VISION

To be a centre of excellence for development and dissemination of knowledge in Applied Sciences, Technology, Engineering and Management for the Nation and beyond.

MISSION

We are committed to value based Education, Research and Consultancy in Engineering and Management and to bring out technically competent, ethically strong and quality professionals to keep our Nation ahead in the competitive knowledge intensive world.

QUALITY POLICY

We are committed to

- Provide value based quality education for the development of students as competent and responsible citizens.
- Contribute to the nation and beyond through research and development
- Continuously improve our services

DEPARTMENT OF EEE

VISION

To be a centre of excellence for development and dissemination of knowledge in Electrical and Electronics Engineering to benefit the society in the national and global level.

MISSION

Department of Electrical and Electronics Engineering is committed to:

- MS1: Develop innovative, competent, ethical and quality engineers to contribute for technical advancements to meet societal needs.
- MS2: Provide state-of-the-art facilities for continual improvement in teaching-learning process and research activities.
- MS3: Enrich the knowledge and skill of the students to cater to the industrial needs and motivate them to become entrepreneurs.

2018 REGULATIONS

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

Graduates of Applied Electronics will

- PEO1: Apply fundamental knowledge of electronics in related fields to succeed in professional and research career.
- PEO2: Design, simulate, analyze and develop electronics engineering based products that are cost efficient, reliable and safe.
- PEO3: Exhibit proficiency, ethical outlook, communication skills and adopt to current trends through lifelong learning.

MAPPING OF MISSION STATEMENTS (MS) WITH PEOS

MS\PEO	PEO1	PEO2	PEO3
MS1	3	3	2
MS2	2	2	2
MS3	3	3	3
1 01' 1			· —

1 - Slight, 2 - Moderate, 3 - Substantial, BT - Bloom's Taxonomy

	PROGRAM OUTCOMES (POs)
Post Gi	aduates of Applied Electronics will have
PO1	An ability to independently carry out research /investigation and development work to solve practical problems
PO2	An ability to write and present a substantial technical report/document
PO3	An ability to demonstrate a degree of mastery over the area of applied electronics.

MAPPING OF PEOs WITH POs

PEO\PO	PO1	PO2	PO3
PEO1	3	1	2
PEO2	3	1	3
PEO3	3	2	3

1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy

CURRICULUM BREAKDOWN STRUCTURE UNDER REGULATION 2018

Curriculum Breakdown Structure(CBS)	Curriculum Content (% of total number of credits of the program)	Total number of contact hours	Total number of credits
Program Core(PC)	41.66	495	30
Program Electives(PE)	25	270	18
Humanities and Social Sciences and Management Studies(HSMS)	5.55	60	4
Project(s)/Internships(PR)/Others	27.77	600	20
	Total		72

Semes ter			Theory/ Theory cum P	ractical / Practical			Internship & Projects	Special Courses	Credits
	1	2	3	4	5	6	7	8	9
I	18AMT14 Advanced Mathematics for Electrical Engineers (HS-3-1-0-4)	18PET11 System Theory (PC-3-1-0-4)	18AET11 Modern Digital Signal Processing (PC-3-1-0-4)	18AET12 CMOS VLSI Design (PC-3-0-0-3)	18AET13 Computational Intelligence Techniques (PC-3-0-0-3)	18AEC11 Embedded Systems (PC-3-0-2-4)			22
П	18AEC21 Design of Analog Integrated Circuits (PC-3-0-2-4)	18AEC22 Digital System Design (PC-3-0-2-4)	18VLE03 Low Power Design of VLSI Circuits (PC-3-1-0-4)	Elective-I (Professional) (PE-3-0-0-3)	Elective-II (Professional) (PE-3-0-0-3)	Elective-III (Professional) (PE-3-0-0-3)	18AEP21 Mini Project (PR-0-0-4-2)		23
III	Elective-IV (Professional) (PE-3-0-0-3)	Elective-V (Professional) (PE-3-0-0-3)	Elective-VI (Professional) (PE-3-0-0-3)	-	-	-	18AEP31 Project Work - Phase I (PR-0-0-12-6)		15
IV	-	-	-	-	-	-	18AEP41 Project Work – Phase II (PR-0-0-24-12)		12

KEC R2018: SCHEDULING OF COURSES – ME APPLIED ELECTRONICS

Total Credits: 72

M.E. DEGREE IN APPLIED ELECTRONICS

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

SEMESTER – I

Course	Course Title	Hours / Week			Cradit	Maximum Marks			CBS
Code	Course Thie	L	Т	Р	crean	CA	ESE	Total	CDS
	Theory/Theory with Practical								
18AMT14	Advanced Mathematics for Electrical Engineers	3	1	0	4	50	50	100	HS
18PET11	System Theory	3	1	0	4	50	50	100	PC
18AET11	Modern Digital Signal Processing	3	1	0	4	50	50	100	PC
18AET12	CMOS VLSI Design	3	0	0	3	50	50	100	PC
18AET13	Computational Intelligence Techniques	3	0	0	3	50	50	100	PC
18AEC11	Embedded Systems	3	0	2	4	50	50	100	PC
	Total				22				

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

M.E. DEGREE IN APPLIED ELECTRONICS

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

SEMESTER – II

Course	Course Title		lours Weel	s / K	Cradit	Maximum Marks			CBS
Code	Course The	L	Т	Р	Creun	CA	ESE	Total	CDS
	Theory/Theory with Practical								
18AEC21	Design of Analog Integrated Circuits	3	0	2	4	50	50	100	PC
18AEC22	Digital System Design	3	0	2	4	50	50	100	PC
18VLE03	Low Power VLSI Design	3	1	0	4	50	50	100	PC
	Elective - I	3	0	0	3	50	50	100	PE
	Elective - II	3	0	0	3	50	50	100	PE
	Elective - III	3	0	0	3	50	50	100	PE
	Practical								
18AEP21	Mini Project	0	0	4	2	100	0	100	PR
	Total				23				

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

M.E. DEGREE IN APPLIED ELECTRONICS

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

SEMESTER ·	– III
------------	-------

Course	Course Title	Hours / Week			Cradit	Maximum Marks			CBS
Code	Course The	L	Т	Р	crean	CA	ESE	Total	CDS
	Theory/Theory with Practical								
	Elective - IV	3	0	0	3	50	50	100	PE
	Elective - V	3	0	0	3	50	50	100	PE
	Elective - VI	3	0	0	3	50	50	100	PE
	Practical								
18AEP31	Project Work Phase I	0	0	12	6	50	50	100	PR
	Total		•		15				

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

M.E. DEGREE IN APPLIED ELECTRONICS

CURRICULUM

(For the candidates admitted from academic year 2018-19 onwards)

SEMESTER – IV

Course Code	Course Title	Hours / Week			Credit	Maximum Marks			CBS
		L	Т	Р	Creun	CA	ESE	Total	CDS
	Practical								
18AEP41	Project Work Phase II	0	0	24	12	50	50	100	PR
	Total				12				

CA - Continuous Assessment, ESE - End Semester Examination, CBS - Curriculum Breakdown Structure

Total Credits: 72

	LIST OF PROFESSIONAL ELECTIVES							
Course	Correct Title	Ho	urs/W	/eek	C 1'4	CDC		
Code	Course Thie	L	Т	Р	Creat	CBS		
	SEMESTER II							
18PEE02	Optimal Control Theory	3	1	0	4	PE		
18VLT21	VLSI Signal Processing	3	0	0	3	PE		
18COE04	Electromagnetic Interference and Compatibility	3	0	0	3	PE		
18AEE01	Data Communication Networks	3	0	0	3	PE		
18AEE02	Non-Conventional Energy Systems	3	0	0	3	PE		
18AEE03	Programmable Logic Controllers	3	0	0	3	PE		
18AEE04	Bio-Medical Signal Processing	3	0	0	3	PE		
18AEE05	High Performance Communication Networks	3	0	0	3	PE		
18AEE06	Programmable Digital Signal Processors	2	0	2	3	PE		
	SEMESTER III							
18MTE13	MEMS Design	3	0	0	3	PE		
18COE13	Digital Image Processing and Multi Resolution Analysis	3	0	0	3	PE		
18VLT12	Device Modeling	3	0	0	3	PE		
18MSE18	Design and Analysis of Algorithms	3	0	0	3	PE		
18MSE19	Internet Technologies	3	0	0	3	PE		
18CIE15	Virtual Instrumentation for Industrial Applications	3	0	0	3	PE		
18AEE07	Energy Conservation, Management and Auditing	3	0	0	3	PE		
18AEE08	Project Management	3	0	0	3	PE		
18AEE09	Wavelet Transforms and its Application	3	0	0	3	PE		
18AEE10	SCADA and DCS	3	0	0	3	PE		
18AEE11	Industrial Electronics	3	0	0	3	PE		

	18AMT14 ADVANCED MATHEMATICS FOR ELECTRICAL	ENG	INEEI	RS	
	(Common to Applied Electronics & Power Electronics and Drive		T	Р	Credit
		<u> </u>	1	0	4
Preamble	This course will help the students to identify, formulate and engineering using mathematical tools from a variety of mathematical theory, calculus of variations, queuing theory and linear program	solve atical a	proble areas, i	ms in ncludi	electrical ng matrix
Prerequisite	Calculus and Probability				
UNIT – I					9
Advanced I factorization matrices and	fatrix Theory: Matrix factorizations – LU decomposition – The Cl – Least squares method – Generalized inverses – Singular valu Circulant matrices.	holesk e dec	y deco omposi	mposit tion –	tion – QR - Toeplitz
UNIT – II					9
Calculus of – Variationa derivatives – Ritz meth	Variations: Concept of variation – Euler equation – Variational pro- l problems involving several unknown functions – Functional invo Functional involving several independent variables – Isoperimetric d – Kantorowich method.	oblems olving c prob	with f first an lems –	ixed b nd seco Direct	oundaries ond order t methods
	1				
UNIT – III Stachastia	Processo Definition Classification of Stachastic Processos	Maril	Ch	ain r	9
Probability Markov Cha	Matrices – Chapman Kolmogorov Equations - Classification of ins – Poisson Process - Birth and Death Processes.	State	s - Co		ous Time
IINIT _ IV					0
Queuing M Interference	odels: Markovian queues – Single and Multi-server Models – Model - Non- Markovian Queues – Pollaczek Khintchine Formula.	Little'	s form	ula –	Machine
UNIT – V					9
UNIT – V Linear Pro method –Tr	gramming: Formulation – Graphical solution – Simplex method – nsportation and Assignment Problems.	Big N	1 meth	od - T	9 wo phase
UNIT – V Linear Pro method –Tr	gramming: Formulation – Graphical solution – Simplex method – nsportation and Assignment Problems. Lectur	Big N e:45, '	1 meth Futori	od - T al:15,	9 wo phase Total: 60
UNIT – V Linear Pro method –Tr REFEREN	gramming: Formulation – Graphical solution – Simplex method – nsportation and Assignment Problems. Lectur CES:	Big N e:45, '	1 meth Futori	od - T al:15,	9 wo phase Total: 60
UNIT – V Linear Pro method –Tr REFEREN 1. Richar	gramming: Formulation – Graphical solution – Simplex method – nsportation and Assignment Problems. Lectur CES: Bronson, "Matrix Operations", 2 nd Edition, Schaum's Outline Series, N	Big M e:45, ' McGra	1 meth Futori w Hill,	od - T al:15, 2011.	9 wo phase Total: 60
UNIT – V Linear Pro method –Tr REFEREN 1. Richar 2. Gupta Delhi,	gramming: Formulation – Graphical solution – Simplex method – nsportation and Assignment Problems. Lectur CES: Bronson, "Matrix Operations", 2 nd Edition, Schaum's Outline Series, N A.S., "Calculus of Variations with Applications", 12 th Edition, Prentice 2015.	Big M e:45, ' McGra e Hall	I meth Futori w Hill, of Indi	od - T al:15, 2011. a Pvt.	9 wo phase Total: 60 Ltd., New
UNIT – V Linear Pro method –Tr REFEREN 1. Richar 2. Gupta Delhi, 3. Roy D Electri	gramming: Formulation – Graphical solution – Simplex method – nsportation and Assignment Problems. Lectur CES: Bronson, "Matrix Operations", 2 nd Edition, Schaum's Outline Series, N A.S., "Calculus of Variations with Applications", 12 th Edition, Prentice 2015. Yates and David J. Goodman, "Probability and Stochastic Processes al and Computer Engineers", John Wiley & Sons, 2005.	Big M e:45, ' McGra e Hall – A fi	1 meth Futori w Hill, of Indi riendly	od - T al:15, 2011. a Pvt. Introd	9 wo phase Total: 60 Ltd., New uction for

COU	BT Mapped							
On con	mpletion of	the course, the students will b	e able to	(Highest Level)				
CO1:	apply mat	trix computations in signal pro	cessing	Applying (K3)				
CO2:	solve vari	ational problems that occur in	electrical engineering discipline	Evaluating (K5)				
CO3:	use discre	ete time Markov chains to mod	el computer systems	Applying (K3)				
CO4:	exposing	the basic characteristic feature	s of a queuing system and acquire skill	s in Applying (K3)				
	analyzing	queuing models						
CO5:	develop a	fundamental understanding of	linear programming models	Evaluating (K5)				
		Маррі	ng of COs with POs					
CC	Ds/POs	PO1	PO2	PO3				
(CO1	2						
(CO2	2						
CO3		1						
(CO4 1							
(CO5 2							
1 – Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy							

	18PET11 SYSTEM THEORY					
	(Common to Power Electronics and Drives & Applied Electronics	bran	ches)			
		L 3	1 1	P 0	Credit A	
Preamble	The aim of the subject is to give an adequate exposure to Z-P analysis and State Feedback Control	lane,	State	Space,	4 Stability	
Prerequisites	Control Systems					
UNIT – I					9	
Introduction t signals - Time domain represe circuits-Practica	b Digital Control System: Elements of Digital control system - Cla domain models for discrete time systems. Sampling and reconstruc- ntation of sampling theorem - Nyquist rate, Aliasing. Mathematica al aspects of choice of sampling rate.	assific ction 1 moc	cations of sign del of s	of disc als - F sample	requency and hold	
UNIT – II					9	
Z-Plane Analy and z plane - D transform - Dig	sis of Discrete-Time Control Systems: Review of Z transform - R bifference equation representation of discrete time system - Pulse tra ital PID controllers - Zeigler - Nichols tuning method.	elationsfer	onship functi	betwee on - M	n s plane odified Z	
UNIT – III					9	
State Space And model to discr autonomous sy systems.	nalysis and its Solution: Review of state space representation - Co ete state model - State diagram - Solution of discrete time state stems - State transition matrix - Controllability and Observabilit	nvers e moo y - N	ion of del: au Multi y	continu tonomo variable	ous state ous, non- discrete	
UNIT – IV 9 State Feedback Control: Design of state feedback controller - Design of reduced and full order observers - Steady state error in state space - PI feedback - Digital compensator design - Digital filter properties - Kalman"s filter.						
IINIT V					0	
UNIT – V 9 Stability Analysis: BIBO stability - Effect of sampling rate on stability - Jury's stability test - Root Locus analysis - Asymptotic stability - Liapunov Stability Analysis of discrete time systems: Linear and Non-linear systems - Direct, Indirect method - Construction of Liapunov energy function.						
DEEDENIGT	Lecture	45,]	Futoria	al: 15, '	Total: 60	
REFERENCE1.Gopal M.2012.	8: , "Digital Control and State Variable Methods", 4 th Edition, Tata	McC	Graw H	lill, Ne	ew Delhi,	
2. Kuo B.C.,	"Digital Control Systems", 2 nd Edition, Oxford University Press, 20	12.				
3. Ogata K.,	"Discrete Time Control Systems", 2 nd Edition, Prentice Hall, New Je	ersey,	2011.			

COUF	BT Mapped					
On cor	mpletion of	(Highest Level)				
CO1:	explain the	e basic concepts in digital contro	ol system	Understanding (K2)		
CO2:	analyze th	e discrete time control system by	y using Z-plane	Applying (K3)		
CO3:	develop th	ne mathematical model of linear	r discrete-time control systems using	Understanding (K2)		
	transfer fu	nctions and state-space models				
CO4:	analyze tr	ansient and steady-state behav	viors of linear discrete-time control	Applying (K3)		
	systems					
CO5:	design co	ntrollers for linear discrete-tim	e control systems as per the design	Applying (K3)		
	criteria					
		Mappir	ng of COs with POs			
CC	Os/POs	PO1	PO2	PO3		
(CO1	3		2		
(CO2	2		3		
CO3		2		2		
CO4		2		3		
CO5 2 2		3				
1 - Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy					

	18AET11 MODERN DIGITAL SIGNAL PROCESS	ING						
		L	Т	Р	Credit			
		3	1	0	4			
Preamble	Preamble To introduce the fundamental concepts, principles and applications of Random signal, Multirate and Sparse signal processing techniques.							
Prerequisites	Digital Signal Processing							
UNIT – I					9			
Discrete Rand Gaussian proce spectrum. Pars	Som Signal Processing: Discrete time random process - Random process - Stationary process - The auto covariance and autocorrelation material's theorem -Wiener Khintchine relation- Filtering random proce	process atrices ss - Sp	: Ense – Whit ectral f	emble te nois factoriz	averages- e - power zation.			
UNIT – II					9			
Filters: The Fl Causal IIR Wie	R Wiener filter - Filtering - Linear prediction - IIR Wiener Filter - Nener filter. Adaptive Filter: Concepts of adaptive filter - FIR adaptive	lon cau filter	ısal IIF - LMS	R Wier algori	ner filter - thm			
UNIT – III					9			
Multirate Di Decimation by conversion - D conversion.	gital Signal Processing: Mathematical description of sampling integer factor - Sampling rate conversion by rational factor - Fil pirect form FIR structures - Polyphase structures - Multistage impl	g rate ter des ements	- Int sign fo ation o	terpola r samj f samj	pling rate pling rate			
IINIT _ IV					Q			
Uniform and	Two Channel Filter Banks and Applications of DSP: Digital	Filter	Banks	- Two	o-channel			
Quadrature M filtering techni	rror Filter Bank - M-Channel QMF Bank. Applications: Noise que - Sub band coding of speech signals - Design of decimation and	cancel interpo	lation plation	using filters.	adaptive			
UNII – V Sporge Signal	Propaging: Sparsa Signal Danmagantation Introduction Sparsa si	anala	Comp	rossibl	9			
Over complete Sensing in the	dictionaries - Coherence between the bases - Compressed sensing presence of noise - Restricted isometry property.	g and s	signal 1	recons	truction -			
	Lectur	re:45, 🛛	Futori a	al:15, '	Total: 60			
REFERENCE	lS:							
1. Hayes Me	onson H., "Statistical Digital Signal processing and Modeling", John	Wiley	& Son	s Inc.,	1996.			
2. Proakis John G., and Manolakis Dimitris G., "Digital Signal Processing: Principles Algorithms and Applications", PHI, 2006.								
 If a characterization of the second se								
4. Dionitris Spectral Internatio	G. Manolakis, Vinay K. Ingle, Stepen M. Kogon, "Statistical and Estimation, Signal Modeling, Adaptive Filtering and Array nal Edition, 2000.	Adapt Proce	ve Sig ssing"	gnal Pr , McC	rocessing, Graw-Hill			
5. Soman K Publisher	.P., and Ramanathan R., "Digital Signal and Image Processing - , 2012.	The S	parse	Way",	, Elseveir			

COURSE OUTCOMES:					BT Mapped		
On completion of the course, the students will be able to					(Highest Level)		
CO1:	illustrate t	he concepts and principles of rat	ndom signal processing		Understanding (K2)		
CO2:	design var	ious filters for noise removal			Applying (K3)		
CO3:	describe th	ne concepts and principles of mu	iltirate digital signal processing		Understanding (K2)		
CO4:	explain th	e concepts and principles of two	o channel, multichannel filter ba	nks and	Applying (K3)		
	design dec	cimation and interpolation filters	for real time application				
CO5:	illustrate t	he concepts and principles of sp	are signal processing		Understanding (K2)		
		Mappi	ng of COs with POs				
CC	Ds/POs	PO1	PO2		PO3		
(CO1	3			2		
(CO2	3			2		
(CO3	3		2			
CO4 3		3			1		
CO5 2		2			1		
1 - Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy						

	18AET12 CMOS VLSI DESIGN				
		L	Т	Р	Credit
		3	0	0	3
Preamble	To understand the basic concepts of CMOS VLSI circuits using log	gic des	ign, pł	ysical	structure
	and fabrication of semiconductor devices and to build system	ns for	effici	ent V	LSI data
	processing.				
Prerequisites	VLSI Design				
UNIT – I					9
VLSI Design MOS Transisto Design equation characteristics.	Process and Basic CMOS: VLSI Design Process – Types of AS rs – CMOS Logic – NMOS and PMOS transistors - Threshold vo ns – Second order effects – MOS models – CMOS inverter DC chara	ICs – oltage - acterist	ASIC – Body tics – S	Design effec Small s	n Flow – t – MOS ignal AC
UNIT – H					0
CMOS Proces	sing Technology: Silicon semiconductor technology – Wafer proces	sing –	Oxida	tion –	Selective
Diffusion – Sil	icon Gate Process. CMOS technology: Nwell – Pwell process – Tw	vin tut	proce	ess – S	ilicon on
insulator - CM	OS process enhancement – Stick Diagram – Layout Diagram – Layo	ut desi	gn rul	es.	
UNIT – III					9
Circuit Chara	cterization and Performance Estimation: Resistance estimation	– Cap	acitan	ce esti	mation –
Switching char	acteristics – CMOS gate transistor sizing – Power Consumption–	Charge	shari	ng – S	caling of
	8				
UNIT – IV					9
CMOS Logic	Circuit Design: CMOS Logic Structures – CMOS Combinational I	Logic (Circuit	s: Stati	ic CMOS
Design – Dyna	mic CMOS design. CMOS Sequential Logic Circuits: Timing Mo	etrices	– Sta	tic Lat	ches and
Registers – Dyr	namic Latches and Registers				
					<u>_</u>
UNIT – V					9
CMOS Subsys RAM cell Desi	tem Design: Adders – Binary Counters – Multipliers – Data Path c gn – ROM cells – PLA Design.	ircuits	– Stat	ic and	Dynamic
				,	Total: 45
REFERENCE	S:				
1. Neil H.E. Pearson E	Weste, "CMOS VLSI Design: A Circuits and Systems Perspective ducation, 2012.	ve" (F	or VT	U), 3 ^{rc}	¹ Edition,
2. Albert Ra	A., and Latha T., "VLSI Design", 3rd Edition, PHI Learning Pvt. Lt	d., 201	1.		
3. Smith M.J	.S., "Application Specific Integrated Circuits", Pearson Education, 1	997.			
4. Wolf Way	rne, "Modern VLSI Design–System on chip Design", 3rd Edition, Pre	entice l	Hall In	c., 200)2.

COUI	BT Mapped					
On co	On completion of the course, the students will be able to					
CO1:	understand	d VLSI design flow and CMOS t	transistor characteristics	Understanding (K2)		
CO2:	explain di	fferent fabrication technologies f	for CMOS transistors	Understanding (K2)		
CO3:	estimate th	ne various CMOS circuit parame	eters	Applying (K3)		
CO4:	construct	various logic structures in CMOS	S circuits	Applying (K3)		
CO5:	examine v	arious CMOS subsystems		Analyzing (K4)		
		Mappin	ng of COs with POs			
CC	Os/POs	PO1	PO2	PO3		
(CO1	2	1	3		
(CO2	2	1	2		
(CO3	3	1	3		
(CO4 3			2		
CO5 2 1 3						
1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy						

18AET13 COMPUTATIONAL INTELLIGENCE TECHNIQUES							
		L 2	<u> </u>	<u>P</u>	Credit		
Preamble	This course serves as a guide to explore computer method		and	u algorit	hms that		
Treamore	improves automatically through experience.	uology	unu	uigoin	inns that		
Prerequisites	Numerical methods						
UNIT – I					9		
Artificial Neu	ral Networks: Introduction to Soft computing – Neural Netw	vorks	– Moo	lel – a	activation		
functions – arc	hitecture – Supervised learning – Perceptrons – Adaline and M	ladalir	e - Ba	ack pro	opagation		
algorithm – R	adial Basis Function Networks – Unsupervised Learning and	Othe	r Neu	al Ne	tworks –		
Hebbian Learni	arning Networks – Kononen Sen Organizing Networks – Lea	rning	vector	Quan	Ization –		
medolali Lealin	ng.						
UNIT – II					9		
Fuzzy Logic:	Fuzzy Sets – Basic Definition and Terminology – Set theoreti	ic oper	ations	– Me	mbership		
function formu	ation and parameterization - Extension principle and Fuzzy Rela	ations-	Fuzzy	if-the	n Rules –		
Fuzzy Reasonin	ng – Fuzzy Inference Systems – Mamdani Fuzzy Models –Sugeno	o Fuzz	y Mod	els –Ts	sukamoto		
Fuzzy Models -	- Input Space Partitioning - Fuzzy Modeling.						
TINITT III					<u> </u>		
UNII – III Ontimization	Techniques. Derivative based Ontimization: Descent Method	c _Th	o Mot	nod of	9 steenest		
Descent – Clas	sical Newton's Method – Step Size Determination – Derivative	e free	Optimi	zation	: Genetic		
Algorithms – S	imulated Annealing – Particle swarm Optimization - Ant colony	optimi	zation.	Zution	· Senere		
U							
UNIT – IV					9		
Neuro Fuzzy	Modeling: Adaptive Neuro Fuzzy Inference Systems – Arcl	hitectu	re – I	Iybrid	learning		
Algorithm –lea	rning methods that Cross-fertilize ANFIS and RBFN – Coacti	ve Ne	uro fuz	zy Mo	odeling –		
Framework – N	euron Functions for Adaptive Networks – Neuro Fuzzy spectrum	1.					
IINIT – V					0		
Applications:	Printed Character Recognition – Inverse kinematics Proble	em –	Appli	cations	of soft		
computing tech	iniques for power electronics: MPPT - Speed control for elec	trical	machi	nes - I	Harmonic		
elimination tecl	niques in power converters.						
				,	Total: 45		
REFERENCE	S:						
1. Jang J.S.F	a., Sun C.T., and Mizutani E., "Neuro-Fuzzy and Soft Computin	ig", PF	II, Pea	rson E	ducation,		
2004.	V = 1			1 4 1			
2. Laurene V	- Fausett, Fundamentals of Neural Networks: Architectures, Al	Igorith	ms and	i Appi	ications,		
3 Timothy I	Ross "Fuzzy Logic with Engineering Applications" Wiley Ind	ia					
4 David E	Goldberg "Genetic Algorithms: Search Optimization and N	lachine	e Lear	ning"	Addison		
Wesley. N	ew York, 1989.		, Loui	₅ ,	1 14415011		
5. Bimal K.	Bose, "Neural Network Applications in Power Electronics and M	lotor E	Prives-	An Int	roduction		
and Persp	ective", IEEE Transactions on Industrial Electronics, Vol.54,	Issue:	1, pp	14-33	February		
2007.					-		
6. Whei-Mir	Lin, Chih-Ming Hong and Chiung-Hsing Chen, "Neural Netwo	rk Bas	ed MP	PT Co	ntrol of a		
Stand Alc	ne Hybrid Power Generation System", IEEE Transactions on	Powe	r Elec	tronics	, Vol.26,		
Issue: 12,	pp.35/1 – 3581, December 2011.						

COU	RSE OUTO		BT Mapped				
On con	mpletion of	(Highest Level)					
CO1:	interpret	and analyze various artificial n	eural networks		Understanding (K2)		
CO2:	examine t	he concepts of fuzzy systems			Analyzing (K4)		
CO3:	gain fun	damental knowledge on o	ptimization techniques and	its	Understanding (K2)		
	implemen	tation procedures					
CO4:	illustrate	various hybrid topology of neur	o fuzzy system		Understanding (K2)		
CO5:	develop s	suitable soft computing technique	ue on real time systems		Applying (K3)		
		Mappin	ng of COs with POs				
CC	Os/POs	PO1	PO2		PO3		
(CO1	2	1		2		
(CO2	3			2		
(CO3	3			2		
CO4 2 1			3				
CO5 3 2				2			
1 - Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy						

	18AEC11 EMBEDDED SYSTEMS				
		L	Т	Р	Credit
		3	0	2	4
Preamble	To comprehend the microcontroller family and its programming controlling a real time embedded system. Further, this course is air concepts of Real time operating system.	conce med at	pts for impar	desig ting th	gning and le various
Prerequisites	Microprocessors and Microcontrollers				
UNIT – I					9
Introduction:	Introduction to Embedded systems - Von Neumann and Harva	ard ar	chitect	ure –	Need of
Microcontroller	rs – selection criterion. PIC Microcontroller 16F87X: Architecture –	Featur	res – R	lesets -	-Memory
Organisations:	Program Memory, Data Memory – Instruction Set – Simple program	ns usir	ng Asso	embly	language
Instruction sets	– Interrupts.				
IINIT – II					0
Physical Inte	rface Support Using PIC: PIC Peripherals – I/O Par	allel	Ports	— Т	imers –
Capture/Compa	re/PWM (CCP) Modules - Control registers – Serial ports – Mas	ster Sy	nchror	nous s	erial Port
$(MSSP)$ in I^2C	mode and in SPI mode - USART - Interfacing of PIC: Analog-te	o-digita	al Con	verter	(ADC) –
Registers assoc	iated with the peripherals – Initializing the Peripheral modules using	Assen	nbly la	nguag	e.
UNIT - III		<u>a</u>	1 •	. 1	9
Arm Processo	r And Programming: General concepts - ARM/ - Instruction	Set A	rchitec	ture, I	Levels in
nipelining Inst	functional description - processor and memory organization - introd	$\frac{1}{2}$	to KIS ta alig	nment	and byte
ordering – Sim	ble programs using Assembly language Instruction sets	28 - Da	aa ang	minem	and byte
UNIT – IV					9
Embedded Pro	ogramming: Programming in Assembly Language (ALP) Vs High	level l	anguag	ge – C	Program
elements, Macr	os and Functions – Use of pointers – NULL pointers – use of funct	ion cal	ls - M	lultiple	e function
calls in a cyclic	c order in the main function pointers – Function queues and interrup	pt Serv	vice Ro	outines	queues -
pointers. C prog	gram compilers – Cross compiler – optimization of memory codes.				
IINIT – V					9
Real-Time Op	erating Systems and Design: Introduction - RTOS Necessity - Op	erating	svstei	n serv	vices –I/O
subsystems $-N$	letwork operating systems –Interrupt Routines in RTOS Environme	ent – R	TOS 1	Fask so	cheduling
models – IEEE	standard POSIX functions for standardization of RTOS and inter-ta	isk con	nmunio	cation	functions
- Fifteen point	strategy for synchronization between processors, ISRs, OS Function	ons and	l Task	s – OS	S security
issues - Embed	ded system design and Co-Design Issues in System Development p	rocess	– Des	ign cy	cle in the
development pl	ase for an embedded system –Issues in Embedded System Design.				
					
List of Exercis	es / Experiments :				
1. Study of Pl	16F8X Microcontroller kit.				
2. ALP for all	unneuc operations using PIC16F8/A.				
5. ALP for I/C	port access using PIC10F8/A.				
4. C programm	ning Senal for I/O port access using PIC16F8/X.				
5. C programm	ning for Parallel I/O port access using PIC16F8/X.				

6. C programmi	6. C programming for Display Interfacing using PIC16F87X.					
7. C programmi	ng for Rolling Display Interfacin	g using PIC16F87X.				
8. C programming for Timer/RTC Interfacing using PIC16F87X.						
9. C programmi	ng for Memory Interfacing using	PIC16F87X.				
10. C programmi	ng for Stepper Motor Interfacing	using PIC16F87X.				
		Lectur	re:45,	Practical:30, Total: 75		
REFERENCES:						
1. Ajay V. Des	hmukh, "Microcontrollers: Theo	ory and Applications", Tata McG	raw H	lill, New Delhi, 2007.		
2. Raj Kamal,	"Embedded Systems Architectur	re, Programming and Design", Ta	ata Mo	Graw-Hill, New Delhi,		
2007.						
3. Wayne Wo	lf, "Computers as Components	: Principles of Embedded Con	nputin	g System Design", 2 nd		
Edition, Mo	rgan Kaufman Publishers, San F	rancisco, 2001.				
4. Vahid Frank	and Givargi Tony, "Embedded	System Design: A Unified Hardy	ware/S	Software Introductions",		
John Wiley	& Sons, New York, 2001.					
5. Packages: IV	IPLAB IDE, WINATALK, PICO	_ Compiler		DT Manad		
On completion of	CMES:	able to		BI Mapped (Highest Level)		
CO1 illustrate	the basic architecture and dem	onstrate the interfacing concept	ts of	Understanding (K2)		
PIC16 mi	crocontroller	onstrate the internating concept	15 01	Onderstanding (182)		
CO2: apply the	e programming skills for per	ripheral interfacing and real	time	Applying (K3)		
applicatio	ns					
CO3: illustrate	the basic architecture and dem	onstrate the interfacing concept	ts of	Understanding (K2)		
ARM pro	cessor					
CO4: develop,	analyze and demonstrate the	use of embedded C programm	ning	Understanding (K2)		
concepts						
CO5: apply the various sc	concepts of RTOS and real- oftware programs	time systems design technique	es to	Applying (K3)		
CO6: develop the	he assembly language program	to perform arithmetic operations	and	Applying (K3),		
I/O data ti	ransfer applications			Articulation (S4)		
CO7: make use	of the C programming concep	ts for performing serial and par	allel	Applying (K3),		
I/O comm	unications.			Manipulation (S2)		
CO8: build C p	rogramming for interfacing men	nory, timing and display devices	and	Applying (K3),		
apply the	techniques for controlling the St	epper motor		Manipulation (S2)		
		ng of COs with POs		DO2		
		P02		P03		
01	3			2		
CO2	3			2		
CO3	3			3		
CO4	CO4 3 3					
<u>CO5</u> <u>3</u> <u>2</u>						
CO6	CO6 3 2					
CO7	3			2		
CO8	3			2		
1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy						

18AEC21 DESIGN OF ANALOG INTEGRATED CIRCUITS L Т Р Credit 3 0 2 4 Preamble To inculcate the design knowledge of analog integrated circuits in terms of modeling and configuring amplifiers, filters, multipliers, and data converters. **Electronic Circuits** Prerequisites UNIT – I 9 Integrated Circuits, Device Models and Measurement of Model Parameters: Introduction to Analog Device Design – Depletion region of a PN junction- DC, Small Signal and High Frequency Model for Diode, BJT and MOS Transistor - Measurement of Model Parameters - Switches, Active resistors. 9 UNIT – II Circuit Configuration of IC and Current Sources and Sinks, Current Mirrors: Circuit configuration of IC- Simple, Wilson, Cascade current sources, Voltages and Current References-Band gap voltage references. 9 UNIT – III Basic Analog Amplifiers and Differential Amplifiers: MOS inverting amplifier, improving the performance of inverting amplifier - CMOS Differential amplifiers - Characteristics of Operational amplifiers Types: Two stage CMOS- Cascade- Folded cascade- Transconductance amplifiers. UNIT - IV9 Filters, Comparators, Multipliers and Mixed Signal IC: Lowpass filters, High pass filters, Band pass filters, Switched Capacitor filters, comparators, and multipliers - Introduction to mixed signal IC. $\mathbf{UNIT} - \mathbf{V}$ 9 Data Converters: Data Converter fundamentals, DAC Architectures: Current Switched, Resistive, Charge redistribution, Hybrid, Segmented D/A Converters. ADC architectures: Flash, Integrating, Successive Approximation and folding A/D Converters. Over sampling Converters. Lecture :45, Practical:30, Total: 75 List of Exercises / Experiments : 1. Simulation of Current Mirror and DesignPCB layout using ORCAD 2. Simulation of Wein Bridge Oscillators and DesignPCB layout using ORCAD 3. Simulation of a differential amplifier circuit and Design PCB layout using ORCAD 4. Simulation of filter circuit using MATLAB\ORCAD 5. Simulation/Implementation of data converters using MATLAB/ORCAD **REFERENCES / MANUALS / SOFTWARES:** Paul R. Gray, Paul J. Hurst, Stephen H. Lewis, Robert G. Meyer, "Analysis and Design of Analog 1. Integrated Circuits", 5th Edition, John Wiley & Sons, New York, 2001. Allen Phillips E., and Holberg Douglas R., "CMOS Analog Circuit Design", 2nd Edition, Oxford 2. University Press, Oxford, 2003. Johns David A., and Martin Ken, "Analog Integrated Circuit Design", John Wiley & Sons, NewYork, 3. 2002. Randall L. Geiger, Phillips E. Allen, Noel R. Strader, "VLSI Design Techniques for Analog and Digital 4. Circuits", McGraw Hill International Editions, 1990.

COURSE OUTCOMES:					BT Mapped	
On con	On completion of the course, the students will be able to					
CO1:	explain the	Understanding (K2)				
CO2:	analyze tra	ansistor current mirrors and vol	tage & current references		Applying (K3)	
CO3:	comprehe	nd basic analog and differentia	1 Amplifiers		Applying (K3)	
CO4:	demonstra	te filters, comparators and mult	tipliers		Applying (K3)	
CO5:	determine	the architecture of data convert	ters		Applying (K3)	
CO6:	develop c	urrent mirror and differential	amplifier circuit and simulate	e using	Applying (K3),	
	software				Manipulation (S2)	
CO7:	build and	assess the performance of oscil	lator and simulate using softwa	re	Evaluating (K5),	
					Manipulation (S2)	
CO8:	implemen	t and test filter, data converters	and simulate using software		Applying (K3),	
					Manipulation (S2)	
		Mappir	ng of COs with POs			
CC	Os/POs	PO1	PO2		PO3	
(CO1	3			2	
(CO2	3			2	
(CO3	3	1	2		
(CO4	2			3	
(CO5	2			3	
CO6			3			
(CO7 3		2			
(CO8				3	
1 – Sli	ght, $2 - Mc$	oderate, 3 – Substantial, BT -	Bloom's Taxonomy			

18AEC22 DIGITAL SYSTEM DESIGN

		3	0	2	4	
Preamble	To design a complete digital system and implement using variou	s FPG	A proc	cessors	. Further,	,
	this course is aimed at analyzing and diagnosing various faults in	volved	in the	digital	system.	
Prerequisites	Digital Logic Circuits, VLSI Systems					
UNIT – I					9)

Advanced Topic in Sequential Logic Design: ASM Chart – ASM Realization for Synchronous Logic circuit –Analysis of Asynchronous Sequential Circuit (ASC) – Flow Table Reduction – Races in ASC – State Assignment – Problem and the Transition Table – Design of ASC – Static and Dynamic Hazards – Essential Hazards.

UNIT – II

System Design Using VHDL: VHDL Description of Combinational Circuits – Arrays – VHDL Operators – Compilation and Simulation of VHDL Code – Modeling using VHDL – Flip Flops –Registers - Counters – Sequential Machine – Combinational Logic Circuits – VHDL Code for Serial Adder, Binary Multiplier – Binary Divider.

UNIT – III

Field Programmable Gate Arrays: Types of FPGA – XILINX XC3000 series – Logic Cell Array (LCA) – Configurable Logic Blocks (CLB) – Input/Output Blocks (IOB) – Programmable Interconnection Points (PIP) – XILINX XC4000 Series –Introduction to Xilinx SPARTAN-6, VIRTEX-5 FPGA.

UNIT – IV

Introduction to Zynq Processor and Fault Modeling: Case Study Xilinx Zynq, Zynq APU, ZynqSoC Design Overview, Zynq Architecture and Design Flow, Device Selection Criteria, Zynq versus FPGA, Zynq versus Standard Processor, Zynq versus Dicrete FPGA Processor. Introduction to Testing – Faults in digital circuits – Modeling of faults – Logical Fault Models – Fault detection – Fault location – Fault dominance.

UNIT – V

Fault Diagnosis and Testability Algorithms: Fault Table Method – Path Sensitization Method-Boolean Difference Method – D Algorithm – Tolerance Techniques – Fault in PLA – DFT – Test Generation –Built-in Self Test.

List of Experiments:

- 1. Design and Simulation of digital circuits using VHDL.
- 2. Design and Simulation of digital circuits using Verilog.
- 3. FPGA Implementation of combinational and sequential logic circuit.
- 4. Implementation of signal and image processing HDL design using VIVADO.
- 5. Zynq Board: Implement Timers and GPIO modules in FPGA and control it with ARM SOC.
- 6. Design of Dynamic latches using SPICE.
- 7. Design and Simulation of Dynamic CMOS circuits using SPICE.

Lecture :45, Practical:30, Total: 75

Т

L

Р

Credit

9

9

9

9

REFERENCES:

- 1. Roth Jr. Charles H. LizyKurian John, "Digital System Design Using VHDL", 2nd Edition, Cengage Learning Publication, 2012.
- 2. Michael L. Bushnell, Vishwani D. Agrawal, "Essentials of Electronic Testing for Digital Memory and Mixed Signal VLSI Circuits", Kluwer Academic Publications, USA, 2002.
- 3. Nripendra N. Biswas, "Logic Design Theory", Prentice Hall of India, 2001.
- 4. Parag K. Lala, "An Introduction to Logic Circuit Testing", Morgan and Claypool Publishers, 2009.

COU	COURSE OUTCOMES:			BT Mapped		
On con	mpletion of	the course, the students will be	able to	(Highest Level)		
CO1:	design and	d analyze asynchronous sequent	tial circuits	Creating (K6)		
CO2:	write VHI	DL code for various digital logi	c circuits	Applying (K3)		
CO3:	explain th	e architecture and features of F	PGA families	Understanding (K2)		
CO4:	test and an	halyze the various faults in logic	c circuits	Understanding (K2)		
CO5:	identify an	nd diagnose the faults in logic c	ircuits	Applying (K3)		
CO6:	design a c	ombinational and sequential log	gic circuit	Applying (K3),		
				Articulation (S4)		
CO7:	O7: simulate VHDL code for various digital logic circuits			Applying (K3),		
				Precision (S3)		
CO8:	CO8: implement various digital logic circuits using FPGA boards		sing FPGA boards	Applying (K3),		
				Manipulation (S3)		
		Mappir	ng of COs with POs			
CC	Os/POs	PO1	PO2	PO3		
	CO1	3	1	3		
(CO2	3	2	2		
(CO3	2	1	2		
(CO4	3	1	3		
(CO5	3	1	3		
CO6		3	1	3		
(CO7	3	2	2		
(CO8	2	1	2		
1 - Sli	ight, 2 – Mo	– Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy				

18VLE03 LOW POWER VLSI DESIGN

(Common to VLSI Design and Applied Electronics branches)

 L
 T
 P
 Credit

 3
 1
 0
 4

9

9

9

9

Preamble	To design the combinational and sequential circuits with minimum power consumption and	to
	anlayse the various power optimization methods and techniques to reduce power consumptio	on.
Prerequisites	VLSI Design Techniques	
UNIT – I		9

Power dissipation in CMOS: Hierarchy of limits of power – Sources of power consumption – Physics of power dissipation in CMOS FET devices – Basic principle of low power design

UNIT – II

Power Optimization: Logic level power optimization – Circuit level low power design – circuit techniques for reducing power consumption in adders and multipliers.

UNIT – III

Design of Low Power CMOS Circuits: Computer arithmetic techniques for low power system – reducing power consumption in memories – low power clock, Inter connect and layout design – Advanced techniques –Special techniques.

UNIT – IV

Power Estimation: Power Estimation techniques – logic power estimation – Simulation power analysis – Probabilistic power analysis.

UNIT – V

Software Design for Low Power: Sources of Software Power dissipation - Power Estimation - Power Optimization - Automated low power code generation - Codesign for low power.

Lecture:45, Tutorial: 15, Total: 60

REFERENCES:

1.	Kaushik Roy and Prasad S.C., "Low Power CMOS VLSI Circuit Design", Reprint, Wiley, 2014.
2.	Dimitrios Soudris, Chirstian Pignet, Costas Goutis, "Designing CMOS Circuits for Low Power", 4th
	Edition, Kluwer, Springer, 2010.
3.	Kulo J.B. and Lou J.H., "Low Voltage CMOS VLSI Circuits", Wiley, 1999.

COURSE OUTCOMES:					BT Mapped
On cor	npletion of	the course, the students will be	able to		(Highest Level)
CO1:	CO1: enumerate the different sources of power dissipation in CMOS				Understanding (K2)
CO2:	analyze va	arious power optimization techn	ique at circuit level		Analyzing (K4)
CO3:	design of l	low power circuits at architectu	re level		Creating (K6)
CO4:	use of sim	ulation and probabilistic metho	d of power analysis		Analyzing (K4)
CO5:	CO5: perform power estimation and optimization at programming level			Evaluating (K5)	
		Mappin	ng of COs with POs		
CC)s/POs	PO1	PO2		PO3
(201	3			2
(CO2	2			3
(CO3	3	1		3
CO4 1 1					
CO5 3 1			2		
1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy					

18PEE02 OPTIMAL CONTROL THEORY

(Common to Power Electronics and Drives & Applied Electronics branches)

L	Т	Р	Credit
3	1	0	4

Preamble	The objective of the course is to build and analyze models for time varying systems and no	m
	linear systems	
Prerequisites	System Theory	
UNIT – I		9

UNIT – I

Introduction: Review - Models for Time-varying and Nonlinear systems, state space representation, matrix theory, static optimization with and without constraints. Calculus of variations-basic concepts- functional of a single function and several functions - necessary conditions and boundary conditions.

UNIT – II

Optimal Control Formulation: Performance measures for optimal control problems-Hamiltonian approachnecessary conditions for optimal control- Linear regulator problem-infinite time regulator problem-, Regulators with a prescribed degree of stability.

UNIT – III

The Minimum (Maximum) Principle: Pontryagin's minimum principle and state inequality constraints, Minimum time problem, Minimum control energy problems. Singular intervals in optimal control.

UNIT – IV

Numerical Techniques: Numerical solution of two-point boundary value problem -Gradient method and Quasi Linearisation method - solution of Ricatti equation by iterative method.

UNIT - V

Dynamic Programming: Principle of optimality - recurrence relation of dynamic programming for optimal control problem - computational procedure for solving optimal control problems - characteristics of dynamic programming solution - dynamic programming application to discrete and continuous systems - Hamilton Jacobi Bellman equation. Relationship between Dynamic Programming and Minimum Principle.

	Lecture:45, Tutorial:15, Total: 60
REI	FERENCES:
1.	Kirk Donald, "Optimal Control Theory", Prentice Hall, New Jersey, 1970.
2.	Anderson B.D.O. and Moore J.B., "Optimal Control: Linear Quadratic Methods", Prentice Hall, New
	Jersey, 1979.
3.	Desineni Subburam Naidu, "Optimal Control Systems", CRC Press, 2003.

9

9

9

9

COURSE OUTCOMES:					BT Mapped	
On con	mpletion of	the course, the students will be	e able to		(Highest Level)	
CO1:	CO1: analyze models for time varying systems and non linear systems			Applying (K3)		
CO2:	apply the	optimal control functions to so	lve the stability related problems	5	Applying (K3)	
CO3:	analyze th	ne problems using minimum	(maximum) principles and num	merical	Analyzing (K4)	
	techniques	5				
CO4:	design cor	ntrollers using various numeric	al techniques		Analyzing (K4)	
CO5:	05: explain the concept of dynamic programming to solve optimal control		Understanding (K2)			
	problems					
	Mapping of COs with POs					
CC	Os/POs	PO1	PO2		PO3	
(CO1	2	1		2	
(CO2	2	1		2	
(CO3	2	1		2	
CO4 3 1		2				
(CO5	3	1		2	
1 - Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy					

18VLT21 VLSI SIGNAL PROCESSING

(Common to VLSI Design and Applied Electronics branches)

		L	Т	Р	Crea	lit
		3	0	0	3	
Preamble	To apply the concepts of VLSI techniques to real time signal pro	cessing	5			
Prerequisites	Digital Signal Processing					
TINIT/IN T						-

UNIT – I

Introduction to DSP Systems: Introduction To DSP Systems -Typical DSP algorithms. **Iteration Bound** – data flow graph representations, loop bound and iteration bound, Algorithms For Computing Iteration Bound, Iteration Bound of Multirate Data Flow Graphs. **Pipelining and Parallel Processing:** Pipelining of FIR digital filters, parallel processing, pipelining and parallel processing for low power.

UNIT – II

Retiming: Definitions and properties retiming techniques; solving systems of inequalities, retiming techniques. **Unfolding:** Algorithm for unfolding, properties of unfolding, critical path unfolding and retiming applications of unfolding- sample period reduction and parallel processing application.

UNIT – III

Systolic Architecture Design: Design methodology, FIR systolic arrays. **Bit Level Arithmetic Architectures:** Parallel Multipliers, Bit-Serial Multipliers, Bit-Serial Filter Design and Implementation, Canonic Signed Digit Arithmetic, Distributed Arithmetic.

UNIT – IV

Fast Convolution: Fast convolution – Cook-Toom algorithm, modified Cook-Took algorithm – Wino grad Algorithm, Modified Wino grad Algorithm. **Algorithmic Strength Reduction:** Algorithmic strength reduction in Filters-Parallel FIR Filters, DCT and Inverse DCT. **Pipelined and Parallel Recursive filters Adaptive Filters:** Pipelining in first- order IIR filters, Parallel processing of IIR filters, combined pipelining and parallel processing of IIR filters.

UNIT – V

Scaling, Round off Noise: Scaling and Round off Noise- State variable Description of digital filters, Scaling and round off noise computation, Round off noise in pipelined I order IIR filters. Lattice Structure: Introduction, Schur algorithm, Digital basic Lattice Filters, Derivation of One-Multiplier Lattice Filter, Derivation of Normalized Lattice filter. Numerical Strength Reduction: Introduction, Sub expression Elimination, Multiple Constant Multiplication, Sub expression Sharing in Digital Filters, Additive and Multiplicative Number Splitting.

REFERENCES:

1.

Parhi K. Keshab, "VLSI Digital Signal Processing Systems, Design and Implementation", Reprint, John Wiley, Inter Science, New York, 2008.

- 2. Isamail, Mohammed and Fiez, Terri, "Analog VLSI Signal and Information Processing", McGraw-Hill, New York, 2007.
- 3. www.pdf-search-engine.com/vlsi-signal-processing-pdf.html

9

Total: 45

9

9

9

9

COUH	RSE OUTC	COMES:			BT Mapped	
On con	mpletion of	the course, the students will be	e able to		(Highest Level)	
CO1:	CO1: compute the iteration bound of a circuit			Applying (K3)		
CO2:	CO2: perform pipelining and parallel processing in FIR systems to achieve high			Applying (K3)		
	speed and	low power				
CO3:	improve t	he speed of digital system thro	ugh transformation techniques		Applying (K3)	
CO4:	apply syst	tolic and bit level architecture	es to improve the efficiency of	VLSI	Applying (K3)	
	circuits					
CO5:	: use of proper techniques for parallel processing design for scaling and roundoff			undoff	Applying (K3)	
	noise computation					
		Mappi	ng of COs with POs			
CC	Os/POs	PO1	PO2		PO3	
(CO1	1			1	
(CO2	3	1		2	
(CO3	3	1		3	
CO4 3		2				
(CO5	2			2	
1 – Sli	- Slight, 2 - Moderate, 3 - Substantial, BT - Bloom's Taxonomy					

18COE04 ELECTROMAGNETIC INTERFERENCE AND COMPATIBILITY

(Common to Communication Systems, VLSI Design, Applied Electronics &

Power Electronics and Drives branches)

				1 1		-
		3	0	0	3	
Preamble	To expose the basics and fundamentals of Electromagnetic Inter-	ference	e and C	Compat	tibility	in
	Communication System Design and to know the concepts of EM	/I Cot	ipling [Princip	oles, EN	ΛI
	Measurements and Control techniques and the methodologies of E	EMI ba	sed PC	B desi	gn.	
Prerequisites	Electromagnetic Principles					
LINIT _ I						Q

EMI Environment: EMI/EMC concepts and definitions, Sources of EMI, conducted and radiated EMI, Transient EMI, Time domain Vs Frequency domain EMI, Units of measurement parameters, Emission and immunity concepts, ESD.

UNIT – II

EMI Coupling Principles: Conducted, Radiated and Transient Coupling, Common Impedance Ground Coupling, Radiated Common Mode and Ground Loop Coupling, Radiated Differential Mode Coupling, Near Field Cable to Cable Coupling, Power Mains and Power Supply coupling.

UNIT – III

EMI/EMC Standards and Measurements: Civilian standards - FCC, CISPR, I EC, EN, Military standards -MIL STD 461D/462, EMI Test Instruments /Systems, EMI Shielded Chamber, Open Area Test Site, TEM Cell, Sensors/Injectors/Couplers, Test beds for ESD and EFT, Military Test Method and Procedures (462).

UNIT – IV

EMI Control Techniques: EMI Control Techniques : Shielding, Filtering, Grounding, Bonding, Isolation Transformer, Transient Suppressors, Cable Routing, Signal Control, Component Selection and Mounting

UNIT - V

EMC Design of PCBs: PCB Traces Cross Talk, Impedance Control, Power Distribution Decoupling, Zoning, Motherboard Designs and Propagation Delay Performance Models.

REFERENCES:

1.	Ott W. Henry, "Noise Reduction Techniques in Electronic Systems", 2 nd Edition, John Wiley & Sons,
	New York, 2008.

2. Kodali V.P., "Engineering EMC Principles, Measurements and Technologies", 2nd Edition, IEEE Press, London, 2006.

Keiser Bernhard, "Principles of Electromagnetic Compatibility", 3rd Edition, Artech House, Dedham, 3. 1987.

9

Total: 45

9

9

9

L T P Credit

COU	COURSE OUTCOMES:								
On con	mpletion of	the course, the students will be	e able to	(Highest Level)					
CO1:	estimate th	Analyzing (K4)							
CO2:	compare t	Evaluating (K5)							
CO3:	conduct th	e EMI measurement for civilia	an and military appliances	Analyzing (K4)					
CO4:	device the	EMI control techniques		Applying (K3)					
CO5:	evaluate t	he PCB'S and motherboards l	EMI performance and design the EMC	Creating (K6)					
circuits									
		Mappi	ng of COs with POs						
CC	Os/POs	PO1	PO2	PO3					
(CO1	1							
(CO2	2	1						
CO3 3 3									
CO4 1				2					
CO5		2	2	3					
1 - Sli	$\frac{1}{2}$ - Mo	derate, 3 – Substantial, BT -	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy						

18AEE01 DATA COMMUNICATION NETWORKS

(Common to Applied Electronics & Power Electronics and Drives branches)

Credit L 3 3

Preamble	To provide understanding of the concepts of computer networks, multiple access techniques,
	network protocols, the upper layers of the OSI model, internetworking and emerging trends in
	networking technologies
Prerequisites	Nil
UNIT – I	9

UNIT – I

Introduction: Definition of Networks-Classification of Networks-LAN, MAN, WAN, internet-Network Topology – Protocols and Standards – Network Models – OSI, TCP/IP Models of networking – Internet.

UNIT – II

Physical Layer: Review of Signals-Data Rate Limits-Performance Issues-Bandwidth, Throughput, Latency, Bandwidth-Delay Product, Jitter. Digital Transmission and Analog Transmission: Line coding techniques, PCM and Delta Modulation techniques - ASK, FSK, PSK, and QAM Techniques - Bandwidth Utilization: Multiplexing and Spreading.

UNIT – III

Communication Media and Data Link Layer: Data Transmission using Telephone Networks-Dial-up MODEMS, Digital Subscriber Line (DSL).Error Detection and Correction techniques:Linear and Cyclic codes-Data Link Control: Framing, Flow and Error Control - HDLC and PPP protocols. Multiple Access Techniques - CSMA, CSMA/CD, CSMA/CA - Channelization - TDMA, FDMA, and CDMA.

UNIT - IV

Wired LANs and WANs: Wired LANs-IEEE 802 standards - Ethernet-IEEE 802.3 MAC Frame-Token RingLAN - IEEE 802.5 MAC Frame - Wireless LANs - IEEE 802.11 standard - Bluetooth Technology -Interconnection of LANs. Wired WANs - Circuit-Switched Networks, Datagram Networks, Virtual Circuit- switched Networks, Structure of Circuit and Packet Switches - Wireless WANs.

UNIT - V

Internetworking: Internetworking-tunneling-IP Addressing Scheme-Structure of IP Datagram-IP Routing - TCP as Transport Layer Protocol - Structure of TCP Segment - TCP Connection: Establishment and Closing – SMTP Protocol for E- Mail Application.

REFERENCES:

1.	Forouzan Behrouz A., "Data Communications and Networking", 4 th Edition, Tata McGraw-Hill, New
	Delhi, 2006.
2	Peterson Larry L and Davie Bruce S "Computer Networks: A Systems Approach" 4 th Edition Elsevier

- erson Larry L. and Davie Bruce S., "Computer Networks: A Systems Approach", 4 Publications, New Delhi, 2007.
- Rowe Stanford H. and Schuh Marsha L., "Computer Networking", Pearson Education, New Delhi, 2005. 3.
- Kurose James and Ross Keith, "Computer Networking: Top Down Approach featuring the Internet", 4. Pearson Education, New Delhi, 2002.

9

9

Total: 45

9

9

COUH	RSE OUTC	BT Mapped					
On con	mpletion of		(Highest Level)				
CO1:	explain the		Understanding (K2)				
CO2:	acquire th	tion	Understanding (K2)				
	techniques						
CO3:	schedule t	he network components and the	e functioning of data link layer		Applying (K3)		
CO4:	classify va	rious IEEE standards of wirele	ss networks		Applying (K3)		
CO5:	CO5: manipulate the addressing scheme and summarize the operations of TCP/IP		/IP	Applying (K3)			
	Mapping of COs with POs						
CC	Os/POs	PO1	PO2		PO3		
(CO1	1	2		1		
(CO2	1	2				
CO3 1							
CO4 1							
CO5		1	1		1		
1 – Sli	ght, $2 - Mc$	derate, 3 – Substantial, BT -	Bloom's Taxonomy				

	IOALEUZ NOM-CONVENTIONAL ENERGI SISIE	INIS				
		L	Т	Р	Credit	
		3	0	0	3	
Preamble	To make the student familiar with the Energy Scenario, Renewa	able Er	nergy	Sourc	es, Powe	er
	Production and its conversion.					
Prerequisites	Nil					
UNIT-I						9
Introduction:	Energy Conservation and Energy Efficiency - Needs and Adv	antage	es, Dif	ferent	t types o	of
Renewable Ene	ergy Sources - Availability of Energy Resources in World - Envi	ronme	ntal as	pects	of energ	y
utilization – E	nergy Conservation Act 2001 - Statistical Report on Renewable	energy	y scen	ario i	n India	-
Distributed gen	erations.					
UNIT-II						9
Solar Energy	and its Power Converters: Introduction to solar energy: S	olar r	adiatio	on, av	vailabilit	ÿ,
measurement a	nd estimation - Solar thermal conversion devices and storage - so	olar ene	ergy co	ollecto	ors - Sola	ır
heating and co	oling techniques - Solar desalination - Solar Pond - Solar coo	ker –	Solar	Dryin	ıg – Sola	ar
pumping– solaı	cells and photovoltaic conversion – PV systems – MPPT. Applicat	ions of	PV S	ystem	s.	
UNIT-III						9

194 FEA2 NONE CONVENTIONAL ENERCY SYSTEMS

Wind Energy and its Power Converters: Introduction – Basic principles of wind energy conversion – wind data and energy estimation – site selection consideration – basic components of wind energy conversion system –Types of wind machines – basic components of wind electric conversion systems. Schemes for electric generations – generator control, load control, energy storage – applications of wind energy – Inter connected systems.

UNIT-IV

Geothermal and Biomass Energy: Introduction, estimation of geothermal power, nature of geothermal fields, geothermal sources, inter connection of geothermal fossil systems, prime movers for geo thermal energy conversion. Application of geothermal energy. Energy from biomass: Introduction, Biomass conversion technologies, photosynthesis, classification of biogas plants. Biomass Energy conversion, Energy from waste.

UNIT-V

Chemical Energy Sources: Introduction – fuel cells – design and principles of operation of a fuel cell – classification of fuel cells. Types of fuel cells – conversion efficiency of fuel cells. Types of electrodes, work output and EMF of fuel cell, Applications of fuel cells. Hydrogen energy: Introduction – hydrogen production – electrolysis, thermo chemical methods, Westing House Electro-chemical thermal sulphur cycle. Fossil fuel methods. Hydrogen storage, Utilization of hydrogen gas.

REFERENCES:

- 1. Sukatme S.P., "Solar Energy Principles of Thermal Collection and Storage", 2nd Edition, Tata McGraw Hill, 2008.
- 2. Rai G.D., "Non Conventional Energy Sources", Khanna Publishes, 1993.
- 3. Efstathios E (Stathis) Michaelides, "Alternate Energy Sources", Springer Science and Business Media, 2012.
- 4. Goswami D.Y., Kreith F. and Kreider J.F., "Principles of Solar Engineering", 2nd Edition, CRC Press, 2000.

Total: 45

9

9

COU	COURSE OUTCOMES: BT Mapped							
On con	mpletion of	the course, the students will be	able to		(Highest Level)			
CO1:	CO1: conceptualize the Energy Scenario around the World and in India							
CO2:	understan	d the Solar Energy Generation	and its Power Conversion		Understanding (K2)			
CO3:	determine	Wind Energy Production and it	ts Converters		Applying (K3)			
CO4:	employ G	eothermal and Biomass Energy			Applying (K3)			
CO5:	CO5: demonstrate Fuel cell and Hydrogen Energy Production				Applying (K3)			
		Mappin	g of COs with POs					
CC	Os/POs	PO1	PO2		PO3			
(CO1	2		2				
(CO2	2			2			
(CO3	3			2			
CO4 3 1				2				
CO5 2			2					
1 – Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy							

18AEE03 PROGRAMMABLE LOGIC CONTROLLERS

(Common to Applied Electronics & Power Electronics and Drives branches)

		3	0	0	3	
Preamble	The aim of the subject is to develop an understanding of the basi	c conc	epts of	PLC,	advance	d
	PLC programming, installation &troubleshooting and to develop	indust	rial ap	plication	ons.	
Prerequisites	Nil					
UNIT – I						9

UNIT – I 9 Introduction to Programmable Logic Controller: Overview of Programmable Logic Controller - Architecture – Principle of operation - I/O Modules: Discrete, Analog, Special – I/O Specifications – CPU – Memory design and types – Programming devices – Recording and Retrieving data –PLC programming languages.

UNIT – II

Basic PLC Programming: Fundamentals of Logic – Program Scan– Relay-Type Instructions - Instruction addressing – Branch and Internal relay instructions – Entering the Ladder diagram – Electromagnetic Control relays – Contactors – Motor Starters – Manual operated switches and Mechanically operated switches.

UNIT – III

Advanced PLC Programming: Programming Timers – Programming Counters – Program Control Instructions – Data Manipulation Instructions – Math Instructions – Sequencer and Shift Register Instructions.

$\mathbf{UNIT} - \mathbf{IV}$

PLC Installation and Troubleshooting: PLC Enclosures – Electrical Noise – Leaky Inputs and Outputs – Grounding – Voltage Variations and Surges – Program Editing – Programming and Monitoring – Preventive Maintenance – Connecting PC and PLC.

UNIT – V

PLC Communication and its Applications: Computer Fundamentals – Computer-Integrated Manufacturing – Data Communications – Computer numeric control – Robotics - PLC Applications: Bottle filling system – Pneumatic stamping system – Material handling system – Spray Painting system – Traffic light control system.

REFERENCES:

IL.	
1.	Frank D. Petruzella, "Programmable Logic Controllers", Tata McGraw-Hill Edition, New Delhi, 2010.
2.	Webb John W. and Reis Ronald A., "Programmable Logic Controllers", Prentice Hall Publications,
	New Delhi, 2005.
3.	Bolton W., "Programmable Logic Controllers", Elsevier, New York, 2006.
4.	Rockwell Automation. "Logix 5000 Controllers" – system reference

9

9

Total: 45

9

9

Т

L

Р

Credit

COUH	COURSE OUTCOMES: BT Mapped							
On con	mpletion of		(Highest Level)					
CO1:	CO1: identify the PLC hardware and programming languages for various applications Applying (K3)							
CO2:	develop P	LC ladder logic programming f	or industrial problems		Applying (K3)			
CO3:	design a P	LC system, component, or proc	cess to meet a set of specification	ons	Applying (K3)			
CO4:	install and	l troubleshoot the PLC			Analyzing (K4)			
CO5:	apply the	PLC in various industrial applic	cations		Applying (K3)			
	Mapping of COs with POs							
CC	Os/POs	PO1	PO2		PO3			
(CO1	2	1		2			
(CO2	3	1		3			
(CO3	3	1		3			
CO4 3 3								
CO5 3 3								
1 – Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy							

	18AEE04 BIO-MEDICAL SIGNAL PROCESSIN	G			
	[L	Т	Р	Credit
		3	0	0	3
Preamble	To analyze various bio-medical signals and apply different signal	proces	ssing te	chniqu	ues on
	bio signals for classification and compression.				
Prerequisites	Digital Signal Processing				
UNIT – I					9
Biomedical S	Signals, Filtering and Modeling: Nature of Biomedical	sign	als, '	Types:	Action,
Potential,Elect	roneurogram(ENG),Electromyogram(EMG),Electrocardiogram(EC	CG),	Electro	encep	halogram
(EEG), Event	related potentials, Electrogastrogram (EGG), Phonocardiogram (PC	CG), S1	peech s	ignals	
UNIT – II					9
Stationary ve	ersus Non-stationary Processes: Time domain filters, Frequence	cy doi	main f	ilters,	Optional
filters, Adaptiv	ve filters for removal of Interference, Selection of Appropriate filter	ers, Ap	plicati	ons. Pa	arametric
System model	ing, Autoregressive or All-pole modeling, Pole-zero modeling, E	lectron	nechar	ical N	Iodels of
Signal Generat	tion, Application: Heart-rate variability – Spectral modeling and Ar	nalysis	of EC	G sign	als
UNIT – III					9
Non-stationar	y Signals, Classification and Decision: EEG rhythms and way	ves, cl	naracte	rizatio	n of non
stationary sign	als and dynamic systems, Fixed segmentation, Adaptive segmentat	ion.			
UNIT – IV					9
Pattern Class	sification and Compression Techniques: Supervised, Unsuper	vised	Patterr	class	ification,
Probabilistic n	nodels and Statistical Decision, Regression analysis-Compression a	nd Ad	vancec	l Topic	cs: Direct
Digital compre	ession Techniques, Transformation Compression Techniques, Oth	er Co	mpress	ion Te	echniques
and Compariso	on.				
	I				
UNIT – V				~ .	9
Introduction	to Wavelet Transforms: Application of Wavelet Transform on	Bion	nedical	Signa	lls, Multi
Resolution Analysis. Neural Networks in Processing and Analysis of Bio medical Signals.					
				,	Fotal: 45
REFERENCE		1 1 1 1		•	0.1
I. Rangaraj	M. Rangayyan, "Biomedical Signal Analysis, A case study Approa	ch", Il	EE Pro	ess, 20	01.
2. Bronzino	Joseph D., "The Biomedical Engineering Handbook", 3 rd Edition, 7	aylor	and Fr	ancis,	2006.
3. Reddy D.	C., "Biomedical Signal Processing, Principles and Techniques", Ta	ta Mc	Jraw H	IIII, Ne	ew Delhi,

2005.
4. Banner Kenneth E. and Arce Gonzalo R., "Nonlinear Signal and Image Processing: Theory Methods and Applications", CRC Press, New York, 2003.

COUH	RSE OUTC	BT Mapped			
On con	mpletion of	(Highest Level)			
CO1:	explain the		Understanding (K2)		
CO2:	design dif	ferent types of filters for variou	s biomedical applications		Applying (K3)
CO3:	differentia	te stationary and non-stationary	y signal processing		Understanding (K2)
CO4:	describe th	ne pattern classification and cor	npression techniques on bio sig	nals	Applying (K3)
CO5:	apply way	elet transform and neural netw	vork concepts to analyze bior	nedical	Analyzing (K4)
	signals				
		Mappir	ng of COs with POs		
CC	Os/POs	PO1	PO2	PO3	
(CO1	2			2
(CO2	3		3	
(CO3	3	1		2
CO4 3 1			2		
CO5 3			3		
1 – Sli	ght, $2 - Mc$	oderate, 3 – Substantial, BT -	Bloom's Taxonomy		

		18AEE05 HIGH PERFORMANCE COMMUNICATION NI	ETWC	ORKS		
			L	Т	Р	Credit
			3	0	0	3
Pream	nble	High performance communication networks deals with fundar	nental	s of P	acket	switched
		networks and the architectures, functions, performance of different	nt com	munic	ation 1	networks.
		In this course, features and performance of ATM, Advanced Netw	work a	rchited	ture, I	Bluetooth
		technology and various protocols are to be discussed.				
Prere	quisites	Nil				
UNI	Γ – Ι					9
Pack	ed Switc	hed Networks: OSI and IP Models, Ethernet, (IEEE 802.3), Token	(IEEE	802.5)	Wire	less LAN
(IEEI	E 802.11)	FDDI,DQDB,SMDS: Internet Working with SMDS.				
UNI	$\Gamma - II$					9
ISDN	and br	oadband ISDN: ISDN Overview, Interfaces and Functions, laye	ers and	l Servi	ces- S	Signalling
Syste	ms, Broa	dband ISDN- Architecture and Protocols				
UNI	Γ–III					9
ATM	l and Fra	me Relay: ATM - Main Features- Addressing, Signaling and Rou	ting, A	TM H	eader	structure-
Adap	tation La	yer, Management and Control, ATM Switching and Transmission.	Frame	e Relay	: Prote	ocols and
Servi	ces, Cong	gestion Control ,Internet working with ATM, Internet and ATM, Fr	ame re	lay via	ATM	
UNI	$\Gamma - IV$					9
Adva	nced No	etwork Architecture: IP forwarding architectures overlay mod	lel –	Multi	Protoc	ol Label
Swite	ching (M	PLS) – Integrated services in the Internet – Resource Reser	vation	Proto	col (l	ASVP) –
Diffe	rentiated	services				
UNI	Г-V					9
Blue	Tooth T	echnology: The Blue tooth module – Protocol stack Part I: Antenn	nas – F	Radio i	nterfac	ce – Base
band	– The L	ink controller – Audio – The Link Manager – The Host controlle	er inte	rface -	The B	lue tooth
modu	ile – Prot	ocol stack Part I: Logical link control and adaptation protocol – RF	COM	M - Se	rvice of	liscovery
proto	col – Wii	eless access protocol – Telephony control protocol				
					,	Fotal: 45
REF	ERENC	ES:		nd		
1.	Jean Wa	Irand and Pravinvaraiya, "High Performance Communication Netw	orks",	, 2 nd Eo	lition,	Harcourt
	and Mor	gan Kauffman, London, 2000.		th		
2.	William	Stallings, "ISDN and Broadband ISDN with Frame Relay and A	ATM"	, 4 ^m E	dition	, Pearson
	Educatio	n Asia, 2002.				
3.	Kasera P	ankaj Sethi, "ATM Networks", Tata McGraw-Hill, New Delhi, 200)0.			
4.	Jennifer	Bray and Charles F. Sturmen, "Bluetooth", Pearson Education. As	ia, 200	1.		

4. Jennifer Bray and Charles F. Sturmen, "Bluetooth", Pearson Education, Asia, 2001.

COUH	RSE OUTC		BT Mapped					
On con	On completion of the course, the students will be able to							
CO1:	explain th	e architectures and mechanism	s of high-performance commun	nication	Understanding (K2)			
	networks							
CO2:	apply the	concepts of ISDN and BISDN	protocols to communication net	works	Applying (K3)			
CO3:	analyze tł	ne cause of congestion, traffic	e slow down, Quality of Serve	ice and	Analyzing (K4)			
	features of	f ATM and frame relay						
CO4:	inspect th	e features of advanced comm	nunication network analysis, de	sign of	Analyzing (K4)			
	service, av	ailability, and security	-	-				
CO5:	examine the	he features of Bluetooth techno	logy and its protocols		Analyzing (K4)			
	Mapping of COs with POs							
CC	Os/POs	PO1	PO2		PO3			
(CO1	3	1		2			
(CO2	3			3			
CO3		2	1		2			
CO4		3	1		2			
CO5		3			3			
1 – Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy							

18AEE06 PROGRAMMABLE DIGITAL SIGNAL PROCESSORS

(Common to Applied Electronics & Power Electronics and Drives branches)

		L	1	P	Creat	l
		2	0	2	3	
Preamble This course brings the DSP processors architecture, addressing modes and program						ng
	with DSP processors. It also provides an insight to the various types of on-chip peripherals,					
	interfacing methods and various applications.					
Prerequisites	Digital Signal Processing, Microprocessors and Microcontrolle	ers				
UNIT – I						6

Architectures of Programmable Digital Signal Processors: Introduction, Basic Architectural Features, DSP Computational Building Blocks, Bus Architecture and Memory, Data Addressing Capabilities, Address Generation Unit, Programmability and Program Execution, Features for External Interfacing.

UNIT – II

TMS320C5416 Digital Signal Processor: TMS320C5416: Introduction: History Development and Advantages of TMS320 DSPs, Applications. TMS320C5416: Functional Overview Features, Architectural Overview, Pin configuration, Registers, Addressing modes, On-Chip Peripherals, Memory Map, Instruction set. Simple Programs: Addition, Multiplication, Division, Convolution. Introduction to Code Composer studio.

UNIT – III

Interfacing peripherals with TMS320C5416: I/O Interface, ADC Interface, DAC Interface, CODEC Interface. Program: Switch and LED Interfacing, Square wave generation, Saw tooth wave generation.

UNIT – IV

TMF28335 Digital Signal Processor: TMF28335 DSP: Overview, Key features: Hardware Features, Software Features, Architecture, Pin configuration, Memory Map, Switches: Boot Load option switch, Processor configuration switch, Power Connector.

UNIT - V

Interfacing peripherals with TMF28334: I/O Interface, ADC Interface, DAC Interface, PWM Module. Programs: Switch and LED interfacing, ADC Port Control, PWM generation.

List of Exercises / Experiments :

- 1. Generation and Convolution of signals using MATLAB
- 2. Square Wave form Generation using TMS320C5416 Digital Signal Processor
- 3. Saw tooth waveform Generation using TMS320C5416 Digital Signal Processor
- 4. Variable PWM waveform generation using TMF28335 Digital Signal Processor
- 5. Switch and LED Interfacing using TMF28335 Digital Signal Processor

Lecture: 30, Practical: 30, Total: 60

REFERENCES:

- Avatar Singh, Srinivasan S., "Digital Signal Processing- Implementation using DSP Microprocessors 1. with Examples from TMS320C54xx", Thomson India, 2004. Venkataramani B. and Bhaskar M., "Digital Signal Processors, Architecture, Programming and
- 2. Applications", 2nd Edition, Tata Mc Graw Hill, 2010. User Manual: VSK5416 & eZdspTMF28335 Technical Reference
- 3.

6

6

6

C---- l'4

6

COUH	RSE OUTC	COMES:			BT Mapped			
On con	On completion of the course, the students will be able to							
CO1:	explain th	e Basic architectural features of	f DSP processors		Understanding (K2)			
CO2:	describe th	he various features and program	nming concepts of TMS320C54	-16	Understanding (K2)			
	DSP							
CO3:	apply the	Interfacing mechanism to inter	rface various peripherals with '	ГMS	Applying (K3)			
	320C5416	5 DSP						
CO4:	point out	the functionality of TMSF2835	5 DSP		Understanding (K2)			
CO5:	employ th	e Interfacing mechanism of var	ious peripherals with TMS 320	C5416	Applying (K3)			
	DSP and i	ts programming concepts.						
CO6:	make use	of modern software tool to gene	erate various form of signals		Applying (K3),			
					Manipulation (S2)			
CO7:	apply emb	bedded c program for generating	g waveforms using DSP320C5	416	Applying (K3),			
					Manipulation (S2)			
CO8:	demonstra	te the PWM waveform Ge	neration and I/O interfacing	using	Applying (K3),			
	DSPF283:	55			Precision (S3)			
		Mappin	ng of COs with POs					
CC	Os/POs	PO1	PO2		PO3			
(CO1	2	1					
(CO2	2	1					
(CO3	3	2		1			
(CO4	2	1					
(CO5	3	1		1			
CO6		3	1		1			
CO7		3	1		1			
(CO8	3	1		1			
1 – Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy							

		18MTE13 MEMS DESI	GN				
(C	Common t	Mechatronics, CADCAM, Engineering Design, V	LSI Design, Appli	ied E	lectro	onics,	Power
	Electronics and Drives & Control and Instrumentation Engineering branches)						
				L	<u>T</u>	P	Credit
				3	0	0	3
Prea	mble: Th	s course equips the students to understand the con	cepts of Micro me	echati	ronics	and	apply the
know	ledge of 1	icro fabrication techniques for various applications	8.				
Prer	equisites:	Sensors and Instrumentation and Bridge course me	chanical				
UNI	$\frac{\Gamma - I}{\Gamma - I}$						9
Mate princ piezo	iple of M resistors	MEMS and Scaling Laws: Overview - Micro crosystems - Si as a substrate material - Mechanic Gallium arsenide - Quartz-piezoelectric crystals -	osystems and mic al properties - Sili Polymer - Scaling	con c lcon c laws	ctron compo in M	ics - ounds iniatu	Working - Silicon rization.
UNI	Γ – II						9
Micro Micro princ	o Sensor omotors iples, des	Additional equations: Micro sensors - Micro a Microvalves – Micro grippers – Micro accessor rules, modeling and simulation, verification and	ctuation technique elerometer: introd testing, application	ies - luctio ns.	Mict on, ty	ro act pes,	tuators – actuating
UNI	Γ–III						9
Mech mech interf	hanics fo nanics - ' facial frac	Microsystem Design: Static bending of thin hermal stresses - Fracture mechanics - Stress are mechanics-Thin film Mechanics-Overview of F	plates - Mechani intensity factors, inite Element Stre	ical frac ess Ai	vibrat ture nalysi	tion - tough s.	Thermo ness and
UNI	Γ_ΙV						9
Fabr	ication P	ocess and Micromachining: Photolithography -	Ion implantation -	Diff	iusion	– Ox	idation –
CVD Surfa	- Physic	l vapor deposition - Deposition by epitaxy - Etcl achining – LIGA –SLIGA.	hing process- Bull	k Mi	cro n	nanufa	cturing -
		1					1
UNI	$\Gamma - V$						9
Micr desig - Sys Appl CAD	n – Mech stem leve ications o tools to c	Design, Packaging and Applications: Design co nical Design using Finite Element Method-Micros – Packaging techniques - Die preparation - Sur micro system in Automotive industry: Bio medi esign a MEMS device.	nsiderations - Pro- system packaging - face bonding - W ical, Aerospace an	cess – Die /ire t nd Te	design level oondin lecom	n - M l - Dev ng – nmuni	echanical vice level Sealing - cations –
Total: 45							
REF	ERENCE	5:	• • · -				
1.	Tai-Ran 2008.	Hsu, "MEMS and Microsystems Design and Mar	ufacture", Tata M	1cGra	ıw-Hi	11, Ne	w Delhi,
			• • • •				

- Mohamed Gad-el-Hak, "The MEMS Handbook", CRC Press, 2009.
 Bao M.H., "Micromechanical Transducers: Pressure sensors, accelrometers, and gyroscopes", Elsevier, New York, 2000.

COURSE OUT	COMES:		BT Mapped			
On completion of	(Highest Level)					
CO1: interpret	the concepts of MEMS material	ls and scaling laws	Remembering (K1)			
CO2: explain t	he principles of micro sensors a	nd actuators	Understanding (K2)			
CO3: apply the	e mechanics for micro system de	esign	Applying (K3)			
CO4: design a	O4: design and fabrication of microsystem					
CO5: design o	f microsystem packaging and ap	plication	Applying (K3)			
	Mapping of COs with POs					
COs/POs	PO1	PO2	PO3			
CO1	2	1	2			
CO2	2	1	2			
CO3	3	1	3			
CO4	3	1	3			
CO5	3	1	3			
1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy BT - Blooms Taxonomy						

18COE13 DIGITAL IMAGE PROCESSING AND MULTI RESOLUTION ANALYSIS

(Common to Communication Systems, Mechatronics, Information Technology & Applied Electronics branches)

ТР

L

Credit

9

9

9

9

Total: 45

		3	0	0	3	
Preamble	To analyze the images in frequency domain and to perfo	rm va	arious	operati	ons lik	e
	enhancement, Restoration, Compression, Registration and Multi	resolu	tion an	alysis.		
Prerequisites	Digital Signal Processing					
UNIT – I						9

Image Transforms: Orthogonal transforms - FT, DST, DCT, Hartley, Walsh hadamard, Haar, Radon, Slant Wavelet, KL, SVD and their properties.

UNIT – II

Image Enhancement and Restoration: Image enhancement - Point operations - contrast stretching clipping and thresholding - digital negative intensity level slicing - bit extraction. Histogram processing histogram equalisation -modification. Spatial operations – smoothing spatial filters, sharpening spatial filters. Transform operations. Color image enhancement. Image Restoration - degradation model, Noise models, Unconstrained and Constrained restoration, Inverse filtering - removal of blur caused by uniform linear motion, Wiener filtering, Restoration by SVD and Homomorphic filtering

UNIT – III

Image Compression: Image Compression – Need for data compression – Run length encoding – Huffman coding – Arithmetic coding – predictive coding- transform based compression, - vector quantization – block truncation coding. Image Segmentation: Point, Edge and line detection -thresholding-Region based approach Image Representation: boundary based – region based and intensity based description

UNIT - IV

Registration and Multivalued Image Processing: Registration – geometric transformation – registration by mutual information Mutivalued image processing - colour image processing - colour image enhancementsatellite image processing- radiometric correction – other errors- multi spectral image enhancement- medical image processing – image fusion.

UNIT - V

Wavelets and Multiresolution Processing: Image Pyramids – Subband coding – The Haar Transform – Multiresolution Expansion - Series Expansion - Scaling Function - Wavelet Function - Wavelet Transform in One Dimension- The Wavelet Series Expansion - The Discrete Wavelet Transform - The Continuous Wavelet Transform - The Fast Wavelet Transform - Wavelet transform in two dimensions- Applications in image denoising and compression.

	10tal. 45
REF	FERENCES:
1.	Gonzalez Rafel C. and Woods Richard E., "Digital Image Processing", 4 th Edition, Prentice Hall, New
	York, 2017.
2.	Chanda B., Dutta Majumder D., "Digital Image Processing and Analysis", 2 nd Edition, PHI Learning,
	2011.
3.	Abdeljalil Ouahabi, "Signal and Image Multiresolution Analysis", John Wiley & Sons, 2012.
4.	Rosenfield Azriel and Kak Avinash C., "Digital Picture Processing", 2 nd Edition, Academic Press Inc.,
	New York, 1982.

COURSE OUT	COMES:		BT Mapped			
On completion of	On completion of the course, the students will be able to					
CO1: impleme	Applying (K3)					
CO2: model th	e systems to enhance and restore	e the image optimally	Applying (K3)			
CO3: apply the	coding technique to perform co	ompression of images	Applying (K3			
CO4: apply the	CO4: apply the concepts of registration to fuse images of various modalities					
CO5: analyze t	he images in one dimension and	l two dimension simultaneously	Analyzing (K4)			
Mapping of COs with POs						
COs/POs	PO1	PO2	PO3			
CO1	3	2	1			
CO2	3	2	1			
CO3	3	2	1			
CO4	3	2	1			
CO5	2	3	2			
1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy BT - Blooms Taxonomy						

18VLT12 DEVICE MODELING (Common to VLSI Design & Applied Electronics branches) L Т Р Credit 3 0 0 3 Preamble To model and analyze the performance of solid state devices using mathematical concepts Prerequisites Solid State Devices $\mathbf{UNIT} - \mathbf{I}$ Semiconductor Physics and Modeling of Passive Devices: Quantum Mechanical Concepts - Carrier

9

9

9

9

9

Total: 45

Concentration - Transport Equation - Mobility and Resistivity - Carrier diffusion - Carrier Generation and Recombination - Continuity equation - Tunneling and High field effects - Modeling of resistors - Modeling of Capacitors - Modeling of Inductors.

UNIT – II

Diode and Bipolar Device Modeling: Abrupt and linear graded PN junction - Ideal diode current equation - Static, Small signal and Large signal models of PN junction Diode - SPICE model for a Diode -Temperature and Area effects on Diode Model Parameters Transistor Action - Terminal currents - Switching -Static, Small signal and Large signal Eber-Moll models of BJT - Temperature and area effects.

UNIT – III

MOSFET Modeling and Parameter Measurements: MOS Transistor - NMOS - PMOS - MOS Device equations - Threshold Voltage - Second order effects - Temperature Short Channel and Narrow Width Effect - Models for MOSFET.

UNIT – IV

Noise Models and BSIM4 MOSFET Model: Noise Sources in MOSFET - Flicker Noise Modeling - Thermal Noise Modeling - BSIM4 MOSFET Model - Gate Dielectric Model - Enhanced Models for Effective DC and AC Channel Length and width - Threshold Voltage Model-I-V Model.

UNIT - V

Other MOSFET Models: EKV Model - Model Features - Long Channel Drain Current Model - Modeling Second order Effects of Drain Current - Effect of Charge Sharing - Modeling of Charge storage Effects - Nonquasi static Modeling - Noise Models - Temperature Effects - MOS Model 9-MOSAI Model

DEFEDENCES.

NĽI	
1.	Trond Ytterdal, Yuhua Cheng and Tor A. Fjeldly, "Device Modeling for Analog and RF CMOS Circuit
	Design", John Wiley & Sons Ltd., 2003.
2.	Sze S.M., "Semiconductor Devices - Physics and Technology", 2nd Edition, John Wiley & Sons, New
	York, 2008.
3.	Massobrio Giuseppe and Antognetti Paolo, "Semiconductor Device Modeling with SPICE", 2nd
	Edition, McGraw-Hill Inc., New York, 1998.
4.	Tyagi M.S., "Intorduction to Semiconductor Materials and Devices", John Wiley, New York, 2003.
5.	Ben G. Streetman, "Solid State Circuits", 5 th Edition, Prentice Hall of India, New Delhi, 2005.

COU	RSE OUT(COMES:		BT Mapped		
On con	On completion of the course, the students will be able to					
CO1:	realize the	e concepts of semiconductor phy	ysics	Understanding (K2)		
CO2:	apply mat	hematical concepts to model ba	asic semiconductor devices	Applying (K3)		
CO3:	analyze th	e secondary effects of semicond	ductor physics using mathematical	Analyzing (K4)		
	expression	ns				
CO4:	analyze th	e effects of temperature and Ar	ea on the performance of semiconductor	Analyzing (K4)		
	devices					
CO5:	create mo	dels for MOSFETs		Creating (K6)		
		Маррі	ing of COs with POs			
CC	Os/POs	PO1	PO2	PO3		
(201	2	2	2		
(CO2	2	1	1		
CO3		3	3	3		
CO4		2	2	2		
CO5		2	1	1		
1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy BT - Blooms Taxonomy						

18MSE18 DESIGN AND ANALYSIS OF ALGORITHMS

(Common to Embedded Systems & Applied Electronics branches)

 L
 T
 P
 Credit

 3
 0
 0
 3

Preamble: To introduce the fundamental concepts of designing strategies, complexity analysis of algorithms, followed by problems on graph theory and sorting methods and also includes the basic concepts on complexity theory.

Prerequisites: C and Data Structures

UNIT – I

Introduction: The Role of Algorithms in Computing – Growth of Functions – Analysis of Recursive and Non-recursive Functions – Lists – Heap Sort – Quick Sort – Sorting in Linear Time.

UNIT – II

Advanced Data Structures: Binary Search Trees – Red-Black Trees – Augmenting Data Structures – Trees – Fibonacci Heaps

UNIT – III

Algorithm Design Techniques: Dynamic Programming – Rod cutting – Matrix-chain multiplication – Elements of dynamic programming – Longest common subsequence – Optimal binary search trees. Greedy Algorithms: An activity-selection problem – Elements of the greedy strategy – Huffman codes – Matroids and greedy methods – A task-scheduling problem as a matroid Parallel Algorithms: Parallelism Introduction – The Pram Model – Simple parallel operations – Parallel searching, sorting, numerical algorithms – Parallel Graph algorithms

UNIT – IV

Graph Algorithms: Elementary Graph Algorithms – Minimum Spanning Trees – Single Source Shortest Paths – All-Pairs Shortest Paths – Maximum Flow.

$\mathbf{UNIT} - \mathbf{V}$

Non-Deterministic Algorithms: NP-Completeness: Polynomial Time verification – NP Completeness and Reducibility – NP Completeness Proofs – NP Complete Problems

REFERENCES:

- 1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, "Introduction to Algorithms", 3rd Edition, MIT Press, USA, 2009.
- 2. Jeffrey J. McConnell Canisius College, "Analysis of Algorithms: An Active Learning Approach", Jones and Bartlett Publishers, 2001.
- 3. Aho Alfred V., Hopcroft John E. and Ulllman Jeffrey D., "Data Structures and Algorithms", Pearson Education, New Delhi, 2002.

9

9

9

9

9

Total: 45

COURSE OUTCOMES:					BT Mapped		
On con	On completion of the course, the students will be able to						
CO1:	design ar		Creating (K6)				
CO2:	design ar	nd implement advanced data stru	uctures		Creating (K6)		
CO3:	choose a	ppropriate algorithm design tecl	hnique and solve problems		Applying (K3)		
CO4:	impleme	nt graph algorithms			Applying (K3)		
CO5:	analyze t	he time and space complexity o	f algorithms		Analyzing (K4)		
	Mapping of COs with POs						
CO	s/POs	PO1	PO2		PO3		
C	201	1	2				
C	202		2				
CO3		2					
CO4		3	1				
CO5		2	2				
1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy							

18MSE19 INTERNET TECHNOLOGIES								
	L	Т	Р	Credit				
	3	0	0	3				
Preamble: This course covers the basic concept of internet and network applications								
Prerequisites: Nil								
UNIT-I				9				
Introduction to Internet: Internet-network edge - network core - access network	s & pł	rysical	media	ı − NAPs,				
ISPs and Internet backbones- delay & loss in packet-switched networks- prot	tocol l	ayers	& the	ir service				
models								
		1 337	11.77	<u>9</u>				
Network Applications: Principles of Network applications- Application layer j	protoco	DIS: W	oria w	Vide Web				
Architecture, H I I P and its working principle, File Transfer Protocol, e-mail com	iponen	ts and	SMIF	, internet				
directory service DNS-Streaming Audio and Video – Internet Radio- VolP-Conte	nt Dei	ivery.						
				0				
Transport and Natwork I avers: Transport laver services and principles - mult	inlevi	ha and	demu	Itipleving				
applications -connectionless transport IJDP - principles of reliable data t	ransfe	r = T	CP c	onnection				
establishment and termination- Introduction & network service models –V	irtual	circuit	and	datagram				
networks—Internet Protocol (IP)- forwarding and addressing- Fragmentation and	reasse	embly -	- IPv6					
		-)		· · · · · · · · · · · · · · · · · · ·				
UNIT-IV				9				
WEB 2.0: Introduction-search-content networks- blogging- social networking	-social	media	a-taggi	ing-social				
bookmarking-software development-Rich Internet Applications-Web services-lo	cation	based	servic	es-XML-				
RSS- Atom-JSON-Monetization models-business models-Future of the web.								
UNIT-V				9				
XHTML and Cascading Style Sheets: Introduction-Editing XHTML-W30	C-Head	lings-L	linking	g-Images-				
Lists-Tables-Forms-Internal Linking-meta elements-web resources-CSS-diffe	erent	catego	ories	of CSS-				
positioning elements-backgrounds-element dimensions-box model and text flow	v-medi	a type	s-buil	ding CSS				
drop down menu-user style sheets.								
				Total: 45				
REFERENCES:	1 5		T 1	т				
1. Kurose K.F. and Ross K.W., "Computer Networking: A Top - Down Appro	ach Fe	eaturin	g The	Internet ⁷ ,				
5 Edition, Pearson Education, New Delni, 2009.		D - 11	.: 201	^				
2. Tanendaum Andrew S. Computer Networks, 5 Edition, Pearson Education	on, ine		11, 201	U. Decement				
5. Denier P.J. and Denier H.W., internet & world wide web How to Pro	gram	,4 E	Juition	, Pearson				
Education, New Deini, 2009.								

COUR	BT Mapped							
On cor	npletion of	the course, the students will b	e able to	(Highest Level)				
CO1:	summariz	Understanding (K2)						
CO2:	describe v	various applications of network	-	Understanding (K2)				
CO3:	explain th	e transport and network layers	with the services	Understanding (K2)				
CO4:	build Inter	rnet application using WEB 2.0	0	Applying (K3)				
CO5:	create wel	b pages using cascading style s	heets	Applying (K3)				
		Mappi	ng of COs with POs					
CO	os/POs	PO1	PO2	PO3				
(201	1						
(C O 2	1						
(203	1						
CO4 2			1					
CO5		2		1				
1 - Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy							

18CIE15 VIRTUAL INSTRUMENTATION FOR INDUSTRIAL APPLICATIONS

(Common to Control and Instrumentation Engineering, Embedded Systems, Applied Electronics & Power Electronics Drives branches)

3 0 0 3 Preamble To impart knowledge about advanced tools in virtual instrumentation to develop new industrial applications Prerequisites Virtual Instrumentation 9 Graphical System Design Programming Concepts: G-Programming- debugging techniques-Loops: For Ioop, While Loop. Shift registers-Structures: Case Structure, Sequence Structure, Event Structure. Timed Structure. 9 UNIT - II 9 9 Data Acquisition and Interfacing: Data Acquisition in LabVIEW-Hardware installation and configuration-DAQ signal Accessory-DAQ Assistant-DAQ Hardware-DAQ Software. 9 UNIT - III 9 GSD Programming Tookits: Signal Processing and Analysis-Control System Design and Simulation-Digital Filter Design-Spectral Measurements-Report generation-PID Control-Biomedical Startup kit. 9 VI Applications Part I: Material Handling System -Fiber-Optic Component Inspection Using Integrated Vision and Motion Components-Internet-Ready Power Network Analyzer for Power Quality Measurements and Monitoring. 9 VI Applications Part II: Developing Remote Front Panel LabVIEW Applications- Using the Timed Loop to Write Multirate Applications in LabVIEW - Client-Server Applications in LabVIEW - Neural Networks for Measurement and Instrumentation using LabVIEW', 3 rd Edition, PHI Learning Pvt. Ltd., New Delhi, 2012. 2. Sumathi S., Surekha P., "LabVIEW based Advanced Instrumentation Systems", Springer Science & Business Media, 2007. 3. Sanjay Gupta, Joseph, John, "Virtual Inst			L	Т	Р	Credit				
Preamble To impart knowledge about advanced tools in virtual instrumentation to develop new industrial applications Prerequisites Virtual Instrumentation UNIT - I 9 Graphical System Design Programming Concepts: G-Programming- debugging techniques-Loops: For loop, While Loop. Shift registers-Structures: Case Structure, Seauence Structure, Event Structure. Timed Structure. 9 Data Acquisition and Interfacing: Data Acquisition in LabVIEW-Hardware installation and configuration-DAQ components-DAQ signal Accessory-DAQ Assistant-DAQ Hardware-DAQ Software. 9 UNIT - III 9 GSD Programming Toolkits: Signal Processing and Analysis-Control System Design and Simulation-Digital Filter Design-Spectral Measurements-Report generation-PID Control-Biomedical Startup kit. 9 UNIT - IV 9 VI Applications Part I: Material Handling System -Fiber-Optic Component Inspection Using Integrated Vision and Motion Components-Internet-Ready Power Network Analyzer for Power Quality Measurements and Monitoring. 9 UNIT - V 9 VI Applications Part II: Developing Remote Front Panel LabVIEW Applications- Using the Timed Loop to Write Multirate Applications in LabVIEW - Client-Server Applications in LabVIEW- Neural Networks for Measurement and Instrumentation using LabVIEW", 3 rd Edition, PHI Learning Pvt. Ltd., New Delhi, 2012. Sumathi S., Surekha P., "LabVIEW based Advanced Instrumentation Systems", Springer Science & Business Media, 2007. Sunathi S., Surekha P., "LabVIEW			3	0	0	3				
Prerequisities Virtual Instrumentation 9 Graphical System Design Programming Concepts: G-Programming- debugging techniques-Loops: For loop, While Loop. Shift registers-Structures: Case Structure. Sequence Structure. Event Structure. Timed Structure- 9 UNIT - II 9 Data Acquisition and Interfacing: Data Acquisition in LabVIEW-Hardware installation and configuration-DAQ components-DAQ signal Accessory-DAQ Assistant-DAQ Hardware-DAQ Software. 9 UNIT - III 9 GSD Programming Toolkits: Signal Processing and Analysis-Control System Design and Simulation-Digital Filter Design-Spectral Measurements-Report generation-PID Control-Biomedical Startup kit. 9 VINT - IV 9 VIApplications Part I: Material Handling System -Fiber-Optic Component Inspection Using Integrated Vision and Motion Components-Internet-Ready Power Network Analyzer for Power Quality Measurements and Monitoring. 9 VIApplications Part II: Developing Remote Front Panel LabVIEW Applications- Using the Timed Loop to Write Multirate Applications in LabVIEW - Client-Server Applications in LabVIEW- Neural Networks for Measurement and Instrumentation in Virtual Environments. 9 VI Applications, "Virtual Instrumentation using LabVIEW", 3 rd Edition, PHI Learning Pvt. Ltd., New Delhi, 2012. 2 Sumathi S., Surekha P., "LabVIEW based Advanced Instrumentation Systems", Springer Science & Business Media, 2007. 3 Sanjay Gupta, Joseph, John, "Virtual Instrumentation using LabVIEW", 2 rd Edition, Tata	Preamble To impart knowledge about advanced tools in virtual instrumentation to develop new industrial applications									
UNIT - I 9 Graphical System Design Programming Concepts: G-Programming- debugging techniques-Loops: For loop, While Loon Shift registers-Structures: Case Structure. Sequence Structure. Event Structure. Timed Structure. UNIT - II 9 Data Acquisition and Interfacing: Data Acquisition in LabVIEW-Hardware installation and configuration-DAQ components-DAQ signal Accessory-DAQ Assistant-DAQ Hardware-DAQ Software. 9 UNIT - III 9 GSD Programming Toolkits: Signal Processing and Analysis-Control System Design and Simulation-Digital Filter Design-Spectral Measurements-Report generation-PID Control-Biomedical Startup kit. 9 UNIT - IV 9 VI Applications Part I: Material Handling System -Fiber-Optic Component Inspection Using Integrated Vision and Motion Components-Internet-Ready Power Network Analyzer for Power Quality Measurements and Monitoring. 9 VI Applications Part II: Developing Remote Front Panel LabVIEW Applications- Using the Timed Loop to Write Multirate Applications in LabVIEW - Client-Server Applications in LabVIEW- Neural Networks for Measurement and Instrumentation in Virtual Environments. Total: 45 REFERENCES: 10 10 10 1. Jovitha Jerome, "Virtual Instrumentation using LabVIEW", 3 rd Edition, PHI Learning Pvt. Ltd., New Delhi, 2012. 2. Sumathi S., Surekha P., "LabVIEW based Advanced Instrumentation Systems", Springer Science & Business Media, 2007. 3. Sanjay Gupta, Joseph, John, "Virtual Instrumentation using La	Prerequisites	Virtual Instrumentation								
Graphical System Design Programming Concepts: G-Programming- debugging techniques-Loops: For loop, While Loop, Shift registers-Structures: Case Structure, Sequence Structure, Event Structure, Timed Structure. UNIT - II 9 Data Acquisition and Interfacing: Data Acquisition in LabVIEW-Hardware installation and configuration-DAO components-DAO signal Accessory-DAO Assistant-DAO Hardware-DAO Software. UNIT - III 9 GSD Programming Toolkits: Signal Processing and Analysis-Control System Design and Simulation-Digital Filter Design-Spectral Measurements-Report generation-PID Control-Biomedical Startup kit. UNIT - IV 9 VI Applications Part I: Material Handling System -Fiber-Optic Component Inspection Using Integrated Vision and Motion Components-Internet-Ready Power Network Analyzer for Power Quality Measurements and Monitoring. UNIT - V 9 YI Applications Part II: Developing Remote Front Panel LabVIEW Applications- Using the Timed Loop to Write Multirate Applications in LabVIEW - Client-Server Applications in LabVIEW- Neural Networks for Measurement and Instrumentation in Virtual Environments. Total: 45 REFERENCES: 1. Jovitha Jerome, "Virtual Instrumentation using LabVIEW", 3 rd Edition, PHI Learning Pvt. Ltd., New Delhi, 2012. 2. Sumathi S., Surekha P., "LabVIEW based Advanced Instrumentation Systems", Springer Science & Business Media, 2007	UNIT – I	UNIT – I 9								
While Loop. Shift registers-Structures: Case Structure. Sequence Structure. Event Structure. Timed Structure. UNIT - II 9 Data Acquisition and Interfacing: Data Acquisition in LabVIEW-Hardware installation and configuration-DAQ components-DAQ signal Accessory-DAQ Assistant-DAQ Hardware-DAQ Software. 9 UNIT - III 9 GSD Programming Toolkits: Signal Processing and Analysis-Control System Design and Simulation-Digital Filter Design-Spectral Measurements-Report generation-PID Control-Biomedical Startup kit. 9 VI Applications Part I: Material Handling System -Fiber-Optic Component Inspection Using Integrated Vision and Motion Components-Internet-Ready Power Network Analyzer for Power Quality Measurements and Monitoring. 9 VI Applications Part II: Developing Remote Front Panel LabVIEW Applications- Using the Timed Loop to Write Multirate Applications in LabVIEW - Client–Server Applications in LabVIEW- Neural Networks for Measurement and Instrumentation in Virtual Environments. 9 VI Applications, S, Surekha P., "LabVIEW based Advanced Instrumentation Systems", Springer Science & Business Media, 2007. 3. 3. Sanjay Gupta, Joseph, John, "Virtual Instrumentation using LabVIEW", 2 nd Edition, Tata McGraw Hill, 2010.	Graphical Sys	tem Design Programming Concepts: G-Programming- debugging	techni	ques-L	loops:	For loop,				
UNIT - II 9 Data Acquisition and Interfacing: Data Acquisition in LabVIEW-Hardware installation and configuration-DAQ components-DAQ signal Accessory-DAQ Assistant-DAQ Hardware-DAQ Software. 9 UNIT - III 9 GSD Programming Toolkits: Signal Processing and Analysis-Control System Design and Simulation-Digital Filter Design-Spectral Measurements-Report generation-PID Control-Biomedical Startup kit. 9 VI T - IV 9 VI Applications Part I: Material Handling System -Fiber-Optic Component Inspection Using Integrated Vision and Motion Components-Internet-Ready Power Network Analyzer for Power Quality Measurements and Monitoring. 9 VI Applications Part II: Developing Remote Front Panel LabVIEW Applications- Using the Timed Loop to Write Multirate Applications in LabVIEW - Client-Server Applications in LabVIEW - Neural Networks for Measurement and Instrumentation in Virtual Environments. 9 REFERENCES: 1 Jovitha Jerome, "Virtual Instrumentation using LabVIEW", 3 rd Edition, PHI Learning Pvt. Ltd., New Delhi, 2012. 2 Sumathi S., Surekha P., "LabVIEW based Advanced Instrumentation Systems", Springer Science & Business Media, 2007. 3 Sanjay Gupta, Joseph, John, "Virtual Instrumentation using LabVIEW", 2 nd Edition, Tata McGraw Hill, 2010.	While Loop, S	hift registers-Structures: Case Structure, Sequence Structure, Event	Struct	ure, T	imed S	Structure-				
Data Acquisition and Interfacing: Data Acquisition in LabVIEW-Hardware installation and configuration-DAQ components-DAQ signal Accessory-DAQ Assistant-DAQ Hardware-DAQ Software. UNIT – III 9 GSD Programming Toolkits: Signal Processing and Analysis-Control System Design and Simulation-Digital Filter Design-Spectral Measurements-Report generation-PID Control-Biomedical Startup kit. 9 UNIT – IV 9 VI Applications Part I: Material Handling System -Fiber-Optic Component Inspection Using Integrated Vision and Motion Components-Internet-Ready Power Network Analyzer for Power Quality Measurements and Monitoring. 9 VI Applications Part II: Developing Remote Front Panel LabVIEW Applications- Using the Timed Loop to Write Multirate Applications in LabVIEW - Client–Server Applications in LabVIEW- Neural Networks for Measurement and Instrumentation in Virtual Environments. 9 REFERENCES: 1 Jovitha Jerome, "Virtual Instrumentation using LabVIEW", 3 rd Edition, PHI Learning Pvt. Ltd., New Delhi, 2012. 2. Sumathi S., Surekha P., "LabVIEW based Advanced Instrumentation Systems", Springer Science & Business Media, 2007. 3. Sanjay Gupta, Joseph, John, "Virtual Instrumentation using LabVIEW", 2 nd Edition, Tata McGraw Hill, 2010.	UNIT – II					9				
UNIT – III 9 GSD Programming Toolkits: Signal Processing and Analysis-Control System Design and Simulation-Digital Filter Design-Spectral Measurements-Report generation-PID Control-Biomedical Startup kit. 9 UNIT – IV 9 VI Applications Part I: Material Handling System -Fiber-Optic Component Inspection Using Integrated Vision and Motion Components-Internet-Ready Power Network Analyzer for Power Quality Measurements and Monitoring. 9 VI Applications Part II: Developing Remote Front Panel LabVIEW Applications- Using the Timed Loop to Write Multirate Applications in LabVIEW - Client–Server Applications in LabVIEW- Neural Networks for Measurement and Instrumentation in Virtual Environments. 9 REFERENCES: 1 Jovitha Jerome, "Virtual Instrumentation using LabVIEW", 3 rd Edition, PHI Learning Pvt. Ltd., New Delhi, 2012. 2. Sumathi S., Surekha P., "LabVIEW based Advanced Instrumentation Systems", Springer Science & Business Media, 2007. 3. Sanjay Gupta, Joseph, John, "Virtual Instrumentation using LabVIEW", 2 nd Edition, Tata McGraw Hill, 2010.	Data Acquisit DAQ compone	ion and Interfacing: Data Acquisition in LabVIEW-Hardware in nts-DAQ signal Accessory-DAQ Assistant-DAQ Hardware-DAQ So	stallati oftware	on and e.	l confi	guration-				
GSD Programming Toolkits: Signal Processing and Analysis-Control System Design and Simulation-Digital Filter Design-Spectral Measurements-Report generation-PID Control-Biomedical Startup kit. UNIT - IV 9 VI Applications Part I: Material Handling System -Fiber-Optic Component Inspection Using Integrated Vision and Motion Components-Internet-Ready Power Network Analyzer for Power Quality Measurements and Monitoring. UNIT - V 9 VI Applications Part II: Developing Remote Front Panel LabVIEW Applications- Using the Timed Loop to Write Multirate Applications in LabVIEW - Client–Server Applications in LabVIEW- Neural Networks for Measurement and Instrumentation in Virtual Environments. Total: 45 REFERENCES: 1. Jovitha Jerome, "Virtual Instrumentation using LabVIEW", 3 rd Edition, PHI Learning Pvt. Ltd., New Delhi, 2012. 2. Sumathi S., Surekha P., "LabVIEW based Advanced Instrumentation Systems", Springer Science & Business Media, 2007. 3. Sanjay Gupta, Joseph, John, "Virtual Instrumentation using LabVIEW", 2 nd Edition, Tata McGraw Hill, 2010.	UNIT – III					9				
Filter Design-Spectral Measurements-Report generation-PID Control-Biomedical Startup kit. UNIT – IV 9 VI Applications Part I: Material Handling System -Fiber-Optic Component Inspection Using Integrated Vision and Motion Components-Internet-Ready Power Network Analyzer for Power Quality Measurements and Monitoring. UNIT – V 9 VI Applications Part II: Developing Remote Front Panel LabVIEW Applications- Using the Timed Loop to Write Multirate Applications in LabVIEW - Client–Server Applications in LabVIEW- Neural Networks for Measurement and Instrumentation in Virtual Environments. Total: 45 REFERENCES: 1. Jovitha Jerome, "Virtual Instrumentation using LabVIEW", 3 rd Edition, PHI Learning Pvt. Ltd., New Delhi, 2012. 2. Sumathi S., Surekha P., "LabVIEW based Advanced Instrumentation Systems", Springer Science & Business Media, 2007. 3. Sanjay Gupta, Joseph, John, "Virtual Instrumentation using LabVIEW", 2 nd Edition, Tata McGraw Hill, 2010.	GSD Program	ming Toolkits: Signal Processing and Analysis-Control System D	esign a	nd Sir	nulatic	on-Digital				
UNIT – IV 9 VI Applications Part I: Material Handling System -Fiber-Optic Component Inspection Using Integrated Vision and Motion Components-Internet-Ready Power Network Analyzer for Power Quality Measurements and Monitoring. UNIT – V 9 VI Applications Part II: Developing Remote Front Panel LabVIEW Applications- Using the Timed Loop to Write Multirate Applications in LabVIEW - Client–Server Applications in LabVIEW- Neural Networks for Measurement and Instrumentation in Virtual Environments. Total: 45 REFERENCES: 1. Jovitha Jerome, "Virtual Instrumentation using LabVIEW", 3 rd Edition, PHI Learning Pvt. Ltd., New Delhi, 2012. 2. Sumathi S., Surekha P., "LabVIEW based Advanced Instrumentation Systems", Springer Science & Business Media, 2007. 3. Sanjay Gupta, Joseph, John, "Virtual Instrumentation using LabVIEW", 2 nd Edition, Tata McGraw Hill, 2010.	Filter Design-S	pectral Measurements-Report generation-PID Control-Biomedical S	tartup	kit.		Ŭ				
UNIT – IV 9 VI Applications Part I: Material Handling System -Fiber-Optic Component Inspection Using Integrated Vision and Motion Components-Internet-Ready Power Network Analyzer for Power Quality Measurements and Monitoring. UNIT – V 9 VI Applications Part II: Developing Remote Front Panel LabVIEW Applications- Using the Timed Loop to Write Multirate Applications in LabVIEW - Client–Server Applications in LabVIEW- Neural Networks for Measurement and Instrumentation in Virtual Environments. Total: 45 REFERENCES: 1. Jovitha Jerome, "Virtual Instrumentation using LabVIEW", 3 rd Edition, PHI Learning Pvt. Ltd., New Delhi, 2012. 2. Sumathi S., Surekha P., "LabVIEW based Advanced Instrumentation Systems", Springer Science & Business Media, 2007. 3. Sanjay Gupta, Joseph, John, "Virtual Instrumentation using LabVIEW", 2 nd Edition, Tata McGraw Hill, 2010.										
 VI Applications Part I: Material Handling System -Fiber-Optic Component Inspection Using Integrated Vision and Motion Components-Internet-Ready Power Network Analyzer for Power Quality Measurements and Monitoring. UNIT - V 9 VI Applications Part II: Developing Remote Front Panel LabVIEW Applications- Using the Timed Loop to Write Multirate Applications in LabVIEW - Client–Server Applications in LabVIEW- Neural Networks for Measurement and Instrumentation in Virtual Environments. Total: 45 REFERENCES: 1. Jovitha Jerome, "Virtual Instrumentation using LabVIEW", 3rd Edition, PHI Learning Pvt. Ltd., New Delhi, 2012. 2. Sumathi S., Surekha P., "LabVIEW based Advanced Instrumentation Systems", Springer Science & Business Media, 2007. 3. Sanjay Gupta, Joseph, John, "Virtual Instrumentation using LabVIEW", 2nd Edition, Tata McGraw Hill, 2010. 	UNIT – IV					9				
Vision and Motion Components-Internet-Ready Power Network Analyzer for Power Quality Measurements and Monitoring. UNIT - V 9 VI Applications Part II: Developing Remote Front Panel LabVIEW Applications- Using the Timed Loop to Write Multirate Applications in LabVIEW - Client–Server Applications in LabVIEW- Neural Networks for Measurement and Instrumentation in Virtual Environments. Total: 45 REFERENCES: 1. Jovitha Jerome, "Virtual Instrumentation using LabVIEW", 3 rd Edition, PHI Learning Pvt. Ltd., New Delhi, 2012. 2. Sumathi S., Surekha P., "LabVIEW based Advanced Instrumentation Systems", Springer Science & Business Media, 2007. 3. Sanjay Gupta, Joseph, John, "Virtual Instrumentation using LabVIEW", 2 nd Edition, Tata McGraw Hill, 2010.	VI Applicatio	ns Part I: Material Handling System -Fiber-Optic Component	Inspec	tion U	sing I	ntegrated				
Monitoring. UNIT - V 9 VI Applications Part II: Developing Remote Front Panel LabVIEW Applications- Using the Timed Loop to Write Multirate Applications in LabVIEW - Client–Server Applications in LabVIEW- Neural Networks for Measurement and Instrumentation in Virtual Environments. 9 REFERENCES: 1. Jovitha Jerome, "Virtual Instrumentation using LabVIEW", 3 rd Edition, PHI Learning Pvt. Ltd., New Delhi, 2012. 2. Sumathi S., Surekha P., "LabVIEW based Advanced Instrumentation Systems", Springer Science & Business Media, 2007. 3. Sanjay Gupta, Joseph, John, "Virtual Instrumentation using LabVIEW", 2 nd Edition, Tata McGraw Hill, 2010.	Vision and Mo	tion Components-Internet-Ready Power Network Analyzer for Powe	er Qual	ity Me	asurer	nents and				
UNIT - V 9 VI Applications Part II: Developing Remote Front Panel LabVIEW Applications- Using the Timed Loop to Write Multirate Applications in LabVIEW - Client–Server Applications in LabVIEW- Neural Networks for Measurement and Instrumentation in Virtual Environments. Total: 45 REFERENCES: 1. Jovitha Jerome, "Virtual Instrumentation using LabVIEW", 3 rd Edition, PHI Learning Pvt. Ltd., New Delhi, 2012. 2. Sumathi S., Surekha P., "LabVIEW based Advanced Instrumentation Systems", Springer Science & Business Media, 2007. 3. Sanjay Gupta, Joseph, John, "Virtual Instrumentation using LabVIEW", 2 nd Edition, Tata McGraw Hill, 2010.	Monitoring.									
 VI Applications Part II: Developing Remote Front Panel LabVIEW Applications- Using the Timed Loop to Write Multirate Applications in LabVIEW - Client–Server Applications in LabVIEW- Neural Networks for Measurement and Instrumentation in Virtual Environments. Total: 45 REFERENCES: Jovitha Jerome, "Virtual Instrumentation using LabVIEW", 3rd Edition, PHI Learning Pvt. Ltd., New Delhi, 2012. Sumathi S., Surekha P., "LabVIEW based Advanced Instrumentation Systems", Springer Science & Business Media, 2007. Sanjay Gupta, Joseph, John, "Virtual Instrumentation using LabVIEW", 2nd Edition, Tata McGraw Hill, 2010. 										
 VI Applications Part II: Developing Remote Front Panel LabVIEW Applications- Using the Timed Loop to Write Multirate Applications in LabVIEW - Client–Server Applications in LabVIEW- Neural Networks for Measurement and Instrumentation in Virtual Environments. Total: 45 REFERENCES: Jovitha Jerome, "Virtual Instrumentation using LabVIEW", 3rd Edition, PHI Learning Pvt. Ltd., New Delhi, 2012. Sumathi S., Surekha P., "LabVIEW based Advanced Instrumentation Systems", Springer Science & Business Media, 2007. Sanjay Gupta, Joseph, John, "Virtual Instrumentation using LabVIEW", 2nd Edition, Tata McGraw Hill, 2010. 	$\frac{\mathbf{UNII} - \mathbf{V}}{\mathbf{VI}}$		T T •	- (1	T '	<u> </u>				
 Write Multirate Applications in Labview - Chent-Server Applications in Labview - Neural Networks for Measurement and Instrumentation in Virtual Environments. Total: 45 REFERENCES: Jovitha Jerome, "Virtual Instrumentation using LabVIEW", 3rd Edition, PHI Learning Pvt. Ltd., New Delhi, 2012. Sumathi S., Surekha P., "LabVIEW based Advanced Instrumentation Systems", Springer Science & Business Media, 2007. Sanjay Gupta, Joseph, John, "Virtual Instrumentation using LabVIEW", 2nd Edition, Tata McGraw Hill, 2010. 	VI Application	IS Part II: Developing Remote Front Panel Labview Application	VIEW	ng the	1 Mate	1 Loop to				
Total: 45 Total: 45 REFERENCES: 1. Jovitha Jerome, "Virtual Instrumentation using LabVIEW", 3 rd Edition, PHI Learning Pvt. Ltd., New Delhi, 2012. 2. Sumathi S., Surekha P., "LabVIEW based Advanced Instrumentation Systems", Springer Science & Business Media, 2007. 3. Sanjay Gupta, Joseph, John, "Virtual Instrumentation using LabVIEW", 2 nd Edition, Tata McGraw Hill, 2010.	Write Multirat	a Applications in Ladview - Client-Server Applications in Ladview	/IEW-	Neura	II INEL	NORKS TOP				
REFERENCES: 1. Jovitha Jerome, "Virtual Instrumentation using LabVIEW", 3 rd Edition, PHI Learning Pvt. Ltd., New Delhi, 2012. 2. Sumathi S., Surekha P., "LabVIEW based Advanced Instrumentation Systems", Springer Science & Business Media, 2007. 3. Sanjay Gupta, Joseph, John, "Virtual Instrumentation using LabVIEW", 2 nd Edition, Tata McGraw Hill, 2010.	Measurement a	nd instrumentation in virtual Environments.			I	Total• 45				
 Jovitha Jerome, "Virtual Instrumentation using LabVIEW", 3rd Edition, PHI Learning Pvt. Ltd., New Delhi, 2012. Sumathi S., Surekha P., "LabVIEW based Advanced Instrumentation Systems", Springer Science & Business Media, 2007. Sanjay Gupta, Joseph, John, "Virtual Instrumentation using LabVIEW", 2nd Edition, Tata McGraw Hill, 2010. 	REFERENCE	IOUAL 45								
 Sovial versile, "The Balling Part Heat Installion asing East (EV), 5 "Earton, THE Beating PV: East, Few Delhi, 2012. Sumathi S., Surekha P., "LabVIEW based Advanced Instrumentation Systems", Springer Science & Business Media, 2007. Sanjay Gupta, Joseph, John, "Virtual Instrumentation using LabVIEW", 2nd Edition, Tata McGraw Hill, 2010. 	1 Iovitha Id	erome "Virtual Instrumentation using LabVIEW" 3 rd Edition Pl	HI Lea	rning	Pvt I	td New				
 Sumathi S., Surekha P., "LabVIEW based Advanced Instrumentation Systems", Springer Science & Business Media, 2007. Sanjay Gupta, Joseph, John, "Virtual Instrumentation using LabVIEW", 2nd Edition, Tata McGraw Hill, 2010. 	Delhi 20	2			1 vt. L	<i>Ad.</i> , 110 <i>W</i>				
 Business Media, 2007. 3. Sanjay Gupta, Joseph, John, "Virtual Instrumentation using LabVIEW", 2nd Edition, Tata McGraw Hill, 2010. 	2. Sumathi	S., Surekha P., "LabVIEW based Advanced Instrumentation Sys	stems"	Sprir	ger S	cience &				
3. Sanjay Gupta, Joseph, John, "Virtual Instrumentation using LabVIEW", 2 nd Edition, Tata McGraw Hill, 2010.	Business	Media, 2007.		~PIII		cience a				
2010.	3. Sanjav G	upta, Joseph, John, "Virtual Instrumentation using LabVIEW", 2 nd	Editio	n, Tata	a McG	raw Hill.				
	2010.			-		, ,				

COUI	RSE OUTO	BT Mapped			
On co	mpletion of	the course, the students will be	e able to	(Highest Level)	
CO1:	apply stru	ctured programming concepts	in developing VI programs and employ	Applying (K3)	
	various debugging techniques				
CO2:	interface l	nardware devices with software	e using DAQ system	Applying (K3)	
CO3:	design, in	Applying (K3)			
CO4:	D4: apply knowledge on various tools in practical works				
CO5:	D5: create virtual instruments for real time applications			Applying (K3)	
		Mappi	ng of COs with POs		
CC	Os/POs	PO1	PO2	PO3	
(CO1	1	1	1	
(CO2	2	1	2	
CO3		2	2	2	
CO4		2	2	1	
CO5		2	2	2	
1 – Sli	ght, $2 - Mc$	oderate, 3 – Substantial, BT -	Bloom's Taxonomy		

18AEE07 ENERGY CONSERVATION, MANAGEMENT AND AUDITING (Common to Applied Electronics & Power Electronics and Drives branches)

		L	L	r	Crean	
		3	0	0	3	
Preamble	The aim of the course is to understand the basics of energy con	servati	ion tec	hnique	s, energ	y
	auditing in industries and the associated economical benefits.					
Prerequisites	Nil					
UNIT – I						9
Energy: Energy Scenario – India and World – Energy Resources Availability in India– Energy consumption						

Energy: Energy Scenario – India and World – Energy Resources Availability in India– Energy consumption – Pattern, Energy and Environment - Energy Security - Energy Conservation and its importance, Energy Conservation Act, 2001 and its features

UNIT – II

Energy Conservation in Thermal Systems: Energy Conservation in Thermal Systems – Needs and Advantages. – Properties of steam –Assessment of steam distribution losses, steam leakages, steam trapping, Various Energy Conservation measures in Steam Systems – Losses in Boilers, Energy Conservation opportunities in Boilers

UNIT – III

Energy Management: Importance of Energy Management, Financial analysis Techniques – Simple Payback Period, Return on Investment, Net present Value, Internal Rate of Return, Cash flows, Risk and Sensitivity Analysis, Financing Options, Energy Performance Contract and Role of ESCOS.

UNIT – IV

Energy Efficient technologies in Electrical System: Maximum Demand Controllers, Automatic Power Factor Controllers, Energy Efficient motors, Soft starters with Energy Saver, Variable speed drives, Energy Efficient transformers, Electronic Ballast, Energy Efficient Lighting Controls- Occupancy Sensors, Time based control.

$\overline{\mathbf{UNIT}} - \mathbf{V}$

Energy Audit: Energy Audit – Need, Principle, Types, Methodologies, Energy audit approach, Barriers, Role of Energy Manager and Auditor – Energy Audit Questionnaire – Bench marking and Energy Performance – Energy Audit Instruments, Case study.

REFERENCES:

	Efficiency, whilsty of Fower, field, 2010,
	Efficiency Ministry of Power India 2010
1.	"Book I - General Aspect of Energy Management and Energy Audit", 3 rd Edition, Bureau of Energy

- 2. "Book II Energy Efficiency in Thermal Utilities", 3rd Edition, Bureau of Energy Efficiency, Ministry of Power, India, 2010.
- 3. "Book III Energy Efficiency in Electrical Utilities", 3rd Edition, Bureau of Energy Efficiency, Ministry of Power, India, 2010.

9

9

9

9

Total: 45

COUR	COURSE OUTCOMES: BT Mapped							
On cor	npletion of	the course, the students will be	able to	(Highest Level)				
CO1:	outline th	Understanding (K2)						
CO2:	apply the	Applying (K3)						
CO3:	apply var	ious financial techniques for eco	onomic analysis	Applying (K3)				
CO4:	apply the	energy performance measures in	n electrical system	Applying (K3)				
CO5:	explain th	ne principles and methodologies	of energy audit	Understanding (K2)				
		Mappin	g of COs with POs					
CO	s/POs	PO1	PO2	PO3				
(201	2		1				
(CO2	3	1	3				
(203	3	1	2				
CO4		3	1	3				
CO5		2	2	2				
1 - Sli	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy							

18AEE08 PROJECT MANAGEMENT

(Common to Ap	plied Electronics	& Power Electro	nics and Drive	es branches)

L T P Credit

9

9

9

9

		3	0	0	3	
Preamble	This course serves as a guide to learn and execute various phase	s of ur	ndertak	ing a p	oroject.	
Prerequisites	Nil					
IINIT _ I						0

Philosophy and Concepts: Need – Goals- Evolution-Different Forms -Project Management in Manufacturing, Service and Government Sectors; Systems Development Cycle – Conception phase: proposal, contracting – Definition phase – Execution phase: production / build, implementation – Operation phase-System Development in Industries, service and government sectors - case study.

UNIT – II

Planning Fundamentals: Planning Steps – Project master plan - Tools for project planning – work break down structure, responsibility matrix, events and mile stones- Gantt charts. Network Scheduling – the critical path – early and late times – slack –float – calendar scheduling.

UNIT – III

PERT: Time estimates – probability of finishing by target completion date – criticisms of PERT - CPM – Time cost relationship – reducing project duration – shortest duration – total project cost; Scheduling with Resource Constraints – resource loading and leveling – constrained resources; Introduction to GERT network - case studies in PERT/CPM.

UNIT – IV

Project Cost Estimation: Process – classification-expert opinion, analogy estimate, parametric estimate, cost engineering, Contingency amount - Elements of budgets and Estimates – direct labour, direct non- labour, overhead, general and administrative expenses, profit and total billing. Project cost accounting – budgeting using cost accounts - cost summaries, cost schedules and forecasts – case study. Project Management Information Systems (PMIS): Functions – Computer based PMI Systems – Web-Based project management

UNIT – V

Project Control: Cost accounting systems- project control process - Project control emphasis-Performance Analysis – cost, schedule, work package analysis, performance indices, updating time estimates, technical performance measurement- Performance Index monitoring – variance limits, controlling changes, contract administration, control problems, case study. Project Evaluation: Review meetings, reporting, terminating, termination responsibilities, closing the contract, project extensions, project summary evaluation.

	Total: 45
REF	'ERENCES:
1.	Nicholas John M., "Project Management for Business and Technology", Prentice Hall India, New
	Delhi, 2011.
2.	Pagnoni Anastasia, "Project Engineering: Computer Oriented Planning and Operational Decision
	Making", Springer-Verlag, Berlin, 2012.
2	Depressive D. "Project Management" DILL coming Dat Ltd. 2010

3. Pannerselvam R., "Project Management", PHI Learning Pvt. Ltd., 2010.

COURS	SE OUTC	BT Mapped					
On com	pletion of	the course, the students will be	e able to	(Highest Level)			
CO1:	understa	inding of a schematic carryin	g out a project indicating various	Understanding (K2)			
	phases						
CO2:	apply pr	oject management techniques f	for executing projects	Applying (K3)			
CO3:	understa	ind various control measures in	project implementation	Understanding (K2)			
CO4:	analysis	the techniques and procedu	ires for defining, scheduling and	Evaluating (K5)			
	budgetir	ng project activities to achiev	ve project quality, time, and cost				
	goals.						
CO5:	monitor	, evaluate, control and executin	g the project.	Evaluating (K5)			
		Mappi	ng of COs with POs				
COs	/POs	PO1	PO2	PO3			
C	D1	3	1	2			
C	D2	3	1	2			
CO3		3	2	2			
CO4		3	2	2			
C	05	3	2	2			
1 – Sligl	1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy						

18AEE09 WAVELET TRANSFORMS AND ITS APPLICATIONS							
			L	Т	Р	Credit	
			3	0	0	3	
Preamb	le	To analyze the properties of different types of wavelet transfo	orm an	d its ap	plicati	ions on	
		image processing.		1	1		
Prerequ	isites	Digital Signal Processing					
UNIT -	Ι					9	
Introdu	iction:	Vector spaces - properties - dot product - basis-din	nensio	n, ortl	nogona	ality and	
orthono	rmality	- relationship between vectors and signals-signal spaces-con	cept o	f conv	ergenc	e-Hilbert	
spaces f	for energ	y signals.	1		U		
1		• •					
UNIT -	II					9	
Fourier	r Analy	sis and STFT: Fourier Transform-drawbacks of Fourier a	nalysi	s- win	dow fi	unction -	
Short-ti	me Fou	rier Transform (STFT) analysis-spectrogram plot-phase-sp	bace p	lot in t	time-fi	requency	
plane. H	Heisenbe	rg's uncertainty principle-Tilling of the time-frequency plan	ne for S	STFT.			
-							
UNIT -	III					9	
Contin	uous W	avelet Transform: Wavelet transform properties-concept of	of scale	e and i	ts rela	tion with	
frequen	cy-conti	nuous Wavelet Transform (CWT)-scaling function and way	velet fu	inction	s: Dau	ubechies,	
Haar, C	Coiflet, I	Aexican hat, Sine, Gaussian, Bi-orthogonal wavelets - Till	ling of	time	scale 1	plane for	
CWT.			U				
UNIT -	IV					9	
Discret	e Wave	let Transform and Multi-Resolution Analysis: Discrete V	Wavel	et Tran	sform	(DWT)-	
Filter b	ank and	sub-band coding principles. Multi-resolution analysis-Time	e scale	differ	ence e	quations	
for wa	velets a	and scaling functions-Wavelet filters-scale variation in	disci	ete do	omain	-Mallet's	
algorith	m for	DWT-Inverse DWT computation by filter banks. Intr	roduct	ion to	mult	iwavelet	
transfor	ms.						
UNIT -	V					9	
Wavele	t Packe	t Analysis and Applications: Haar wavelet packets-applica	tion-b	est bas	sis sele	ectionand	
cost fur	nctions.	Sub-band coding of images-Image compression-Image de-no	oising	– imag	e codi	ing using	
wavelet tree coder – EZW code and SPIHT code. Introduction to second generation wavelets.							
Total: 45							
REFER	RENCES	:					
1. Ma	allat S., ʻ	A Tour on Wavelet Signal Processing", Elsevier, New Delhi,	Decen	uber 20	05.		
2. Ra	o R.M. a	nd Bopardikar A.S., "Wavelet Transforms", Addison Wesley,	1999.				
3. So	man K.F	and Ramachandran K.I., "Insight into Wavelets-From Theor	ry to P	ractice	", Prer	ntice Hall	
of	India. N	ew Delhi, 2010.	5		, ,-		

COURS	E OUTO	BT Mapped				
On completion of the course, the students will be able to				(Highest Level)		
CO1:	explain	the vector space and properties	Understanding (K2)			
CO2:	elabora	te the Fourier transforms and it	Understanding (K2)			
CO3:	analyze	the various properties of wave	Analyzing (K4)			
CO4:	describe	e the discrete wavelet transform	Understanding (K2)			
CO5:	apply	wavelet transform for variou	us signal and image processin	g Applying (K3)		
Mapping of COs with Pos						
COs/	POs	PO1	PO2	PO3		
CC) 1	2	1	2		
CO2		3	1	2		
CO3		2	1	2		
CO4		3	1	2		
CO5		3	1	3		
1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy						

18AEE10 SCADA AND DCS						
(Common to Applied Electronics & Power Electronics and Drives branches)						
		L	T î	P	Credit	
N 11		3	0	0	3	
Preamble	The aim of the subject is to develop an understanding of the b	asic c	oncepts	s of au	itomation	
Droroquisitos	System using SCADA & DCS and to develop the industrial application	iicatio	ns usin	g the s	ame.	
TINIT I	Digital Logic Circuits				0	
Automation I	undamentals of industrial automation need and role of automatic	on ev	olution	of au	tomation	
HMI systems, Text display – operator panels – Touch panels – Panel PCs – Integrated displays (PLC and HMI), Rack installation, Grounding and shielding, physical, electrical, maintenance requirements-Troubleshooting.						
UNIT – II					9	
SCADA: Concept of SCADA systems, Programming techniques for : Creation of pages, Sequencing of pages, Creating graphics and animation, Dynamos programming with variables, Trending, Historical data storage and Reporting, Alarm management, reporting of events and parameters. Comparison of different SCADA packages. Application Development using SCADA system.						
					0	
UNII – III DCS Introduc	tion: Location of DCS in Plant functions, advantages and limit	otions	Com	oricor	y of DCS	
with PLC. DCS components/ block diagram, Architecture, Functional requirements at each level. Layout of DCS, Controller Details, Redundancy, I/O Card Details, Junction Box and Marshalling Cabinets.						
	-					
UNIT – IV				~ ·	9	
Distributed Control System: Distributed Control Systems (DCS) – Difference between SCADA system and DCS – local control unit – programming language – communication facilities – operator interface – engineering interfaces.						
	Т					
UNIT - V9Applications: Applications of SCADA and DCS - Case studies of Process plants using SCADA and DCS - Advanced features / options in SCADA and DCS - Role of PLC in DCS and SCADA - comparison - field devices (Transducers, drives etc) in DCS / SCADA.						
Total: 45						
REFERENCES:						
1. Lukas Michael P., "Distributed Control Systems", Van Nostrand Reinfold Company, 2002.						
2. Dobrivojie Popovic and Vijay P. Bhatkar, "Distributed Computer Control for Industrial Automation",						
3. CIMPLI	CIMPLICITY SCADA Packages Manual Fanuc India Ltd., 2004.					

COURS	BT Mapped					
On com	(Highest Level)					
CO1:	demonstrate the basic concepts on automation system			Understanding (K2)		
CO2:	develop	programming with SCADA sy	vstem	Applying (K3)		
CO3:	compare	and explain the basic concepts	Applying (K3)			
CO4:	develop a DCS and SCADA system for a process to meet a set of			Applying (K3)		
	specifica					
CO5:	CO5: apply the SCADA and DCS in various industrial applications			Analyzing (K4)		
Mapping of COs with POs						
COs/POs		PO1	PO2	PO3		
C	01	1	1	2		
CO2		2		3		
CO3		1	1	2		
CO4		2		3		
CO5		3		3		
1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy						

18AEE11 INDUSTRIAL ELECTRONICS

(Common to Applied Electronics & Mechatronics branches)

			-	-	Cicuit
		3	0	0	3
Preamble	This course brings an overview of power converters and its ap perspective. It also includes the various control and protection te	plicati chniqu	ons tov es for o	wards conver	industrial ters.
Prerequisites	Electron Devices, Electrical Machines, Power Electronics				
UNIT – I					9
Power Semiconductor Devices: Principle of operation and characteristics of power diodes, SCR, TRIAC,					
GTO, Power BJT, Power MOSFET and IGBT – Thyristor protection circuits.					

UNIT – II

Phase Controlled Rectifiers: Single phase half and full converters – Three phase half and full converters – Triggering circuits. Inverters: Single phase and three phase inverters – Types of PWM techniques: Sinusoidal PWM, modified sinusoidal PWM and multiple PWM.

UNIT – III

DC-DC Converters: Chopper: Principle of operation – Step up and step down chopper – Control strategies – Voltage, Current and Load commutated chopper.

UNIT – IV

AC-AC Converters: Principle of single phase AC voltage controller – Phase control – ON-OFF control. Cycloconverters: Step up and step down operation - Three phase to single phase and three phase to three phase cycloconverters - Introduction to Matrix Converters

UNIT-V

Solid State DC and AC Drives: DC Drives: Conventional speed control methods for DC motors – DC motor control using rectifiers and choppers – AC drives: Conventional speed control methods for AC motors – Control of induction motor by Voltage, frequency, V/f and slip power recovery scheme. Speed control methods of single phase induction motors and synchronous motors.

Total: 45

9

9

9

9

Т

IL/I	
1.	Muhammad H. Rashid, "Power Electronics: Circuits Devices and Applications", 3rd Edition, Pearson
	Education, 2003.
2.	Khanchandani K.B. and Singh M.D., "Power Electronics", 2 nd Edition, Tata McGraw Hill Publishers,
	New Delhi, 2006.
3.	Gopal K. Dubey, "Fundamentals of Electrical Drives", 2 nd Edition, Narosa Book Distributors Pvt. Ltd,

2012.

REFERENCES

COUR	BT Mapped						
On con	(Highest Level)						
CO1:	understar	nd the operation and character	ristics of basic power semiconductor	r Understanding (K2)			
	devices	vices					
CO2:	demonstr	demonstrate the various PWM techniques for inverter and converter Applying (
	operations						
CO3:	explicate	the principle and operation of o	choppers	Understanding (K2)			
CO4:	summariz	Understanding (K2)					
CO5:	experiment with various speed control methods with respect to industrial			Applying (K3)			
	application						
	Mapping of COs with POs						
COs/POs		PO1	PO2	PO3			
C	201	3		2			
CO2		2		2			
CO3		3		3			
CO4		2	1	2			
CO5		3		2			
1 – Slight, 2 – Moderate, 3 – Substantial, BT - Bloom's Taxonomy							