	1, Ej sen	psilon sitivity ation, s	constra	ing ain sis
Nor Pen met UN Lin Intro UN Apj proc	h-linear C alty, Barri hod and G IT - IV ear Progr oduction to IT - V plications cesses and FERENC	er and Augmented Lagrangian Methods, weighted Sum of Squares moal attainment. amming and Dynamic Programming: Simplex method, Barrier method integer programming. of Optimization in Chemical Engineering: Heat transfer and energy chemical reactor design and operation ES:	ethod, thod,	l, E _l sen	psilon sitivity ation, s	constra analy separat Total:	ing ain vsis j ior ior
Nor Pen met UN Lin Intro UN Apj proc	h-linear C alty, Barri hod and G IT - IV ear Progr oduction to IT - V plications cesses and FERENC Edgar T	er and Augmented Lagrangian Methods, weighted Sum of Squares moal attainment. amming and Dynamic Programming: Simplex method, Barrier method integer and mixed integer programming. of Optimization in Chemical Engineering: Heat transfer and energy chemical reactor design and operation ES: F., Himmelblau D.M. and Ladson L.S., "Optimization of Chemica	ethod, thod,	l, E _l sen	psilon sitivity ation, s	constra analy separat Total:	ing ain vsis j ior ior
Nor Pen met UN Lin Intro UN App proc RE 1.	h-linear C alty, Barri hod and G IT – IV ear Progr oduction to IT – V plications cesses and FERENC Edgar T. McGraw	er and Augmented Lagrangian Methods, weighted Sum of Squares moal attainment. amming and Dynamic Programming: Simplex method, Barrier method integer and mixed integer programming. of Optimization in Chemical Engineering: Heat transfer and energy chemical reactor design and operation ES: F., Himmelblau D.M. and Ladson L.S., "Optimization of Chemical Hill, New York, 2003.	ethoc thod, cons Proc	sen serv:	psilon sitivity ation, s	constra analy separat Total:	ing ain vsis j ior ior
Nor Pen met UN Lin Intro UN App proc	 inear C alty, Barri hod and G IT – IV ear Progr oduction to IT – V Dications cesses and FERENCI Edgar T. McGraw Diwaker 	er and Augmented Lagrangian Methods, weighted Sum of Squares moal attainment. amming and Dynamic Programming: Simplex method, Barrier method integer and mixed integer programming. of Optimization in Chemical Engineering: Heat transfer and energy chemical reactor design and operation ES: F., Himmelblau D.M. and Ladson L.S., "Optimization of Chemica	ethod thod, r cons Proc 2003.	sen serv:	psilon sitivity ation, s es", 2 ⁿ	constra analy separat Total : ^d Edit	ing ain vsis jor ior

Course	Outcome	es:				BT Mapped		
On com	pletion of	the course, the st	udents will be able	to		(Highest Level)		
CO1:								
CO2:								
CO3:	solve no	on- linear constrai	ned and multi objec	tive optimization p	oroblems	Applying (K3)		
CO4:	utilize li analysis	near and dynamic	programming tech	niques and perform	n sensitivity	Applying (K3)		
CO5:	perform	optimization tech	niques in chemical	engineering system	ıs	Applying (K3)		
			Mapping of (COs with POs				
COs	/POs	PO1	PO2	PO3	PO4	PO5		
C	01	2		3	2	2		
C	02	2		3	2	2		
C	03	2		3	2	2		
C	04	1		3	3	3		
C	05	2		3	3	3		
1 – Slig	ht, 2 – Mo	oderate, 3 – Sub	stantial, BT - Bloon	n's Taxonomy				

	18MHE12 BIOPROCESS ENGINEERING					
		L	Τ	P	Cre	dit
		3	0	0	3	
Preamble	This course provides application of engineering principles		0	-		
	achieve commercial success in designing biochemical reacto	r with	n prope	er knov	wledge	e in
<u> </u>	enzyme engineering					
Pre-requisites	Nil					
UNIT – I		г	т	1 •1•		<u>9</u>
	tics: Classification of enzymes, Commercial application of					
Inhibition Kine	haelis –Menten kinetics, Evaluation of parameters in the M	ncnae	IIS –IV.	lenten	equat	ion,
Inition Kine	tics					
UNIT – II					ľ	9
	nd Fermentation: Sterilization: Sterilization of medium, batch	and c	ontinu	ous ste	rilizat	
	f air, Sterilization of fermenter. Fermentation: Medium re					
	rocess, Types of fermentation process -aerobic and anaerobic,	-				
fermentation.		, ,				C
UNIT – III						9
3.6 177 -						
Mass Transfer	and Biochemical Reaction in Porous Catalyst: Theories of dif	fusion	al and	convec	ctive n	
transfer, oxyge	n transfer methodology in fermenter, Factors affecting oxygen					nass
transfer, oxyge	•					nass
transfer, oxyge diffusion and re	n transfer methodology in fermenter, Factors affecting oxygen					ass icle
transfer, oxyge diffusion and re UNIT – IV	n transfer methodology in fermenter, Factors affecting oxygen eaction rate, effectiveness factor and Thiele Modulus.	n trans	sfer ra	te, intr	a part	nass icle 9
transfer, oxyge diffusion and re UNIT – IV Product Recov	n transfer methodology in fermenter, Factors affecting oxygen eaction rate, effectiveness factor and Thiele Modulus.	n trans	sfer ra	te, intr	a part	nass icle 9
transfer, oxyge diffusion and re UNIT – IV Product Recov	n transfer methodology in fermenter, Factors affecting oxygen eaction rate, effectiveness factor and Thiele Modulus.	n trans	sfer ra	te, intr	a part	nass icle 9
transfer, oxyge diffusion and re UNIT – IV Product Recov Membrane sepa	n transfer methodology in fermenter, Factors affecting oxygen eaction rate, effectiveness factor and Thiele Modulus.	n trans	sfer ra	te, intr	a part	nass icle 9 ion,
transfer, oxyge diffusion and re UNIT – IV Product Recov Membrane sepa	n transfer methodology in fermenter, Factors affecting oxygen eaction rate, effectiveness factor and Thiele Modulus. very: Removal of solids, Filtration, Sedimentation, Centrifugation aration, Chromatography, Electrophoresis, Crystallization and Dry	n trans	sfer ra disrup	te, intr	a part	nass icle 9 ion, 9
transfer, oxyge diffusion and re UNIT – IV Product Recov Membrane sepa UNIT – V Design and A	n transfer methodology in fermenter, Factors affecting oxygen eaction rate, effectiveness factor and Thiele Modulus. very: Removal of solids, Filtration, Sedimentation, Centrifugation aration, Chromatography, Electrophoresis, Crystallization and Dry	n trans n, Cell ving.	sfer ra disrup sign a	te, introduction, E	a part	nass icle 9 ion, 9 of
transfer, oxyge diffusion and re UNIT – IV Product Recov Membrane sepa UNIT – V Design and A continuous stin	n transfer methodology in fermenter, Factors affecting oxygen eaction rate, effectiveness factor and Thiele Modulus. very: Removal of solids, Filtration, Sedimentation, Centrifugation aration, Chromatography, Electrophoresis, Crystallization and Dry Inalysis of Bioreactors: Stability and Analysis of bioreactor red tank bioreactor, fed batch bioreactor, air-lift bioreactor	n trans n, Cell ving.	sfer ra disrup sign a	te, introduction, E	a part	nass icle 9 ion, 9 of
transfer, oxyge diffusion and re UNIT – IV Product Recov Membrane sepa UNIT – V Design and A continuous stin	n transfer methodology in fermenter, Factors affecting oxygen eaction rate, effectiveness factor and Thiele Modulus. very: Removal of solids, Filtration, Sedimentation, Centrifugation aration, Chromatography, Electrophoresis, Crystallization and Dry	n trans n, Cell ving.	sfer ra disrup sign a	te, introduction, E	a part	9 ion, 9 of tor,
transfer, oxyge diffusion and re UNIT – IV Product Recov Membrane sepa UNIT – V Design and A continuous stin Introduction to	n transfer methodology in fermenter, Factors affecting oxygen eaction rate, effectiveness factor and Thiele Modulus. very: Removal of solids, Filtration, Sedimentation, Centrifugation aration, Chromatography, Electrophoresis, Crystallization and Dry malysis of Bioreactors: Stability and Analysis of bioreactor red tank bioreactor, fed batch bioreactor, air-lift bioreactor Scale up of bioreactors, criteria for selection of bioreactors	n trans n, Cell ving.	sfer ra disrup sign a	te, introduction, E	a part	9 ion, 9 of tor,
transfer, oxyge diffusion and re UNIT – IV Product Recov Membrane sepa UNIT – V Design and A continuous stin Introduction to REFERENCE	n transfer methodology in fermenter, Factors affecting oxygen eaction rate, effectiveness factor and Thiele Modulus. very: Removal of solids, Filtration, Sedimentation, Centrifugation aration, Chromatography, Electrophoresis, Crystallization and Dry Inalysis of Bioreactors: Stability and Analysis of bioreactor red tank bioreactor, fed batch bioreactor, air-lift bioreactor Scale up of bioreactors, criteria for selection of bioreactors S:	n trans n, Cell ving. s, De s, Flui	sfer ra disrup sign a idized	te, intr otion, E nd ope bed b	a part	9 ion, 9 of tor, 45
transfer, oxyge diffusion and re UNIT – IV Product Recov Membrane sepa UNIT – V Design and A continuous stin Introduction to REFERENCE	n transfer methodology in fermenter, Factors affecting oxygen eaction rate, effectiveness factor and Thiele Modulus. very: Removal of solids, Filtration, Sedimentation, Centrifugation aration, Chromatography, Electrophoresis, Crystallization and Dry malysis of Bioreactors: Stability and Analysis of bioreactor red tank bioreactor, fed batch bioreactor, air-lift bioreactor Scale up of bioreactors, criteria for selection of bioreactors	n trans n, Cell ving. s, De s, Flui	sfer ra disrup sign a idized	te, intr otion, E nd ope bed b	a part	9 ion, 9 of tor, 45
transfer, oxyge diffusion and re UNIT – IV Product Recov Membrane sepa UNIT – V Design and A continuous stin Introduction to REFERENCE 1. Rao D.G. 2010.	n transfer methodology in fermenter, Factors affecting oxygen eaction rate, effectiveness factor and Thiele Modulus. very: Removal of solids, Filtration, Sedimentation, Centrifugation aration, Chromatography, Electrophoresis, Crystallization and Dry Inalysis of Bioreactors: Stability and Analysis of bioreactor red tank bioreactor, fed batch bioreactor, air-lift bioreactor Scale up of bioreactors, criteria for selection of bioreactors S:	n trans n, Cell ving. s, De s, Flui	disrup disrup sign a idized	te, intr otion, E nd ope bed b	a part	nass icle 9 ion, 9 of tor, 2 elhi,
transfer, oxyge diffusion and re UNIT - IV Product Recov Membrane sepa UNIT - V Design and A continuous stin Introduction to REFERENCE 1. Rao D.G. 2010. 2. Bailey J. New Delt	n transfer methodology in fermenter, Factors affecting oxygen eaction rate, effectiveness factor and Thiele Modulus. very: Removal of solids, Filtration, Sedimentation, Centrifugation aration, Chromatography, Electrophoresis, Crystallization and Dry Inalysis of Bioreactors: Stability and Analysis of bioreactor red tank bioreactor, fed batch bioreactor, air-lift bioreactor Scale up of bioreactors, criteria for selection of bioreactors S: ., "Introduction to Biochemical Engineering", 2 nd Edition, Tata E. and Ollis D.F., "Biochemical Engineering Fundamentals", 2 nd i, 2010.	n trans n, Cell <u>ving.</u> s, De s, Flui a McC	disrup disrup sign a idized Graw-H on, Ta	te, intr otion, E nd ope bed b Hill, Ne ta McC	a part	nass icle 9 ion, 9 of tor, 2 Hhi, Hill,
transfer, oxyge diffusion and re UNIT - IV Product Recov Membrane sepa UNIT - V Design and A continuous stin Introduction to REFERENCE 1. Rao D.G 2010. 2. Bailey J. New Delt	n transfer methodology in fermenter, Factors affecting oxygen eaction rate, effectiveness factor and Thiele Modulus. very: Removal of solids, Filtration, Sedimentation, Centrifugation aration, Chromatography, Electrophoresis, Crystallization and Dry Inalysis of Bioreactors: Stability and Analysis of bioreactor red tank bioreactor, fed batch bioreactor, air-lift bioreactor Scale up of bioreactors, criteria for selection of bioreactors S: ., "Introduction to Biochemical Engineering", 2 nd Edition, Tata E. and Ollis D.F., "Biochemical Engineering Fundamentals", 2 nd	n trans n, Cell <u>ving.</u> s, De s, Flui a McC	disrup disrup sign a idized Graw-H on, Ta	te, intr otion, E nd ope bed b Hill, Ne ta McC	a part	nass icle 9 ion, 9 of tor, : 45 ilhi, Hill,
transfer, oxyge diffusion and re UNIT – IV Product Recove Membrane sepa UNIT – V Design and A continuous stin Introduction to REFERENCE 1. Rao D.G. 2010. 2. Bailey J. New Delh 3. Palmer T. Woodhea	n transfer methodology in fermenter, Factors affecting oxygen eaction rate, effectiveness factor and Thiele Modulus. very: Removal of solids, Filtration, Sedimentation, Centrifugation aration, Chromatography, Electrophoresis, Crystallization and Dry Inalysis of Bioreactors: Stability and Analysis of bioreactor red tank bioreactor, fed batch bioreactor, air-lift bioreactor Scale up of bioreactors, criteria for selection of bioreactors S: ., "Introduction to Biochemical Engineering", 2 nd Edition, Tata E. and Ollis D.F., "Biochemical Engineering Fundamentals", 2 nd i, 2010.	n trans n, Cell <u>ving.</u> s, De s, Flut a McC	sfer ra disrup sign a idized Graw-H on, Ta	te, intr otion, E nd ope bed b Hill, Ne ta McC	a part	nass icle 9 ion, 9 of tor, : 45 : 45

COURS	SE OUT	COMES:				BT Mapped	
On com	pletion of	f the course, the stud	lents will be able	to		(Highest Level)	
CO1:	apply th	e basic principles of	Applying (K3)				
CO2:	apply th	e sterilization and f	Applying (K3)				
CO3:	apply th	e theories of mass t	ransfer to microbi	al systems		Applying (K3)	
CO4:	identify	suitable downstream	n processing tech	niques		Analyzing (K4)	
CO5:	analyze	various aspects of i	ndustrial bioreact	ors		Analyzing (K4)	
			Mapping of (COs with POs			
COs	/POs	PO1	PO2	PO3	PO4	PO5	
CO	D1	3	1		3	3	
CO	02	3	1		3	3	
CO	03	3	1		3	3	
CO	04	3	1		3	3	
CO)5	3	1		3	3	
1 – Slig	ht, 2 – Mo	oderate, 3 – Subst	antial, BT - Bloor	n's Taxonomy	Annon an		

	18MHE13 MULTIPHASE FLOW			
		Т	P	Credit
	3	0	0	3
Preamble	This course provides knowledge about the fundamentals of transfer ph	enomer	na in m	ulti phase
	systems to draw momentum and mass balance. It also gives understand	nding of	f desig	n, scaling
	and application of multi phase reactors.			
Prerequisites	Nil			
UNIT – I				9
	ication: Fluid – solid systems, Flow through porous media, Fluid-flui			
-	times. Two-phase co-current flow of fluids-upward and downward			
	heology. Models for chemical reactor - Diffusion and bubbling bed mo	odel –R	ole of	draft tube
and wall baffl	es.			
	1			
UNIT – II Flass – Dass	Construction of interview of tests of tests of tests of tests	1 1 - 4	.	9
	ver Correlation: Theories of intensity and scale of turbulence, Cal			
	l power consumption in agitated vessels for Newtonian/ Non-Newtonia ases. Power required for aeration to suspend to an immiscible liquid or s			
Segregation p		itaria fa	r coola	1110
	henomena, Prediction of optimum speed of impeller rotor and Design cri	iteria fo	r scale	up.
UNIT – III	1			9
UNIT – III Flow - Two - flow, Loc	Phase Systems: Prediction of holdup and pressure drop of volume fract ekhart – Martinelli parameters, Bubble Column and its design aspect dup ratios, Pressure drop and Transport velocities and their prediction.	ion, Bu	bble si	9 ze in pipe
UNIT – III Flow - Two - flow, Loc velocity. Hold	Phase Systems: Prediction of holdup and pressure drop of volume fract khart – Martinelli parameters, Bubble Column and its design aspect	ion, Bu	bble si	2e in pipe carryover
UNIT – III Flow - Two - flow, Loc velocity. Hold UNIT – IV	Phase Systems: Prediction of holdup and pressure drop of volume fract khart – Martinelli parameters, Bubble Column and its design aspect	ion, Bu ts, Min	bble si imum	2e in pipe carryover 9
UNIT – III Flow - Two - flow, Loc velocity. Hold UNIT – IV Flow – Three Flow through Velocities in	Phase Systems: Prediction of holdup and pressure drop of volume fract khart – Martinelli parameters, Bubble Column and its design aspect dup ratios, Pressure drop and Transport velocities and their prediction. e - Phase Systems: Gas, Solid and Liquid composite slurries in horizo	ion, Bu ts, Min ontal an re drop	bble si imum d verti and th	2e in pipe carryover 9 cal pipes, roughput.
UNIT – III Flow - Two - flow, Loc velocity. Hold UNIT – IV Flow – Three Flow through Velocities in lyophilisation	 Phase Systems: Prediction of holdup and pressure drop of volume fract ekhart – Martinelli parameters, Bubble Column and its design aspect dup ratios, Pressure drop and Transport velocities and their prediction. e - Phase Systems: Gas, Solid and Liquid composite slurries in horizon Porous media of composite mixtures, Prediction of holdup, pressu Three phase system. Design of multiphase contactors involving fluid 	ion, Bu ts, Min ontal an re drop	bble si imum d verti and th	2e in pipe carryover 9 cal pipes, roughput.
UNIT – III Flow - Two - flow, Loc velocity. Hold UNIT – IV Flow – Three Flow through Velocities in lyophilisation	 Phase Systems: Prediction of holdup and pressure drop of volume fract ekhart – Martinelli parameters, Bubble Column and its design aspect dup ratios, Pressure drop and Transport velocities and their prediction. e - Phase Systems: Gas, Solid and Liquid composite slurries in horizon media of composite mixtures, Prediction of holdup, pressu Three phase system. Design of multiphase contactors involving fluid and permeation for solids, liquids and gases. 	ion, Bu ts, Min ontal an re drop dization	bble si imum d verti and th , perv	ze in pipe carryover 9 cal pipes, roughput. aporation, 9
UNIT – III Flow - Two - flow, Loc velocity. Hold UNIT – IV Flow – Three Flow through Velocities in lyophilisation UNIT – V Design and I	 Phase Systems: Prediction of holdup and pressure drop of volume fract ekhart – Martinelli parameters, Bubble Column and its design aspect dup ratios, Pressure drop and Transport velocities and their prediction. e - Phase Systems: Gas, Solid and Liquid composite slurries in horizon Porous media of composite mixtures, Prediction of holdup, pressu Three phase system. Design of multiphase contactors involving fluid 	ion, Bu ts, Min ontal an re drop dization	bble si imum d verti and th , perv	ze in pipe carryover 9 cal pipes, roughput. aporation, 9 ammes in
UNIT – III Flow - Two - flow, Loc velocity. Hold UNIT – IV Flow – Three Flow through Velocities in lyophilisation UNIT – V Design and I multiphase flo	 Phase Systems: Prediction of holdup and pressure drop of volume fract ekhart – Martinelli parameters, Bubble Column and its design aspect dup ratios, Pressure drop and Transport velocities and their prediction. e - Phase Systems: Gas, Solid and Liquid composite slurries in horizon media of composite mixtures, Prediction of holdup, pressu Three phase system. Design of multiphase contactors involving fluid and permeation for solids, liquids and gases. Development of Software Programmes: Design and development of solids. 	tion, Bu ts, Min ontal an re drop dization	bble si imum d verti and th , perv e progr ent. Se	2e in pipe carryover 9 cal pipes, roughput. aporation, 9 ammes in election of
UNIT – III Flow - Two - flow, Loc velocity. Hold UNIT – IV Flow – Three Flow through Velocities in lyophilisation UNIT – V Design and I multiphase flo	Phase Systems: Prediction of holdup and pressure drop of volume fract ekhart – Martinelli parameters, Bubble Column and its design aspect dup ratios, Pressure drop and Transport velocities and their prediction. e - Phase Systems: Gas, Solid and Liquid composite slurries in horizon Porous media of composite mixtures, Prediction of holdup, pressu Three phase system. Design of multiphase contactors involving fluid and permeation for solids, liquids and gases. Development of Software Programmes: Design and development of so ow, simulation in packed and fluidized beds and Stirred tank process	ion, Bu ts, Min ontal an re drop dization software equipm	bble si imum d verti and th , perv e progr ent. Se bbers, s	2e in pipe carryover 9 cal pipes, roughput. aporation, 9 ammes in election of stacks and
UNIT – III Flow - Two - flow, Loc velocity. Hold UNIT – IV Flow – Three Flow through Velocities in lyophilisation UNIT – V Design and I multiphase flo	Phase Systems: Prediction of holdup and pressure drop of volume fract khart – Martinelli parameters, Bubble Column and its design aspect dup ratios, Pressure drop and Transport velocities and their prediction. e - Phase Systems: Gas, Solid and Liquid composite slurries in horizon Porous media of composite mixtures, Prediction of holdup, pressu Three phase system. Design of multiphase contactors involving fluid and permeation for solids, liquids and gases. Development of Software Programmes: Design and development of so ow, simulation in packed and fluidized beds and Stirred tank process r gaseous, particulate and liquid effluents of various industries such a	ion, Bu ts, Min ontal an re drop dization software equipm	bble si imum d verti and th , perv e progr ent. Se bbers, s	2e in pipe carryover 9 cal pipes, roughput. aporation, 9 ammes in election of stacks and devices.
UNIT – III Flow - Two - flow, Loc velocity. Hold UNIT – IV Flow – Three Flow through Velocities in lyophilisation UNIT – V Design and I multiphase flo equipment for chimneys, abs	Phase Systems: Prediction of holdup and pressure drop of volume fract khart – Martinelli parameters, Bubble Column and its design aspect dup ratios, Pressure drop and Transport velocities and their prediction. e - Phase Systems: Gas, Solid and Liquid composite slurries in horizon Porous media of composite mixtures, Prediction of holdup, pressu Three phase system. Design of multiphase contactors involving fluid and permeation for solids, liquids and gases. Development of Software Programmes: Design and development of so ow, simulation in packed and fluidized beds and Stirred tank process r gaseous, particulate and liquid effluents of various industries such a sorbers, combustion devices, electrostatic precipitators and filtration / rev ES:	ion, Bu ts, Min ontal an re drop dization dization software equipment as scrub	bble si imum d verti and th , perv e progr ent. Se bers, s mosis o	9 ze in pipe carryover 9 cal pipes, roughput. aporation, 9 ammes in election of stacks and devices. Total: 45
UNIT – III Flow - Two - flow, Loc velocity. Hold UNIT – IV Flow – Three Flow through Velocities in lyophilisation UNIT – V Design and I multiphase flo equipment for chimneys, abs REFERENC: 1. Govier G	Phase Systems: Prediction of holdup and pressure drop of volume fract khart – Martinelli parameters, Bubble Column and its design aspect dup ratios, Pressure drop and Transport velocities and their prediction. e - Phase Systems: Gas, Solid and Liquid composite slurries in horizon Porous media of composite mixtures, Prediction of holdup, pressu Three phase system. Design of multiphase contactors involving fluid and permeation for solids, liquids and gases. Development of Software Programmes: Design and development of so ow, simulation in packed and fluidized beds and Stirred tank process r gaseous, particulate and liquid effluents of various industries such a sorbers, combustion devices, electrostatic precipitators and filtration / rev ES: G.W. and Aziz K., "The Flow of Complex Mixture in Pipes", Van Nostr	ion, Bu ts, Min ontal an re drop dization dization software equipment as scrub	bble si imum d verti and th , perv e progr ent. Se bers, s mosis o	2e in pipe carryover 9 cal pipes, roughput. aporation, 9 ammes in election of stacks and devices. Total: 45
UNIT – III Flow - Two - flow, Loc velocity. Hold UNIT – IV Flow – Three Flow through Velocities in lyophilisation UNIT – V Design and I multiphase flo equipment for chimneys, abs REFERENC 1. Govier G York, 19	Phase Systems: Prediction of holdup and pressure drop of volume fract khart – Martinelli parameters, Bubble Column and its design aspect dup ratios, Pressure drop and Transport velocities and their prediction. e - Phase Systems: Gas, Solid and Liquid composite slurries in horizon Porous media of composite mixtures, Prediction of holdup, pressu Three phase system. Design of multiphase contactors involving fluid and permeation for solids, liquids and gases. Development of Software Programmes: Design and development of so ow, simulation in packed and fluidized beds and Stirred tank process r gaseous, particulate and liquid effluents of various industries such a sorbers, combustion devices, electrostatic precipitators and filtration / rev ES: G.W. and Aziz K., "The Flow of Complex Mixture in Pipes", Van Nostr	ion, Bu ts, Min ontal an re drop dization dization software equipment as scrub zerse osp	bble si imum d verti and th , perv e progr ent. Se bers, s mosis o	ze in pipe carryover carryover g cal pipes roughput aporation aporation g ammes in election of stacks and devices. Total: 45

COURS	SE OUTC	COMES:				BT Mapped	
On comp	pletion of	the course, the stud	dents will be able	to		(Highest Level)	
	CO1: explain the fundamental principles on flow pattern, flow regime and transfer phenomena and develop models						
CO2: 0	draw flow	v-power correlation	for a multiphase	system		Applying (K3)	
		two-phase hydrod e contactors	ynamics and det	ermine the desigr	aspects of a	Applying (K3)	
CO4: 0	explain th	ree-phase hydrody	namics and estim	ate the design para	meters	Applying (K3)	
CO5: 0	design an	d develop software	programmes used	d in multiphase flo	W	Evaluating (K5)	
			Mapping of	COs with POs			
COs/	/POs	PO1	PO2	PO3	PO4	PO5	
CC	D1	2			3	3	
CC	02			2	2	3	
CC	03		1	2	3		
CC)4	3			2		
CC)5	3	2		2		
1 – Sligh	nt, $2 - Mc$	oderate, 3 – Subst	antial, BT - Bloor	n's Taxonomy	A		

		L	Т	Р	Credit
		3	0	0	3
Preamble	This course enables the students to present a process flow of principles from a chemical engineering point of view. The stude the development of process flow diagrams and control syster course will be to deal with applications of process flow diagram further provides a comprehensive exposition to theory and applic and Risk Analysis.	ents v ems. M ns in o	vill be v Main ac design s	vell ve lvanta stage. 7	ersed with ge of the The study
Prerequisites	Nil				
UNIT – I					9
Process Flow 1	& Process Flow Diagram: Types of flow sheets, Flow sheet Presen Diagram-Synthesis of Steady State Flow sheet. Flow sheeting soft de rules, Symbols, Line numbering, Line Schedule.			Sheet	P& I D
UNIT – II					9
Pining and In	strumentation Diagrams (P&ID) · P & ID development typical S	Stage	s of P &	D P	-
	strumentation Diagrams (P&ID): P & I D development, typical S	-	s of P &	z ID, P	-
	strumentation Diagrams (P&ID): P & I D development, typical S ment and static pressure vessels, Process vessels, Absorber, Evapora	-	s of P &	z ID, P	-
rotating equipr UNIT – III	ment and static pressure vessels, Process vessels, Absorber, Evapora	ator.			& ID for
rotating equipr UNIT – III		ator.			& ID for
rotating equipr UNIT – III Control Syste Reactors.	ment and static pressure vessels, Process vessels, Absorber, Evapora	ator.			e & ID for 9 changers,
rotating equipr UNIT – III Control Syste Reactors. UNIT – IV	ment and static pressure vessels, Process vessels, Absorber, Evapora	or He	eater, H	eat ex	9 & ID for 9 changers, 9
rotating equipr UNIT – III Control Syste Reactors. UNIT – IV	ment and static pressure vessels, Process vessels, Absorber, Evapora	or He	eater, H	eat ex	9 & ID for 9 changers, 9
rotating equipr UNIT – III Control Syste Reactors. UNIT – IV Control Syste	ment and static pressure vessels, Process vessels, Absorber, Evapora	or He	eater, H	eat ex	e & ID for 9 changers, 9 pander.
rotating equipr UNIT – III Control Syste Reactors. UNIT – IV Control Syste UNIT – V	ment and static pressure vessels, Process vessels, Absorber, Evapora em–I: Heat Transfer Equipment and Reactors: Control System for m–II: Mass Transfer Equipment: Control System for Dryers, Distil	or He	eater, H	eat ex	e & ID for 9 changers, 9 pander. 9
rotating equipr UNIT – III Control Syste Reactors. UNIT – IV Control Syste UNIT – V Applications	ment and static pressure vessels, Process vessels, Absorber, Evapora em–I: Heat Transfer Equipment and Reactors: Control System for m–II: Mass Transfer Equipment: Control System for Dryers, Distil of P & ID: Applications of P & ID in design stage - Construction	or He	ater, H	eat ex	e & ID for 9 changers, 9 pander. 9
rotating equipr UNIT – III Control Syste Reactors. UNIT – IV Control Syste UNIT – V Applications	ment and static pressure vessels, Process vessels, Absorber, Evapora em–I: Heat Transfer Equipment and Reactors: Control System for m–II: Mass Transfer Equipment: Control System for Dryers, Distil	or He	ater, H	eat ex nn, Ex nission	9 & ID for 9 changers, 9 pander. 9 ning stage
rotating equipr UNIT – III Control Syste Reactors. UNIT – IV Control Syste UNIT – V Applications - Operating sta	ment and static pressure vessels, Process vessels, Absorber, Evapora em–I: Heat Transfer Equipment and Reactors: Control System for em–II: Mass Transfer Equipment: Control System for Dryers, Distil of P & ID: Applications of P & ID in design stage - Construction age - Revamping stage - Applications of P & ID in HAZOPS and Ri	or He	ater, H	eat ex nn, Ex nission	e & ID for 9 changers, 9 pander. 9
rotating equipr UNIT – III Control Syste Reactors. UNIT – IV Control Syste UNIT – V Applications - Operating sta REFERENCE 1. Ernest E.	ment and static pressure vessels, Process vessels, Absorber, Evapora em–I: Heat Transfer Equipment and Reactors: Control System for m–II: Mass Transfer Equipment: Control System for Dryers, Distil of P & ID: Applications of P & ID in design stage - Construction age - Revamping stage - Applications of P & ID in HAZOPS and Ri ES: . Ludwig, "Applied Process Design for Chemical and Petroche	or He llation stage isk ar	eater, H n Colum -Comm nalysis.	eat ex	9 & ID for 9 changers, 9 pander. 9 ning stage Total: 45
rotating equipr UNIT – III Control Syste Reactors. UNIT – IV Control Syste UNIT – V Applications - Operating sta REFERENCE 1. Ernest E. Publishin 2. Max S. P	ment and static pressure vessels, Process vessels, Absorber, Evapora em–I: Heat Transfer Equipment and Reactors: Control System for m–II: Mass Transfer Equipment: Control System for Dryers, Distil of P & ID: Applications of P & ID in design stage - Construction age - Revamping stage - Applications of P & ID in HAZOPS and Ri ES:	or He llation stage isk ar emica	ater, H <u>n Colum</u> -Comm alysis.	eat ex nn, Ex nissior	9 & ID for 9 changers, 9 pander. 9 ning stage Total: 45 ol. I Gulf

Course	Outcome	es:				BT Mapped
On com	pletion of	the course, the stu	dents will be able	to		(Highest Level)
CO1:		the methods of cturing process	f presentation o	f flow sheet for	r a chemical	Applying (K3)
CO2:	demons equipme	• 1	stages of PID a	and its application	ns in process	Applying (K3)
CO3:	implem	ent control system	for heat exchange	rs and reactors		Applying (K3)
CO4:	develop	control system for	mass transfer equ	ipment		Applying (K3)
CO5:	examine	e the applications	of PID controll	ers in design, co	nstruction and	Analyzing (K4)
	commis	sioning				
			Mapping of	COs with POs		
COs/	/POs	PO1	PO2	PO3	PO4	PO5
CC	D1			1	3	
CC	02			1	3	
CC	03			2	3	
CC	04			2	3	
CC)5			1	3	
1 – Sligł	ht, 2 - Mo	oderate, 3 – Subs	tantial, BT - Bloom	n's Taxonomy		

	L T P Credit
Preamble	Waste water treatment constitutes a major role in environmental conservation. This course provides a broad overview about the waste water characterization and treatment practices followed in industries.
Prerequisites	Nil
UNIT – I	
Sources and Characterization	Types of Industrial Wastewater: Sources and types of industrial wastewater - on: Physical, Inorganic non metallic constituents, metallic constituents, Organic constituents aracteristic, Toxicity tests.
flocculation, H Flotation. Rol Coagulation, 0	to Process Selection: Physical unit operation: Screening, Coarse solid reduction, Mixing and Equalization, Gravity separation, Grit removal, Sedimentation, Neutralization, Clarification e of Chemical unit operations in waste water treatment, Chemical unit Process: Chemical Chemical Precipitation- Heavy metal Removal, Phosphorus removal, Chemical oxidation tralization and stabilization.
heavy metals,	dation, biological Nitrification, Anaerobic fermentation and oxidation, Biological removal or Activated sludge process, Trickling Filters, Rotating Biological Contactors, Combined aerobic cesses, Anaerobic treatment process, Anaerobic sludge blanket process, Attached growth
exchange, adv Processes: Dis	Astewater Treatment: Depth filtration, surface filtration Membrane filtration, Adsorption, Ior vanced oxidation process, Photo catalysis, Wet Air Oxidation, Evaporation.Disinfection sinfection with chlorine, Disinfection with chlorine dioxide, Dechlorination, Disinfection with olet radiation Disinfection. Other chemical Disinfection methods.
Advanced Wa exchange, adv Processes: Dis ozone, Ultravid UNIT – V Effluent Trea systems -Wast Sludge Indust treatment flow Pharmaceutica	Astewater Treatment: Depth filtration, surface filtration Membrane filtration, Adsorption, Ior vanced oxidation process, Photo catalysis, Wet Air Oxidation, Evaporation.Disinfection sinfection with chlorine, Disinfection with chlorine dioxide, Dechlorination, Disinfection with olet radiation Disinfection. Other chemical Disinfection methods.
Advanced Wa exchange, adv Processes: Dis ozone, Ultravio UNIT – V Effluent Trea systems -Wast Sludge Indust treatment flow Pharmaceutica	Astewater Treatment: Depth filtration, surface filtration Membrane filtration, Adsorption, Ior vanced oxidation process, Photo catalysis, Wet Air Oxidation, Evaporation.Disinfection infection with chlorine, Disinfection with chlorine dioxide, Dechlorination, Disinfection with olet radiation Disinfection. Other chemical Disinfection methods.

COURS	E OUT	COMES:				BT Mapped	
On comp	oletion of	the course, the stud	dents will be able t	0		(Highest Level)	
CO1:	physio-chemical properties						
CO2:	apply tl treatme	ne principles of phy nt	vsical and chemica	l unit operations in	waste water	Applying (K3)	
CO3:	explain industri	the biological was	te water treatmen	t techniques and a	pply them in	Applying (K3)	
CO4:	develop	advanced waste w	ater treatment met	hods		Applying (K3)	
CO5:	describ	e various effluent tr	eatment plants and	l evaluate their ope	rations	Evaluating (K5)	
			Mapping of (COs with POs			
COs/	POs	PO1	PO2	PO3	PO4	PO5	
CC)1	1	1		1	1	
CC	02	2	1	2	1	1	
CC)3	2	1	2	1	2	
CC	04	2	1	2	2	2	
CC)5	3	1	3	2	3	
1 – Sligh	1 t, $2 - Mo$	oderate, 3 – Subst	antial, BT - Bloon	n's Taxonomy			

	18MHE16 ADVANCED MATERIALS FOR CHEMICAL	ENGI	NEERS		
		L	Т	Р	Credit
		3	0	0	3
Preamble	This course aims to introduce elementary concepts and implication	ate exp	ertise v	vith se	lection of
	materials for prevention and control of corrosion				
Prerequisites	Nil				
UNIT – I					9
	tructure & Analysis: Classification of Materials - Functional,				
	ing, Binding Energy and interatomic spacing, Atomic arrange			•	
	Point defect, Dislocations, Surface defects; Deformation of N				
Deformation o	f Single and Polycrystalline materials, Recovery, Recrystallizatio	n, and	Grain g	rowth.	
UNIT – II		D 1.1	T		9
	chanics and Materials Characterization: Fracture – Ductile,				
	re testing; Fatigue – Cyclic stresses, The S-N Curve, Crack initia			0	
	gue life, Fatigue testing; Creep – Creep Behavior, Stres				
Mechanicarre	sting – Tensile tests, Compression tests, Hardness tests, Creep and	u Stres	s ruptur	e tests	•
UNIT – III					9
	olymer: Ceramics: Properties, Synthesis and processing of Cera	mic no	wders (Tharac	
	mics, Grains and Grain Boundaries, Porosity; Inorganic Gla				
	ymer Crystallinity, Crystallization, Melting, and Glass Transit				•
	, Forming Techniques for Plastics, Fabrication of Elastomers, Fa				
UNIT – IV					9
Composite M	Iaterials: Introduction - Particle-Reinforced Composites, Fib	er-Rei	nforced	Com	posites –
	iber length, Orientation, Concentration, Fiber & Matrix Phase, P				
Ceramic-Matri	x, Carbon-Carbon, Hybrid Composites; Structural Composite	es: La	ninar (Compo	sites and
Sandwich Pan	els				
					<u>-</u>
UNIT – V					9
	ection and Design Consideration: Introduction - Materials sele				
	ft; Artificial Total Hip Replacement; Chemical Protective Clot				
-	es; Economic Considerations - Component Design, Materials			-	-
Environmenta	and Societal Considerations - Recycling Issues in Materials Scie	nce an	d Engin	eering	
					Total: 45
REFERENCI		1.5			D 1 N
1 1	skeland and Wendelin Wright, "Essentials of Materials Science and Cengage Learning, 2013.	and En	gineerii	ng - SI	Edition",
	D. Callister, "Materials Science and Engineering", 7th Edition, Joh	nn Wile	ey & So	ns Inc	., 2007.
	n R.E., Ngan A.H., "Physical Metallurgy and Advanced Materi				
	shak Kumar and Sam Zhang "Materials Characterization Techni	auos"	ת הער		008
4. Li Lin, A	shok Kumar and Sam Zhang, "Materials Characterization Technic	ques,	UKU PI	ess, 20	

COURSE OUTCOMES:						BT Mapped	
On completion of the course, the students will be able to						(Highest Level)	
CO1:	CO1: adapt the principles of atomic structure and study the defectiveness of materials						
CO2:	analyze	the flaw and mecha	inical testing of m	naterial		Analyzing (K4)	
CO3:	CO3: demonstrate the properties, characteristics and fabrication of ceramics and polymers						
CO4:	examine	naterials	Analyzing (K4)				
CO5:	inspect (Analyzing (K4)					
	Mapping of COs with POs						
COs	/POs	PO1	PO2	PO3	PO4	PO5	
C	D1	3	1	2	3	3	
C	02	3	1	2	3	3	
C	CO3 3 1 2 3				3		
CO4 3		1	2	3	3		
CO5 3 1 2 3						3	
1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy							

		18MHE17 INDUSTRIAL DRYING			
		L	Τ	P	Credit
		3	0	0	3
Prea	mble	The objective of this course is to study the types, selection and ap	plicati	ons of	industrial
		dryers.			
	equisites	Nil			
	T – I				9
Fune	damentals	Aspects of Drying: Principles, classification and selection of	dryers	. Basio	e process
calcu	ilation an	d transport properties in drying			
	T – II				9
		strial Dryers: Rotary dryer, fluidized bed dryer, industrial spray dryin	g, sola	r drying	g, spouted
bed of	drying ,im	pingement drying and infrared drying			
	T – III				9
		od and Pharmaceuticals: Drying of food stuff, drying of pharma p	roducts	, dryin	g of nano
size	products.				
	T - IV			<u> </u>	9
Drye	ers for Tex	xtile and Polymers: Drying of textile products, Drying of bio products	, drying	g of pol	ymers.
	$\mathbf{T} - \mathbf{V}$			1 0	9
		Safety Aspects of Industrial Dryers: Drying emission control syste	em con	trol of	industrial
drye	rs. Safety a	aspects of industrial dryers. Cost estimation methods for dryers			T. 4. L. 47
DEE		0			Total: 45
	ERENCE		201		
1.		Iujumdar, "Handbook of Industrial Drying", 4 th Edition, CRC Publisher			0.00
2.	Tadeusz Publishers	j	$es^{\prime\prime}, 2^{\prime\prime}$	Editi	on, CRC
3.		Dinces and Calin Zamtiresu, "Drying Phenomena: Theory and App	licatio	ns", Jo	hn Wiley
	Publishers			-	5
i					

COURSE	BT Mapped							
On comple	On completion of the course, the students will be able to							
CO1: de	CO1: describe the classification, applications of drying and calculate the transport							
pro	operties							
CO2: en	nploy various dryers in p	rocess industries			Applying (K3)			
CO3: uti	ilize dryers for pharma ar	nd food industries			Applying (K3)			
CO4: ap	ply dryers for drying of t	bio, polymers and to	extile products		Applying (K3)			
CO5: co	CO5: comprehend the emission control systems and analyze the safety and economics							
of	of dryers							
	Mapping of COs with POs							
COs/PC	Os PO1	PO2	PO3	PO4	PO5			
CO1				1	1			
CO2	CO2 2 2 1							
CO3	CO3 2 2 3				3			
CO4 2			2	3	3			
CO5	3							
1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy								

18MHE18 DESIGN AND ANALYSIS OF EXPERIMENTS

	(Common to Chemical and Food Techno			3		
	X	Category	L	Т	Р	Credit
		PC	3	0	0	3
Preamble:	This course highlights various techniques for	designing	and	optimizi	ng er	gineering
	experiments					
Prerequisites:	Nil					
UNIT – I						9
Design of a p	to Experimental Design: Introduction – Principles a rocess and product, Guidelines for designing expon, Case studies	11		0	-	
UNIT – II						9
	of Statistics: Sampling and Sampling Distribution	s. Inference	s on	Random	ized a	
	esigns, Analysis of Variables, Regression Analysis -					
lack of fit		,	1	U	,	0
UNIT – III						9
	Complete Block Design: Framing RCBD experim		-			
	,Central Composite Design, Balanced Incomplete I	-	n, Mo	odel adec	luacy	checking,
Leas Square es	stimation, regression, Case Studies in Chemical Engin	neering				
UNIT – IV		·····	- 6 4	- <u>C</u> (- 1	. 9
	periments: Principles and Merits of Factorial design volume to the end of the sector					
	regular factorial designs, Case Studies in Chemical			mients,	muou	
Inixed and non	regular factorial designs, Case Studies in Chennear	Engineering	5			
UNIT – V						9
	face Methodology using Software Tools: Introdu	uction to R	SM, S	teepest	Ascen	t method,
	cond order response surface, Designs for Fitting Resp					
	mical Engineering Introduction to software tools – M		,		1	
	<u> </u>					Total: 45
REFERENCE						
· · · · · · · · · · · · · · · · · · ·	C. Montgomery, "Design and Analysis of Experimen				7.	
2. Angela D	Dean and Daniel Voss, "Design and Analysis of Expen	riments", Sp	ringer	, 2013.		

COURSE OUTCOMES:						BT Mapped		
On cor	npletion of	(Highest Level)						
CO1:	apply the experime	Applying (K3)						
CO2:	apply fun	damental concepts	of statistics for tes	sting a hypothesis		Applying (K3)		
CO3:	formulate	e and analyze Rand	lomized complete b	block experiments		Analyzing (K4)		
CO4:	analyze F	Factorial experimer	nts for deriving con	clusions		Analyzing (K4)		
CO5:	perform 1	esponse surface ar	alysis using softwa	are tools and inter	oret the	Analyzing (K4)		
	results							
	Mapping of COs with POs							
CO	s/POs	PO1	PO2	PO3	PO4	PO5		
(201	2		2	2	1		
(CO2	2		2	2	1		
(CO3 1			2	2	1		
CO4		1		2	2	1		
CO5 2 2		2	2	1				
1 - Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy							