VISION

To be a centre of excellence for development and dissemination of knowledge in Applied Sciences, Technology, Engineering and Management for the Nation and beyond.

MISSION

We are committed to value based Education, Research and Consultancy in Engineering and Management and to bring out technically competent, ethically strong and quality professionals to keep our Nation ahead in the competitive knowledge intensive world.

QUALITY POLICY

We are committed to

- Provide value based quality education for the development of students as competent and responsible citizens.
- Contribute to the nation and beyond through research and development
- Continuously improve our services

DEPARTMENT OF MECHANICAL ENGINEERING

VISION

To be a centre of excellence for development and dissemination of knowledge in Mechanical Engineering for the Nation and beyond.

MISSION

Department of Mechanical Engineering is committed to:

- MS1: Establish itself as an excellent academic centre through expert pedagogical methods and modern laboratories to produce world class mechanical engineers.
- MS2: Disseminate knowledge through seminar, conferences and continuing education programs.
- MS3: Make tie-ups with industries, research centres and renowned institutions to synergize the benefit.
- MS4: Contribute towards the upliftment of the society.

2018 REGULATIONS PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

Post Graduates of M.E. CADCAM will

- PEO1: Practice CADCAM in the general stems of design and development of engineering products.
- PEO2: Habituate continuous learning and carryout research and development in science, engineering and technology that support career growth.
- PEO3: Exhibit ethical code of conduct in a professional manner to solve real-time multidisciplinary engineering design problems.

MAPPING OF MISSION STATEMENTS (MS) WITH PEOs

MS\PEO	PEO1	PEO2	PEO3
MS1	3	3	3
MS2	2	3	2
MS3	2	3	2
MS4	1	1	2

1 – Slight, 2 – Moderate, 3 – Substantial

PROGRAM OUTCOMES (POs) Engine=ring Post Graduates will be able to: PO1: carry out research /investigation and development work to solve practical problems. PO2: write and present a substantial technical report/document. PO3: use of modern engineering techniques, skills and tools for computerized design and manufacturing of engineering products and services.

MAPPING OF PEOs WITH POs AND PSOs

PEO\PO	PO1	PO2	PO3
PEO1	3	3	3
PEO2	3	3	3
PEO3	3	2	2
Clight 2 M	adarata	2	Substar

1 – Slight, 2 – Moderate, 3 – Substantial

CURRICULUM BREAKDOWN STRUCTURE UNDER REGULATION 2018

Curriculum Breakdown Structure(CBS)	Curriculum Content (% of total number of credits of the program)	Total number of contact hours	Total number of credits
Program Core(PC)	47.22	600	34
Program Electives(PE)	25	270	18
Project(s)/Internships(PR)/Others	27.78	600	20
		Total	72

M.E. DEGREE IN CADCAM

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

SEMESTER - I

Course	Course Title		lours Weel		Credit	N	/laxim Mark		CBS
Code	Course The	L	Т	Р	creat	CA	ESE	Total	CDS
	Theory/Theory with Practical								
18AMC11	Applied Mathematics	3	1*	2*	4	50	50	100	PC
18EDT11	Finite Element Method	3	1	0	4	50	50	100	PC
18EDT12	Applied Materials Engineering	3	0	0	3	50	50	100	PC
18CCC11	Computer Applications in Design	3	0	2	4	50	50	100	PC
18MTC11	Computer Numerically Controlled Machines	3	0	2	4	50	50	100	PC
18GET01	Introduction to Research	3	0	0	3	50	50	100	PC
	Practical								
18EDL11	Design and Analysis Laboratory	0	0	2	1	100	0	100	PC
	Total	•	•	•	23				

*Alternate week

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

M.E. DEGREE IN CADCAM

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

SEMESTER – II

Course	Course Title		lours Weel		Credit	N	laxim Mark		CBS
Code	Course The	L	Т	Р	creat	CA	ESE	Total	CDS
	Theory/Theory with Practical								
18EDT21	Optimization Techniques in Design and Manufacturing	3	0	0	3	50	50	100	PC
18CCT21	Machining Processes and Analysis	3	1	0	4	50	50	100	PC
18CCT22	Micro and Nano Manufacturing Processes	3	0	0	3	50	50	100	PC
	Elective - I	3	0	0	3	50	50	100	PE
	Elective - II	3	0	0	3	50	50	100	PE
	Elective - III	3	0	0	3	50	50	100	PE
	Practical								
18CCL21	CAM Laboratory	0	0	2	1	100	0	100	PC
18CCP21	Mini Project	0	0	4	2	100	0	100	PR
	Total				22				

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

M.E. DEGREE IN CADCAM

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

SEMESTER – III

Course	Course Title		lours Weel		Credit	N	/Iaxim Mark		CBS
Code	Course Thie	L	Т	Р	Creuit	CA	ESE	Total	
	Theory/Theory with Practical								
	Elective - IV	3	0	0	3	50	50	100	PE
	Elective - V	3	0	0	3	50	50	100	PE
	Elective - VI	3	0	0	3	50	50	100	PE
	Practical								
18CCP31	Project Work Phase I	0	0	12	6	50	50	100	PR
	Total	•	•	•	15				

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

M.E. DEGREE IN CADCAM

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

SEMESTER – IV

Course	Course Title	Hours / Week			Credit	Maximum Marks			CBS
Code		L	Т	Р	creuit	CA	ESE	Total	CDS
	Practical								
18CCP41	Project Work Phase II	0	0	24	12	50	50	100	PR
	Total		12						

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

Total Credits: 72

	LIST OF PROFESSIONAL ELECTIVE	S				
Course		Ho	ours/W	eek		CBS
Code	Course Title	L	Т	Р	Credit	CBS
	SEMESTER II					
18EDE02	Mechanical Behaviour of Materials	3	0	0	3	PE
18EDE05	Designing with Newer Materials	3	0	0	3	PE
18EDE07	Advanced Tool Design	3	0	0	3	PE
18EDE08	Design of Material Handling Equipment	3	0	0	3	PE
18MTE01	Fluid Power System Design	3	0	2	4	PE
18MTE04	Factory Automation and CIM	3	0	0	3	PE
18MTE06	Metrology and Computer Aided Inspection	3	0	0	3	PE
18MTC21	Robotics Engineering	3	0	2	4	PE
18CCE01	Computer Aided Process Planning	3	0	0	3	PE
18CCE02	Safety in Engineering Industry	3	0	0	3	PE
18CCE03	Precision Engineering	3	0	0	3	PE
18CCE04	Design for Manufacture and Assembly	3	0	0	3	PE
	SEMESTER III	•	•			
18EDE10	Instrumentation and Measurements	3	0	0	3	PE
18EDE12	Productivity Management and Reengineering	3	0	0	3	PE
18MTT13	Sensors and Instrumentation	3	0	0	3	PE
18MTE12	Autonomous Mobile Robotics	3	0	2	4	PE
18MTE13	MEMS Design	3	0	0	3	PE
18MTE14	Machine Tool Control and Condition Monitoring	3	0	0	3	PE
18MTE16	Additive Manufacturing	3	0	0	3	PE
18CCE05	Product Data Management	3	0	0	3	PE
18CCE06	Modeling and Analysis of Manufacturing Systems	3	0	0	3	PE
18CCE07	Metrology and Non Destructive Testing	3	0	0	3	PE
18CCE08	Reliability Engineering	3	0	0	3	PE
18CCE09	Integrated Process and Product Development	3	0	0	3	PE

Sem.			Theory/ Theor	y cum Practical /	Practical			Internship & Projects	Special Courses	Credi
	1	2	3	4	5	6	7	8	9	ts
Ι	18AMC11 Applied Mathematics (PC-3-1*-2*-4)	18EDT11 Finite Element Method (PC-3-1-0-4)	18EDT12 Applied Materials Engineering (PC-3-0-0-3)	18CCC11 Computer Applications in Design (PC-3-0-2-4)	18MTC11 Computer Numerically Controlled Machines (PC-3-0-2-4)	18GET01 Introduction to Research (PC-3-0-0-3)	18EDL11 Design and Analysis Laboratory (PC-0-0-2-1)			23
п	18EDT21 Optimization Techniques in Design and Manufacturing (PC-3-0-0-3)	18CCT21 Machining Processes and Analysis (PC-3-1-0-4)	18CCT22 Micro and Nano Manufacturing Processes (PC-3-0-0-3)	Professional Elective - I (PE-3-0-0-3)	Professional Elective - II (PE-3-0-0-3)	Professional Elective - III (PE-3-0-0-3)	18CCL21 CAM Laboratory (PC-0-0-2-1)	18CCP21 Mini Project (PR-0-0-4-2)		22
Ш	Professional Elective - IV (PE-3-0-0-3)	Professional Elective - V (PE-3-0-0-3)	Professional Elective - VI (PE-3-0-0-3)					18CCP31 Project work Phase I (PR-0-0-12-6)		15
IV								18CCP41 Project work Phase II (PR-0-0-24-12)		12

KEC R2018: SCHEDULING OF COURSES – ME CAD/CAM

Total Credits: 72

	(Common to Engineering Design & CADCAM branches)		<u> </u>	
		<u> </u>	P	Credit
	3	1*	2*	4
Preamble	This course will help the students to identify, formulate and solve	-		
	engineering using mathematical tools such as probability, tra	nsforms	and	numerica
	techniques.			
Prerequisites	Probability, Calculus, Laplace and Fourier Transform.			
UNIT – I Dandara, Vari	ables and Probability Distributions. Denders veriable Duck	-1-:1:4	eee f	
	ables and Probability Distributions: Random variable – Proba	•		
	sity function – Moments – Moment generating functions – Discrete Poisson distribution – Geometric distribution – Continuous distribution			
		ns - Unn	orma	Istributio
– Exponential (listribution – Normal distribution.			
UNIT – II				
	Dal Random Variables: Joint distributions – Marginal and co	nditiona	l distri	
	imple linear correlation – Rank Correlation – Linear Regression.	nuniona	i uisui	loutions
Covariance 5	imple intear correlation Rank correlation Entear Regression.			
UNIT – III				9
	ariations: Concept of variation and its properties – Euler's equation	Funct	ional	
on first and hig	her order derivatives - Functionals dependant on functions of several	indeper	dent v	ariables
on first and hig Variational pro	her order derivatives – Functionals dependant on functions of several oblems with moving boundaries – Isoperimetric problems - Direction -	indeper	dent v	ariables
on first and hig Variational pro	her order derivatives – Functionals dependant on functions of several oblems with moving boundaries – Isoperimetric problems - Direction -	indeper	dent v	ariables -
on first and hig Variational pro Kantorovich m	her order derivatives – Functionals dependant on functions of several oblems with moving boundaries – Isoperimetric problems - Direction -	indeper	dent v	ariables Ritz an
on first and hig Variational pro Kantorovich m UNIT – IV	her order derivatives – Functionals dependant on functions of several oblems with moving boundaries – Isoperimetric problems - Dire ethods.	indeper ect meth	ident v lods :	ariables Ritz and
on first and hig Variational pro Kantorovich m UNIT – IV Transform Mo	ther order derivatives – Functionals dependant on functions of several oblems with moving boundaries – Isoperimetric problems - Directhods.	indeper ect meth wave equ	ident v ods :	ariables Ritz an - Solutio
on first and hig Variational pro Kantorovich m UNIT – IV Transform Mo of one-dimensi	ther order derivatives – Functionals dependant on functions of several oblems with moving boundaries – Isoperimetric problems - Direct ethods. ethods: Laplace transform methods: Solution of one-dimensional vo onal heat equation – Fourier transform methods: Solution of Diffu	indeper ect meth wave equ	ident v ods :	ariables Ritz an - Solutio
on first and hig Variational pro Kantorovich m UNIT – IV Transform Mo of one-dimensi	ther order derivatives – Functionals dependant on functions of several oblems with moving boundaries – Isoperimetric problems - Directhods.	indeper ect meth wave equ	ident v ods :	ariables Ritz an
on first and hig Variational pro Kantorovich m UNIT – IV Transform Me of one-dimensi of one-dimensi	ther order derivatives – Functionals dependant on functions of several oblems with moving boundaries – Isoperimetric problems - Direct ethods. ethods: Laplace transform methods: Solution of one-dimensional vo onal heat equation – Fourier transform methods: Solution of Diffu	indeper ect meth wave equ	ident v ods :	ariables Ritz an - Solutio
on first and hig Variational pro Kantorovich m UNIT – IV Transform Mo of one-dimensi of one-dimensi UNIT – V	ther order derivatives – Functionals dependant on functions of several oblems with moving boundaries – Isoperimetric problems - Direct ethods. ethods: Laplace transform methods: Solution of one-dimensional vo onal heat equation – Fourier transform methods: Solution of Diffu	indeper ect meth wave equ sion equ	ident v ods : nation - ation -	ariables Ritz an - Solutio - Solutio
on first and hig Variational pro Kantorovich m UNIT – IV Transform Mo of one-dimensi of one-dimensi UNIT – V Numerical So	her order derivatives – Functionals dependant on functions of several oblems with moving boundaries – Isoperimetric problems - Dire ethods. ethods: Laplace transform methods: Solution of one-dimensional onal heat equation – Fourier transform methods: Solution of Diffu onal wave equation – Solution of Laplace equation. Iution of Partial Differential Equations: Solution of one dimen	indeper ect meth wave equ sion equ sional v	ident v iods : nation ation - zave e	ariables Ritz an - Solutio - Solutio quation
on first and hig Variational pro Kantorovich m UNIT – IV Transform Mo of one-dimensi of one-dimensi UNIT – V Numerical So Solution of dif	her order derivatives – Functionals dependant on functions of several oblems with moving boundaries – Isoperimetric problems - Dire ethods. ethods: Laplace transform methods: Solution of one-dimensional v onal heat equation – Fourier transform methods: Solution of Diffu onal wave equation – Solution of Laplace equation.	indeper ect meth wave equ sion equ sional v	ident v iods : nation ation - zave e	ariables Ritz an - Solutio - Solutio quation
on first and hig Variational pro Kantorovich m UNIT – IV Transform Mo of one-dimensi of one-dimensi UNIT – V Numerical So Solution of dif	her order derivatives – Functionals dependant on functions of several oblems with moving boundaries – Isoperimetric problems - Direct ethods. ethods: Laplace transform methods: Solution of one-dimensional volume onal heat equation – Fourier transform methods: Solution of Diffu onal wave equation – Solution of Laplace equation. Iution of Partial Differential Equations: Solution of one dimen fusion equation – Explicit and implicit methods – Solution of Ellip	indeper ect meth wave equ sion equ sional v	ident v iods : nation ation - zave e	ariables Ritz an - Solutio - Solutio quation
on first and hig Variational pro Kantorovich m UNIT – IV Transform Mo of one-dimensi of one-dimensi of one-dimensi UNIT – V Numerical So Solution of dif Laplace equatio	her order derivatives – Functionals dependant on functions of several oblems with moving boundaries – Isoperimetric problems - Direct ethods. ethods: Laplace transform methods: Solution of one-dimensional volume onal heat equation – Fourier transform methods: Solution of Diffu onal wave equation – Solution of Laplace equation. Iution of Partial Differential Equations: Solution of one dimen fusion equation – Explicit and implicit methods – Solution of Ellip on – Solution of Poisson equation.	indeper ect meth wave equ sion equ sional v	ident v iods : nation ation - zave e	ariables Ritz an - Solutio - Solutio quation
on first and hig Variational pro Kantorovich m UNIT – IV Transform Mo of one-dimensi of one-dimensi of one-dimensi UNIT – V Numerical So Solution of dif Laplace equation	her order derivatives – Functionals dependant on functions of several oblems with moving boundaries – Isoperimetric problems - Direct ethods. ethods: Laplace transform methods: Solution of one-dimensional volume onal heat equation – Fourier transform methods: Solution of Diffu onal wave equation – Solution of Laplace equation. Iution of Partial Differential Equations: Solution of one dimen fusion equation – Explicit and implicit methods – Solution of Ellip on – Solution of Poisson equation.	indeper ect meth wave equ sion equ sional v	ident v iods : nation ation - zave e	ariables Ritz an - Solutio - Solutio quation
on first and hig Variational pro Kantorovich m UNIT – IV Transform Mo of one-dimensi of one-dimensi of one-dimensi UNIT – V Numerical So Solution of dif Laplace equation List of Experin 1. Finding	her order derivatives – Functionals dependant on functions of several oblems with moving boundaries – Isoperimetric problems - Direct ethods. ethods: Laplace transform methods: Solution of one-dimensional work onal heat equation – Fourier transform methods: Solution of Diffu onal wave equation – Solution of Laplace equation. lution of Partial Differential Equations: Solution of one dimen fusion equation – Explicit and implicit methods – Solution of Ellip on – Solution of Poisson equation.	indeper ect meth wave equ sion equ sional v	ident v iods : nation ation - zave e	ariables Ritz an - Solutio - Solutio quation
on first and hig Variational pro Kantorovich m UNIT – IV Transform Mo of one-dimensi of one-dimensi of one-dimensi One-dimensi One-dimensi Of one-dimensi Of Of One-dimensi Of Of One-dimensi Of Of O	her order derivatives – Functionals dependant on functions of several oblems with moving boundaries – Isoperimetric problems - Direct ethods. ethods: Laplace transform methods: Solution of one-dimensional work onal heat equation – Fourier transform methods: Solution of Diffu onal wave equation – Solution of Laplace equation. Iution of Partial Differential Equations: Solution of one dimen fusion equation – Explicit and implicit methods – Solution of Ellip on – Solution of Poisson equation. ments: probability using discrete distributions ring probability by means of continuous distributions	indeper ect meth wave equ sion equ sional v	ident v iods : nation ation - zave e	ariables Ritz an - Solutio - Solutio quation
on first and hig Variational pro Kantorovich m UNIT – IV Transform Mo of one-dimensi of One-dime	her order derivatives – Functionals dependant on functions of several oblems with moving boundaries – Isoperimetric problems - Dire ethods. ethods: Laplace transform methods: Solution of one-dimensional volution onal heat equation – Fourier transform methods: Solution of Diffu onal wave equation – Solution of Laplace equation. Iution of Partial Differential Equations: Solution of one dimen fusion equation – Explicit and implicit methods – Solution of Ellip on – Solution of Poisson equation. ments: probability using discrete distributions ing probability by means of continuous distributions ine the marginal and conditional distributions	indeper ect meth wave equ sion equ sional v	ident v iods : nation ation - zave e	ariables Ritz an - Solutio - Solutio quation
on first and hig Variational pro Kantorovich m UNIT – IV Transform Mo of one-dimensi of One-dimensi Determin (1. Finding 2. Identify 3. Determin (4. Correla	her order derivatives – Functionals dependant on functions of several oblems with moving boundaries – Isoperimetric problems - Direct ethods. ethods: Laplace transform methods: Solution of one-dimensional work onal heat equation – Fourier transform methods: Solution of Diffu onal wave equation – Solution of Laplace equation. Iution of Partial Differential Equations: Solution of one dimen fusion equation – Explicit and implicit methods – Solution of Ellip on – Solution of Poisson equation. ments: probability using discrete distributions ring probability by means of continuous distributions	indeper ect meth wave equ sion equ sional v	ident v iods : nation ation - zave e	ariables Ritz an - Solutio - Solutio quation

- 6. Integrals involving more than one independent variable
- 7. Finding solution of the functional.
- 8. Solution of Parabolic and Hyperbolic equations by Laplace transform techniques
- 9. Solution of Laplace equation by Fourier Transform
- 10. Numerical solution of wave equation
- 11. Solution of Laplace equation by numerical technique
- 12. Numerical solution of Poisson's equation

Lecture:45, Tutorial & Practical:15, Total: 60

REF	ERENCES:						
1.	Richard Joh	nson, Miller & Freund's, "P	robability and Statistics for Engi	neers", 9	9 th Edition, Pearson		
	Education, 2						
			Applications", 12 th Edition, Pres	ntice Hal	l of India Pvt. Ltd.,		
	New Delhi,						
3.		o K., "Introduction to Partial	Differential Equations", 3rd Edit	ion, PHI	Learning Pvt. Ltd.,		
	2011.						
		· · · · · · · · · · · · · · · · · · ·	Applied Numerical Analysis", 7th	Edition,	Pearson Education		
	India, 2009.						
COU	JRSE OUT	COMES:			BT Mapped		
		the course, the students will	be able to		(Highest Level)		
CO1:		babilistic concepts in engineer			Applying (K3)		
CO2	Applying (K3)						
CO3	Applying (K3)						
CO4	: solve vari : apply La	Applying (K3)					
	problems	in Partial differential equation	18				
CO5	: use nume	rical techniques to solve partia	al differential equations		Applying (K3)		
CO6		ATLAB to identify the prob	ability and association between	random	Applying (K3),		
	variables				Manipulation (S2)		
CO7			roblems involving functional and	l Partial	Applying (K3),		
~~~		al equations			Manipulation (S2)		
CO8:	: use MAT	LAB to find numerical solution	on of PDE		Applying (K3),		
					Manipulation (S2)		
		Марр	ing of COs with POs				
С	Os/POs	PO1	PO2		PO3		
	CO1				1		
	CO2				1		
	CO3	1			1		
	CO4	1			2		
	CO5	3			2		
	CO6	1			1		
	CO7	3			2		
	CO8	1			2		
1 – S	light, 2 – Me	oderate, 3 – Substantial, BT	– Bloom's Taxonomy				
	rnoto Woolz						

* Alternate Week

<b>18EDT11 FINITE ELEMENT METHOD</b>					
(Common to Engineering Design & CADCAM Brancl	nes)				
	L	Т	Р	Credit	

	l	L	I	Γ	Crean
		3	1	0	4
Preamble	To familiarize the fundamental concepts of finite element a	analysi	s with	the	principles
	involved in discretization and to assemble stiffness matri	ces a	nd for	ce ve	ctors for
	simple/advanced elements.				
Prerequisites	Strength of Materials				
UNIT – I					9
One Dimensio	nal Applications: Historical Background - Weighted Residual	Metho	ds - Ba	asic C	oncept of
	onal Formulation - Ritz Method - Finite Element Modelling - Ele				-
	be functions - Bar and Beam Elements - Galerkin's method - App				
heat transfer.					
UNIT – II					9
Two Dimensi	onal Scalar Variable Applications: Basic boundary value pro	oblems	in tw	o dim	ensions -
Constant Strain	n Triangular element - Higher order elements - Poisson's and	Lapla	ce's Ed	quation	n - Weak
Formulation - 1	Element Matrices and Vectors - Load consideration: Point load an	nd Pres	sure - I	Plane	stress and
Plane strain co	nditions. Two dimensional heat transfer: Finite element equation -	- Poter	ntial en	ergy a	pproach -
Conduction - S	ide and face convection - Internal heat generation. Application of	Struct	ural an	d Hea	t transfer.
UNIT – III					9
	nal Vector Variable Problems: Introduction to Axi-symmetric	Formu	lation	- linea	r element
	lement Matrices and Vectors - Load Consideration - Applicat				
	ems - Application of Plane Trusses.				
UNIT – IV					9
	<b>c Formulation:</b> Natural Co-ordinate Systems - Lagrangian	Interpo	olation	Polv	
	Elements - Formulation - Numerical Integration - Gauss Q				
1	ntegration - Rectangular elements - Serendipity elements -	-			
Illustrative Exa		1 111100	cicili		ouening
indstati (e Ent					
UNIT – V					9
	namics and Refinements: Dynamic Analysis - Equation of M	lotion	– Mae	he and	
	vibration analysis - Natural frequencies of Longitudinal, Transve				
	transient field problems. Refinement techniques - h and p elemen		u 1015	ional v	-101411011 -
			Futor:	al.1 <i>5</i>	Total. (0
DEFEDENCE		e:43,	utoria	ai:13,	Total: 60
<b>REFERENCE</b>		an D-	44 0 111		•••••••
-	iresu S., "The Finite Element Method in Engineering", 6th Edition	οπ, Βυ	uerwo	run-He	memann,
2017		,			,

- 2017. Reddy J.N., "An Introduction to the Finite Element Method", 3rd Edition, McGraw Hill, Edition, 2009. Logan D.L., "A First Course in the Finite Element Method", 6th Edition, Cengage Learning, 2018. 2.
- 3.

COUR	COURSE OUTCOMES: BT Mapped							
On cor	npletion of	the course, the students will l	be able to		(Highest Level)			
CO1:	comprehe	nd the finite element concept	s and derive the element matrix e	quation for	Analyzing (K4)			
	solving o	ne dimensional structural	problems used for designing e	ngineering				
	componen							
CO2:		nptions for	Analyzing (K4)					
		pplications		_				
CO3:	solve and analyze the engineering problems using axisymmetric assumptions				Analyzing (K4)			
CO4:	-	e	f isoparametric elements and	numerical	Analyzing (K4)			
	integration							
CO5:	solve the s	structural dynamic problems i	n various applications		Analyzing (K4)			
		Mapp	oing of COs with POs					
CC	Os/POs	PO1	PO2		PO3			
(	CO1	3	1		3			
(	CO2	2			2			
(	CO3 2			2				
CO4 2				2				
(	CO5 2							
1 - Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy							

# **18EDT12 APPLIED MATERIALS ENGINEERING**

# (Common to Engineering Design & CADCAM Branches)

L

Т

Р

Credit

		3	0	0	3
Preamble	analysis on their morphological and technical characteristics, purpose of heat treatment and				
Prerequisites	related techniques. Fundamentals of Material Science and Engineering				
UNIT – I					9

Introduction of Physical Metallurgy: Concept of phase diagram - phases and micro constituents in steels and cast irons - Equilibrium and non-equilibrium cooling of various Fe-C alloys - Effects of alloying elements and cooling rate on structure and properties of steels and cast irons.

#### UNIT – II

Introduction to Heat Treatment and Specifications: Time Temperature Transformation (TTT) diagram and Continuous Cooling Transformation (CCT) diagram - hardenability, measurement, annealing normalizing - hardening and tempering - heat treatment furnaces - atmospheres - quenching media - case hardening techniques. Types of steels: plain carbon steels - alloy steels - tool steels - stainless steels - types of cast iron – compositions - properties and applications.

# UNIT – III

Characterization of Materials: Stereographic projections - X-ray diffraction - Crystal structure and phase identification - Residual stress measurement and other applications. Scanning Electron Microscopy (SEM) -Optics and performance of SEM - Image interpretation - Crystallographic information - Analytical microscopy. Transmission Electron Microscopy (TEM) - Construction and operation of TEM - Electron diffraction - Image interpretation.

# UNIT - IV

Corrosion Engineering: Degradation of Materials: Oxidation - Corrosion and wear. Basics of thermodynamics and kinetics of oxidation and corrosion - Pourbaix diagram - Polarization - Different types of corrosion - Atmospheric, galvanic, pitting, crevice corrosion, intergranular and de-alloying - Stress corrosion cracking - Season cracking - Hydrogen damage and radiation damage - Hydrogen embrittlement -Corrosion rate measurement.

# UNIT - V

Metallurgical Failure Analysis and Plastic Deformation: Stages of failure analysis - Classification and identification of various types of fracture. Overview of fracture mechanics - Characteristics of ductile and brittle fracture. General concepts - Fracture characteristics revealed by microscopy - Factors affecting fatigue life - Creep - Stress rupture - Elevated temperature fatigue - Metallurgical instabilities - Environmental induced failure - Some case studies on failures - Basics of plastic deformation: Mohr's circle - yield theories plastic stress - strain relationship - mechanical working - work hardening.

# Total: 45

# **REFERENCES:**

Avner, S. H., "Introduction to Physical Metallurgy", 2nd Edition, McGraw Hill, 2017. 1.

Philips V. A., "Modern Metallographic Techniques and their Applications", Wiley Interscience, 1972.
Fontana. M.G., "Corrosion Engineering", 3rd Edition, Tata McGraw Hill, 2005.
Colangelo V.J. and Heiser F.A., "Analysis of Metallurgical Failures", John Wiley and Sons Inc. New 2. 3.

- 4. York, USA, 1987.
- Hosford W.F. and Caddell R.M., "Metal Forming Mechanics and Metallurgy", Printice Hall, 2014. 5.

9

9

9

COU	RSE OUTC	COMES:		BT Mapped			
On con	mpletion of	the course, the students will be	able to	(Highest Level)			
CO1:	demonstra	te the microstructures of steels	and cast irons	Analyzing (K4)			
CO2:	apply heat	treatment processes for various	applications	Applying (K3)			
CO3:	determine	Applying (K3)					
CO4:	analyze th	Analyzing (K4)					
CO5:	D5: solve the problems in plastic deformation of materials and to analyse the failures						
Mapping of COs with POs							
CC	Os/POs	PO1	PO2	PO3			
(	CO1	1	1	3			
(	CO2	3	2	3			
(	CO3	3	2	3			
CO4 3		3	3	3			
(	CO5	3	3	3			
1 - Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy						

# **18CCC11 COMPUTER APPLICATIONS IN DESIGN**

(Common to CADCAM & Mechatronics Branches)

(Approved Data book may be permitted)

		L	Т	Р	Credit	
		3	0	2	4	
Preamble As modeling is inevitable in design process, the application of computer graphics and visual realism concepts are to be known. To develop models the knowledge on surface and solid modeling is mandatory. Basic knowledge on programming is needed to develop design program for mechanical components.					and solid	
Prerequisites	tes Applied Mathematics, Engineering Drawing					
UNIT – I	UNIT – I 9					
Introduction to Computer Graphics: Design Process and CAD – Constraints – Computer graphics						
principles - O	utput primitives - Line and Circle drawing algorithms- Paramet	ric equ	ations	(lines	, circle) -	

2 D and 3D transformation - Translation, scaling, rotation -Windowing, view ports - Clipping transformation.

#### UNIT – II

**Visual Realism and Curves:** Hidden Line, Surface, Solid removal Algorithms - Shading - Coloring - RGB, HSV, HLS models - Introduction to curves - Analytical curves: line, circle and conics - Synthetic curves: Hermite cubic spline - Bezier curve and B-Spline curve - Curve manipulations.

#### UNIT – III

**Surface and Solid Modeling:** Introduction to surfaces - Analytical surfaces: Plane surface, ruled surface, surface of revolution and tabulated surface - Synthetic surfaces: Hermite bicubic surface - Bezier surface and B-Spline surface - Surface manipulations. Solid Modeling Techniques - Constructive Solid Geometry and Boundary Representation - Solid modeling systems - Parametric modeling - Creation of prismatic and revolved parts using solid modeling packages.

#### UNIT – IV

**Tolerance analysis and Mass property calculations:** Assembly Modeling - Geometrical tolerance - Tolerance modeling and analysis - Mass property calculations - Curve length, Area, Volume, Mass, Moment of inertia - Mechanism simulation.

#### UNIT – V

**Computers in Design Productivity:** Data Exchange formats - IGES, STEP - Reverse Engineering of components - Design optimization. Developing design programs using C for applications like design of shafts, gears etc.

# List of Exercises / Experiments :

1. Creation of solid components by CSG and assemble the models to create a final assembly

- 2. Construction of solid models using parameters (variable quantities such as measurements) and editing the model by using its history
- 3. Creation of surfaces of desired shape by trimming, stitching and joining different surfaces to create a final shape model
- 4. Conversion of the real component into 3D CAD Model using measurement tools & CMM (coordinate measuring machine)
- 5. Development of design programs using C for applications like design of shafts and gears.

Lecture:45, Practical:30, Total: 75

9

9

9

REFE	<b>RENCES:</b>						
1. Z	1. Zeid Ibrahim, "Mastering CAD/CAM", Tata McGraw Hill, New Delhi, 2007.						
2. H	Hearn Donal	ld and Baker M Pauline, "Comp	outer Graphics", C Version, Prei	ntice Hall I	nc., 2000.		
		illiam M. and Sproul Robert, "					
E	Book Co., 20	001.					
4. R	Rao P.N., "C	CAD/CAM: Principles and Appl	lications", 3 rd Edition, McGraw	Hill, 2010	•		
COUH	RSE OUTC	COMES:			BT Mapped		
On con		the course, the students will be			(Highest Level)		
CO1:		ne output primitives and demo ical concepts behind computer g	• 11	lying the	Applying (K3)		
CO2:	-	e synthetic curves with mathe	ematical concepts and illustra	te visual	Applying (K3)		
	realism te	1					
CO3:		te surface and solid modeling to			Applying (K3)		
CO4:					Evaluating (K5)		
005	model						
	CO5: write design programs using C/Auto LISP for shaft and gears				Applying (K3)		
CO6:	CO6: model the solid components by CSG, B-rep and assemble the models to develop				Applying (K3),		
007	final asser	2		1	Precision(S3)		
CO7:		surface models of desired sha		i joining	Applying (K3),		
CO8:		urfaces to create a final shape n real component into 3D CA		cole and	Precision(S3) Analyzing (K4),		
CO8.	CONVERT II	le lear component into 5D CA	D model using measurement	loois and	Precision(S3)		
		Ν.σ		<u> </u>	1160181011(33)		
			g of COs with POs	1			
	Os/POs	PO1	PO2		PO3		
(	CO1	1	1		3		
(	CO2	1	1		3		
(	CO3	1	2		3		
(	CO4	2	1		3		
(	CO5	2	1		3		
(	CO6	2			3		
(	CO7	2			3		
	CO8	2			3		
1 - Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy						

#### **18MTC11 COMPUTER NUMERICALLY CONTROLLED MACHINES (FROM MTS)** (Common to Mechatronics, Engineering Design & CADCAM Branches)

		L	Т	Р	Credit	
		3	0	2	4	
Preamble	To impart the fundamental knowledge and programming concept	s of C	NC ma	chines	•	
Prerequisites	Nil					
UNIT – I					9	
Construction Features of CNC Machines: Introduction - CNC Machine Building, Drives and Controls:						
Drive Mechanism, Spindle Drives, Axes drives, Feed drives, Linear Motors and Actuators, Magnetic						
Levitation. Power transmission elements - Spindle bearing – Arrangement and installation - Guide ways –						

Configuration and design, friction and anti-friction LM guide ways, Retrofitting.

# UNIT – II

**Control Systems for CNC Machines and CAD/CAM Integration:** Interfacing – Monitoring – Diagnostics – Machine data – Sources of errors - Compensations for Machine accuracy – DNC – Adaptive control CNC systems. Concepts of High speed Machining and micro machining. Networking - networking techniques, LAN, components - Graphics standards – Data exchange format, evolution - features of various interfaces GKS, IGES, DXF, PDES, STEP etc., Process planning, Computer Aided process planning (CAPP) - Variant, generative Approaches.

# UNIT – III

**CNC Programming:** Structure of CNC program, Part Program Terminology Coordinate system, G & M codes, cutter radius compensation, tool nose radius compensation, tool wear compensation, canned cycles, sub routines, mirroring features, Manual part programming for CNC turning and machining centre – APT programming for various machines in FANUC - Computer aided part programming - Post processing.

# UNIT – IV

**Tooling System and Management:** Tooling system - Interchangeable tooling system – Preset, Qualified and semi-qualified tools – Coolant fed tooling system – Modular fixturing – Quick change tooling system – Automatic head changers – Tooling requirements for Turning and Machining centers – Tool holders – Tool assemblies – Tool Magazines – ATC Mechanisms – Tool management.

# UNIT – V

**Economics of CNC Operations and Special Purpose CNC Machines:** Factors influencing selection of CNC machines - Cost of operation of CNC machines - Practical aspects of introducing CNC machines - Maintenance features of CNC machines - Preventive and other maintenance requirements. CNC grinding machines, CNC bending machines - pipe bending, CNC turret Press, CNC EDM - Wire cut EDM, CNC ECM - Electrochemical grinding machines.

# List of Exercises:

1. Study of G codes and M codes for machining centre and turning centre

2. Programming and machining of given component using HMT VMC 200T

3. Programming and machining of given component using HMT CNC T70

4. Programming and machining of given component using CNC turning centre

5. Programming and simulation of given component using MASTER CAM (Lathe)

Lecture:45, Practical:30, Total: 75

9

9

9

REF	<b>ERENCES</b> :							
1.			n W.A., "Machining and CNC Tech	nology", 3 rd Edition,				
		ll Education, 2014.						
2.			Machines (Computer Numerical Contro	ol)", Dhanpat Rai and				
ļ	Co., Pvt. Lto	1., New Delhi, 2014.						
3.								
	McGraw-Hill Companies Inc., 2011.							
4.			nes", 3 rd Edition, New Age International					
5.		-	k: Basic theory, Production data and	Machining process",				
		ress Inc., 2005.						
	JRSE OUT			BT Mapped				
		the course, the students will b		(Highest Level)				
CO1		e basic components and mech		Understanding				
CO2		he control system concepts us		Understanding Creating				
	CO3: formulate part programming for turning and milling processes							
	CO4: select proper tooling systems and fixtures for holding the work piece							
CO5	-	1	nachine and selection of special purpos	se Understanding				
	CNC mac	hine						
		Mapp	ing of COs with POs					
C	COs/POs	PO1	PO2	PO3				
	CO1	2	1	1				
	CO2	3	3	1				
	CO3	3	2	2				
	CO4	3	1	1				
	CO5 2		3	3				
1_9	light, 2 – Mo	derate 3 – Substantial RT	Bloom's Taxonomy, BT – Bloom's T	axonomy				
1 - 9	$m_{z}m, 2 - m_{z}$	J = J = J = J = J = J = J = J = J = J =	- Diooni 5 ratonomy, Dr $-$ Diooni 5 r	anonomy				

# 18GET01 INTRODUCTION TO RESEARCH

L

Т

Р

Credit

9

9

9

9

9

(Common to Engineering and Technology Branches)
-------------------------------------------------

		3	0	0	3	
Preamble	To familiarize the fundamental concepts/techniques adopted in	researc	ch, pro	blem f	ormulation	
	and patenting.					
	To disseminate the process involved in collection, consolidation of published literature and					
	rewriting them in a presentable form using latest tools.					
Prerequisites	Nil					

UNIT – I

**Concept of Research:** Meaning and Significance of Research: Skills, Habits and Attitudes for Research -Time Management - Status of Research in India. Why, How and What a Research is? - Types and Process of Research - Outcome of Research - Sources of Research Problem - Characteristics of a Good Research Problem - Errors in Selecting a Research Problem - Importance of Keywords - Literature Collection – Analysis - Citation Study - Gap Analysis - Problem Formulation Techniques.

# UNIT – II

**Research Methods and Journals:** Interdisciplinary Research - Need for Experimental Investigations - Data Collection Methods - Appropriate Choice of Algorithms / Methodologies / Methods - Measurement and Result Analysis - Investigation of Solutions for Research Problem - Interpretation - Research Limitations. Journals in Science/Engineering - Indexing and Impact factor of Journals - Citations - h Index - i10 Index - Journal Policies - How to Read a Published Paper - Ethical issues Related to Publishing - Plagiarism and Self-Plagiarism.

# UNIT – III

**Paper Writing and Research Tools:** Types of Research Papers - Original Article/Review Paper/Short Communication/Case Study - When and Where to Publish? - Journal Selection Methods. Layout of a Research Paper - Guidelines for Submitting the Research Paper - Review Process - Addressing Reviewer Comments. Use of tools / Techniques for Research - Hands on Training related to Reference Management Software - EndNote, Software for Paper Formatting like LaTeX/MS Office. Introduction to Origin, SPSS, ANOVA etc., Software for detection of Plagiarism.

# UNIT – IV

**Effective Technical Thesis Writing/Presentation:** How to Write a Report - Language and Style - Format of Project Report - Use of Quotations - Method of Transcription Special Elements: Title Page - Abstract - Table of Contents - Headings and Sub-Headings - Footnotes - Tables and Figures - Appendix - Bibliography etc. - Different Reference Formats. Presentation using PPTs.

# UNIT – V

DEEDDEMGEG

**Nature of Intellectual Property:** Patents - Designs - Trade and Copyright. Process of Patenting and Development: Technological research - innovation - patenting - development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents.

# TOTAL: 45

REF	ERENCES:
1.	DePoy, Elizabeth, and Laura N. Gitlin, "Introduction to Research-E-Book: Understanding and Applying
	Multiple Strategies", Elsevier Health Sciences, 2015.
2.	Walliman, Nicholas, "Research Methods: The basics", Routledge, 2017.
3.	Bettig Ronald V., "Copyrighting culture: The political economy of intellectual property", Routledge,
	2018.

	COURSE OUTCOMES: On completion of the course, the students will be able to							
CO1:	list	various stages in research/patenti	ng and categorize the quality of j	ournals	Analyzing			
CO2:	forn	nulate a research problem from p	ublished literature/journal papers		Evaluating			
CO3:	writ	e, present a journal paper/ projec	Creating					
CO4:	sele	ct suitable journal and submit a r	esearch paper		Applying			
Mapping of COs with POs and PSOs								
COs/PO	Os	PO1	PO2		PO3			
CO	1	3	2		1			
CO	2	3	2		3			
CO3 3 3		3	1					
CO	4	3	2		1			
1 – Slig	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy							

		N AND ANALYSIS LABORAT ering Design & CADCAM Bran							
	(Common to Engine	ening Design & CADCAW Drain	L	Т	Р	Credit			
			0	0	2	1			
Preamble	eamble Design and analysis laboratory is the use of computer systems to aid in the Modification, analysis, or optimization of a design. Analysis software is used to productivity of the designer, improve the quality of design, improve communication, and to create a database for manufacturing.								
Prerequisites	Strength of materials, Design of machine elements, Modeling skill, Technical drawing reading skill, Knowledge in modeling and analysis software.								
	ses / Experiments :								
	ng and Assembly of component								
		porting to ANSYS and Meshing	<b>T</b>						
		nent diagram using ANSYS APD	L						
	ng a component using ANSYS W								
	ral Analysis using ANSYS WO								
	inear structural contact analysis								
	al Analysis of a component usin	÷							
	Analysis of a structure using AN								
	ic Analysis using ANSYS APD								
10. Couple	d Field Analysis using ANSYS	APDL				T. 4. 1. 20			
DEFEDENCI	ES / MANUALS / SOFTWAR	FS.				Total: 30			
	ry manual	L2:							
1. Laborato	Ty manual								
COURSE OU	TCOMES:				рт м				
		be able to				[apped			
	On completion of the course, the students will be able to (Highest Level)								
softv			ıg analys	is A	<b>Highe</b> Applyi				
CO2: mod	vare el and analyze the structural		•	is A	<b>Highe</b> s Applyin Ianipul	st Level) ng (K3),			
CO2: mod appl	vare el and analyze the structural ications	nditions with various fields usir members with external load fo	r differe	is M M nt M	<b>Highe</b> s Applyi Ianipul Applyi	st Level) ng (K3), ation(S2)			
CO2: mod appl CO3: anal	vare el and analyze the structural ications yze the non-linear structural,	nditions with various fields usir	r differe	is M M nt M	Highes Applyin Ianipul Applyin Preciss Applyin	st Level) ng (K3), ation(S2) ng (K3), ion(S3) ng (K3),			
CO2: mod appl CO3: anal vario	ware el and analyze the structural ications yze the non-linear structural, pus applications	nditions with various fields usin members with external load fo thermal and coupled field pro	r differe bblems f	is N N nt N or N	Highes Applyin Ianipul Applyin Preciss Applyin Preciss	st Level) ng (K3), ation(S2) ng (K3), ion(S3) ng (K3), ion(S3)			
CO2: mod appl CO3: anal vario	ware el and analyze the structural ications yze the non-linear structural, pus applications	nditions with various fields usir members with external load fo	r differe bblems f	is M M nt M or M	Highes Applyin Ianipul Applyin Precis Applyin Precis Applyin	st Level) ng (K3), ation(S2) ng (K3), ion(S3) ng (K3), ion(S3) ng (K3),			
CO2: mod appl CO3: anal vario	ware el and analyze the structural ications yze the non-linear structural, ous applications yze the mode shape and critical	nditions with various fields usin members with external load fo thermal and coupled field pro- frequency of the structural comp	r differe bblems f	is M M nt M or M	Highes Applyin Ianipul Applyin Precis Applyin Precis Applyin	st Level) ng (K3), ation(S2) ng (K3), ion(S3) ng (K3), ion(S3)			
CO2: mod appl CO3: anal vario CO4: anal	ware el and analyze the structural ications yze the non-linear structural, ous applications yze the mode shape and critical Map	nditions with various fields using members with external load for thermal and coupled field pro- frequency of the structural comp <b>ping of COs with POs</b>	r differe bblems f	is M M nt M or M	Highes Applyin Ianipul Applyin Precis Applyin Precis Applyin Precis	st Level) ng (K3), ation(S2) ng (K3), ion(S3) ng (K3), ion(S3) ng (K3),			
CO2: mod appl CO3: anal vario	ware el and analyze the structural ications yze the non-linear structural, ous applications yze the mode shape and critical Map PO1	nditions with various fields usin members with external load fo thermal and coupled field pro- frequency of the structural comp	r differe bblems f	is M M nt M or M	Highes Applyin Ianipul Applyin Preciss Applyin Preciss Applyin Preciss	st Level) ng (K3), ation(S2) ng (K3), ion(S3) ng (K3), ion(S3) ng (K3),			
CO2: mod appl CO3: anal vario CO4: anal	ware el and analyze the structural ications yze the non-linear structural, ous applications yze the mode shape and critical Map	nditions with various fields using members with external load for thermal and coupled field pro- frequency of the structural comp <b>ping of COs with POs</b>	r differe bblems f	is M M nt M or M	Highes Applyin Ianipul Applyin Precis Applyin Precis Applyin Precis	st Level) ng (K3), ation(S2) ng (K3), ion(S3) ng (K3), ion(S3) ng (K3),			
CO2: mod appl CO3: anal vario CO4: anal CO5/POs	ware el and analyze the structural ications yze the non-linear structural, ous applications yze the mode shape and critical Map PO1	nditions with various fields using members with external load for thermal and coupled field pro- frequency of the structural comp ping of COs with POs PO2	r differe bblems f	is M M nt M or M	Highes Applyin Ianipul Applyin Preciss Applyin Preciss Applyin Preciss	st Level) ng (K3), ation(S2) ng (K3), ion(S3) ng (K3), ion(S3) ng (K3),			
CO2: mod appl CO3: anal vario CO4: anal CO5/POs CO1	ware el and analyze the structural ications yze the non-linear structural, ous applications yze the mode shape and critical Map PO1 3	nditions with various fields using members with external load for thermal and coupled field profirequency of the structural composition of COs with POs PO2	r differe bblems f	is M M nt M or M	Highes Applyin Ianipul Applyin Preciss Applyin Preciss Applyin Preciss O3 3	st Level) ng (K3), ation(S2) ng (K3), ion(S3) ng (K3), ion(S3) ng (K3),			

3 – Substantial, BT – Bloom's Taxonomy

1 – Slight, 2 – Moderate,

#### **18EDT21 OPTIMIZATION TECHNIQUES IN DESIGN AND MANUFACTURING** (Common to Engineering Design & CADCAM branches)

L

Т

Ρ

Credit

9

9

9

		3	0	0	3
Preamble	This course emphasis the application of optimization techniques,	tools a	and me	thods i	n the field
	of Engineering.				
Prerequisite	Fundamentals of Operation Research and Mathematical knowled	ge.			

UNIT – I

Introduction: Introduction to optimum design-global and local - Problems - General Characteristics of mechanical elements-adequate and optimum design-general principles of optimization, formulation of objective function, design constraints - Classification of optimization problem -Saddle point-Single variable optimization-Multi variable optimization with no constraints.

# UNIT – II

**Unconstrained Optimization Techniques:** Single variable and multivariable optimization with constraints, Techniques of unconstrained minimization -Golden section, pattern and gradient search methods -Interpolation methods -Quadratic function method.

#### UNIT – III

Constrained and Advanced Optimization Techniques: Optimization with equality and inequality constraints - Indirect methods using penalty functions, Lagrange multipliers; Geometric programming-Constrained, mixed inequality and unconstrained minimization; Introduction - GA, SA and NN based on optimization - Fuzzy systems - Taguchi Technique - Parallel processing.

#### UNIT – IV

Static Applications: Structural applications – Design of simple truss members-Reanalysis techniques Design applications -Design of simple axial, transverse loaded members for minimum cost, maximum weight -Design of shafts and torsionally loaded members – Design of springs.

#### UNIT - V

Dynamic Applications: Optimum design of single and two degree of freedom systems, vibration absorbers. Optimum design of simple linkage mechanisms. Case study: optimization of process parameters in production operation.

#### **REFERENCES:**

1.	Rao Singaresu S., "Engineering Optimization – Theory and Practice", 4 th Edition, New Age
	International Pvt. Ltd., New Delhi, 2009.
2.	Kalyanamoy Deb, "Optimization for Engineering Design Algorithms and Examples", 2 nd Edition,
	Prentice Hall of India Pvt. Ltd., 2012.
3.	Goldberg D.E., "Genetic algorithms in search, optimization and machine", 4 th Edition, Barnen, Addison
	Wesley, New York, 2009.

9

9

Total: 45

COUR	COURSE OUTCOMES: BT Map							
On com	(Highest Level)							
CO1:	buil	build an optimization problems for design and manufacturing applications Evaluatin						
CO2:	com	pute the optimum value for unco	onstrained optimization problem	Evaluating (K5)				
CO3:	solv	e the optimization problem by v	various techniques	Evaluating (K5)				
CO4:	desi	gn the stress members and shafts	using reanalysis techniques	Applying (K3)				
CO5:	opti	mize the influencing parameters	for linkages and vibratory systems	Evaluating (K5)				
		Мар	ping of COs with POs					
COs/PC	)s	PO1	PO2	PO3				
CO	1	3	2	3				
CO	2	3	2	3				
CO3	3	3	2	3				
CO4 3		3	2	3				
CO	5	2	3	3				
1 - Slig	1 – Slight, 2 – Moderate, 3 – Substantial, BT – Bloom's Taxonomy							

	18CCT21 MACHINING PROCESSES AND ANAI	LYSIS			
		L	Τ	Р	Credit
		3	1	0	4
Preamble	This course provides insights of mechanics of metal qua	ality a	ind im	portan	ce of tool
	nomenclature on machining process. Also, it provides the	e basi	c unde	rstand	ing of the
	thermal aspects and wear mechanisms of machining process.				
Prerequisites	Fundamentals of material removal processes				
UNIT – I					9
Mechanics of	Cutting: Chip Formation-Introduction-Types of Chips-Prir	nary 1	Plastic	Defor	mation in
Continuous Chip	Formation-Tool-Chip Friction and Secondary Deformation-	Chip	Contro	l-Burr	Formation
and Control Me	easurement of Cutting Forces and Chip Thickness -Force	Comp	onents	-Empir	ical Force
	Cutting Energy-Shear Plane and Slip Line Theories for Cont				
Plane Models fo	r Oblique Cutting-Shear Zone Models-Minimum Work and U	Inique	ness As	sumpt	ions-Finite
Element Models	Discontinuous Chip Formation-Built-Up Edge Formation.				
UNIT – II					9
	ture Nomenclature of single point cutting tool-System of tool				
Ū.	omenclature of multi point tools like drills, milling-convention	ional V	Vs clin	nb mil	ling, mean
cross sectional a	ea of chip in milling-specific cutting pressure				
UNIT – III					9
parameters on te Essential require	ts in Machining and Tool Material: Heat distribution in mperature-methods of temperature measurement in machining ments of tool materials-development in tool materials-ISO sp- conventional and accelerated tool life tests-concept of mach	g-hot 1 ecifica	nachin tion fo	ing-cut r inser	ting fluids ts and tool
UNIT – IV					9
Reasons for fail	sms and Chatter in Machining: Processing and Machinin ure of cutting tools and forms of wear-mechanisms of wear in machining-types of chatter-mechanism of chatter				
UNIT – V					9
	<b>ining Processes:</b> Abrasive machining processes- mechanics	of gri	nding	process	L
	on- conventional- super abrasive – grinding wheel wear- selec				
finishing process			9.110		super
		1re:45	Tuto	ial:15	, Total: 60
REFERENCES		AI VI TU	, 140		, 10001000
	D.G. and Knight W.A., "Fundamentals of machining and mac	chine t	ools",	3 rd Edi	ition, CRC
	"Metal cutting principles", 2 nd Edition, Oxford University Pres	ss, 201	2.		
	a A., "Metal Cutting: Theory and practice", New Central Book			ia. 201	2.
5. Dilattacital y	a m, moun caung, mony and practice, new Contral DOOK	1 15011	<i>cy</i> , mu	ia, 201	

COU	COURSE OUTCOMES:						
On co	mpletion of	(Highest Level)					
CO1:	Applying (K3)						
CO2:	select suit	able nomenclature for a cutting	; tool	Applying (K3)			
CO3:	examine t	he influence of temperature in c	cutting tool material	Analyzing (K4)			
CO4:	interpret r	eason for tool failure		Evaluation (K5)			
CO5:	recommer	nd suitable machining process for	for finishing operation	Applying (K3)			
		Марріг	ng of COs with POs				
CC	Os/POs	PO1	PO2	PO3			
(	CO1	3		2			
(	CO2	3		2			
(	CO3	3		2			
(	CO4	2					
	CO5	2					
1 – Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy						

	18CCT22 MICRO AND NANO MANUFACTURING PE	ROCE	SSES		
		L	Т	Р	Credit
		3	0	0	3
Preamble	The course provides the details about Micro manufacturing a	nd Mi	icro m	achinir	ig. Also it
	describes the nano finishing, micro joining and micro manufactu	ring p	rocesse	s.	
Prerequisites	Fundamentals of manufacturing processes.				
UNIT – I					9
	facturing: Introduction - Miniaturization and Applications				
	raditional Micromachining-Advanced Micromachining Proces				
	cesses-Mass Containing Processes-Microforming-Micromolding			ng-Mio	crojoining-
Miscellaneous	Applications-Challenges in Meso-, Micro-, and Nanomanu	Ifactur	ing.		
UNIT – II Mieromachir	ing Microgrinding Introduction Types of Chinding Wheel	а Ма	ahinin	and (	9 Taindina
	ing: Microgrinding Introduction - Types of Grinding Wheel				
	n - Grindability - Grinding Mechanisms-Micro grinding—Its cromachining: Micro- and Nano manufacturing by Focused Ion				
	tem (Dual Beam)-Ion–Matter Interaction –Working principles of f				- Pocuseu
Ion Deam Sys	tem (Duar Deam)-fon-Matter Interaction – working principles of I	locuse	u non	Jeann.	
UNIT – III					9
	g: Magnetorheological and Allied Finishing Processes: Introduction	on - M	agneto	rheolog	
	prheological Finishing (MRF) - Magnetorheological Abrasive		U		
Ŭ	asive Finishing (MAF): Introduction -Working Principle of Magn			0	• •
	AF Processes-Pulsating Current Magnetic Abrasive Finishing (P				0
UNIT – IV					9
	& Microforming: Micro joining: Laser Micro welding- Introduc				
	g Practice-Laser Micro welding Applications -Electron Beams f				
	introduction - Description of an EBW Setup - Design Consider				
	ron Beams for Micro Operations. Micro forming: Micro				
	by Nano Plastic Forming and Roller Imprinting-Introduction - Na	no Pla	stic Fo	rming	-NPF-CRI
Technique - N	licro- and Nanostructured Surface Development.				
UNIT – V					9
	Metrology for Micro/Mesoscale Manufacturing: Introduction				surement -
Optical Measu	rements-Scanning Probe Microscopy -Hybrid Processes - On-Ma	chine	Metrol	ogy.	
DEFERRIC	80				Total: 45
REFERENC					
	., "Micromanufacturing Processes", CRC Press, 2013.	10			
	, "Introduction to Micromachining", Narosa Publishing House, 20		006		
3. Mark J. J	ackson, "Micro Fabrication and Nano machining", Taylor and Fra	ncıs, 2	2006.		

- Mark J. Jackson, "Micro Fabrication and Nano machining", Taylor and Francis, 2006.
   Yi Qin, "Micro-Manufacturing Engineering and Technology", Elsevier Publication, 2010.
- 5. Serope Kalpakjain, "Manufacturing Engineering and Technology", Pearson Education, 2005.

COU	COURSE OUTCOMES:								
On con	(Highest Level)								
CO1:	CO1: identify newer machining processes (Micro and Nano) and advantages over								
	traditional	traditional machining methods							
CO2:	analyze th	e concept, mechanism of mate	rial removal in micro manufacturi	ing	Analyzing (K4)				
CO3:	realize the	principles of various nano fin	ishing processes		Applying (K3)				
CO4:	explore co	oncepts of various micro joinin	g and forming processes		Analyzing (K4)				
CO5:	quantify th	ne micro and nano finished cor	nponent at micro/meso scale level	1	Evaluating (K5)				
		Маррі	ng of COs with POs						
CC	Os/POs	PO1	PO2		PO3				
(	CO1	3			2				
(	CO2	3			2				
(	CO3	3		3					
(	CO4 3				3				
(	CO5		3						
1 – Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy								

		L T P Credit
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Preamble	The engineering products cannot be produced by conventional n	machines with accuracy. I
	order to produce the components accurately and exactly the engine	
	on computer aided manufacturing processes. With the aid of a	
	production and component with accurate sizes can be produced.	
Prerequisites	Fundamentals of CAD/CAM.	
List of Exper	riments:	
1. Study	of G codes and M codes for machining centre and turning centre.	
	amming and machining of given component using HMT VMC 200T.	
	amming and machining of given component using HMT VMC T70.	
	amming and machining of given component using CNC Turning Cent	tre.
	amming and simulation of given component using MASTER CAM(L	
6. CNC (	code generation of given component using MASTER CAM (Lathe) and	and interfacing it to CNC
	g centre.	
	code generation of given component using MASTER CAM (Mill) and	d interfacing it to CNC
	g centre.	
	amming and machining of given component using CNC machining ce	
	amming and machining of given component using MASTERCAM (M	Ailling).
10 CNC /	- de esta sur d'esta effectaria esta sur esta sur d'esta de Due Menuelfectaria est	
10. UNU (	code generation of given component using Pro Manufacturing.	
		Total: 3
REFERENC	ES / MANUALS / SOFTWARES:	Total: 3
REFERENC 1. CNC Lab	ES / MANUALS / SOFTWARES:	Total: 3
<b>REFERENC</b> 1.CNC Lab2.Master C	ES / MANUALS / SOFTWARES: Manuals AM ,Pro Manufacturing	
REFERENC1.CNC Lab2.Master CCOURSE OU	ES / MANUALS / SOFTWARES: Manuals AM ,Pro Manufacturing UTCOMES:	BT Mapped
<b>REFERENC</b> 1.CNC Lab2.Master C <b>COURSE OI</b> On completio	ES / MANUALS / SOFTWARES: Manuals AM ,Pro Manufacturing UTCOMES: n of the course, the students will be able to	BT Mapped (Highest Level)
<b>REFERENC</b> 1.CNC Lab2.Master C <b>COURSE OU</b> On completioCO1:exhibition	ES / MANUALS / SOFTWARES: D Manuals AM ,Pro Manufacturing UTCOMES: In of the course, the students will be able to it the G codes and M codes of CNC Machine	BT Mapped (Highest Level) Applying (K3)
<b>REFERENC</b> 1.CNC Lab2.Master CCOURSE OIOn completioCO1:exhibiCO2:develor	ES / MANUALS / SOFTWARES: Manuals AM ,Pro Manufacturing UTCOMES: on of the course, the students will be able to it the G codes and M codes of CNC Machine op, simulate and execute part program using CNC production and	BT Mapped (Highest Level) Applying (K3)
REFERENC1.CNC Lab2.Master CCOURSE OUOn completioCO1:exhibiCO2:develomachi	ES / MANUALS / SOFTWARES: Manuals AM ,Pro Manufacturing UTCOMES: n of the course, the students will be able to it the G codes and M codes of CNC Machine op, simulate and execute part program using CNC production and nes	BT Mapped (Highest Level) Applying (K3) trainer Analyzing (K4)
<b>REFERENC</b> 1.CNC Lab2.Master C <b>COURSE OU</b> On completioCO1:exhibiCO2:develormachiCO3:simula	ES / MANUALS / SOFTWARES: D Manuals CAM ,Pro Manufacturing UTCOMES: In of the course, the students will be able to it the G codes and M codes of CNC Machine op, simulate and execute part program using CNC production and ines ate using CAM package and interface the developed	BT Mapped (Highest Level) Applying (K3) trainer Analyzing (K4) Applying (K3)
REFERENC1.CNC Lab2.Master CCOURSE OUOn completioCO1:exhibiCO2:develomachiCO3:CO4:simula	ES / MANUALS / SOFTWARES: D Manuals CAM ,Pro Manufacturing UTCOMES: In of the course, the students will be able to it the G codes and M codes of CNC Machine Dp, simulate and execute part program using CNC production and mes ate using CAM package and interface the developed ate using MASTERCAM Milling	BT Mapped (Highest Level) Applying (K3) trainer Analyzing (K4) Applying (K3) Applying (K3)
REFERENC1.CNC Lab2.Master CCOURSE OUOn completioCO1:exhibiCO2:develomachiCO3:CO4:simula	ES / MANUALS / SOFTWARES: D Manuals AM ,Pro Manufacturing UTCOMES: In of the course, the students will be able to it the G codes and M codes of CNC Machine op, simulate and execute part program using CNC production and ines ate using CAM package and interface the developed ate using MASTERCAM Milling op CNC Code in Pro Manufacturing	BT Mapped (Highest Level) Applying (K3) trainer Analyzing (K4) Applying (K3)
REFERENC1.CNC Lab2.Master CCOURSE OUOn completioCO1:exhibiCO2:develomachiCO3:simulaCO4:simulaCO5:develo	ES / MANUALS / SOFTWARES: D Manuals DAM ,Pro Manufacturing UTCOMES: In of the course, the students will be able to it the G codes and M codes of CNC Machine Dp, simulate and execute part program using CNC production and ines ate using CAM package and interface the developed ate using MASTERCAM Milling Dp CNC Code in Pro Manufacturing Mapping of COs with POs	BT Mapped (Highest Level)Applying (K3)trainerAnalyzing (K4)Applying (K3)Applying (K3)Analyzing (K4)
REFERENC1.CNC Lab2.Master CCOURSE OUOn completioCO1:exhibiCO2:develomachiCO3:CO4:simulaCO5:develo	ES / MANUALS / SOFTWARES:         D Manuals         DAM ,Pro Manufacturing         UTCOMES:         on of the course, the students will be able to         it the G codes and M codes of CNC Machine         op, simulate and execute part program using CNC production and         ones         ate using CAM package and interface the developed         ate using MASTERCAM Milling         op CNC Code in Pro Manufacturing         Mapping of COs with POs         PO1	BT Mapped (Highest Level) Applying (K3) trainer Analyzing (K4) Applying (K3) Applying (K3) Analyzing (K4) PO3
REFERENC1.CNC Lab2.Master CCOURSE OUOn completioCO1:exhibiCO2:develomachiCO3:simulaCO5:develoCO5:CO5/POsCO1	ES / MANUALS / SOFTWARES:         D Manuals         D'AM ,Pro Manufacturing         UTCOMES:         In of the course, the students will be able to         it the G codes and M codes of CNC Machine         Dp, simulate and execute part program using CNC production and ines         ate using CAM package and interface the developed         ate using MASTERCAM Milling         Dp CNC Code in Pro Manufacturing         Mapping of COs with POs         1       1         2       2	BT Mapped (Highest Level)Applying (K3)trainerAnalyzing (K4)Applying (K3)Applying (K3)Analyzing (K4)PO32
REFERENC         1.       CNC Lab         2.       Master C         COURSE OU       On         COURSE OU       On         CO1:       exhibit         CO2:       develor         machit       CO3:       simula         CO4:       simula         CO5:       develor         CO5:       co1         CO2       CO1	ES / MANUALS / SOFTWARES:         o Manuals         CAM ,Pro Manufacturing         UTCOMES:         on of the course, the students will be able to         it the G codes and M codes of CNC Machine         op, simulate and execute part program using CNC production and thes         ate using CAM package and interface the developed         ate using MASTERCAM Milling         op CNC Code in Pro Manufacturing         Mapping of COs with POs         3       2         3       2         3       2	BT Mapped (Highest Level)Applying (K3)trainerAnalyzing (K4)Applying (K3)Applying (K3)Analyzing (K4)PO322
REFERENC         1.       CNC Lab         2.       Master C         COURSE OU         On completio         CO1:       exhibi         CO2:       develo         machi       CO3:       simula         CO4:       simula         CO5:       develo         CO5:       develo         CO1       CO1         CO2       CO1         CO3       CO1         CO3       CO1	ES / MANUALS / SOFTWARES:         D Manuals         DAM, Pro Manufacturing         UTCOMES:         n of the course, the students will be able to         it the G codes and M codes of CNC Machine         Dp, simulate and execute part program using CNC production and mes         ate using CAM package and interface the developed         ate using MASTERCAM Milling         Dp CNC Code in Pro Manufacturing         Mapping of COs with POs         901         902         3       2         3       2         3       2         3       2	BT Mapped (Highest Level)         Applying (K3)         trainer         Analyzing (K4)         Applying (K3)         Applying (K3)         Analyzing (K4)         PO3         2         2         2         2         2         2         2         2         2         2
REFERENC         1.       CNC Lab         2.       Master C         COURSE OU       On         COURSE OU       On         CO1:       exhibit         CO2:       develor         machit       CO3:       simula         CO4:       simula         CO5:       develor         CO5:       co1         CO2       CO1	ES / MANUALS / SOFTWARES:         o Manuals         CAM ,Pro Manufacturing         UTCOMES:         on of the course, the students will be able to         it the G codes and M codes of CNC Machine         op, simulate and execute part program using CNC production and thes         ate using CAM package and interface the developed         ate using MASTERCAM Milling         op CNC Code in Pro Manufacturing         Mapping of COs with POs         3       2         3       2         3       2	BT Mapped (Highest Level)Applying (K3)trainerAnalyzing (K4)Applying (K3)Applying (K3)Analyzing (K4)PO322

# **18EDE02 MECHANICAL BEHAVIOUR OF MATERIALS**

L

Т

Р

Credit

9

9

9

9

(Common to Engineering Design & CADCAM branches)

		3	0	0	3
Preamble	This course provides the necessary knowledge of behaviour un	nder lo	oads w	hich is	needed in
	manufacture and design.				
Prerequisites	Fundamentals of material sciences, Fundamental of physical pro-	opertie	s of the	e mater	rials, Basic
	type of metal and non-metallic materials				

UNIT – I

**Elasticity of the Materials:** Analysis of stress-definition and notation of stress - equation of equilibrium - description of stress at a point- principal stresses - two and three dimensional Mohr's circles diagram. Boundary condition in terms of surface forces. Analysis of stress-strain components- description of strain at a point - compatibility equations of elasticity: Generalized Hooke's law-formulations of elastic problems - two and three dimensional Mohr's circles diagram - strain energy.

#### UNIT – II

**Plane Stress and Plane Strain Problems:** The governing differential equations - bending of narrow cantilever beam of rectangular cross section under an end load - General equations in cylindrical co-ordinates – effect of small circular holes in strained plates-stress concentration

#### UNIT – III

**Elements of the Theory of Plasticity:** Introduction - flow curves-tensile test - true stress/true strain-yield criteria for ductile metals- plastic stress-strain relations. Creep definition-creep tests and properties of creep. Theories of failure.

#### UNIT – IV

**Fracture:** Overview of problem of fracture and fatigue in structures-stress analysis for members with cracksstress intensity equations- Relationship between stress intensity factor and fracture toughness. Experimental determination  $-K_{IC}$  and Kc values-effect of temperature, loading rate and plate thickness on fracture toughness.

#### UNIT – V

**Fracture Mechanics Design:** Fatigue crack initiation- fatigue crack propagation under constant load and variable load - fatigue damage tolerance, Elastic - plastic fracture mechanics.

#### **REFERENCES:**

George E. Dieter, "Mechanical Metallurgy", 3rd Edition, McGraw Hill Education (India) Pvt. Ltd., 2013.
 Wang C.T., "Applied Elasticity", McGraw-Hill, New York, 1953.

3. Barsoom M. John and Rolte T. Stanley, "Fracture and Fatigue Control in Structures", Prentice-Hall, New Jersey, 1987.

9

Total: 45

COUR	SE O	UTCOMES:		BT Mapped
On com	pletio	on of the course, the students will	be able to	(Highest Level)
CO1:	unde	erstand the elastic behaviours of	Understanding (K2)	
CO2:	anal	yze the problems of plane stress	and strain conditions.	Analyzing (K4)
CO3:	unde	erstand the plastic behaviours of	the materials.	Understanding (K2)
CO4:	impl	lement the various fracture stress	analysis under various conditions.	Analyzing (K4)
CO5:	impl	lement the fracture mechanics an	d the design under various conditions	Applying (K3)
		Мар	ping of COs with POs	
COs/PC	)s	PO1	PO2	PO3
CO	l I	3		2
CO2	2	3		3
COS	3	3	2	2
CO4	1	3	2	2
COS	5			2
1 - Slig	ht, 2 -	- Moderate, 3 – Substantial, B	T – Bloom's Taxonomy	

18EDE05	DESI	<b>GNIN</b>	GW	VITH	NE	WER	MA	ATER	IAL	S

L

Т

Р

Credit

9

9

9

9

(Common to Engineering Design & CADCAM branches)

			-	-	010410	
		3	0	0	3	
Preamble	The course deals with the study on structure – property processing techniques involved in fabrication of components		-			ls,
Prerequisites	Introduction to material science and engineering					
UNIT – I						9

**Modern Materials in Design and Plastics:** Modern materials in design plastics composites and smart materials Polymers - classification - Thermoplastics and thermosetting plastics –structure-property relationship- Thermoforming processes - compression and transfer molding - injection molding - extrusion - blow molding - calendaring - lamination and pultrusion. Design consideration in manufacturing of plastic components

# UNIT – II

**Rubber:** Rubber - additives - applications. Stages in raw rubber and latex rubber technology-structureproperty relationship -Processing of rubbers –Manufacturing techniques - tyres - belts - hoses - foot wears cellular products - cables. Manufacture of latex based products

# UNIT – III

**Glass:** Glass - characteristics - application - glass making - Glass forming machines - hollow waresflat glasses, fiberglass, bulbs, bottles, heat absorbing glasses, amber glass and their manufacturing methods, general plant layouts for manufacture of different types of glasses

# UNIT – IV

**Ceramics:** Ceramics - classification - traditional ceramics - structural ceramics - fine ceramics - bioceramics - ceramic super conductors. Ceramic processing techniques - hot pressing - hot isostatic pressing (HIP) - Sintering - injection molding - slip casting - tape casting - gel casting – extrusion

# UNIT – V

**Composites:** Composites - requirements of reinforcement and matrix - Manufacturing of composites -casting - solid state diffusion - cladding – Hot Isostaic Pressing - liquid metal infiltration - liquid phase sintering - preparation of molding compounds and prepregs - hand layup method - autoclave method - filament winding method – functionally graded materials-features-processing methods-applications

		Total: 45
	ERENCES:	
1.	Brydson J. A. and Newnes-Butterwarths, "Plastic Materials", 8 th Edition, London, 2016.	
2.	Barsoum M.W., "Fundamentals of Ceramics", 2 nd Edition, McGraw-Hill Co. Inc., 2002.	
3.	George Lubin, "Handbook of Composites", 1 st Edition, Springer, 1982.	

COURSE OUTCOMES: BT Mapped							
On completion of the course, the students will be able to			(Highest Level)				
CO1: demonstrate the manufacturing and design aspects of plastics			Applying (K3)				
CO2: present processing properties and applications of rubber products			Applying (K3)				
CO3:	demonstrate processing and applic	cations of glasses	Applying (K3)				
CO4: demonstrate processing and applications of ceramics			Analyzing (K4)				
CO5: demonstrate processing and applications of composites			Analyzing (K4)				
Mapping of COs with POs							
COs/Po	s PO1	PO2	PO3				
COI	3	1	3				
CO2	2 3	1	3				
CO3 2 1 2							
CO4 3		1	3				
CO5 3		2	3				
1 – Slight, 2 – Moderate, 3 – Substantial, BT –Bloom's Taxonomy							

# 18EDE07 ADVANCED TOOL DESIGN

#### (Common to Engineering Design & CADCAM branches)

L T

р

Credit

			-	-	Cicuit
		3	0	0	3
Preamble	This course provides concepts and techniques for designing the and appropriate materials. Also, explore the important of press t maintenance.				0 0
Prerequisites	Manufacturing Technology, Design for manufacture and asseml	bly			
UNIT – I					9

**Tool Design Methods:** Introduction – The Design Procedure – Statement of the problem – The Need Analysis – Research and Ideation – Tentative Design Solutions – The Finished Design – Drafting and Design Techniques in Tooling drawings – Screws and Dowels – Hole location – Jig-boring practice – Installation of Drill Bushings – Punch and Die Manufacture – Electro-discharge machining – Electro-discharge machining for cavity.

#### UNIT – II

**Tooling Materials:** Properties of Materials – Ferrous Tooling Materials – Tool steels – Cast Iron – Mild, or low-carbon Steel – Nonmetallic Tooling Materials – Nonferrous Tooling Materials – Metal cutting Tools – Single-point cutting tools – Milling cutters – Drills and Drilling – Reamer classification – Taps – Tap classification- the selection of carbide cutting tools – Determining the insert thickness for carbide tools.

#### UNIT – III

**Design of Drill Jigs and Fixtures:** Introduction – Fixed Gages – Gage Tolerances – The selection of material for Gages – Indicating Gages – Automatic gages – Principles of location – Locating methods and devices – Principles of clamping – Drill jigs – Chip formation in drilling – General considerations in the design of drill jigs – Drill bushings – Methods of construction – Drill jigs and modern manufacturing. Fixtures and economics – Types of Fixtures – Vise Fixtures – Milling Fixtures – Boring Fixtures – Broaching Fixtures – Lathe Fixtures – Grinding Fixtures.

# UNIT – IV

**Dies and Tool Design:** Types of Die construction – Die-design fundamentals – Blanking and Piercing die construction – Pilots – Strippers and pressure pads- Presswork materials – Strip layout – Short-run tooling for Piercing – Bending dies – Forming dies – Drawing operations

# UNIT – V

**Numerically Controlled Machine:** The need for numerical control – A basic explanation of numeric control – Numerical control systems in use today – Fixture design for numerically controlled machine tools – Cutting tools for numerical control – Tool holding methods for numerical control – Automatic tool changers and tool positioners – Tool presetting – Introduction – General explanation of the brown and sharp machine – tooling for Automatic screw machines

Total: 45

#### **REFERENCES:**

- 1. Donaldson Cyrll, LeCain H. George, Goold V.C., "Tool Design", 3rd Edition, Tata McGraw-Hill Publishing Company Ltd., New Delhi, 2002.
- 2. Society of Manufacturing Engineers, "Manufacturing Engineers Handbook", 1998.
- 3. Mikell P. Groover, "Fundamentals of Modern Manufacturing", John Wiley & Sons, Singapore, 2004.

<u>9</u>

9

9

COURSE OUTCOMES:					BT Mapped		
On completion of the course, the students will be able to					(Highest Level)		
CO1: classify the concepts and working principles of latest developments in tool			Applying (K3)				
	desi	gn					
CO2:	cate	gorize the tooling materials			Analyzing (K4)		
CO3:	sum	marize the design and developme	ent of drilling jigs and fixtures		Evaluating (K5)		
CO4:	deci	de on the selection of dies for pre	ess working		Evaluating (K5)		
CO5:	CO5: recommend tool holding methods for A/C machines				Evaluating (K5)		
Mapping of COs with POs							
COs/P	Os	PO1	PO2		PO3		
COI	L	3			2		
CO2	2	3			2		
CO3 3			3				
CO4	CO4 3		3				
COS	5	3			3		
1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy							

# **18EDE08 DESIGN OF MATERIAL HANDLING EQUIPMENT**

(Common to Engineering Design & CADCAM branches)

(Use of approved data book is permitted)

		L	Т	Р	Credit	
		3	0	0	3	
Preamble	Most of accidents occurring in industries due to improper	desig	n of n	nateria	l handling	
	equipments. In order to avoid this, the design engineer should be familiar with principle and					
	design concepts in material handling equipments.					
Prerequisites	Fundamentals of Material Handling Equipment					
	Knowledge on Machine Element and Transmission System					
UNIT – I 9						
Flexible Hoisting Appliances: Type, selection and applications of material handling equipment's, choice of						
material handling equipment – hoisting equipment – components and theory of hoisting equipment – chain						
and ropes – selection of ropes, pulleys, pulley systems, sprockets and drums.						

#### UNIT – II

Load Handling Equipments and Brakes: Forged standard hooks - forged Ram shorn hooks - solid triangular eye hooks - crane grabs, electric lifting magnetic - grabbing attachments for loose materials, arresting gear - brakes: shoe, band and cone types - elements of shoe brakes - thermal calculation in shoe brakes.

#### UNIT – III

Surface and Overhead Transportation Equipment: Hand operated trucks - powered trucks - tractors electronically controlled tractors - hand truck on rails - industrial railroad equipment's: locomotives winches - capstans - turntables - monorail conveyors -pipe rail systems - flat bar monorails. Rail travelling mechanism, cantilever and monorail cranes, cogwheel drive, Monocable tramways- reversible tramways.

# **UNIT – IV**

Elevating Equipment: Continuous-motion vertical conveyors – reciprocating-motion vertical conveyors – stackers - work levelers and tail gates - industrial lifts - passenger lifts - freight elevators - mast type elevators - vertical skip hoist elevators, bucket elevators: design, loading and bucket arrangements.

# UNIT - V

**Conveying Equipment:** Belt conveyors - chain conveyors – apron conveyors – escalators – flight conveyors - roller conveyors - oscillating conveyors. Design of belt conveyors, screw conveyors and pneumatic conveyors.

#### **REFERENCES:**

- Rudenko N., "Materials Handling Equipment", 2nd Edition, MIR Publishers, Moscow, 1970. 1. Spivakovsky A.O. and Dyachkov V.K., "Conveying Machines", Volume I & II, MIR Publishers, 2.
- Moscow, 1985.
- Lingaiah K., "Machine Design Data Book", 2nd Edition, McGraw Hill, New York, 2003. 3.
- Chowdary R.B. and Tagore G.R.N., "Materials Handling Equipment", Khanna Publishers, New Delhi, 4. 2003.

Total: 45

9

9

COURSE OUTCOMES:					BT Mapped		
On completion of the course, the students will be able to					(Highest Level)		
CO1:	unde	erstand the basic concepts of flex	ible hoisting equipment		Applying (K3)		
CO2:	dem	onstrate the basic concepts and c	lesign the braking system for load har	ndling	Applying (K3)		
	equi	pment					
CO3:	solv	e the problems in surface and over	erhead transportation equipment		Analyzing (K4)		
CO4:	solv	e the problems and understanding	g the basic of elevators		Analyzing (K4)		
CO5: recognize the concepts and solve the problems of conveying equipment				Analyzing (K4)			
Mapping of COs with POs							
COs/PC	)s	PO1	PO2		PO3		
COI	l	2	1	3			
CO2	CO2 2 1			3			
CO3 3 1			3				
CO4 3		3	1	2			
CO5 3		3	1	3			
1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy							

### **18MTE01 FLUID POWER SYSTEM DESIGN**

#### (Common to Mechatronics, Engineering Design & CADCAM branches)

L	Т	Р	Credit
3	0	2	4

		•	v	_	-	
Preamble	This course deals with the design of a system which generate,	contro	1 and	transm	nission	of
	power using pressurized fluids.					
Prerequisites	Nil					
UNIT – I						9

9

9

9

9

Fundamentals and Power Source of Hydraulic System: Basics, Types and structure of fluid power systems - Pascal's Law and its application -Fluid properties - Losses in pipes, valves and fittings - Advantages and applications of Fluid power systems. Fluid power symbols – Hydraulic pumps: Gear, Vane and Piston pumps, Pump Performance, Characteristics and Selection - Sizing of hydraulic pumps.

#### UNIT – II

Control Components of Hydraulic System: Direction control valves: Three-way valve, Four way valve, Check valve and shuttle valve - Actuation mechanism of DCV - Pressure control valves: Pressure relief, Pressure Reducing, Counter balance, Sequencing and Unloading Valves – Flow control valves and its types – Proportional Valves – Servo valves and its types.

#### UNIT – III

Fundamentals of Pneumatic System: Perfect Gas laws - Compressors: piston, screw and vane compressor -Fluid conditioning Elements: Filter, Regulator and Lubricator unit, Pneumatic silencers, After coolers, Air dryers - Air control valves - Fluid power actuators: Linear and Rotary actuators - types - Cushioning mechanism in cylinders - Sizing of Actuators.

#### UNIT – IV

Fluid Power Circuit Design: Circuit design methods: Cascade method, Step counter method and KV Map method (two / three-cylinder circuits) - Basic pneumatic circuits - Electrical components and electrical controls for Fluid power circuits – Introduction to Fluid logic devices and applications – Accumulator: Types and application circuits – Pressure intensifier circuits – PLC applications in Fluid power circuit.

#### UNIT - V

Industrial Circuits and Maintenance: Industrial circuits: Speed control circuits - Regenerative cylinder circuits – Pump unloading circuit – Double pump circuit – Counter balance valve circuit – Hydraulic cylinder sequencing circuit – Automatic cylinder reciprocating circuit – Cylinder synchronizing circuits – Fail safe circuits - Sealing devices: Types and materials – Installation, Maintenance and trouble shooting of Fluid Power systems.

#### List of Experiments:

- 1. Design and testing of Electro-hydraulic circuit with pressure sequence valve
- 2. Design of hydraulic circuit for speed control of hydraulic motor and cylinder
- 3. Circuits with logic controls AND valve and OR valve
- 4. Sequential Circuit with pneumatic control without pneumatic timers
- 5. Sequential Circuit with pneumatic control with pneumatic timers
- 6. Cylinder synchronizing circuits

7. Circuits with multiple cylinder sequence – Electrical control								
	7. Circuits with multiple cylinder sequence – Electrical control							
8. Circuit with rod less cylinder – Electrical control								
9. Proportional and Servo control of Pressure and Flow in hydraulic Circuits								
10. Simulation and analysis of fluid power circuits using fluid power simulation software								
Lecture: 45, Practical: 30, Tota	ıl: 75							
REFERENCES / MANUALS / SOFTWARES:								
1. Esposito Anthony, "Fluid Power with Applications", 7 th Edition, Pearson Education Ltd., New 2013.	York,							
2. Majumdar S.R., "Pneumatic Systems – Principles and Maintenance", 1 st Edition, McGraw-Hill, Delhi, 2017.	New							
3. Majumdar S.R., "Oil Hydraulic Systems – Principles and Maintenance", 28 th Edition, McGraw New Delhi, 2017.	-Hill,							
COURSE OUTCOMES:BT MappeOn completion of the course, the students will be able to(Highest Lew								
CO1: identify the fluid power components, their symbols and functions Applying (K								
CO2: select the required fluid power control components for a given application Applying (K								
CO3: apply the pneumatic technology to design a system with low cost automation Analyzing (K								
CO4: design and develop a fluid power circuit with different methodologies for an industrial environment Creating (Ke								
CO5: design and analyze the fluid power circuit for a given application using Creating (Ke simulation software	5)							
CO6: identify the fluid power components and their symbols used in industry Applying (K Manipulation								
CO7: design, construct and test fluid power circuits with pneumatic, electrical, PLC and logic control for low cost automation Creating (Ket Precision (S	<b>5</b> ),							
CO8: develop and simulate fluid power circuit using simulation software for industrial application Creating (Ke	<b>5</b> ),							
Mapping of COs with POs								
COs/POs PO1 PO2 PO3								
CO1 3 2 3								
CO2 3 2 3								
CO3 3 2 3								
CO4 3 2 3								
CO5 3 2 3								
CO6 3 3 3								
CO7 3 3 3								
CO8         3         3         3								
1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy								

# **18MTE04 FACTORY AUTOMATION AND CIM**

(Common to Mechatronics and CAD/CAM branches)

L	Т	Р	Credit
3	0	0	3

Preamble	To impart fundamental knowledge about automation in the field	of proc	luction	and as	ssembly	1
	lines.					
Prerequisites	Nil					
UNIT – I						9

		-
Automation:	Principles and strategies - Elements of an automated system -Levels of automatic	on –
Automation in	production systems - Automated manufacturing systems - Types - Reasons for automa	tion.
Material handl	ing systems - Types - Design considerations - AGVs - Types and applications - Vel	hicle
guidance techn	ology - Storage systems – Performance – Methods – Automated storage systems.	

#### UNIT – II

**Transfer Machines:** Types, transfer machines for housing type parts, transfer systems, turning devices, pallets, mechanisms for locating and clamping housing type parts. Transfer machines for shaft production and gear production. Continuous rotary transfer lines - Layout and output. Transfer lines, Automatic Pallet Changer, Modular Fixtures.

#### UNIT – III

**Manufacturing Systems:** Components of Manufacturing system - Single station manufacturing cells, Manual assembly lines - Automated production lines - automated assembly systems.

#### UNIT – IV

**Cellular Manufacturing:** Group technology – Part families – Parts classification and coding – Production flow analysis – Composite part concept – Machine cell design –FMS – Types – Components – Applications and benefits - Automatic data capture - Barcode technology – Radio frequency identification.

#### UNIT – V

**CAQC and Production Planning:** Benefits of CAQC - Computer Aided Inspection - Contact and Noncontact Inspection Methods - Optical and Non-optical types - Computer Aided Testing - Co-ordinate Measuring Machines (CMM). Material requirement Planning (MRP) - Structure of MRP - Inputs and Outputs of MRP - Manufacturing resource Planning (MRP II) – Enterprise Resource Planning (ERP) – Inventory control - statistical inventory control models.

#### **REFERENCES:**

1.	Groover M.P., "Automation, Production Systems, and Computer-integrated Manufacturing", 4 th Edition,
	Pearson Education, 2016.

2	2.	Groover M.P. and Zimmers E.W., "Computer Aided Design and Manufacturing", Pearson Education,
		2011.

3. Nand K. Jha, "Handbook of Flexible Manufacturing Systems", Academic Press, Orlando, 2006.

9

9

Total: 45

9

COUI On cor		BT Ma (Highes						
CO1:	infer mate	nd Understan	ding (K2)					
CO2:	demo	Applyir	ng (K3)					
CO3:	expla	in the types of manufacturing sys	stems in manufacturing plants	Understan	ding (K2)			
CO4:	1	identify the coding systems for different manufacturing parts and design flexible manufacturing systems for a manufacturing industry			ng (K3)			
CO5:	illust	ustrate computer aided quality control techniques and production planning		ng Applyir	ng (K3)			
	meth	ods in a manufacturing environm	ent					
		Map	ping of COs with POs					
COs/P	Os	PO1	PO2	PO3				
CC	<b>)</b> 1	2	1	2				
CC	)2	3	2	3				
CO3		3	1	2				
CO4		2	2	2				
CO5 3 2			2	3				
1 – Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy							

	18MTE06 METROLOGY AND COMPUTER AIDED INS	PECT	TION		
		L	Т	P	Credit
		3	0	0	3
Preamble	To make the learner to design and fabricate inspection method	s and	system	ns inco	orporating
	electronic systems for inspection and quality control in engineerin	ıg.			
Prerequisites	Sensors and Signal Processing				
UNIT – I					9
errors – Stand limit gauges	Angular Measurements: Basic concept – Legal metrology- Pre- ards of measurement- traceability – Interchange ability and select - Gauge design. Comparators: mechanical, electronic, optical bevel protractor - Angle gauges - Sine bar – Autocollimator - Profi	tive as and	sembly pneum	y, gaug natic -	ge blocks
UNIT – II					9
	h and Form Measurement: Measurement of surface finish: 1	termin	ology	- Roi	-
various eleme UNIT – III	nts of gear - Tooth thickness - Constant chord and base tangent met	hod -	Parkin	son Ge	ear Tester.
	logy: Characteristics of LASER sources, LASER micrometer	· T / (	SED :	ntarfar	
machine tools	features - Sources of errors – Measurement of position error, LASER alignment telescope, LASER triangulation techniques. pmatic gauging, Tool wear measurement, Roundness measurem tems.	In-pro	ocess a	nd pos	st process
UNIT – IV					9
<b>Co-Ordinate</b>	Measuring Machines: Coordinate Metrology, types of CMM	A, con	structi	onal f	eatures -
	ments - Drive systems -Support systems - Displacement trans ntrol system, temperature fundamentals and accuracy enhancement		s - Pro	obing	system -
UNIT – V					9
	sing and Machine Vision System: Image processing: Image a	canicit	ion or	d diai	
Windowing -	Segmentation - Thresholding - Edge detection techniques, remplate matching, applications in Inspection, interfacing maching	interp	retation	1 - G	rey scale
engineering A					Total: 45
REFERENC	ES / MANUAL/SOFTWARES:				
1. Connie D Edition, T	otson, Roger Harlow and Richard Thompson, "Fundamentals of I hompson Asia, Singapore, 2003.			Metrol	ogy", 4tł
	"Engineering Metrology", 21st Edition, Khanna Publishers, New D				
3. Gupta I C	"A Text Book of Engineering Metrology" 7 th Edition. Dhanpat 1	Rai Pu	blicati	ons. N	ew Delhi

Gupta I.C., "A Text Book of Engineering Metrology", 7th Edition, Dhanpat Rai Publications, New Delhi, 2018.

COU	COURSE OUTCOMES: BT Mapped							
On con	mpleti	on of the course, the students will	be able to	(Highest Level)				
CO1:	infer	linear and angular measurements	s using various instruments	Understanding (K2)				
CO2:	deter	mine the surface roughness and f	orm features measurements	Applying (K3)				
CO3:	appra	aise laser interferometry and recei	nt advancements in metrology	Applying (K3)				
CO4:	4: make profile measurements using Coordinate Measuring Machine (CMM)			Applying (K3)				
CO5:	apply	the principle of image processing	and machine vision system techniques	Applying (K3)				
	•	Мар	ping of COs with POs					
COs/P	Os	PO1	PO2	PO3				
CC	)1	3	2	2				
CC	)2	3	2	2				
CO3		3	2	2				
CO4		3	2	2				
CC	)5	2						
1 – Sli	ight, 2	– Moderate, 3 – Substantial, B	T - Bloom's Taxonomy					

#### **18MTC21 ROBOTICS ENGINEERING**

(Common to Mechatronics, CADCAM & Control and Instrumentation Engineering branches)							
	L T P Credit						
		3	0	2	4		
Preamble	Preamble The course on Robotics Engineering is intended to provide a reasonable understanding of						
	robotics and robot anatomy, the mathematics behind kinemat	tics an	d dyna	mics o	of robot. It		
	also involves controlling the robot motion using different contr	ol strat	egies.				
Prerequisites	Bridge Course Mechanical and Applied Mathematics for Mech	atronic	s				
UNIT – I	UNIT – I 9						
Introduction: History of robotics – Robot Anatomy – Robot specifications - Work space – Degree of							
freedom - Joir	nt types - Types of robots - Precision of movements - End	effecto	ors – Ľ	Dexteri	ty - Robot		

UNIT – II

applications.

Robot Kinematics: Descriptions: Position, Orientations and translation – Mapping: Changing from frame to frame - Operators: Translations, Rotation and Transformation - Homogeneous Transformation matrices -Forward and Inverse kinematics - Representation of links using Denavit - Hartenberg parameters.

#### UNIT – III

Velocity and Static Force: Introduction - Linear and angular velocities of a rigid body - Velocity propagation - Derivation of Jacobian matrix for Serial manipulator - Singularities - Static force of serial manipulator.

#### UNIT - IV

Robot Dynamics: Acceleration of a rigid body - Inertia of a link - Equations of motion for serial manipulators: Euler Lagrange formulation, Newton Euler formulation - Inverse dynamics of serial manipulator.

#### UNIT - V

Robot Control: Point to point and Continuous path motions - Joint trajectory Vs Cartesian trajectory -Trajectory planning - Trajectory following - Disturbance rejection - PD and PID control - Computer torque control - Adaptive control - Feedback linearization control.

#### List of Experiments:

- 1. Study the functions of ABB IRB 1410 industrial robot- components, drive system and end effectors.
- 2. Virtual reality robot programming for different tasks- Painting, Pick and place and switch off intruder alarm.
- 3. Virtual reality robot programming for different tasks- Stacking of blocks and Machining of billets.
- 4. Creation of Tool Centre Point (TCP) and Work Object using ABB IRB 1410 industrial robot.
- 5. Pick and place operation in teach mode using ABB IRB 1410 industrial robot.
- 6. Machine tending operation in teach mode using ABB IRB 1410 industrial robot.
- 7. Robot programming exercises Point-to-point programming.
- 8. Robot programming exercises Continuous path programming.
- 9. Robot programming exercises Path planning in offline mode.
  - 10. Vision based On-line Inspection and sorting of components using ABB IRB 1410 industrial robot.

Lecture: 45, Practical:30, Total: 75

9

9

9

REFERENCES / MANUALS / SOFTWARES:							
1. Groover M.P., Weiss M., Magel R.N., Odrey N.G. and Dulta A., "Industrial Ro	botics Technology						
Programming and Applications", 2 nd Edition, McGraw-Hill Companies, 2012.	bottes, reenhology,						
<ol> <li>Saeed B. Niku, "Introduction to Robotics: Analysis, Control, Applications", 2nd Edition</li> </ol>	ion. Wiley India Pyt						
Ltd., 2012.	ion, whey man i ve						
3. Craig John J., "Introduction to Robotics: Mechanics and Control", 4 th Edition, P	earson/Prentice Hall						
Publication, 2018.							
COURSE OUTCOMES: BT Mapped							
On completion of the course, the students will be able to (Highest Level)							
CO1: interpret the industrial manipulator anatomy and estimate the gripping force of	Applying (K3)						
robot end effector							
CO2: develop the forward and inverse kinematics for serial manipulators	Applying (K3)						
CO3: formulate Jacobian matrix for velocity and static force analysis of serial	Applying (K3)						
manipulators							
CO4: formulate dynamic equations for serial manipulators	Applying (K3)						
CO5: apply the scheme of trajectory planning and control for manipulator motion	Applying (K3)						
control							
CO6: analyze the industrial robot work cell problems	Analyzing (K4),						
	Manipulation (S2)						
CO7: develop robot programming through online /offline mode	Creating (K6),						
	Precision (S3)						
CO8: develop an online inspection system using machine vision	Creating (K6),						
	Precision (S3)						
Mapping of COs with POs							
COs/POs PO1 PO2	PO3						
CO1 2 -	3						
CO2 2 -	3						
CO3 2 -	3						
CO4 2 -	3						
CO5 2 -	3						
CO6 2 3	3						
CO7 3 3	3						
CO8 3 3	3						
1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy							

		18CCE01 COMPUTER AIDED PROCESS PLANNIN	r J		
			Т	Р	Credit
		3	0	0	3
Pre	amble	The course provides a fundamental understanding of Computer Aid	ed Proce	ess Plai	nning. And
		also, it addresses the group technology and efficient process planni	ng syste	ms wh	ich are the
		most significant technologies following in major manufacturing sect	ors.		
-	requisites	CAD/CAM/CIM			
	I – TI				9
		Production Planning: The Place of Process Planning in the Manua			
:	-	Production Planning - Process Planning and Concurrent Eng	ineering	, CAI	PP, Group
Tec	chnology.				
	IIT – II				9
		<b>Representation:</b> Design Drafting – Dimensioning – Conventiona			
		D - input / output devices - topology - Geometric transformation - F			
		ure – Geometric odeling for process planning – GT coding –	The opt	ız syst	tem – The
MI	CLASS sys	tem.			
TIN					
	<u>IIT – III</u>		• •		9
		neering and Process Planning: Experienced, based planning – De			
		s capability analysis – Process Planning – Variant process planning	– Gene	rative a	approach –
For	rward and B	ackward planning, Input format.			1
	JIT _ IV				0
	NIT – IV mputer Ai		Dlanning	- Impl	9 ementation
Co	mputer Ai	ded Process Planning Systems: Logical Design of a Process			ementation
Con con	mputer Ainsiderations	<b>ded Process Planning Systems:</b> Logical Design of a Process – –manufacturing system components, production Volume, No. of proc			ementation
Con con	mputer Ainsiderations	ded Process Planning Systems: Logical Design of a Process			ementation
Con con CA	mputer Ainsiderations APP, MIPLA	<b>ded Process Planning Systems:</b> Logical Design of a Process – –manufacturing system components, production Volume, No. of proc			ementation s – CAM-I,
Con con CA UN	mputer Ainsiderations APP, MIPLA	<b>ded Process Planning Systems:</b> Logical Design of a Process – –manufacturing system components, production Volume, No. of proc N, APPAS, AUTOPLAN and PRO, CPPP.	uction f	amilies	ementation s – CAM-I, <b>9</b>
Con com CA UN An	mputer Ai nsiderations APP, MIPLA MIT – V	<b>ded Process Planning Systems:</b> Logical Design of a Process –manufacturing system components, production Volume, No. of proc N, APPAS, AUTOPLAN and PRO, CPPP.	uction f	amilies – An C	ementation s – CAM-I, <b>9</b>
Con con CA UN An	mputer Ai nsiderations APP, MIPLA MIT – V	<b>ded Process Planning Systems:</b> Logical Design of a Process – –manufacturing system components, production Volume, No. of proc N, APPAS, AUTOPLAN and PRO, CPPP. ed Process Planning Systems: Totally integrated process planning s sure – Data Structure, operation – Report Generation, Expert process p	uction f ystems lanning	amilies – An (	ementation s – CAM-I, <b>9</b> Overview –
Con com CA UN An Mo	mputer Ai nsiderations APP, MIPLA MIT – V	ded Process Planning Systems: Logical Design of a Process – —manufacturing system components, production Volume, No. of proc N, APPAS, AUTOPLAN and PRO, CPPP. ed Process Planning Systems: Totally integrated process planning s pure – Data Structure, operation – Report Generation, Expert process p Lecture:4	uction f ystems lanning	amilies – An (	ementation s – CAM-I, <b>9</b>
Con com CA UN An Mo	mputer Ai nsiderations APP, MIPLA MIT – V Intergrad odulus struc CFERENCI	ded Process Planning Systems: Logical Design of a Process         -manufacturing system components, production Volume, No. of proc         N, APPAS, AUTOPLAN and PRO, CPPP.         ed Process Planning Systems: Totally integrated process planning s         cure – Data Structure, operation – Report Generation, Expert process p         Lecture:4         CS:	ystems Janning	amilies – An ( ical:30	ementation s – CAM-I, 9 Overview – , Total: 75
Con con CA UN An Mo RE	mputer Ai nsiderations APP, MIPLA MIT – V Intergrad odulus struc CFERENCI	ded Process Planning Systems: Logical Design of a Process —         -manufacturing system components, production Volume, No. of process N, APPAS, AUTOPLAN and PRO, CPPP.         ed Process Planning Systems: Totally integrated process planning soure – Data Structure, operation – Report Generation, Expert process plances plances for the structure of the structure o	ystems Janning	amilies – An ( ical:30	ementation s – CAM-I, 9 Overview – , Total: 75
Con con CA UN An Mo RE	mputer Ai asiderations APP, MIPLA MIT – V Intergrad adulus struc EFERENCI Gideon H Hall, 1995	ded Process Planning Systems: Logical Design of a Process —         -manufacturing system components, production Volume, No. of process N, APPAS, AUTOPLAN and PRO, CPPP.         ed Process Planning Systems: Totally integrated process planning soure – Data Structure, operation – Report Generation, Expert process plances plances for the structure of the structure o	ystems lanning <b>5, Pract</b> 1 approa	Amilies – An C	ementation s – CAM-I, 9 Dverview – , Total: 75 Thapman &
Con com CA UN An Mo RE 1.	mputer Ai asiderations APP, MIPLA MIT – V Intergrad adulus struc EFERENCI Gideon H Hall, 1995	ded Process Planning Systems: Logical Design of a Process I         -manufacturing system components, production Volume, No. of process N, APPAS, AUTOPLAN and PRO, CPPP.         ed Process Planning Systems: Totally integrated process planning sture – Data Structure, operation – Report Generation, Expert process planning Structure:         ES:         alevi and Roland D. Weill, "Principles of Process Planning: A logical Structure and Richard A.Wysk, "An Introduction to Automated Process Planning Aleviand Process Planning Structure Aleviand Roland Process Planning Structure Aleviand Roland Process Planning Aleviand Process Planning: A logical Structure Aleviand Richard A.Wysk, "An Introduction to Automated Process Planning Aleviand Process Planning Planni	ystems lanning <b>5, Pract</b> 1 approa	Amilies – An C	ementation s – CAM-I, 9 Dverview – , Total: 75 Chapman &
Con com CA UN An Mo RE 1.	mputer Ai nsiderations PP, MIPLA VIT – V Intergrad odulus struc FERENCI Gideon H Hall, 1995 Tien-Chie Prentice H	ded Process Planning Systems: Logical Design of a Process I         -manufacturing system components, production Volume, No. of process N, APPAS, AUTOPLAN and PRO, CPPP.         ed Process Planning Systems: Totally integrated process planning soure – Data Structure, operation – Report Generation, Expert process planes planes         Example: A construction of the system of the sys	ystems lanning <b>5, Pract</b> 1 approa	Amilies – An C ical:30	ementation s – CAM-I, 9 Dverview – 0, Total: 75 Chapman & Systems",
Con CA UN An Mo RE 1. 2.	mputer Ainsiderations APP, MIPLA VIT – V Intergrade odulus struc EFERENCI Gideon H Hall, 1995 Tien-Chie Prentice H Mikell P.	ded Process Planning Systems: Logical Design of a Process I         -manufacturing system components, production Volume, No. of process N, APPAS, AUTOPLAN and PRO, CPPP.         ed Process Planning Systems: Totally integrated process planning sture – Data Structure, operation – Report Generation, Expert process planning Structure:         ES:         alevi and Roland D. Weill, "Principles of Process Planning: A logical Structure and Richard A.Wysk, "An Introduction to Automated Process Planning Aleviand Process Planning Structure Aleviand Roland Process Planning Structure Aleviand Roland Process Planning Aleviand Process Planning: A logical Structure Aleviand Richard A.Wysk, "An Introduction to Automated Process Planning Aleviand Process Planning Planni	ystems lanning <b>5, Pract</b> 1 approa	Amilies – An C ical:30	ementation s – CAM-I, 9 Dverview – 0, Total: 75 Chapman & Systems",
Con CA UN An Mo RE 1. 2.	mputer Ainsiderations APP, MIPLA MIT – V Intergrade odulus struct EFERENCI Gideon H Hall, 1995 Tien-Chie Prentice H Mikell P. Edition, P	ded Process Planning Systems: Logical Design of a Process —         -manufacturing system components, production Volume, No. of proc.         N, APPAS, AUTOPLAN and PRO, CPPP.         ed Process Planning Systems: Totally integrated process planning sure – Data Structure, operation – Report Generation, Expert process planning sure – Data Structure, operation – Report Generation, Expert process planning sure – Data Structure, operation – Report Generation, Expert process planning sure – Data Structure, operation – Report Generation, Expert process planning sure – Data Structure, operation – Report Generation, Expert process planning: A logica structure and Roland D. Weill, "Principles of Process Planning: A logica structure and Richard A.Wysk, "An Introduction to Automated Process Plan, 1985.         Groover, "Automation, production System and Computer Integration of the system and comp	ystems lanning <b>5, Pract</b> l approa	- An C ical:30	ementation s – CAM-I, 9 Overview – 0, Total: 75 Chapman & Systems", uring", 3 rd

COU	COURSE OUTCOMES: BT Mapped						
On con	mpletion of	the course, the students will	be able to	(Highest Level)			
CO1:	describe th	ne process planning function	in manufacturing	Understanding (K2)			
CO2:				Analyzing (K4)			
CO3: demonstrate the various process planning approach		Understanding (K2)					
CO4:	CO4: apply the decision making process for appropriate planning using various		Applying (K3)				
	process planning software						
CO5:	CO5: explain the integrated process planning system			Understanding (K2)			
Mapping of COs with POs							
CC	Os/POs	PO1	PO2	PO3			
(	CO1	2		2			
(	CO2	2		2			
(	CO3	2		2			
(	CO4 2			2			
(	CO5 2 2			2			
1 – Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy						

# 18CCE02 SAFETY IN ENGINEERING INDUSTRY

(Common to CADCAM, Engineering Design & Mechatronics branches)
----------------------------------------------------------------

Т

L

Р

Credit

9

9

9

9

9

		3	0	0	3
Preamble	The course deals with the study on hazards involved in p	erform	ning se	everal	machining
	operations, safety precautions and guidelines to be followed	while	handli	ng ma	chines and
	industrial equipments utilizing safety devices for specified ope	eration	s and t	ypes o	f guarding
	systems in machines for safe operation.				

Prerequisites Manufacturing Technology, Material Removal Processes, Thermal Engineering.

UNIT – I

**Safety in Metal Working Machinery and Wood Working Machines:** General safety rules, principles, maintenance, Inspections of turning machines, boring machines, milling machine, planning machine and grinding machines, CNC machines, Wood working machinery, types, safety principles, electrical guards, work area, material handling, inspection, standards and codes- saws, types, hazards.

#### UNIT – II

**Principles of Machine Guarding:** Guarding during maintenance, Zero Mechanical State (ZMS), Definition, Policy for ZMS – guarding of hazards - point of operation protective devices, machine guarding, types, fixed guard, interlock guard, automatic guard, trip guard, electron eye, positional control guard, fixed guard fencing- guard construction- guard opening. Selection and suitability: lathe-drilling-boring-milling-grinding-shaping-sawing-shearing-presses- forgehammer – flywheels - shafts couplings-gears-sprockets wheels and chains- pulleys and belts-authorized entry to hazardous installations-benefits of good guarding systems.

#### UNIT – III

**Safety in Welding and Gas Cutting:** Gas welding and oxygen cutting, resistances welding, arc welding and cutting, common hazards, personal protective equipment, training, safety precautions in brazing, soldering and metalizing – explosive welding, selection, care and maintenance of the associated equipment and instruments – safety in generation, distribution and handling of industrial gases - colour coding – flashback arrestor – leak detection - pipe line safety - storage and handling of gas cylinders.

#### UNIT – IV

**Safety in Cold Forming and Hot Working of Metals:** Cold working, power presses, point of operation safe guarding, auxiliary mechanisms, feeding and cutting mechanism, hand or foot-operated presses, power press electric controls, power press set up and die removal, inspection and maintenance-metal sheers-press brakes. Hot working safety in forging, hot rolling mill operation, safe guards in hot rolling mills – hot bending of pipes, hazards and control measures. Safety in gas furnace operation, cupola, crucibles, ovens, foundry health hazards, work environment, material handling in foundries, foundry production cleaning and finishing foundry processes.

#### UNIT – V

**Safety in Finishing, Inspection and Testing:** Heat treatment operations, electro plating, paint shops, sand and shot lasting, safety in inspection and testing, dynamic balancing, hydro testing, valves, boiler drums and headers, pressure vessels, air leak test, steam testing, safety in radiography, personal monitoring devices, radiation hazards, engineering and administrative controls, Indian Boilers Regulation. Health and welfare measures in engineering industry-pollution control in engineering industry- industrial waste disposal.

REFERENCES				
1. John V. Grir	naldi and Rollin H. Simonds, '	"Safety Management", 5 th Edit	ion, All India Ti	ravelers Book
Seller, New I				
	V., "Safety Management in Indu			
	Nigel C. Balchin, "Health an	nd Safety in Welding and Al	lied Processes"	, 5 th Edition,
	ublishing Ltd., U.K., 2002.		I	
COURSE OUT				T Mapped
On completion of	f the course, the students will be	e able to	(Hi	ghest Level)
CO1: work safe	ely in metal and wood working i	machines	Ар	plying (K3)
CO2: identify p	CO2: identify proper guarding for different applications			
CO3: work safely in welding and allied process				alyzing (K4)
CO4: work safe	ely in cold and hot working meta	als	Ар	plying (K3)
CO5: handle sa	fely testing and inspection instru-	uments	Ana	alyzing (K4)
	Марріі	ng of COs with POs		
COs/POs	PO1	PO2	PO	03
CO1			2	
CO2			3	
CO3			2	
CO4 2				
CO5			3	
1 - Slight, 2 - M	oderate, 3 – Substantial, BT -	Bloom's Taxonomy		

		L	Т	Р	Credit
		3	0	0	3
Preamble	This course describes the materials used for precision machinin	ig and t	heir to	lerance	es. It also
	provides the precision machine elements MEMS and error cont	rol in n	nachin	g.	
Prerequisites	Metrology and measurements				
UNIT – I					9
	gineering: Introduction - Accuracy and precision - Need - ap				
	Micro and Ultra precision Machining grinding – Thermal effe	ects –	Materi	als for	tools and
nachine elem	ents – carbides – ceramic, CBN and diamond.				
UNIT – II					9
	nd Fits: Tolerance – Zone – fits – Variation – Hole and sha	•			-
Accuracy of r	nachining processes – Selective assembly – gauges acceptance te	sts for	machir	e tools	5.
UNIT – III					9
	on Machine Elements: Introduction – Guide ways – Drive syste		+		<ul> <li>preferred</li> </ul>
numbers – Ro	olling elements – hydrodynamic and hydrostatic bearings – pneun	natic be	arings		
UNIT – IV					9
	oduction – MEMS – principle – Elements – Characteristics – De	sign –	Applic	ation:	automobil
defence, aero	space etc.,				
UNIT – V					Ş
	rol: Error – Sources – Static stiffness – Variation of the cutti	0			1
	chining methods - Thermal effects - heat source - heat dissipati				•
	ts – forced vibration on accuracy – clamping & setting errors – C	Control	– erroi	s due t	o location
<ul> <li>principle of</li> </ul>	constant location surfaces.				
					Total: 4
<u>REFERENC</u>					
	a H., "Principles of Precision Engineering", Oxford University Pr				
	L.L., "Precision Engineering in Manufacturing", 1 st Edition, New	Age In	ernatio	onal Pu	blishers,
New Dell	ni, 1996.				
	"Handbook of Precision Engineering". Volume:1.12. 1 st E				

3. Davidson, "Handbook of Precision Engineering", Volume:1,12, 1st Edition, Macmillan Education, London, 1972.

COU	RSE OUTC	COMES:		BT Mapped			
On co	mpletion of	the course, the students will be	e able to	(Highest Level)			
CO1:		know the importance of precis ials and its applications	ion engineering, different cutting	g Applying (K3)			
CO2:		ow to inspect the manufacture	Analyzing (K4)				
CO3:	explore th	e ultra precision machine elem	ents and its applications	Analyzing (K4)			
CO4:	identify th	e fundamentals and application	ns of MEMS in current scenario	Applying (K3)			
CO5:	evaluate tl	ne influence of thermal effects	in machining	Evaluating (K5)			
		Маррі	ng of COs with POs				
CC	Os/POs	PO1	PO2	PO3			
(	CO1	2		2			
(	CO2	2	1	2			
(	CO3	3		3			
	CO4 3 2		3				
(	CO5	3	2	3			
1 - Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy						

# 18CCE04 DESIGN FOR MANUFACTURE AND ASSEMBLY

#### (Common to CADCAM & Engineering Design branches)

		_	-	-	010000
		3	0	0	3
Preamble	Products cannot be manufactured directly from the basic design	n by a	manuf	acturir	ng process,
	So the design is to be modified as manufacture and assembly	y orien	ted. T	his kno	owledge is
	necessary to get a defect free product.				
Prerequisites	Machine drawing, Manufacturing Technology.				

UNIT – I

**DFMA Guidelines and Geometric Tolerance:** General design principles for manufacturability - Design for assembly - strength and mechanical factors - Geometric tolerances – Worst case method - Assembly limits – Design and Manufacturing Datum – Conversion of design datum into manufacturing datum -Tolerance stacks- Process capability.

#### UNIT – II

**Form Design:** Principal materials - Selection of materials and processes - Mechanisms selection - Possible solutions - Evaluation method - Influence of materials on form design - form design of grey iron, malleable iron, steel and aluminium castings, welded members and forgings.

#### UNIT – III

**Machining Considerations:** Design features to facilitate machining – Single point and multipoint cutting tools - Design for turning operation- Design for machining round holes – Design for Parts produced by milling, planning, shaping and slotting- Reduction of machined area- Simplification by separation - Simplification by amalgamation - Design for machinability - Design for economy - Design for clampability - Design for accessibility.

#### UNIT – IV

**Casting Considerations:** Redesign of castings based on Parting line considerations - Minimizing core requirements, machined holes – Design rules for sand castings – Investment casting: Introduction, Design consideration of Investment casting -The die casting cycle, Determination of number of cavities and appropriate machine size in die casting- Identification of uneconomical design - Modifying the design - Computer applications in DFMA.

#### UNIT – V

**Design for the Environment:** Environmental objectives – Basic DFE methods – Lifecycle assessment – AT&T's environmentally responsible product assessment - Weighted sum assessment method – Techniques to reduce environmental impact – Design to minimize material usage – Design for recyclability – Design for remanufacture – Design for energy efficiency – Design to regulations and standards.

#### **REFERENCES:**

1. Boothroyd G., "Product Design for Manufacture and Assembly", 3rd Edition, New York, CRC Press, London, 2013.

- 2. Peck Harry, "Design For Manufacture", Pitman Publications, London 1983.
- 3. Otto Kevien and Wood Kristin, "Product Design", 1st Edition, Pearson Publication, New Delhi, 2004.

9

9

Р

Credit

9

9

9

LT

COU	RSE OUTC	OMES:		B	T Mapped			
On con	mpletion of	the course, the students will b	e able to	(Hi	ghest Level)			
CO1:	•	0 1	ify the suitable geometrical tolera	inces Ana	alyzing (K4)			
	for manufa	acturing oriented design						
CO2:		esign guidelines for form des	sign of castings, welded members	and Ap	plying (K3)			
GOA	forgings		1 . (170)					
CO3:	suggest su		plying (K3)					
CO4:	: identify uneconomical design and modify component design for sand and die				alyzing (K4)			
	castings							
CO5:	perform th	ne lifecycle assessment for	a component to achieve eco-frie	ndly Ap	plying (K3)			
	design							
		Маррі	ng of COs with POs					
CC	Os/POs	PO1	PO2	P	03			
(	CO1	2	1		3			
(	CO2	1	1	,	3			
(	CO3	1	1	,	3			
(	CO4 1 1				3			
(	CO5 2 1 3							
1 – Sli	ight, 2 – Mo	derate, 3 – Substantial, BT -	Bloom's Taxonomy					

#### **18EDE10 INSTRUMENTATION AND MEASUREMENTS** (Common to Engineering Design & CADCAM branches)

L

Т

Р

Credit

(Common to Engineering Design & CADCAM branches)
--------------------------------------------------

		3	0	0	3
Preamble	Knowledge of instrument characteristics enables right choice of	f vario	us mea	asurem	ent system
	components. This course helps in the design of measurement sys	tem fo	r vario	us app	lications.
Prerequisites	Basic knowledge of measurement system and its characteristic	s, Bas	ic kno	wledge	statistical
	mathematics.				
LINIT I					0

**Introduction to Instruments and their Representation:** Typical Application of Instrument Systems, Functional Elements of a measurement System, Classification of Instruments, Standards and Calibration. Static and Dynamic characteristics of Instruments: Introduction, Accuracy, Precision, Resolution, Threshold, Sensitivity, Linearity, Hysteresis, Dead Band, Backlash, Drift, Formulation of Differential Equations for Dynamic Performance- Zero Order, First Order and Second order systems, Response of First and Second Order Systems to Step, Ramp, Impulse and Harmonic Functions, Problems including the characteristics study, Error Analysis.

#### UNIT – II

**Transducer Elements:** Analog and Digital Transducers, Variable Capacitance, Piezo-Electric Transducer and Associated Circuits, Unbonded and Bonded Resistance Strain Gages. Strain Gage Bridge circuits, Digital Transducers, Frequency Domain Transducer, Vibrating String Transducer, Binary codes, Digital Encoders. Modern Transducer

#### UNIT – III

**Intermediate, Indicating and Recording Elements:** Amplifiers, Mechanical, Hydraulic, Pneumatic, Optical, Electrical Amplifying elements, Compensators, Differentiating and Integrating Elements, Filters, Classification of Filters, A-D and D-A Converters, Digital Voltmeters (DVMs), Cathode Ray Oscillo scopes (CROs), Galvanometric Recorders, Magnetic Tape recorders, Data Acquisition Systems, Data Display and Storage.Modern trends in intermediate elements

#### UNIT – IV

**Motion, Force and Torque Measurement:** Relative motion Measuring Devices, Electromechanical, Optical, Photo Electric, Moire-Fringe, Pneumatic, Absolute Motion Devices, Seismic Devices, Spring Mass and Force Balance Type, Hydraulic Load Cell, Pneumatic Load Cell, Elastic Force Devices, Separation of Force Components, Electro Mechanical Methods, Strain Gage, Torque Transducer, and Torque Meters. Methods used in modern research

#### UNIT – V

**Pressure, Flow and Temperature Measurement:** Pressure Measurement: Moderate Pressure Measurement, Monometers, Elastic Transducer, Dynamic Effects of Connecting Tubing, High Pressure Transducer, Low Pressure Measurement, Calibration and Testing Flow Measurement: Quantity and rate meters, Flow visualization and its techniques, Modern Trends. Measurement of Temperature: Non Electrical Methods – Solid Rod Thermometer, Bimetallic Thermometer, Pressure Thermometer, Electrical Methods – Electrical Resistance Thermometers-RTDs, Semiconductor Resistance Sensors (Thermistors), Thermo– Electric Sensors, Thermocouple Materials and circuitry, Modern Trends

Total: 45

9

9

9

RE	REFERENCES:						
1.	Ernest O. Doebelin, "N	Measurement System: Appli	cation and Design", 5 th Editi	ion, Mc	Graw Hill, 2003.		
2.		· · · · · ·	ent and Instrumentation -				
	Elsevier, 2015.	_		-			
3.							
	2003.						
4.			trol Engineering", Metropol				
5.	•	entation, Mechanical Meas	urements and Controls", C	algotia	Publisher, Reprint		
	2008.						
	URSE OUTCOMES:				BT Mapped		
		e, the students will be able t	0		(Highest Level)		
CO		stic analysis of instrument			Analyzing (K4)		
CO			surement system and relate	them	Applying (K3)		
		d presentation devices					
CO		manipulating and presentat			Applying (K3)		
CO		motion, force and torque	measurement in research/m	odern	n Applying (K3)		
	application						
CO			measuring instruments in c	lay to	Analyzing (K4)		
	day and modern ap						
			COs with POs				
	COs/POs	PO1	PO2		PO3		
	CO1	3	1	2			
	CO2	2	1		2		
	CO3	1	2				
	CO4	3	1		2		
	CO5	3	1		2		
1 -	Slight, 2 – Moderate,	3-Substantial, BT - Bloc	om's Taxonomy				

#### **18EDE12 PRODUCTIVITY MANAGEMENT AND REENGINEERING** (Common to Engineering Design & CADCAM branches)

& CADCAN Diane	nes)			
	L	Т	Р	

		3	0	0	3	
Preamble This course provides advanced topics for productivity concepts & measurements, steps &						s &
	procedures of reengineering procedures and improvement models.					
Prerequisites	isites Fundamentals of production and process, Knowledge in basics of mathematics, Fundamentals					
	steps of software, Essentials knowledge of various production resources					
UNIT – I						9

Introduction of Productivity Concepts: Definitions and various factors for productivity – problems in productivity and production -comparison of productivity measures- Productivity concepts - Macro and Micro factors of productivity, Productivity benefit model-case study- productivity cycle.

#### UNIT – II

Productivity Measurement: Productivity measurement at International, National and Organizational level-External Environment Economic utility model with productivity index, Total productivity models- problems -Strategies for productivity improvement.

#### UNIT – III

Productivity Management and Organizational Transformation: Productivity management in manufacturing and service sector-case study -Productivity evaluation models, Productivity improvement models and techniques - laboratory -case study. Principles of organizational transformation and reengineering, fundamentals of process reengineering, preparing the work force for transformation and reengineering, methodology and guidelines.

#### UNIT – IV

Productivity Models: PMI models, Edosomwan model, Moen and Nolan strategy for process improvement, LMICIP model, NPRDC model -Case studies and applications -DSMCQ and PMP model-case study.

#### UNIT - V

Re-Engineering Process Improvement Models, Re-Engineering Tools and Implementation: Analytical and process tools and techniques process tools and packages - Information and communication technology -Enabling role of IT.RE-opportunities, process redesign - cases. Software methods in BPR tools and techniques matrix-case study based on information resources - specification of BP, case study - Order, processing, user interfaces, maintainability and reusability-case study from few information resourcesapplication models.

#### **REFERENCES:**

1.	Sumanth D.J., "Productivity Engineering and Management", Tata McGraw-Hill, New Delhi, 2008.
2.	Edosomwan J.A., "Organizational Transformation and Process Re-engineering", CRC Press, 1995.
3.	Rastogi P.N., "Re-Engineering and Re-inventing the Enterprise", Wheeler Publishing, New Delhi, 2003.

9

9

9

9

Credit

COURS	SE OUTCOMES:	BT	Mapped					
On com	On completion of the course, the students will be able to							
CO1:	CO1: recollect macro and micro factors affecting productivity							
CO2:	CO2: categorize the productivity measurement models							
CO3:	CO3: prepare workforce by incorporating transformation and reengineering							
	techniques							
CO4:	dramatize productivity models for ap	oplications and cases	Apply	ying (K3)				
CO5:	summarize the reengineering proces	s tools and models	Evalua	ating (K5)				
	Mag	oping of COs with POs						
COs/PC	PO1	PO2	PO3					
CO1	3	2	3					
CO2	3	2	3					
CO3 3		2	3					
CO4	. 3	2						
CO5	3	2	3					
1 - Slight	ht, 2 – Moderate, 3 – Substantial, B	T - Bloom's Taxonomy						

	(Common to Mechatronics, Engineering Design and CAD/CAM Branc	ches)		
		Τ	P	Credit
	3	0	0	3
Preamble	To impart basic knowledge about sensors used to measure various p resistance, pressure, flow, level, humidity and so on and convert them (digital or analog) that can be easily read by the user or any other instrum	into el		
Prerequisites	Physics			
UNIT – I				9
	to Measurement: Units and Standards - Instrument classification - Cass of Instruments - Static and dynamic - Classification of errors - Errocertainty.			-
UNIT – II				9
	I Transducers: Classification of transducers - Temperature Measur	oment.	Fille	
thermometer -	Bimetallic thermometer - Pressure Transducers: Elastic transducers - Bou acuum: McLeod gauge, thermal conductivity gauge - Ionization gauge.			
UNIT – III				9
	ansducers: Turbine flow meter, Electromagnetic flow meter - Hot wire an	emome	eter - I	Ultrasonic
Meter - Resist	ive transducers - Potentiometer - RTD - Thermistor - Thermocouple - Radia	ation P	vrome	ter.
			·	
UNIT – IV				9
	acement, Magnetic and Digital Sensors: Strain gauges - Force mea			9
Force, Displa	acement, Magnetic and Digital Sensors: Strain gauges - Force mea VDT - RVDT - Capacitive transducer - Piezo electric transducer – Mag	asurem	ent -	Inductive
Force, Displa transducer - I Magneto resis	LVDT - RVDT - Capacitive transducer - Piezo electric transducer - Mag stive - Hall effect - Current sensor - Digital displacement transducer	asurem gnetic S s. Digi	ent - Sensor	Inductive - Types -
Force, Displation for the second seco	LVDT - RVDT - Capacitive transducer - Piezo electric transducer - Mag	asurem gnetic S s. Digi	ent - Sensor	Inductive - Types -
Force, Displatransducer - I Magneto resis Encoders – Fi	LVDT - RVDT - Capacitive transducer - Piezo electric transducer - Mag stive - Hall effect - Current sensor - Digital displacement transducer	asurem gnetic S s. Digi	ent - Sensor	Inductive - Types – insducers
transducer - I Magneto resis Encoders – Fi UNIT – V	LVDT - RVDT - Capacitive transducer - Piezo electric transducer – Mag stive – Hall effect – Current sensor - Digital displacement transducer ber optic sensors – Film sensors - Introduction to MEMS and Nano sensors.	asurem gnetic S s. Digi	ent - Sensor tal tra	Inductive - Types - Insducers
Force, Displa transducer - I Magneto resis Encoders – Fi UNIT – V Signal Condi	LVDT - RVDT - Capacitive transducer - Piezo electric transducer - Mag         stive - Hall effect - Current sensor - Digital displacement transducer         ber optic sensors - Film sensors - Introduction to MEMS and Nano sensors         tioning and Data Acquisition: Need for Signal Conditioning - Amplificati         - Data logging and Acquisition - Distributed Data Acquisition and contri	asurem gnetic S s. Digi	ent - Sensor tal tra	Inductive - Types – insducers g - Sample
Force, Displa transducer - I Magneto resis Encoders – Fi UNIT – V Signal Condi and Holding	LVDT - RVDT - Capacitive transducer - Piezo electric transducer - Mag         stive - Hall effect - Current sensor - Digital displacement transducer         ber optic sensors - Film sensors - Introduction to MEMS and Nano sensors         tioning and Data Acquisition: Need for Signal Conditioning - Amplificati         - Data logging and Acquisition - Distributed Data Acquisition and contri	asurem gnetic S s. Digi	ent - Sensor tal tra	Inductive - Types – insducers g - Sample
Force, Displa transducer - I Magneto resis Encoders – Fi UNIT – V Signal Condi and Holding system and sta	LVDT - RVDT - Capacitive transducer - Piezo electric transducer - Mag         stive - Hall effect - Current sensor - Digital displacement transducer         ber optic sensors - Film sensors - Introduction to MEMS and Nano sensors.         tioning and Data Acquisition: Need for Signal Conditioning - Amplificati         - Data logging and Acquisition - Distributed Data Acquisition and contrandards.         ES:	asurem gnetic S s. Digi don - Fi rol syst	ent - Sensor- tal tra Itering	Inductive - Types – insducers - Sample Interface Total: 45
Force, Displater transducer - I Magneto resist Encoders – Fi UNIT – V Signal Conditand Holding system and stat REFERENC	VDT - RVDT - Capacitive transducer - Piezo electric transducer - Mag         stive - Hall effect - Current sensor - Digital displacement transducer         ber optic sensors - Film sensors - Introduction to MEMS and Nano sensors.         tioning and Data Acquisition: Need for Signal Conditioning - Amplificati         - Data logging and Acquisition - Distributed Data Acquisition and contrandards.         ES:         a E.O., "Measurement Systems - Applications and Design", 6 th Edition, Tage	asurem gnetic S s. Digi don - Fi rol syst	ent - Sensor- tal tra Itering	Inductive - Types - insducers - Sample Interface Total: 45
Force, Displater transducer - I Magneto resist Encoders – Fi UNIT – V Signal Condit and Holding system and stat REFERENC 1. Doebelir Delhi, 20 2. Sawhney	VDT - RVDT - Capacitive transducer - Piezo electric transducer - Mag         stive - Hall effect - Current sensor - Digital displacement transducer         ber optic sensors - Film sensors - Introduction to MEMS and Nano sensors         tioning and Data Acquisition: Need for Signal Conditioning - Amplificati         - Data logging and Acquisition - Distributed Data Acquisition and contrandards.         ES:         n E.O., "Measurement Systems - Applications and Design", 6 th Edition, Taplif.         017.         v A.K., "A course in Electrical and Electronic Measurement and Instrumed	asurem gnetic S s. Digi ion - Fi rol syst	ent - Sensor tal tra Itering tems -	Inductive - Types - insducers - Sample Interface Total: 45 Hill, New
Force, Displa transducer - I Magneto resis Encoders – Fi UNIT – V Signal Condi and Holding system and sta REFERENC 1. Doebelir Delhi, 20 2. Sawhney and Co. 1 3. Beckwitt	LVDT - RVDT - Capacitive transducer - Piezo electric transducer - Mag         stive - Hall effect - Current sensor - Digital displacement transducer         ber optic sensors - Film sensors - Introduction to MEMS and Nano sensors         tioning and Data Acquisition: Need for Signal Conditioning - Amplificati         - Data logging and Acquisition - Distributed Data Acquisition and contrandards.         ES:         n E.O., "Measurement Systems - Applications and Design", 6 th Edition, Taplification - Amplification - Amplification - Distributed Data Acquisition - Taplification - Distributed Data Acquisition and contrandards.         ES:         n E.O., "Measurement Systems - Applications and Design", 6 th Edition, Taplification - Distributed Data Acquisition - Distributed Data - Distributed Data - Distributed Data - Distributed Data - Distributed	asurem gnetic S s. Digi don - Fi rol syst ata Mcc	ent - Sensor tal tra Itering tems - Graw	9 Inductive - Types - insducers 9 - Sample Interface <b>Total: 45</b> Hill, New anpat Rai
Force, Displater transducer - I Magneto resist Encoders – Fi UNIT – V Signal Condit and Holding system and stat REFERENC 1. Doebelir Delhi, 20 2. Sawhney and Co. I 3. Beckwitt York, 20 4. Roy Cho	<ul> <li>VDT - RVDT - Capacitive transducer - Piezo electric transducer - Magstive - Hall effect - Current sensor - Digital displacement transducer ber optic sensors - Film sensors - Introduction to MEMS and Nano sensors.</li> <li>tioning and Data Acquisition: Need for Signal Conditioning - Amplificati - Data logging and Acquisition - Distributed Data Acquisition and contranderds.</li> <li>ES:</li> <li>a E.O., "Measurement Systems - Applications and Design", 6th Edition, Taplat.</li> <li>v A.K., "A course in Electrical and Electronic Measurement and Instrume Pvt. Ltd., New Delhi, 2017.</li> <li>and Marangoni and Lienhard, "Mechanical Measurements", 6th Edition, 74, 09.</li> <li>budry D., and Sheil Jain, "Linear Integrated Circuits", New Age International Contention.</li> </ul>	asurem gnetic S s. Digi ion - Fi rol syst ata Mct entation	ent - Sensor- tal tra ltering cems - Graw n'', Dh	Inductive - Types - unsducers - Sample Interface <b>Total: 45</b> Hill, New anpat Ra
Force, Displatransducer - IMagneto resisEncoders - FiUNIT - VSignal Condiand Holdingsystem and staREFERENCI1.DoebelirDelhi, 202.Sawhneyand Co. I3.BeckwitlYork, 204.Roy ChaDelhi, 20	<ul> <li>VDT - RVDT - Capacitive transducer - Piezo electric transducer – Mag stive – Hall effect – Current sensor - Digital displacement transducer ber optic sensors – Film sensors - Introduction to MEMS and Nano sensors.</li> <li>tioning and Data Acquisition: Need for Signal Conditioning - Amplificati - Data logging and Acquisition - Distributed Data Acquisition and contrandards.</li> <li>ES:</li> <li>a E.O., "Measurement Systems – Applications and Design", 6th Edition, Taplat.</li> <li>b A.K., "A course in Electrical and Electronic Measurement and Instrume Pvt. Ltd., New Delhi, 2017.</li> <li>a, Marangoni and Lienhard, "Mechanical Measurements", 6th Edition, 7409.</li> <li>b D., and Sheil Jain, "Linear Integrated Circuits", New Age International Actional Contents and Contents and Contents and Circuits", New Age International Circuits.</li> </ul>	asurem gnetic S s. Digi ion - Fi rol syst ata Mct entation	ent - Sensor- tal tra ltering cems - Graw n'', Dh	9 Inductive - Types – unsducers 9 - Sample Interface <b>Total: 45</b> Hill, New anpat Rai
Force, Displation transducer - I Magneto resistence of the second secon	<ul> <li>VDT - RVDT - Capacitive transducer - Piezo electric transducer - Magstive - Hall effect - Current sensor - Digital displacement transducer ber optic sensors - Film sensors - Introduction to MEMS and Nano sensors.</li> <li>tioning and Data Acquisition: Need for Signal Conditioning - Amplificati - Data logging and Acquisition - Distributed Data Acquisition and contranderds.</li> <li>ES:</li> <li>a E.O., "Measurement Systems - Applications and Design", 6th Edition, Taplat.</li> <li>v A.K., "A course in Electrical and Electronic Measurement and Instrume Pvt. Ltd., New Delhi, 2017.</li> <li>and Marangoni and Lienhard, "Mechanical Measurements", 6th Edition, 74, 09.</li> <li>budry D., and Sheil Jain, "Linear Integrated Circuits", New Age International Contention.</li> </ul>	asurem gnetic S s. Digi ion - Fi rol syst ata Mco entation Addison	ent - Sensor- tal tra ltering eems - Graw 1", Dh n–Wes Pvt. I	Inductive - Types – unsducers: 9 - Sample Interface Total: 45 Hill, New anpat Rai eley, New Ltd., New

COU	RSE OUTC		BT Mapped				
On co	mpletion of	the course, the students will be	able to		(Highest Level)		
CO1:	demonstra		Understanding (K2)				
CO2:	: categorize the different type of non-electrical transducers based on the Applying (K3) applications						
CO3:	correlate t	he different type of electrical tra	ansducers for various applications		Applying (K3)		
CO4:	infer the re	ole of sensors in evolving techn	ologies		Understanding (K2)		
CO5:	analyze th	e need for signal conditioning.	, filters and acquiring data in real	time	Analyzing (K4)		
	systems						
	Mapping of COs with POs						
CC	Os/POs	PO1	PO2		PO3		
(	CO1	1	2	3			
(	CO2	3	2		1		
(	CO3	2	3		3		
(	CO4	1					
(	CO5 1 2			3			
1 - Sli	ght, 2 – Mo	derate, 3 – Substantial, BT -	Bloom's Taxonomy				

# 18MTE12 AUTONOMOUS MOBILE ROBOTICS

(Common to Mechatronics & CAD CAM branches )

	L	T	Р	Credit
	3	0	2	4
<b>Preamble:</b> The course on Autonomous Mobile Robots provides the fundamente basic principles of locomotion, kinematics, sensing, perception and cognitite to develop the autonomous mobile robots.				
Prerequisites: Robotics Engineering				
UNIT – I				9
Mobile Robot Kinematics: Introduction - Kinematic models and con-	straints	– M	anoeu	vrability –
Workspace – Motion control				
UNIT – II				9
<b>Locomotion:</b> Introduction – Key issues for locomotion – Legged mobile rob	ots – V	Vheele	d mob	ile robots –
Aerial mobile robots				
			· · ·	9
<b>Perception:</b> Introduction - Sensors for mobile robots – Fundamentals of	-			0
processing – Feature extraction based on range data - Image feature extraction	- r lac	e lecoş	gintion	•
UNIT – IV				9
Localization: Introduction - Challenges of localization - Belief represent	ation -	- Map	repre	sentation –
Probabilistic Map-Based localization – Autonomous map building.				
UNIT – V Planning and Navigations, Introduction, Competence for Navigation, F	lonnin	a and	Deast	9 ina Dath
<b>Planning and Navigation:</b> Introduction – Competence for Navigation: P planning – Obstacle avoidance – Navigation architectures.	Tannin	g and	React	ing – Paul
List of Experiments:				
1. Study of Fire Bird – V robot and its accessories.				
2. Development of embedded programming for Buzzer interfacing using	Fire Bi	rd – V	robot.	
<ol> <li>Development of embedded programming for LCD interfacing using Fi</li> </ol>				
4. Development of embedded programming for motion control using Fire				
1				
5. Development of embedded programming for position control using Fir				
6. Development of embedded programming for velocity control using Fir				
7. Development of embedded programming for ADC interfacing using Fi	re Birc	l - V r	obot.	
8. Development of embedded programming for path planning using Fire	Bird –	V robo	ot.	
9. Development of embedded programming for obstacle avoidance using	Fire B	ird – V	' robot	
<ol> <li>Development of embedded programming for wireless motion control or ZigBee Communication.</li> </ol>	f Fire	Bird V	robot	using
	e: 45,	Practi	cal: 15	, Total: 60
<b>REFERENCES:</b>	antes -	notion	to A	utonom or -
1. Roland Siegwart, Illah Reza Nourbakhsh and Davide Scaramuzza, Mobile Robots", 2 nd Edition, MIT Press, Cambridge, 2011.				
2. Farbed Fahimi, "Autonomous Robots – Modeling, Path Planning and Co	,	<u> </u>	,	
3. Alonzo Kelly, "Mobile Robotics: Mathematics, Models and Methods" 2013.	, Camt	oridge	Unive	rsity Press,

COUR	RSE OUTC	BT Mapped		
On con	npletion of	the course, the students will be	able to	(Highest Level)
CO1:	develop t	he kinematic model of mobile r	obots	Evaluating (K5)
CO2:	interpret	the different concepts of locome	otion	Applying (K3)
CO3:	select the	sensory devices for environme	ntal perception	Applying (K3)
CO4:	identify t	he techniques for localization	Applying (K3)	
CO5:	apply the	concepts of planning and navig	Applying (K3)	
CO6:	develop e	Applying (K3), Manipulation (S2)		
CO7:	develop e	mbedded programming for plan	nning and navigation	Creating (K6),
				Precision (S3)
CO8:	develop e	mbedded programming for wir	eless control	Creating (K6),
				Precision (S3)
		Mappin	g of COs with POs	
CO	s/POs	PO1	PO2	PO3
C	CO1	2		3
C	CO2	2		3
C	CO3	2		3
C	CO4	2		3
C	205	2		3
C	CO6	3	2	3
C	CO7	3	2	3
С	CO8	3	2	3
1 – Slig	ght, 2 – Mo	derate, 3 – Substantial, BT -	– Bloom's Taxonomy	

18MTE13 MEMS DESIGN						
(Common to Mechatronics, CADCAM, Engineering Design, VLSI Design, Ap			nics,	Power		
Electronics and Drives & Control and Instrumentation Engineering	g branc	hes)				
	L T P C					
	3	0	0	3		
<b>Preamble:</b> This course equips the students to understand the concepts of Micro planet and the students of micro fabrication techniques for various applications.	nechat	ronics	and	apply the		
knowledge of micro fabrication techniques for various applications. <b>Prerequisites:</b> Sensors and Instrumentation and Bridge course mechanical						
UNIT – I				9		
Materials for MEMS and Scaling Laws: Overview - Microsystems and m	icroele	ectroni	<u> </u>	ii.		
principle of Microsystems - Si as a substrate material - Mechanical properties - S				0		
piezo resistors - Gallium arsenide - Quartz-piezoelectric crystals - Polymer - Scalir						
prezo resistoris Guillani alsentae Quariz prezoerecute erystalis i orymer beam	<u>15 14 115</u>	111 1011	mata	112001011.		
UNIT – II				9		
Micro Sensors, Micro Actuators: Micro sensors - Micro actuation techni	ques -	Micr	o ac			
Micromotors - Microvalves - Micro grippers - Micro accelerometer: intr						
principles, design rules, modeling and simulation, verification and testing, applicat		•	-	-		
UNIT – III				9		
Mechanics for Microsystem Design: Static bending of thin plates - Mechanics	nical	vibrat	ion -	Thermo		
mechanics - Thermal stresses - Fracture mechanics - Stress intensity factor		ture t	tongh			
interfection from the problem is a Thin film Marthenia Original Film in Film in the transmission of Film in Film in the transmission of Film			-	ness and		
interfacial fracture mechanics-Thin film Mechanics-Overview of Finite Element St	ress A		-	ness and		
	ress A		-	y		
UNIT – IV		nalysis	s.	9		
UNIT – IV Fabrication Process and Micromachining: Photolithography - Ion implantation	- Diff	nalysis	s. - 0x	9 sidation –		
UNIT – IV         Fabrication Process and Micromachining: Photolithography - Ion implantation         CVD - Physical vapor deposition - Deposition by epitaxy - Etching process- B	- Diff	nalysis	s. - 0x	9 sidation –		
UNIT – IV Fabrication Process and Micromachining: Photolithography - Ion implantation	- Diff	nalysis	s. - 0x	9 sidation –		
UNIT – IV Fabrication Process and Micromachining: Photolithography - Ion implantation CVD - Physical vapor deposition - Deposition by epitaxy - Etching process- B Surface micro machining – LIGA –SLIGA.	- Diff	nalysis	s. - 0x	<b>9</b> sidation – acturing -		
UNIT – IV Fabrication Process and Micromachining: Photolithography - Ion implantation CVD - Physical vapor deposition - Deposition by epitaxy - Etching process- B Surface micro machining – LIGA –SLIGA. UNIT – V	- Diff ulk Mi	nalysis fusion cro m	s. – Ox	9 kidation – acturing - 9		
UNIT – IV         Fabrication Process and Micromachining: Photolithography - Ion implantation         CVD - Physical vapor deposition - Deposition by epitaxy - Etching process- B         Surface micro machining – LIGA –SLIGA.         UNIT – V         Micro System Design, Packaging and Applications: Design considerations - P	- Diff ulk Mi	iusion cro m desigr	s. – Ox aanufa	9 sidation – acturing - 9 echanical		
UNIT – IV         Fabrication Process and Micromachining: Photolithography - Ion implantation         CVD - Physical vapor deposition - Deposition by epitaxy - Etching process- B         Surface micro machining – LIGA –SLIGA.         UNIT – V         Micro System Design, Packaging and Applications: Design considerations - P         design – Mechanical Design using Finite Element Method-Micro system packaging	- Diff ulk Mi rocess g – Die	iusion cro m desigr	s. – Ox anufa n - M - De	9 sidation – acturing - 9 echanical vice level		
UNIT – IV         Fabrication Process and Micromachining: Photolithography - Ion implantation         CVD - Physical vapor deposition - Deposition by epitaxy - Etching process- B         Surface micro machining – LIGA –SLIGA.         UNIT – V         Micro System Design, Packaging and Applications: Design considerations - P         design – Mechanical Design using Finite Element Method-Micro system packagin         - System level – Packaging techniques - Die preparation - Surface bonding -	- Diff ulk Mi rocess g – Die Wire I	fusion cro m desigr e level condir	s. – Ox aanufa n - M - De ng –	9 sidation – acturing - 9 echanical vice level Sealing -		
UNIT – IV         Fabrication Process and Micromachining: Photolithography - Ion implantation         CVD - Physical vapor deposition - Deposition by epitaxy - Etching process- B         Surface micro machining – LIGA –SLIGA.         UNIT – V         Micro System Design, Packaging and Applications: Design considerations - P         design – Mechanical Design using Finite Element Method-Micro system packaging	- Diff ulk Mi rocess g – Die Wire I	fusion cro m desigr e level condir	s. – Ox aanufa n - M - De ng –	9 sidation – acturing - 9 echanical vice level Sealing -		
UNIT – IV         Fabrication Process and Micromachining: Photolithography - Ion implantation CVD - Physical vapor deposition - Deposition by epitaxy - Etching process- B Surface micro machining – LIGA –SLIGA.         UNIT – V         Micro System Design, Packaging and Applications: Design considerations - P design – Mechanical Design using Finite Element Method-Micro system packagin - System level – Packaging techniques - Die preparation - Surface bonding - Applications of micro system in Automotive industry: Bio medical, Aerospace	- Diff ulk Mi rocess g – Die Wire I	fusion cro m desigr e level condir	- Ox anufa - M - De ng – imuni	9 sidation – acturing - 9 echanical vice level Sealing -		
UNIT – IV         Fabrication Process and Micromachining: Photolithography - Ion implantation CVD - Physical vapor deposition - Deposition by epitaxy - Etching process- B Surface micro machining – LIGA –SLIGA.         UNIT – V         Micro System Design, Packaging and Applications: Design considerations - P design – Mechanical Design using Finite Element Method-Micro system packagin - System level – Packaging techniques - Die preparation - Surface bonding - Applications of micro system in Automotive industry: Bio medical, Aerospace	- Diff ulk Mi rocess g – Die Wire I	fusion cro m desigr e level condir	- Ox anufa - M - De ng – imuni	9 sidation – acturing – 9 echanical vice level Sealing – ications –		
UNIT – IV         Fabrication Process and Micromachining: Photolithography - Ion implantation CVD - Physical vapor deposition - Deposition by epitaxy - Etching process- B Surface micro machining – LIGA –SLIGA.         UNIT – V         Micro System Design, Packaging and Applications: Design considerations - P design – Mechanical Design using Finite Element Method-Micro system packagin - System level – Packaging techniques - Die preparation - Surface bonding - Applications of micro system in Automotive industry: Bio medical, Aerospace CAD tools to design a MEMS device.	- Diff ulk Mi rocess g – Die Wire I and Te	iusion cro m desigr e level condir elecom	n - M - De De ng – muni	9 sidation – acturing – 9 echanical vice level Sealing – ications – Total: 45		
UNIT – IV         Fabrication Process and Micromachining: Photolithography - Ion implantation         CVD - Physical vapor deposition - Deposition by epitaxy - Etching process- B         Surface micro machining – LIGA –SLIGA.         UNIT – V         Micro System Design, Packaging and Applications: Design considerations - P         design – Mechanical Design using Finite Element Method-Micro system packagin         System level – Packaging techniques - Die preparation - Surface bonding -         Applications of micro system in Automotive industry: Bio medical, Aerospace         CAD tools to design a MEMS device.         REFERENCES:         1.       Tai-Ran Hsu, "MEMS and Microsystems Design and Manufacture", Tata 2008.	- Diff ulk Mi rocess g – Die Wire I and Te	iusion cro m desigr e level condir elecom	n - M - De De ng – muni	9 sidation – acturing – 9 echanical vice level Sealing – ications – Total: 45		
UNIT – IV         Fabrication Process and Micromachining: Photolithography - Ion implantation CVD - Physical vapor deposition - Deposition by epitaxy - Etching process- B Surface micro machining – LIGA –SLIGA.         UNIT – V         Micro System Design, Packaging and Applications: Design considerations - P design – Mechanical Design using Finite Element Method-Micro system packagin - System level – Packaging techniques - Die preparation - Surface bonding - Applications of micro system in Automotive industry: Bio medical, Aerospace CAD tools to design a MEMS device.         REFERENCES:         1.       Tai-Ran Hsu, "MEMS and Microsystems Design and Manufacture", Tata 2008.	- Diff ulk Mi rocess g – Die Wire I and Te McGra	iusion cro m desigr e level condir elecom	s. – O× aanufa – O× anufa – O× – O× – O× – O× – O× – O× – O× – O×	9 sidation – acturing - 9 echanical vice level Sealing - ications – Total: 45 ew Delhi,		

COUR	RSE OUTC	BT Mapped		
On cor	npletion of	(Highest Level)		
CO1:	interpret t	Remembering (K1)		
CO2:	explain th	e principles of micro sensors a	Understanding (K2)	
CO3:	apply the	mechanics for micro system de	Applying (K3)	
CO4:	design and	d fabrication of microsystem		Applying (K3)
CO5:	design of	Applying (K3)		
		Mappir	ng of COs with POs	
CO	s/POs	PO1	PO2	PO3
0	201	2	2	2
0	202	2	2	3
0	203	2	2	3
0	CO4 3 2		2	3
0	CO5 3 2		3	
1-Sli	ght, 2 – Mo	oderate, 3 – Substantial, BT	– Bloom's Taxonomy	

#### **18MTE14 MACHINE TOOL CONTROL AND CONDITION MONITORING** (Common to Mechatronics & CADCAM branches)

 L
 T
 P
 Credit

 3
 0
 0
 3

**Preamble:** To impart the knowledge in machine tool control and condition monitoring in a mechatronics perspective.

Prerequisites: Nil

#### UNIT – I

**Overview of Automatic Control in Machine Tools:** Open loop and closed loop system in machine tools - process model formulation - transfer function. Control actions - block diagram representation of mechanical pneumatic and electrical systems. Process computer: Peripherals, Data Logger, Direct digital control - Supervisory computer control.

#### UNIT – II

Adaptive Control and PLC: Adaptive control: ACC, ACO, Real time parameter estimation, Applications of adaptive control for turning, milling, grinding and EDM. Programmable logic controller: Functions, Applications in machine tools.

#### UNIT – III

**Introduction to Condition Monitoring:** Condition Monitoring: Cost comparison with and without CM. On-load testing and offload testing – Methods and instruments for CM: Temperature sensitive tapes, Pistol thermometers. Wear-debris analysis.

#### UNIT – IV

**Vibration, Acoustic Emission and Sound Monitoring:** Primary and Secondary signals: Online and Off - line monitoring. Fundamentals of Vibration: Sound, Acoustic Emission. Machine Tool Condition Monitoring through Vibration, Sound, Acoustic Emission - Case Studies.

#### UNIT – V

**Condition Monitoring through other techniques:** Visual and temperature monitoring - Leakage monitoring - Lubricant monitoring - condition monitoring of Lube oil and Hydraulic systems - Thickness monitoring - Image processing techniques in condition monitoring.

# Total: 45 REFERENCES: 1. Sushil Kumar Srivastava, "Industrial Maintenance Management" S. Chand & Company Ltd., New Delhi, 2016. 2. Mishra R.C., Pathak K., "Maintenance Engineering and Management", Prentice Hall of India Pvt. Ltd., 2016. 3. Robert Bond Randall, "Vibration-Based Condition Monitoring – Industrial, Aerospace and Automotive applications", John Wiley & Sons Ltd., 2014.

9

9

9

9

9

COUR	SE OUTCO	BT Mapped		
On com	pletion of the	he course, the students will be	able to	(Highest Level)
CO1:	summarize	Understanding (K2)		
CO2:	choose the	Applying (K3)		
CO3:	explain the	e concepts of condition monito	Understanding (K2)	
CO4:		6	ique for the machine tool among	Analyzing (K4)
	vibration,	acoustic emission and sound a	nalysis	
CO5:	select appr	ropriate condition monitoring	technique for machine tool control	Analyzing (K4)
	applicatior	18		
		Mappin	g of COs with POs	
CO	s/POs	PO1	PO2	PO3
C	201	3	1	2
C	CO2	3	2	2
CO3 3		3	2	3
CO4		3	2	3
C	CO5 2 3		2	
1 – Slig	ht, 2 - Mod	lerate, 3 – Substantial, BT -	– Bloom's Taxonomy	

#### **18MTE16 ADDITIVE MANUFACTURING** (Common to Mechatronics & CADCAM branches)

Т L Р Credit 3 0 0 3

**Preamble:** This course provides scientific as well as technological aspects of various additive, subtractive and formative rapid manufacturing processes. Variety of applications also will be covered ranging from rapid prototyping, rapid manufacturing to mass customization.

#### Prerequisites: Nil

9

9

9

UNIT – I Introduction to RP systems: Evolution, fundamental fabrication processes, CAD for RPT, product design and rapid product development - Need for time compression in product development - Conceptual design -Detail design, Prototype fundamentals - Fundamentals of RP systems - RP process chain - 3D modelling - 3D solid modeling software and their role in RPT - Data format - STL files- Creation of STL file - History of RP systems - Classification of RP systems - Benefits of RPT.

#### UNIT – II

Liquid based RP systems: Stereo Lithography Apparatus (SLA): Principle, Photo polymers, Post processes, Process parameters, Machine details, Advantages. Solid Ground Curing (SGC): Principle, Process parameters, Process details, Machine details, Limitations. Solid Object Ultraviolet Laser Printer (SOUP): Principle, Process parameters, Process details, Machine details, Applications.

#### UNIT – III

Solid based RP systems: Fusion Deposition Modeling (FDM): Principle, Raw materials, BASS, Water soluble support system, Process parameters, Machine details, Advantages and limitations. Laminated Object Manufacturing (LOM): Principle, Process parameters, Process details, Advantages and limitations. Solid Deposition Manufacturing (SDM): Principle, Process parameters, Process details, Machine details, Applications.

#### UNIT - IV

Powder based RP systems: Selective Laser Sintering (SLS): Principle, Process parameters, Process details, Machine details, Advantages and applications. 3-Dimensional Printers (3DP): Principle, Process parameters, Process details, Machine details, Advantages and limitations. Laser Engineered Net Shaping (LENS): Principle, Process details, Advantages and applications, Concept Modelers.

#### UNIT - V

Rapid Tooling and Applications of RP: Direct Rapid Tooling: Direct AIM, Quick cast process, Copper polyamide, Rapid Tool, DMLS, ProMetal, Sand casting tooling. Indirect Rapid Tooling: Silicone rubber tooling, Aluminum filled epoxy tooling, Spray metal tooling, soft tooling vs hard tooling. Applications of RP in product design: automotive industry, medical field - Conversion of CT/MRI scan data - Customized implant - Case studies -reverse engineering - Surface Generation from points on cloud - Growth of RP industry.

#### **REFERENCES:**

1.	Chua C. K., Leong K.F. and Lim C.S., "Rapid Prototyping: Principles and Applications", World
	Scientific, New Jersey, 2010.
2.	Pham D.T. and Dimov S.S., "Rapid manufacturing", Springer-Verlag, London, 2011.
3.	Amitabha Ghosh, "Rapid manufacturing a brief introduction", Affiliated East West Press, New Delhi,
	2016.

9

9

COUR	<b>SE OUT</b>	COMES:			BT Mapped
On con	npletion of	the course, the students will be	e able to		(Highest Level)
CO1:	apply the	e concepts of rapid prototyping	in product design and developm	nent	Applying (K3)
CO2:	select th application	1 1	l prototyping system for a s	pecific	Applying (K3)
CO3:	select th application	1	prototyping system for a s	pecific	Applying (K3)
CO4:	select th application	1 1	d prototyping system for a s	pecific	Applying (K3)
CO5:		e various tooling systems and r turing applications	everse engineering concepts for	r rapid	Analyzing (K4)
		Mappi	ng of COs with POs		
CO	s/POs	PO1	PO2		PO3
C	201	3	1		2
C	CO2	3	1		2
C	203	3	1		2
C	CO4	3	1		2
C	205	3	1		3
1 – Slig	ght, 2 – Mo	oderate, 3 – Substantial, BT	– Bloom's Taxonomy		

#### **18CCE05 PRODUCT DATA MANAGEMENT** (Common to CAD/CAM and Engineering Design branches)

Τ

			-	1	Cicuit
		3	0	0	3
Preamble	This course will help the students to capture and maintain det	ailed i	nforma	ation o	n products
	through its development and the whole lifecycle of the produ	ict. It	have the	he adv	antages of
	Track and manage all changes to product related data, spend les	s time	organi	zing ar	nd tracking
	design data and improve productivity through reuse of product of	lesign	data.		
Prerequisites	Knowledge in bill of materials, Knowledge on product life cycle	e.			

UNIT – I

Description of PDM: Definition, Basic functionality, Typology of PDM functions. Information architecture: Document management, creation and viewing of documents, creating parts, versions and version control of parts and documents. System architecture: Client server system in PDM. Trends in PDM, Collaborative Product Development, Case studies.

#### UNIT – II

Configuration Management: Base lines, meta data, Configuration management: CM function, CM ladder, interchangeability. Structuring the Bill of Material, product structure, Engineering structure, Manufacturing Structure. Case studies

#### UNIT – III

Change Management: Change issue, change requests: production problem, origination of change, change request, request process, concept of Engineering change order. Change Cost: Costing a change, Design and Development Cost, Manufacturing and Field Costs, Materials and Parts Costs, Cost policy, Charge Back of Costs. Case studies.

#### UNIT - IV

Change Control and Work Flow: Types of change, Class of change, software changes, Revision drafting, change impacts, customer review and approval. Projects and Roles: life cycle of a product, life cycle management. Work flows - creation of work flow templates, life cycle, work flow integration. Case studies.

#### UNIT - V

Configurators and Variants: Configurators: Product configurator, sales configurator, comparison between product configurator and sales configuration, Types of configurator solutions, Product configurator engine. Variant configuration. Case studies.

#### DEFEDENCES.

NĽ	TEREIVCES.
1.	IvicaCrnkovic, Ulf Asklund, AnnitaPersson Dahlqvist, "Implementing and Integrating Product Data
	Management and Software Configuration Management", Artech House, USA, 2003.
2.	Frank B. Watts, "Engineering Documentation Control Handbook - Configuration Management", 4 th
	Edition, William Andrew, Norwich, NY USA, 2011.
3.	AnttiSaaksvuori, AnselmiImmonen, "Product Lifecycle Management", 3 rd Edition, Springer, New York,
	2008.

9

9

Total: 45

9

9

	RSE OUTC			BT Mapped
On co	mpletion of	the course, the students will be	able to	(Highest Level)
CO1:	summariz	e the concept of PDM		Understanding (K2)
CO2:	develop a	configuration management in a	PLM environment	Applying (K3)
CO3:	classify th	e various workflows and roles	in a project	Analyzing (K4)
CO4:	identify th	e product life cycle in change r	nanagement and its issues	Applying (K3)
CO5:	make use	of different configurators for pr	oduct selection	Applying (K3)
		Mappir	ng of COs with POs	
CC	Os/POs	PO1	PO2	PO3
	CO1	1	2	1
(	CO2	3	3	3
(	CO3	3	3	3
(	CO4	2	3	2
(	CO5	2	1	2
1 – Sli	ight, 2 – Mo	oderate, 3 – Substantial, BT -	Bloom's Taxonomy	

#### **18CCE06 MODELING AND ANALYSIS OF MANUFACTURING SYSTEMS** (Common to CAD/CAM, Engineering Design & Mechatronics Branches)

P Credit

9

9

9

9

9

Total: 45

L

Т

		3	0	0	3
Preamble	This course provides the knowledge of modeling analysis of	manuf	acturin	g syste	ems which
	ensures a very good performance.				
Prerequisites	Industrial Engineering				

UNIT – I

**Manufacturing Systems and Models:** Types and principles of manufacturing systems, types and uses of manufacturing models, physical models, mathematical models, model uses, model building.

#### UNIT – II

**Material Flow Systems:** Assembly lines-Reliable serial systems, approaches to line balancing, sequencing mixed models. Transfer lines and general serial systems-paced lines without buffers, unpaced lines. Shop scheduling with many products. Flexible manufacturing systems-system components, planning and control. Group technology-assigning machines to groups, assigning parts to machines. Facility layout-Quadratic assignments problem approach, graphic theoretic approach.

#### UNIT – III

**Supporting Components:** Machine setup and operation sequencing-integrated assignment and sequencing. Material handling systems-conveyor analysis, AGV systems. Warehousing-storage and retrieval systems, order picking.

#### UNIT – IV

**Generic Modeling Approaches:** Analytical queuing models, a single workstation, open networks, closed networks. Empirical simulation models-event models, process models, simulation system, example manufacturing system

#### UNIT – V

**Synchronization Manufacturing and Petri Nets:** Synchronization Vs Optimization, defining the structure, identifying the constraint, exploitation, buffer management. Basic definitions-dynamics of Petri nets, transformation methods, event graphs, modeling of manufacturing systems

#### **REFERENCES:**

NĽ	
1.	Ronald G. Askin, and Charles R. Standridge, "Modeling and Analysis of Manufacturing Systems", John
	Wiley & Sons, New York, 1993.
2.	Mengchu Zhou, "Modeling, Simulation, and Control of Flexible Manufacturing Systems: A Petri Net
	Approach", World Scientific Publishing Co. Pte. Ltd., 2000.
3.	Jean Marie Proth and XiaolanXie, "Petri Nets: A Tool for Design and Management of Manufacturing
	Systems", John Wiley & Sons, New York, 1996.
1	Brandimarte P and Villa A "Modeling Manufacturing Systems" Springer Verlag Berlin 1000

4. Brandimarte P. and Villa A., "Modeling Manufacturing Systems", Springer Verlag, Berlin, 1999.

COUI	RSE OUTC	COMES:		BT Mapped
On co	mpletion of	the course, the students will	be able to	(Highest Level)
CO1:	select the	appropriate type of manufact	uring system and model	Analyzing (K4)
CO2:	know about	at the assembly line transfer l	ine and FMS	Understanding (K2)
CO3:	usage of v	arious materials handling sys	stems	Applying (K3)
CO4:	know the	generic modeling systems		Understanding (K2)
CO5:	use the-th	eory of constraints for manuf	facturing a component	Applying (K3)
		Mapp	oing of COs with POs	
CC	Os/POs	PO1	PO2	PO3
(	CO1			2
(	CO2	3		
	CO3	2		2
(	CO4	2		3
	CO5			2
1 – Sli	ight, 2 – Mo	oderate, 3 – Substantial, BT	r - Bloom's Taxonomy	

	18CCE07 METROLOGY AND NON DESTRUCTIVE	<b>FEST</b>	ING			
		L	Т	Р	Credit	Τ
		3	0	0	3	
Preamble	Knowledge of metrology and SQC helps in implementing qual	ity im	proven	nent on	continue	s
	basis. Application of NDT techniques helps in easy identification	on of d	efects.			
Prerequisites	Basics of Metrology					
UNIT – I					9	9
Measuring Ma	achines: Tool Maker's microscope - Co-ordinate measuring ma	chines	- Uni	versal	measuring	g
machine - Lase	er viewers for production profile checks - Image shearing mici	oscop	e – Us	e of co	omputers	-
Machine vision	technology - Microprocessors in metrology.					
UNIT – II					9	9
Statistical Qu	ality Control: Data presentation - Statistical measures and	tools	- Pro	cess ca	apability	-
Confidence an	d tolerance limits - Control charts for variables and for fra	ction	defecti	ves -	Theory o	f
probability - Sa	mpling - ABC standard - Reliability and life testing.					
UNIT – III					9	9
Liquid Penetr	ant and Magnetic Particle Tests: Visual test aids Character	eristics	of lic	juid pe	enetrants	-
different wash	able systems - Developers - applications - Methods of pro-	duction	n of n	nagneti	ic fields	-
Principles of o	peration of magnetic particle test - Applications - Advantages a	and lir	nitation	ns, stai	ndards and	d
calibration.						
UNIT – IV					9	9
<b>Radio Graphy</b>	: Sources of ray-x-ray production - properties of d and x rays -	film cl	naracte	ristics	- exposur	e

charts - contrasts - operational characteristics of x ray equipment – applications, standards and calibration, study of films used and its characteristics

#### UNIT - V

Ultrasonic and Acoustic Emission Techniques: Production of ultrasonic waves - different types of waves general characteristics of waves - pulse echo method - A, B, C scans - Principles of acoustic emission techniques - Advantages and limitations - Instrumentation – applications, standards and calibration, advanced methods in measurements-PAUT and TOFD.

	1000	1. 45
]	REFERENCES:	
	1. Barry Hull and Vernon John, "Non Destructive Testing", 1 st Edition, MacMillan, 1988.	
Ĺ	2. American Society for Metals, "Metals Hand Book", Vol.II, 1976.	
ĺ.	3. Jain R.K., "Engineering Metrology", Khanna Publishers, 1997.	

Total: 45

	RSE OUTC			BT Mapped
On co	mpletion of	the course, the students will be	able to	(Highest Level)
CO1:	explain m	ethods and principles used in m	easurement	Understanding (K2)
CO2:	apply SQC	C techniques and tools in quality	y control	Applying (K3)
CO3:	make use	of liquid penetrant and magneti	c particle tests in inspection	Applying (K3)
CO4:	choose rac	liography instruments for differ	rent application	Applying (K3)
CO5:	experimer	nt with ultrasonic and acoustic e	emission techniques	Applying (K3)
		Mappin	ng of COs with POs	
CC	Os/POs	PO1	PO2	PO3
	CO1	1	2	2
(	CO2	2	1	2
(	CO3	2	1	2
(	CO4	2	1	2
	CO5	3	1	3
1 - Sli	ight, 2 – Mo	oderate, 3 – Substantial, BT -	Bloom's Taxonomy	

## 18CCE08 RELIABILITY ENGINEERING

(Common to CAD/CAM & Engineering Design branches)
---------------------------------------------------

			I	P	Creatt	
		3	0	0	3	
Preamble	ble This course provides the advanced topics of reliability measurements. Also it provides					
	monitoring and improvement techniques for reliability engineering.					
Prerequisites	ites Total Quality Management, Process planning and cost estimation.					
UNIT – I					9	
<b>Reliability Concept:</b> Reliability definition – Quality and Reliability– Reliability mathematics – Reliability						
functions - Hazard rate - Measures of Reliability - Design life -A priori and posterior probabilities -						
Mortality of a component –Bath tub curve – Useful life.						

#### UNIT – II

**Failure Data Analysis:** Data collection –Empirical methods: Ungrouped/Grouped, Complete/Censored data – Time to failure distributions: Exponential, Weibull – Hazard plotting – Goodness of fit tests-problems and case study.

#### UNIT – III

**Reliability** Assessment: Different configurations – Redundancy – m/n system – Complex systems: RBD – Baye's method – Cut and tie sets – Fault Tree Analysis – Standby system -problems and case study.

#### UNIT - IV

**Reliability Monitoring:** Life testing methods: Failure terminated – Time terminated – Sequential Testing – Reliability growth monitoring – Reliability allocation – Software reliability- problems and case study.

#### UNIT – V

**Reliability Improvement:** Analysis of downtime – Repair time distribution – System MTTR – Maintainability prediction – Measures of maintainability – System Availability – Replacement theory-problems and case study.

Total: 45

9

9

9

REFERENCES:					
1.	Charles E. Ebeling, "An Introduction to Reliability and Maintainability Engineering", 3 rd Edition, Wave				
	land Press Inc, 2019.				
2.	Roy Billington and Ronald N. Allan, "Reliability Evaluation of Engineering Systems",2 nd Edition,				
	Springer, 1992.				

COURSE OUTCOMES: BT Mapped						
On completion of the course, the students will be able to			(Highest Level)			
CO1:	CO1: discuss the fundamentals of reliability measures		Understanding (K2)			
CO2:	summarize reliability engineering through product life cycle		Evaluating (K5)			
CO3:	analyze th	e reliability configuration using	Analyzing (K4)			
CO4:	apply and	apply and test product using reliability monitoring methods for given case		Evaluating (K5)		
CO5:	examine s	ystem downtime and maintaina	bility measures for given case	Applying (K3)		
Mapping of COs with POs						
CC	COs/POs PO1 PO2 PO3		PO3			
(	CO1	2	2	3		
(	CO2	2	2	3		
(	CO3	2 2		3		
(	CO4	4 2 2		3		
(	CO5	2	2	3		
1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy						

•	<b>18CCE09 INTEGRATED PROCESS AND PRODUCT DEV</b>	<u>ELO</u>	<u>PMEN</u>	<u> </u>	
		L	Т	Р	Credit
		3	0	0	3
Preamble	This course will provide a management technique which integ through the use of multidisciplinary teams to optimize the supportability processes.				
Prerequisites	Basic knowledge in new product development, Knowledge in bi	ll of r	nateria	ls Kno	owledge in
Trerequisites	customer survey and product structure		liateria	15, 1110	owieuge in
UNIT – I	eustomer survey and product structure				9
	to Product Development: Characteristics of Successful Product	t Dev	elonme	ent-Wh	k
and Develops Development Front-End Pro	Products-Duration and Costs of Product Development- Challeng Processes and Organizations-A Generic Development Process- cess Adapting the Genetic Product Development Process- Pr IF Development Process-Product Development Organizations-The	es of -Conc roduct	Produce pt Deve	et Deve evelop lopme	elopment - ment: The nt Process
UNIT – II					9
Customer Nee	sources and Timing- Pre-Project Planning-Reflect on the Results ds- Raw Data from Customers- Interpreting Raw Data in Terms of a Hierarchy-Establishing the Relative Importance of the Needs-I	Custo	omer N	leeds-(	Organizing
UNIT – III					9
Specifications	fications: What Are Specifications -When Are Specifications Es Setting the Final Specifications-Concept Generation-The Activ blem- Search Externally-Search Internally-Explore Systematicall	vity o	f Con	cept C	Beneration-
UNIT – IV					
<b>Concept Sele</b>					9
	ction: Concept Selection- Overview of Methodology-Concept urpose of the Concept Test- Choose a Survey Population- the Concept- Measure Customer Response-Interpret the Results- I	Choo	ose a	Surve	ot Testing- y Format-
Communicate Process	urpose of the Concept Test- Choose a Survey Population-	Choo	ose a	Surve	ot Testing- y Format- ilts and the
Communicate Process UNIT – V Product Arch	urpose of the Concept Test- Choose a Survey Population- the Concept- Measure Customer Response-Interpret the Results- I <b>itecture:</b> Product Architecture-Implications of the Architecture-E	Choo Reflec Establi	ose a t on th	Surve e Resu the Ar	ot Testing- y Format- ilts and the <b>9</b>
Communicate Process UNIT – V Product Arch Delayed Diffe	arpose of the Concept Test- Choose a Survey Population- the Concept- Measure Customer Response-Interpret the Results- I itecture: Product Architecture-Implications of the Architecture-E rentiation-Platform Planning-Related System-Level Design Issues-	Choo Reflec Establi	ose a t on th	Surve e Resu the Ar	ot Testing- y Format- ilts and the <b>9</b>
Communicate Process UNIT – V Product Arch Delayed Diffe REFERENCI 1. Ulrich Ka New Yorl 2. Otto, Kev	arpose of the Concept Test- Choose a Survey Population- the Concept- Measure Customer Response-Interpret the Results- I itecture: Product Architecture-Implications of the Architecture-E entiation-Platform Planning-Related System-Level Design Issues- CS: rl T. and Eppinger Steven D., "Product Design and Developmen	Choo Reflec Establi -Case t", 6 th	ose a t on the shing studies Edition	Survej e Resu the Ar s. n, McC ew Del	ot Testing- y Format- ilts and the <b>9</b> chitecture- <b>Total: 45</b> Graw- Hill, lhi, 2009.

4. Pugh Stuart, "Total Design: Integrated Methods for successful Product Engineering", Addison Wesley Publishing, New York, 1991.

COURSE OUTCOMES: BT Mapped					
On completion of the course, the students will be able to			(Highest Level)		
CO1: demonstrate product development process and organization			Understanding (K2)		
CO2: develop	2: develop a product planning process for new products		Applying (K3)		
CO3: examin	examine specifications of a product and generate concept for new products		ts Analyzing (K4)		
CO4: select s	select suitable product concept so that, the product will compete in a market		ket Applying (K3)		
CO5: develop	velop product architecture, to enable easy manufacturing of product		Applying (K3)		
CO6: demons	trate product development proces	ss and organization	Understanding (K2)		
Mapping of COs with POs					
COs/POs	COs/POs PO1 PO2 PO3		PO3		
CO1	2	3	2		
CO2	3	3	2		
CO3	3	2	3		
CO4	CO4 2 2		3		
CO5	3 2		3		
CO6	6 2 3		2		
1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy					